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Abstract

Throughout most of history, increasing agricultural production has been largely driven by
expanded land use, and – especially in the 19th and 20th century – by technological innova-
tion in breeding, genetics and agrochemistry as well as intensification through mechanization
and industrialization. More recently, information technology, digitalization and automation
have started to play a more significant role in achieving higher productivity with lower
environmental impact and reduced use of resources. This includes two trends on opposite
scales: precision farming applying detailed observations on sub-field level to support local
management, and large-scale agricultural monitoring observing regional patterns in plant
health and crop productivity to help manage macroeconomic and environmental trends. In
both contexts, remote sensing imagery plays a crucial role that is growing due to decreasing
costs and increasing accessibility of both data and means of processing and analysis. The
large archives of free imagery with global coverage, can be expected to further increase
adoption of remote sensing techniques in coming years.

This thesis addresses multiple aspects of remote sensing in agriculture by presenting
new techniques in three distinct research topics: (1) remote sensing data assimilation in
dynamic crop models; (2) agricultural field boundary detection from remote sensing obser-
vations; and (3) contour extraction and field polygon creation from remote sensing imagery.
These key objectives are achieved through combining methods of probability analysis, un-
certainty quantification, evolutionary learning and swarm intelligence, graph theory, image
processing, deep learning and feature extraction. Four new techniques have been developed.

Firstly, a new data assimilation technique based on statistical distance metrics and
probability distribution analysis to achieve a flexible representation of model- and measure-
ment-related uncertainties. Secondly, a method for detecting boundaries of agricultural
fields based on remote sensing observations designed to only rely on image-based information
in multi-temporal imagery. Thirdly, an improved boundary detection approach based on
deep learning techniques and a variety of image features. Fourthly, a new active contours
method called Graph-based Growing Contours (GGC) that allows automatized extraction
of complex boundary networks from imagery. The new approaches are tested and evaluated
on multiple study areas in the states of Schleswig-Holstein, Niedersachsen and Sachsen-
Anhalt, Germany, based on combine harvester measurements, cadastral data and manual
mappings.

All methods were designed with flexibility and applicability in mind. They proved to
perform similarly or better than other existing methods and showed potential for large-scale
application and their synergetic use. Thanks to low data requirements and flexible use of
inputs, their application is neither constrained to the specific applications presented here
nor the use of a specific type of sensor or imagery. This flexibility, in theory, enables their
use even outside of the field of remote sensing.
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Kurzfassung

Landwirtschaftliche Produktivitätssteigerung wurde historisch hauptsächlich durch Erschlie-
ßung neuer Anbauflächen und später, insbesondere im 19. und 20. Jahrhundert, durch tech-
nologische Innovation in Züchtung, Genetik und Agrarchemie sowie Intensivierung in Form
von Mechanisierung und Industrialisierung erreicht. In jüngerer Vergangenheit spielen je-
doch Informationstechnologie, Digitalisierung und Automatisierung zunehmend eine größere
Rolle, um die Produktivität bei reduziertem Umwelteinfluss und Ressourcennutzung weiter
zu steigern. Daraus folgen zwei entgegengesetzte Trends: Zum einen Precision Farming,
das mithilfe von Detailbeobachtungen die lokale Feldarbeit unterstützt, und zum anderen
großskalige landwirtschaftliche Beobachtung von Bestands- und Ertragsmustern zur Anal-
yse makroökonomischer und ökologischer Trends. In beiden Fällen spielen Fernerkundungs-
daten eine entscheidende Rolle und gewinnen dank sinkender Kosten und zunehmender Ver-
fügbarkeit, sowohl der Daten als auch der Möglichkeiten zu ihrer Verarbeitung und Analyse,
weiter an Bedeutung. Die Verfügbarkeit großer, freier Archive von globaler Abdeckung wer-
den in den kommenden Jahren voraussichtlich zu einer zunehmenden Verwendung führen.

Diese Dissertation behandelt mehrere Aspekte der Fernerkundungsanwendung in der
Landwirtschaft und präsentiert neue Methoden zu drei Themenbereichen: (1) Assimila-
tion von Fernerkundungsdaten in dynamischen Agrarmodellen; (2) Erkennung von land-
wirtschaftlichen Feldgrenzen auf Basis von Fernerkundungsbeobachtungen; und (3) Kon-
turextraktion und Erstellung von Polygonen aus Fernerkundungsaufnahmen. Zur Bear-
beitung dieser Zielsetzungen werden verschiedene Techniken aus der Wahrscheinlichkeits-
analyse, Unsicherheitsquantifizierung, dem evolutionären Lernen und der Schwarmintelli-
genz, der Graphentheorie, dem Bereich der Bildverarbeitung, Deep Learning und Feature-
Extraktion kombiniert. Es werden vier neue Methoden vorgestellt.

Erstens, eine neue Methode zur Datenassimilation basierend auf statistischen Dis-
tanzmaßen und Wahrscheinlichkeitsverteilungen zur flexiblen Abbildung von Modell- und
Messungenauigkeiten. Zweitens, eine neue Technik zur Erkennung von Feldgrenzen, auss-
chließlich auf Basis von Bildinformationen aus multi-temporalen Fernerkundungsdaten. Drit-
tens, eine verbesserte Feldgrenzenerkennung basierend auf Deep Learning Methoden und
verschiedener Bildmerkmale. Viertens, eine neue Aktive Kontur Methode namens Graph-
based Growing Contours (GGC), die es erlaubt, komplexe Netzwerke von Konturen aus
Bildern zu extrahieren. Alle neuen Ansätze werden getestet und evaluiert anhand von Mäh-
dreschermessungen, Katasterdaten und manuellen Kartierungen in verschiedenen Testregio-
nen in den Bundesländern Schleswig-Holstein, Niedersachsen und Sachsen-Anhalt.

Alle vorgestellten Methoden sind auf Flexibilität und Anwendbarkeit ausgelegt. Im
Vergleich zu anderen Methoden zeigten sie vergleichbare oder bessere Ergebnisse und verdeut-
lichten das Potenzial zur großskaligen Anwendung sowie kombinierter Verwendung. Dank
der geringen Anforderungen und der flexiblen Verwendung verschiedener Eingangsdaten ist
die Nutzung nicht nur auf die hier beschriebenen Anwendungen oder bestimmte Sensoren
und Bilddaten beschränkt. Diese Flexibilität erlaubt theoretisch eine breite Anwendung,
auch außerhalb der Fernerkundung.
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Chapter 1

Introduction

Agricultural production and food security are crucial topics facing civilization today. Re-
cent decades saw rising global population and unprecedented growth in wealth and living
standards, raising millions of people out of poverty (Roser and Ortiz-Ospina, 2013). Si-
multaneously, agricultural yields in Europe increased continuously in the second half of
the 20th century but global productivity is expected to slow down or even decrease under
different future scenarios (Asseng et al., 2015; Food and Agriculture Organization of the
United Nations, 2015). A projected global population of 9.7 billion in 2050 and a growing
demand for organically (supplemented) fuels and renewable energy are expected to lead
to accelerating demand growth in coming decades, driving the need for higher agricultural
production (United Nations et al., 2015; Alexandratos and Bruinsma, 2012). This raises
the question of how best to meet global demand.

For most of history, increase in agricultural production was primarily achieved by
expanded land use. The 19th and especially 20th centuries, however, saw significant tech-
nological development through industrialization and mechanization of agriculture as well
as innovation in genetics and agrochemistry, most notably modern fertilizers, pesticides
and higher-yielding varieties (Sands et al., 2014). As further expansion of agricultural
land is impractical or undesired in many regions, intensification and sustainable use of
existing farmland is key to meeting growing demand for agricultural products (Food and
Agriculture Organization of the United Nations, 2018). Nevertheless, economic limita-
tions and increasing costs often limit further intensification, while environmental concerns
about effects on soil quality, ground water pollution and sustainability of agricultural pro-
duction, raise opposition against existing practices (Food and Agriculture Organization of
the United Nations, 2018; Hart et al., 2013).

Especially in recent years, agriculture has therefore seen a shift towards more sustain-
able and more efficient use of resources. Trends of automation and digitalization prove
crucial in this context and offer great potential to achieve efficiency and sustainability
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goals, resulting in a growing interest in techniques of precision farming and large-scale
agricultural monitoring (Finger et al., 2019; Ting et al., 2011; Food and Agriculture Or-
ganization of the United Nations, 2018).

Modern imaging technology plays a key role in this technological transformation. In
precision farming, land-based sensors as well as Unmanned Aerial Vehicles (UAVs) and
airborne imaging are prevalent to aid in more effective use of fertilizers and herbicides,
plant health monitoring, water and irrigation management as well as early detection of
pests and diseases (Finger et al., 2019).

In the context of large-scale monitoring of croplands, production, management prac-
tices and resource use, remote sensing supports informed agricultural policies as well as
regional planning and management of subsidies. Information on structure and distribution
of agricultural activity is needed for a variety of topics such as environmental monitoring,
insurance and biodiversity management (Rembold et al., 2013; García-Pedrero et al., 2017;
Atzberger, 2013). Traditionally, such data is obtained through costly and time-consuming
field campaigns, empirical surveys, estimations or manual interpretation (Tiwari et al.,
2009; Rahman et al., 2019; Rembold et al., 2013). Automatized methods based on earth
observation data, however, allow for a much cheaper and faster way to gather regular,
timely information. The potential of earth observation data is particularly evident in
remote places, especially in the developing world. Agricultural statistics and surveys in
these regions often suffer from a lack of funding or manpower (Grassini et al., 2015).

While very high-resolution imagery from airborne and, more recently, satellite sen-
sors is commonly used for precision farming applications, larger-scale monitoring has often
been achieved using low- to medium-resolution imagery of sensors such as the Advanced
Very High Resolution Radiometer (AVHRR) or the MODerate resolution Imaging Spec-
troradiometer (MODIS) (Rembold et al., 2013; Chaubey et al., 2011). For the most part,
this is due to an inherent trade-off between spatial and temporal resolution. While lower
spatial resolution platforms often provide high temporal resolution due to their wide swath,
high-resolution data from platforms such as the Landsat satellites has been constrained
by long revisit times (Rembold et al., 2013; Chaubey et al., 2011). Combined with ob-
scuring by cloud cover, this inhibits sufficient availability of high-resolution imagery and
complicates many possible applications, especially in the time-sensitive field of agricultural
monitoring.

With trends towards open access and free-of-charge data distribution as well as
government agencies embracing open data policies, however, today remote sensing data
is more abundant than ever before. The opening of the Landsat archive in 2008 and the
initiation of the Copernicus programme by the European Commission in partnership with
the European Space Agency (ESA) in 2014, led the way for an unprecedented abundance
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of free-of-charge high-resolution satellite data and the transition into a Big Data era for
remote sensing (Wulder et al., 2012; Koubarakis et al., 2019). The availability of low-
cost data has also enabled new applications and use cases. Reduced initial investment of
imagery facilitates and encourages use by small businesses and even interested individuals.
It also opened the path towards applications of both large spatial scale allowing for high-
resolution analyses on national and even continental or global level as well as large temporal
scale utilizing long time series spanning decades.

Especially in the context of large-scale agricultural monitoring, the Sentinel-2 satel-
lite constellation of the Copernicus programme offers a significant improvement in several
respects. It provides higher spatial resolution than current Landsat missions, more spectral
information and increased coverage through the use of two identical satellites Sentinel-2A
and -2B. Better exploiting these advantages is an important task in agricultural remote
sensing applications today and stands in the center of this thesis.

The amount of data, however, comes at a cost in terms of processing requirements.
Many traditional approaches are unsuitable or simply too inefficient for the application on
such large datasets. The rapid adaptation of machine learning and artificial intelligence,
primarily in the form of Artificial Neural Networks of different types demonstrate the
efforts to make effective and efficient use of the newly abundant data (Tsagkatakis et al.,
2019; Zhu et al., 2017; Ma et al., 2019). Advances in processing power and analytical
techniques further aid in broadening the use of remote sensing data and opening up the
market to new ideas, applications and technologies.

The focus of this thesis is the use of remote sensing data, particularly multispectral
satellite imagery, for larger-scale monitoring applications of whole farms, large numbers
of fields or on regional scales. This encompasses, in particular, exploiting the capacities
of the Sentinel-2 constellation.

1.1 Background and Context

This section provides some background information for the following chapters. It gives
more specific context for topics and concepts that are mentioned but not discussed in
detail in the following chapters.

1.1.1 Dynamic Crop Models

In contrast to statistical models, empirical extrapolations or semi-empirical techniques
based on established relationships between certain plant characteristics (e.g. photosyn-
thetic activity and biomass accumulation), dynamic crop models attempt to simulate
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actual processes and interactions between soil, plant and atmosphere (Basso et al., 2013;
Atzberger, 2013). These simulations can go as far as simulating individual leaves, cells
and organelles within the plant in time steps of minutes or seconds.

The most common dynamic crop model variants intended for general applications,
however, are simplified to a certain degree and may include functional approximations
that replace complex process simulations (Penning de Vries and Rabbinge, 1995; Van
Ittersum et al., 2003b). These are usually point-based models simulating growth and
development of a single plant or an assumed homogeneous field of plants in daily time
steps. Famous models and model suites of this type are the Agricultural Production
Systems sIMulator (APSIM), the Decision Support System for Agrotechnology Transfer
(DSSAT), the WOrld FOod STudies model (WOFOST) and the AquaCrop model by the
Food and Agriculture Organization of the United Nations (FAO) (Keating et al., 2003;
Jones et al., 2003; Hoogenboom et al., 2019; van Diepen et al., 1989, 1994; Steduto et al.,
2009; Raes et al., 2009; Hsiao et al., 2009).

In crop models, three types of information are distinguished: (a) driving variables
describing external influences that are not altered by the model itself (e.g. meteorological
inputs); (b) state variables representing the current state of the simulation (e.g. biomass,
leaf area); and (c) parameters as fixed predefined settings (e.g. light extinction coefficients
or biomass accumulation rates) (Boogaard et al., 2014). The simulation may represent
these in different processes and different levels of detail. The phenological development of
the plant stem, roots and/or canopy is often the core process that determines changes in
growth stages and crop behavior influencing many parts of the simulation (Boote et al.,
2013). Some models simulate development of individual leaves and roots (Birch et al.,
1998; Fournier and Andrieu, 1998).

Closely linked to physiological development is the simulation of biomass accumula-
tion and yield formation. This is most commonly represented by a functional relationship
calculating change in biomass according to photosynthetic activity, canopy development
and growth stage and obtaining final yield via a simple harvest index (percentage of to-
tal above-ground biomass) (Boote et al., 2013; Bouman et al., 1996; Van Ittersum et al.,
2003a). Some models, however, attempt higher detail through simulation of individual
seeds or detailed partitioning of biomass to different parts of the plant (Boote et al.,
2013).

Actual photosynthetic activity is often reduced to a relationship based on light use
efficiency (Monteith, 1977). The relationship between physiology and biomass accumu-
lation is therefore reduced to empirical or functional relationships influenced by other
aspects such as current growth stage or environmental factors.
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Lastly, soil water balance is an important part of most dynamic crop models, often
including a detailed simulation distinguishing multiple soil depths, surface runoff, percola-
tion and drainage, water-logging and occasionally even capillary rise and salt accumulation
which are especially relevant in arid regions (Van Ittersum et al., 2003b; van Keulen, 1975).

1.1.2 Data Assimilation

Data assimilation describes the process of combining observations (state estimates) from
multiple sources to achieve a better estimate of a variable of interest. This may be, for
example, the merging of multiple measurements or a combination of measurements with
predicted and simulated values (Reichle, 2008). Most techniques also take into account
uncertainties (errors) in the state estimates to gauge the new estimate towards more
reliable observations.

The type of data assimilation primarily considered here is the use of external data
(e.g. measurements) to improve the simulated (predicted) state of a model. Two general
types of assimilation algorithms may be distinquished: filtering (sequential) and smooth-
ing (batch) (Reichle, 2008). A filtering approach, such as the Kalman filter, performs
the assimilation sequentially, i.e. progresses step by step propagating information about
the state estimate through time (Kalman, 1960; Kalman and Bucy, 1961). Contrarily, a
smoothing approach, such as 3DVAR or 4DVAR, considers multiple observations at differ-
ent time steps within an interval simultaneously, including “future” observations (Reichle,
2008; Barker et al., 2004; Sasaki, 1970; Trémolet, 2006).

Both approaches are employed in the context of remote sensing and crop modeling.
Nevertheless, a specific naming convention is used. In crop modeling, three major types
of data assimilation techniques may be distinguished (Delécolle et al., 1992):

Firstly, forcing refers to the direct continuous insertion of measured data into the
model, for example daily measurements of a state variable. It is debatable if this can be
regarded as an assimilation process by the definition given above as it completely neglects
any prediction from the model itself and merely replaces a predicted with a measured
value (Delécolle et al., 1992).

Secondly, re-calibration (sometimes further separated into re-initialization and re-
parametrization) refers to smoothing or batch techniques as described above and represents
the process of iteratively adjusting parameters and initial state variables of a model to
minimize deviations between predicted and measured variables throughout the simulation.
This usually requires multiple model runs and is often performed on the predicted time
series of a state variable through the entire simulation run (Dorigo et al., 2007; Verrelst
et al., 2015; Rodriguez et al., 2004).
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Thirdly, updating is a technique that, in contrast to re-calibration, performs assim-
ilation during model execution and only at time steps where external observations are
available. Taking both the predicted value of the model and the external observation
into account, a new model estimate is obtained. This may be achieved through filtering
techniques such as the Kalman filter and its variants or particle filters (Kalman, 1960;
Evensen, 2003; Xie et al., 2017; Li et al., 2014).

Most commonly, data assimilation in crop modeling refers to assimilation of one or
more state variables assuming that their key role in the model structure will affect the
quality of the whole simulation, including other variables in subsequent time steps (Jin
et al., 2018).

1.1.3 Graph Theory

A graph G = (V,E) consists of a set of vertices (or nodes) V (G) connected via a set of
edges (or links) E(G) defined by the incidence function ψG associating each edge with a
pair of vertices. An edge {u, v} between two vertices u and v can be directed (connecting
them only in one direction) or undirected (connecting in both directions), weighted or
unweighted (Bondy and Murty, 2008; Diestel, 2017). The number of vertices in a graph is
given as its order |G|, the number of edges denoted by ||G||. A graph may be separated into
multiple subgraphs, with a graph F being a subgraph of G if V (F ) ⊆ V (G), E(F ) ⊆ E(G),
and ψF being the restriction of ψG to E(F ) (Bondy and Murty, 2008). In this case, G
contains F , G ⊇ F .

Two of the most important characteristics that are analyzed in graph theory are
paths and cycles in graphs. A path is a graph P = (V,E) with V = {x0, xi, ..., xk} and
E = {x0x1, x1x2, ..., xk−1xk} with all xi being distinct (Diestel, 2017). The vertices x0 and
xk are the ends linked by path P . If length k ≥ 3 and start point x0 and end point xk−1

are linked, P is called a cycle (Diestel, 2017). Relationships in a graph may be extracted,
for example, by searching for the shortest paths linking vertices in a graph, the number
of paths connecting two vertices, finding cycles in the graph, detecting subsets or finding
cliques (parts of a graph in which all vertices are connected).

There are many different types of graphs that can be distinguished based on their
properties. Some of the most important types are shown in Figure 1.1: complete (any
two vertices are adjacent, i.e. connected), bipartite (vertex set can be separated into two
subsets with all edges having one end in each subset) and trees (containing no cycles)
(Bondy and Murty, 2008; Diestel, 2017).

Graphs can be used to represent very complex relationships and are adopted in a
large variety of applications, ranging from engineering (e.g. pipeline and network struc-
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Figure 1.1. Examples of undirected, unweighted graphs: (a) complete graph (example for a cycle
highlighted in blue), (b) bipartite graph (the two subsets highlighted in green and yellow), (c) tree.

tures) to social sciences (e.g. relationships within and across social groups) and image
processing (e.g. graph-cut segmentation).

1.2 Data and Materials

The remote sensing data that was primarily used in all following chapters is multispectral
imagery of Sentinel-2A and -2B, provided within the Copernicus programme by the Euro-
pean Commission in collaboration with the European Space Agency and multiple partner
organizations. The data mostly comprised of Level-2A atmospherically corrected imagery.
It was partly provided by GAF AG in the context of the joint research project Geo-
Care, partly downloaded directly from the Copernicus Open Access Hub. All subsequent
processing was performed locally. Land cover datasets were obtained in the form of the
CORINE Land Cover inventory and the Land Cover DE product of the German Aerospace
Center (DLR) (Büttner et al., 2017; Weigand et al., 2020). Weather data was provided by
the German Weather Service (DWD) as both weather station data and rasterized maps
in the context of the GeoCare project.

Agricultural yield data (esp. used as reference in chapter 2) was provided by collab-
orating farmers as per-field mean values or geolocated point measurements from combine
harvesters in the context of the GeoCare project. Reference field datasets for boundary de-
tection and field extraction were based on ALKIS state cadastral data that was manually
updated based on recent imagery with the help of student assistants (Arbeitsgemeinschaft
der Vermessungsverwaltungen der Länder der Bundesrepublik Deutschland, 2016).

Method development, data processing, analysis and visualization were almost exclu-
sively performed in a Python 3 environment. Software packages such as ArcGIS Pro 2.0+,
ENVI 5.3+ as well as the free software SNAP 6.0+ (incl. Sentinel toolboxes) by ESA were
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occasionally used for individual tasks. More detail on datasets and the software used for
their preparation is provided in subsequent chapters.

1.3 Research Objectives and Outline

The aim of this thesis is to address three important topics in the application of remote
sensing in agriculture: (1) remote sensing data assimilation for improved yield prediction in
dynamic crop models, (2) agricultural field boundary detection, and (3) field contour and
polygon extraction to obtain information about structure and distribution of agricultural
landscapes. Subsequent chapters address the following specific research objectives:

Research objective 1: Enabling flexible representation of different measurement-
and model-related uncertainties in an assimilation technique for remote sensing data
in dynamic crop models.

Research objective 2: Developing field boundary detection methods based on
limited image information (RGB imagery) and exploring the usefulness of image
features for improved detection performance using deep learning models.

Research objective 3: Developing a method for effective automatized extraction of
complex, heterogeneous boundary networks and subsequent creation of field polygons
at sub-pixel level with minimal supervision.

To achieve these objectives, the following chapters explore and merge aspects and
techniques of multiple different fields of research, including:

• Probability analysis: Interpretation of probability density functions, their repre-
sentation, comparison and statistical similarity to enable flexible data assimilation
allowing for representation of individual uncertainties;

• Uncertainty quantification: Representation of different sources of uncertainties
as probability density functions using Monte Carlo simulations and kernel density
estimation;

• Evolutionary learning and swarm intelligence: Approaches of evolutionary
optimization, particularly Particle Swarm Optimization (PSO), for complex opti-
mization problems without prior knowledge of the solution space;

• Graph theory: Using representations of local image environments based on graph
theory concepts in the form of a new contour extraction method;
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• Image processing: Exploration and analysis of a variety of image features, filtering
and image enhancement techniques for field boundary detection;

• Deep learning: Development and application of deep learning models for agricul-
tural field boundary detection;

• Feature extraction: Use of image segmentation techniques (active contours) in
combination with graph theory concepts to extract agricultural field polygons.

Chapter 2 presents a new data assimilation technique based on statistical distance be-
tween probability density functions. The method uses Monte Carlo simulations and kernel
density estimation to represent different uncertainties in the model and the observations
assimilated. The minimization process is achieved via minimizing the statistical distance
of an optimal Gaussian distribution to the uncertainty probability density functions using
PSO. The use of evolutionary learning adds flexibility in terms of the representation of
uncertainties and enables an optimization with no prior knowledge of the solution space.
The method is tested in the context of yield prediction using the AquaCrop-OS model,
an open source implementation of the AquaCrop model by FAO, and evaluated on pixel-,
field- and pixel-to-field aggregated scale in a study area near the border of the states of
Niedersachsen and Sachsen-Anhalt.

Chapter 3 demonstrates a new workflow for field boundary detection based on multi-
temporal RGB satellite data, (adaptive) image enhancement, filtering and edge detection
techniques. This is combined with a newly developed automatic contour extraction tech-
nique called “Graph-based Growing Contours” that is capable of handling complex, het-
erogeneous networks of boundaries with sub-pixel precision and the capacity for adaptive
branching. It requires minimal supervision and serves as a pre-step for subsequent poly-
gon creation. The use of only RGB imagery and universally applicable image processing
techniques reduces the input requirements for the presented approach and makes it largely
independent of the sensor type. The method is tested on two regions of interest in a study
area north of Kiel, Schleswig-Holstein.

Chapter 4 expands on the concepts of the previous chapter by replacing the boundary
detection workflow with an improved detection method based on deep learning for larger-
scale applications. A variety of input features is generated and distinguished by concept
as well as image information used (luminosity vs color). Results are used as input to
an improved version of the contour and polygon extraction methodology presented in the
previous chapter. Again, only RGB data is required allowing for more general insights into
the usefulness of individual features and a broader applicability of the method to different
types of remote sensing imagery. Performance is tested in two study areas north of Kiel,
Schleswig-Holstein, and east of Hamburg.
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Finally, chapter 5 summarizes the most important results and draws conclusions
on the research objectives presented above. It further expands on challenges and limita-
tions encountered and discusses possible improvements to the methodologies. It considers
implications of the research results and gives an outlook on future research opportunities.
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Abstract

A growing world population, increasing prosperity in emerging countries, and shifts in
energy and food demands necessitate a continuous increase in global agricultural produc-
tion. Simultaneously, risks of extreme weather events and a slowing productivity growth
in recent years has caused concerns about meeting the demands in the future. Crop moni-
toring and timely yield predictions are an important tool to mitigate risk and ensure food
security. A common approach is to combine the temporal simulation of dynamic crop
models with a geospatial component by assimilating remote sensing data. To ensure reli-
able assimilation, handling of uncertainties in both models and the assimilated input data
is crucial. Here, we present a new approach for data assimilation using particle swarm
optimization (PSO) in combination with statistical distance metrics that allow for flexible
handling of model and input uncertainties. We explored the potential of the newly pro-
posed method in a case study by assimilating canopy cover (CC) information, obtained
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from Sentinel-2 data, into the AquaCrop-OS model to improve winter wheat yield estima-
tion on the pixel- and field-level and compared the performance with two other methods
(simple updating and extended Kalman filter). Our results indicate that the performance
of the new method is superior to simple updating and similar or better than the extended
Kalman filter updating. Furthermore, it was particularly successful in reducing bias in
yield estimation.

2.1 Introduction

After decades of continuously rising yields, recent years have seen a slowing down in
agricultural productivity growth in Europe. Furthermore, decreasing global production
may be expected under certain climate scenarios (Asseng et al., 2015; Food and Agriculture
Organization of the United Nations, 2015). Simultaneously, a growing world population,
rising income per capita, and increasing demand for energy are expected to drive demand
for agricultural products (Alexandratos and Bruinsma, 2012; United Nations et al., 2015).
Combined with increasing risks of extreme weather events, these factors emphasize the
need for timely and accurate crop production monitoring. A common approach is the
use of dynamic biophysical crop models that simulate the soil–plant–atmosphere interface
(Basso et al., 2013). These models can simulate environmental interactions and field
management, but have a limited capacity to represent geospatial information on larger
scales.

To address this drawback, remote sensing imagery and crop models can be merged.
Remote sensing can introduce high-resolution spatial information about plant development
and health into the modeling process. The increasing availability of free satellite data
helps to reduce costs, especially when replacing traditional field measurements or airborne
campaigns. The abundance of data from the Landsat archive and the Copernicus program
by the European Space Agency (ESA) further fosters the integration of satellite data into
crop models (Jones et al., 2017).

Following the early work by Delécolle et al., crop model data assimilation techniques
may be categorized into three broad groups: forcing, re-calibration, and updating (Delé-
colle et al., 1992). Forcing refers to the replacement of simulated values with measured
data. This method is very efficient and easy to implement, but has several drawbacks.
First, it requires measurements for each simulation step (e.g., daily observations), which
are often unavailable or need to be interpolated. When integrating optical remote sensing
data, in particular, frequent cloud cover can drastically reduce the number of available
observations, even with shorter revisit times in constellations such as Sentinel-2. Second,
forcing effectively breaks up the simulation loop because it replaces intermediate results
with external inputs (Rembold et al., 2013). Third, it does not consider measurement un-
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certainties and therefore directly transfers errors to the model. Due to these drawbacks,
a few recent studies have considered forcing.

A frequently applied technique is re-calibration, sometimes separated into re-initial-
ization and re-parametrization. Here, the initial values and parameters of the crop model
are iteratively changed by minimizing a cost function measuring the distance between
the simulated state variables and observed ones (Delécolle et al., 1992; Maas, 1988). Re-
calibration therefore obtains a new set of parameters or initial values, thus allowing a sim-
ulation that resembles better observations. Although this method often improves model-
based yield predictions, it has two flaws. First, re-calibration settings may be unrealistic or
may represent an unreliable parameter setup (Maas, 1988). Second, re-calibration can be
computationally demanding because it requires multiple re-runs of the model, hampering
larger scale applications.

Updating performs the assimilation during the simulation, only interfering when
an observation is available. It therefore performs well even with few and infrequent ob-
servations and reduces processing time when compared to re-calibration. Furthermore,
updating allows uncertainties in both the simulation and the data assimilated to be ad-
dressed (Dorigo et al., 2007). However, it requires modifications in the model itself (i.e.,
the source code) and not all models allow such interference. The most commonly used
updating techniques are the (extended) Kalman filter, particle filter, and the ensemble
Kalman filter (Kalman, 1960; Evensen, 2003; Del Moral, 1997; Kalman and Bucy, 1961).

Following the definition by Kennedy and O’Hagan (2001), model uncertainties may
be classified into parameter, parametric, model inadequacy, residual variability, observa-
tion, and code uncertainties. In the context of biophysical modeling, the most relevant
sources of uncertainties are parameter uncertainty (errors related to suboptimal parameter
settings), parametric or input uncertainty (errors in the input data driving the simulation,
e.g., daily weather measurements), code uncertainty (approximations and inaccuracies in
model implementation), and model inadequacy (e.g., model bias). Uncertainties related to
implementations and inadequacies are usually addressed during model development and
subsequent calibration and sensitivity studies (Asseng et al., 2013; Warszawski et al., 2014;
Hoffmann et al., 2015; van Bussel et al., 2016). Parameter and input uncertainties, how-
ever, are highly application- and context-dependent and need to be assessed individually.

Most updating approaches are robust and fast, but often lack a detailed represen-
tation of such uncertainties. The Kalman filter, for example, approximates uncertainties
in the model and the measurement by a simple scalar (e.g., the standard deviation in
repeated measurements) or a covariance matrix in the case that multiple variables are
updated (Reichle, 2008). This approach does not allow for a detailed handling of different
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uncertainty sources. Techniques such as the above-mentioned ensemble Kalman or particle
filter, may account for uncertainty in parameters and model states stochastically.

Both re-calibration and updating require the solution of an optimization problem,
which is usually non-linear. For such kinds of problems, several numerical algorithms can
be applied. In our updating technique, we employed particle swarm optimization (PSO)
due to its reliable global optimization capacities and flexibility in inputs and objective
functions (see Section 2.2.2.3). PSO has seen various applications in remote sensing,
frequently in image segmentation and classification (Liu et al., 2008; Shen et al., 2018;
Bansal et al., 2009), but also in agricultural applications. Guo et al., for example, used
the algorithm to couple the PROSAIL canopy reflectance model with the WheatGrow crop
model based on vegetation indices (Guo et al., 2017). Others have used it in combination
with multiple classifiers and algorithms for crop classification (Omkar et al., 2008). The
most frequent application, however, is the (re-)calibration of crop models such as the
WOrld FOod STudies model (WOFOST) (Jin et al., 2015), the Simple Algorithm for Yield
Estimate (SAFY) (Silvestro et al., 2017), the Decision Support System for Agrotechnology
Transfer (DSSAT) (Li et al., 2015; Son et al., 2016), or AquaCrop (Jin et al., 2016; Jibo
et al., 2016).

The main objective of this study was therefore to ensure increased flexibility of
uncertainty handling. The new technique proposed allows the user to include different
uncertainties in the process with minimal limitations on their type and definition. The
technique should also be largely independent and self-calibrating to enable direct appli-
cation with minimal prior adjustments, thus allowing fast assimilation of remote sensing
observations.

Although many studies exist that combine remote sensing inputs with dynamic crop
models, a direct comparison is difficult to draw. The diverse nature of approaches in-
volving different sensors, input variables, crop types, crop models, calibration settings,
application scales (field to national or even continental and global) and varying amounts
of prior knowledge (e.g., detailed study plots with regular measurements), aggravate a
direct comparison. To demonstrate the potential of the new method, we therefore de-
cided to apply multiple updating schemes to the same datasets with the same model and
calibration settings. We compared the results of the new approach to a simple updating
scheme (replacing values in the model simulation directly) as well as an extended Kalman
filter (EKF). As a case study, we assimilated Sentinel-2 canopy cover (CC) data into the
AquaCrop-OS model v5.0a to improve the winter wheat yield estimation.

The rest of the paper consists of five parts. Section 2.2 describes the study area and
data used and introduces the methodology. We provide some methodological background
first, followed by a description of the updating technique. In Section 2.3, we describe
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results and discuss them in Section 2.4. Finally, Section 2.5 will give a short conclusion
and outlook.

2.2 Materials and Methods

2.2.1 Datasets

2.2.1.1 Study Area

Our study area is located in central Germany near the border of the states of Niedersach-
sen and Sachsen-Anhalt (see Figure 2.1). The climate is temperate/oceanic with warm
summers and wet winters (Cfb in Koeppen-Geiger climate classification) (Kottek et al.,
2006). The region is relatively warm and dry with an average temperature of 8.2 °C and
an annual precipitation of 538 mm in the climate reference period 1960–1990 (German
Weather Service (DWD), 2019). Our weather data of the years 2016 and 2017 revealed
both years to be rather warm (9.8 and 10.8 °C), while precipitation was low in 2016 (436
mm) and high in 2017 (679 mm) compared to the long-term average. Soils in the region
are typically stagnosols and brown earths originating from sandy and loamy glacial debris.
Further, clayey soils from skeletal loam, sandy Loess over limestone, rendzinas, and some
podzols also occur (Bundesanstalt für Geowissenschaften und Rohstoffe, 2018).

Figure 2.1. Map of study area and example of rasterized weather datasets in the form of mean
air temperature (left). Example of yield data and canopy cover maps (right).
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2.2.1.2 Weather Data

The German Weather Service (DWD) delivered daily weather data for the nearby weather
station “Ummendorf” (11.18° E, 52.16° N) as well as 1 × 1 km2 rasterized weather datasets
for the whole of Germany (see Figure 2.1). Weather data include daily minimum and
maximum temperatures, precipitation sums, and reference evapotranspiration based on
the Penman–Monteith equation (Doorenbos and Pruitt, 1977). The raster datasets were
used as input to the model, introducing a limited amount of spatial dynamics.

2.2.1.3 Canopy Cover Data

Our database consisted of atmospherically corrected Sentinel-2 Level-2A scenes between
August 2015 and November 2017. We only considered scenes with generally low to moder-
ate cloud cover (up to 50%). The dataset comprised of 116 scenes, covering the full winter
wheat growing seasons for both harvest periods of 2016 and 2017. We used the biophysical
processor implemented in the ESA Sentinel-2 Toolbox (S2TBX, version 6.0.4) to generate
canopy cover (CC) maps from all scenes (see Figure 2.1). The processor employs artificial
neural networks trained on a large dataset of radiative transfer simulations of canopy and
leaf properties (Weiss and Baret, 2016). The documentation of the SNAP Biophysical
Processor provides some theoretical performance indicators. The authors claim a low root
mean square error (RMSE) of 0.04 for CC predictions on their validation dataset (Weiss
and Baret, 2016). During pre-processing, we further performed a multi-threshold cloud
and cloud shadow detection for each of our test fields to discard any potentially contam-
inated observations. The resulting number of observations ranged between three and 12
per growing season, depending on location.

2.2.1.4 Yield Data

Field data were obtained via GPS-based yield measurements on combine harvesters during
harvest of 30 fields in 2016 and 32 fields in 2017. We removed outliers outside +/− 2.58
standard deviations (99% threshold in a standard normal distribution), particularly false
zero measurements that frequently occurred at the start and end of the harvest procedure.
We then aggregated the remaining points to 10 × 10 m2 yield maps matching Sentinel-
2 observations (see Figure 2.1). The resulting mean yields of all fields were in good
agreement with the reported department-level yield statistics (Statistisches Landesamt
Sachsen-Anhalt, 2019; Niedersachsen, 2018a,b). The observed yield on the pixel-level
ranged from 2.38 to 9.60 t/ha, and the mean field yields ranged from 3.90 to 7.63 t/ha.
No information on measurement accuracy was provided. For further analysis, we generated
a pixel- and a field-level dataset. We split both randomly into 60% calibration (32 field
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observations, 23,375 pixel observations) and 40% validation (20 field observations, 15,584
pixel observations) data.

2.2.2 Methodological Background

2.2.2.1 AquaCrop-OS Description

AquaCrop is a dynamic crop model developed by the Food and Agriculture Organization
of the United Nations (FAO). It simulates the yield response of herbaceous crops on a ho-
mogeneous field, considering water response and various stress effects (Steduto et al., 2009;
Raes et al., 2009; Hsiao et al., 2009). Inputs for daily simulation are the maximum and
minimum temperature data, precipitation sum, and potential evapotranspiration (Steduto
et al., 2012). The simulation is considerably simplified compared to complex model suites
such as the Decision Support System for Agrotechnology Transfer (DSSAT) (Ines et al.,
2013; Jones et al., 2003), focusing on a global model applicability with a potentially lim-
ited range of available data. The central part of the model is a crop productivity function
that relates biomass accumulation to water productivity and evapotranspiration to obtain
the total cumulative biomass:

BT = Ksb ·WP ∗ ·
∑

t = 0T
(
Trt
ETot

)
(2.1)

where BT is the total accumulated biomass from t = 0 days to t = T ; Ksb
is an

air temperature stress coefficient; WP ∗ is the water productivity normalized to annual
mean CO2 concentration; Trt is daily crop transpiration; and ETot is daily potential
evapotranspiration (both in mm).

AquaCrop represents the heat, drought, and cold stress effects via stress coefficients
that can influence canopy development, stomatal conductance, canopy senescence, or har-
vest index development. The stress coefficients change with the level of stress following a
convex to concave response curve (Raes et al., 2009, 2018):

Ks = 1− eSrelfshape − 1
eSrel − 1 (2.2)

where Ks describes the stress response function; Srel is the relative stress level (≤ 1);
and fshape is a shape factor defining the curvature of the function. The main state variable
in the model is canopy cover (CC; sometimes referred to as Fraction of Vegetation Cover,
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FVC or FCOVER) that directly influences Trt in Equation 2.1 via a crop transpiration
coefficient:

KCT r
= CC∗KCT r,x

(2.3)

Tr = KswKCT r
ETo (2.4)

where CC∗ is the current canopy cover (adjusted for micro-adjective effects); KCT r,x

is the maximum crop transpiration coefficient for well-watered soil and a complete canopy;
Ksw represents a soil water stress coefficient; and KCT r

is the current crop transpiration
coefficient obtained. Therefore, CC is an important variable in biomass accumulation in
Equation 2.1, and consequentially, yield as determined via a harvest index (i.e., percentage
of biomass at crop maturity).

CC development over the growing season is determined mostly empirically. After
crop emergence, CC first increases exponentially up to 50% of the maximum. A slowing
growth follows until the maximum is reached. The value of CC stays constant until an
exponential decay sets in at the beginning of senescence (Raes et al., 2018). This process
is summarized in the following equations:

Canopy expansion:

CC = CCoe
tCGC for CC ≤ CCx

2 (2.5)

CC = CCx − 0.25CC
2
x

CC0
e−tCGC for CC ≥ CCx

2 (2.6)

Canopy senescence:

CC = CCx[1− 0.05(e
CDC
CCx − 1)] for CC ≤ CCx

2 (2.7)

where CC is the new canopy cover; CCx is the maximum possible canopy cover;
CC0 is the initial canopy cover at the start of growth; and CGC and CDC are canopy
growth and decline coefficients, respectively. Dry yield is obtained by applying a harvest
index (percentage) to the biomass value at maturity.
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We used the open source version of the model called AquaCrop-OS, allowing us to
make the necessary source code changes for the updating procedures described in Section
2.2.3 (Foster et al., 2017).

2.2.2.2 AquaCrop-OS Calibration

Due to the lack of information on winter wheat varieties on our test fields or regular in
situ sampling, our prior knowledge for calibration was limited. We therefore relied on an
empirical calibration of model parameters. This also made the simulation more general
and independent of specific field conditions.

AquaCrop-OS offers a large number of crop parameters, separated into conservative
ones that have previously been proven accurate in many different environments and user-
specific ones (Steduto et al., 2012). The former were ignored for the most part in our
calibration, except for the Canopy Growth and Decline Coefficients (CGC and CDC, see
Table 2.1) due to their particular relevance in this context. We did not consider irriga-
tion management because agriculture in our study area is exclusively rain-fed. Similarly,
we assumed that field management follows a “best practice” due to high technological
standards and a long tradition of industrialized agriculture in our study area.

Table 2.1. Calibration ranges and obtained calibrated crop parameters in AquaCrop-OS.

Parameter Description Calibration
Range

Calibrated
Value

CDC Canopy Decline Coefficient 0.0015− 0.0065 0.0038
CGC Canopy Growth Coefficient 0.0025− 0.0075 0.006
Emergence Time from sowing to emergence

in Growing Degree Days (GDD)
112− 225 188

fshape_b Shape factor of biomass produc-
tivity reduction due to insuffi-
cient GDDs

10.36− 17.27 14.504

HIstart Time from sowing to start of
yield formation in GDDs

660− 1.100 748

Kcb Maximum crop coefficient at full
canopy development

0.825− 1.375 1.045

Maturity Time from sowing to maturity in
GDDs

1.800− 3.000 2.16

Senescence Time from sowing to senescence
in GDDs

1.275− 2.125 1.615

We performed a sensitivity analysis based on iterative changes to individual param-
eters and observed the influence on predicted yield. It revealed the parameters listed in
Table 2.1 to be those most relevant for winter wheat yield prediction in our study area.
We calibrated the model by altering parameters iteratively and minimizing the RMSE
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of yield. The calibration process improved the RMSE from 2.305 t/ha to 1.324 t/ha on
field-level and from 2.264 t/ha to 1.521 t/ha on the pixel-level validation datasets. The
optimal parameter settings for the pixel- and field-level were quite similar, so we decided
to use the same calibration set on both scales. Table 2.1 provides a list of calibration
settings.

2.2.2.3 Particle Swarm Optimization

Particle swarm optimization is a metaheuristic global optimization algorithm based on
swarm intelligence principles of complex intelligent behavior emerging from primitive in-
dividual agents. As such, it is part of the larger family of evolutionary computing (Kennedy
et al., 2001; Yang, 2014). Kennedy and Eberhart originally designed the algorithm follow-
ing previous efforts by Reynolds in simulating realistic movements of bird flocks (Kennedy
and Eberhart, 1995; Reynolds, 1987).

The particle swarm is a group (“swarm”) of candidate solutions (“particles”) moving
in the multidimensional search space over time (i.e., iteration steps). Each particle is ini-
tiated as a random vector with a random initial velocity vector representing its movement
in the search space. This velocity is updated at each iteration based on certain rules and
the new particle fitness is obtained. In the original version, the process is only influenced
by the best previous solution of the particle (previous best, pbest) and the best solution
obtained in its neighborhood (neighborhood best, nbest) (Kennedy et al., 2001; Yang,
2014). This neighborhood is described by the topology representing connections between
the particles in the swarm. There are many different topologies used in the literature in-
cluding local best, global best, and von Neumann topologies, but also dynamic topologies
changing throughout the process based on time, Euclidian distance, and fitness–distance
ratios, among others (Peram et al., 2003; Mendes et al., 2003). For a more detailed discus-
sion, readers may refer to the paper by Poli et al. (2007). The following equations describe
the central velocity and position update (all multiplications are element-wise):

~vi(t) = ~vi(t− 1)ϕ1ε1(~pi − ~xi(t− 1)) + ϕ2ε2( ~pn − ~xi(t− 1)) (2.8)

~xi(t) = ~xi(t− 1) + ~vi(t) (2.9)

where ~vi(t) is the new (updated) velocity vector of particle i at time step t and
~vi(t − 1) is its previous velocity vector. The previous and new positions are given by
~xi(t − 1) and ~xi(t), respectively. The previous best solution is represented by ~pi and
the neighborhood best solution by ~pn. The terms ϕ1 and ϕ2 refer to pbest and nbest
coefficients, respectively, and ε1, ε2 are random vectors (Kennedy et al., 2001). One can
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interpret pbest and nbest coefficients as the tendency of particles to move independently
or “toward the swarm”. The two elements are therefore closely related to exploration and
exploitation.

Its metaheuristic approach distinguishes PSO from gradient-based optimization tech-
niques. PSO does not use exact or approximated derivative information. It therefore does
not need continuous or differentiable objective functions or any prior knowledge about the
cost function (del Valle et al., 2008). This makes it very flexible in handling different types
of inputs and even combinations of continuous and discrete functions. PSO is also consid-
ered to be reliable in finding global optima, even in highly heterogeneous, complex solution
spaces as simulated by test functions like the Ackley or Hölder table functions (Kennedy
et al., 2001; Liu et al., 2011). Moreover, PSO scales very well with high-dimensional inputs
as the number of function evaluations is determined by the swarm size, not the number of
input variables.

However, PSO is not a deterministic algorithm, but includes stochastic elements.
The process is therefore not entirely predictable, even identical starting conditions may
lead to different iteration steps and even to different solutions due to the random com-
ponent of the process (Poli et al., 2007). As a result, it is up to the user to determine
application-specific parameters (such as swarm size, coefficients, topology, etc.) that en-
sure a reliable and fast convergence. Furthermore, unlike gradient descent-related algo-
rithms that reach a local minimum under certain assumptions, the convergence in PSO
methods is only valid in a stochastic setting.

To ensure fast and reliable optimization results, we compared a number of different
PSO variants and settings. This included different swarm sizes, inertia weights, cognitive
and social coefficients, static and dynamic topologies (local best, global best, dynamic
nearest neighbor, dynamic fitness–distance ratio, among others) as well as different distri-
butions for random vector sampling (uniform, normal, Lévy).

Table 2.2. Settings used for particle swarm optimization algorithm.

Parameter Value
swarm size (n) 20

pbest coefficient (ϕ1) 2.05
nbest coefficient (ϕ2) 2.05

maximum velocity (vmax) dynamic range
constriction coefficient (χ) 0.72984

topology von Neumann (4 neighbors)
random distribution uniform
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We observed that Clerc’s constriction coefficients (Clerc and Kennedy, 2002) were
superior to inertia weights or velocity bounds alone. We therefore used ϕ1 = ϕ2 = 2.05,
and the constriction coefficient χ calculated according to Clerc and Kennedy (2002). We
further observed that, although not necessarily required when using inertia weights or con-
striction coefficients, limiting vmax to the dynamic range of the input was advantageous
in some cases, as suggested in Eberhart and Shi (2000). The von Neumann and dynamic
nearest neighbor topologies showed quite similar performances with the former being cho-
sen due to higher computational efficiency. Different random distributions showed no
significant impact in this context. The swarm size was set to 20, a common value in the
literature. Larger numbers of particles were unable to improve convergence significantly,
but logically increased the number of function evaluations, slowing down the process. Ta-
ble 2.2 presents the fastest and most reliable setup we obtained. In our applications, this
implementation usually converged very quickly to the optimum within 10–15 iterations.

2.2.2.4 Uncertainty Quantification

We considered multiple sources of uncertainties, both in the model and the remote sensing
data. These need to be quantified before they can be included in the updating procedure.
We are unable to account for potential weather measurement errors or instrument-related
issues. Still, we are able to quantify the reaction of AquaCrop-OS canopy cover simulations
to perturbations in weather inputs and parameter settings.

We achieved this via Monte Carlo simulations. First, we estimated input-related
uncertainty by randomly perturbing a 10-year mean weather time series with Gaussian
random noise. The magnitude of the noise was determined by the daily variance observed
in the same 10-year period. We obtained 10,000 CC time series from AquaCrop-OS simula-
tions on these randomized weather datasets. Second, we assessed parameter uncertainties
accordingly by randomly sampling parameter settings from a normal distribution around
the calibrated values in Table 2.1 with a standard deviation of 1/10 of the calibration
range. This ensured a sufficient variation within a realistic range around the calibrated
settings. We performed 10,000 Monte Carlo simulations randomizing all parameters listed
in Table 2.1. Both model-related uncertainties are illustrated in Figure 2.2. Third, we
estimated uncertainties in the remote sensing data. Here, the procedures on field- and
pixel-level are different. On the field level, we used a set of all CC pixel values in a given
field at the observation date; on the pixel-level, we used only values in the 3 × 3 pixel
neighborhood (see Figure 2.3).
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Figure 2.2. Visualization of observed uncertainties throughout the growing season. Uncertainty
from Monte Carlo simulations weather inputs (left) and perturbing parameters (right).

Figure 2.3. Example of uncertainties in Sentinel-2 CC values in a field. Dots refer to the mean
of all CC observations (i.e., pixels) in the field, error bars indicate standard deviations.

Using these datasets, we created probability density functions (PDF) representing
the probability of all possible CC values (between 0 and 1) of each uncertainty source.
We employed kernel density estimation with a symmetric Gaussian kernel. Tests showed
that a narrow bandwidth of 0.02 yielded the best results. Finally, we represented the
uncertainty in the current simulation by a Gaussian distribution around the currently
simulated CC value using a bandwidth of 0.2.
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2.2.3 Updating Methodology

2.2.3.1 Simple Updating

The simple updating scheme we employed replaced simulated CC values directly with
remote sensing observations without any additional processing and with no consideration
of uncertainties. As a result, the simulated CC values remained unconsidered and errors
in the remote sensing data were directly transferred to the model.

2.2.3.2 Extended Kalman Filter Updating

Since its first description in Kalman (1960), the Kalman filter has become one of the most
common data assimilation techniques (Reichle, 2008). It iteratively updates an estimated
value by incorporating information from incoming measured values, taking into account the
uncertainty associated with both the measurement and the estimated value. The Kalman
filter assumes a linear model. Its extension to non-linear models is the EKF. Here, a
linearization of the original non-linear model function is used to update the uncertainty
(i.e., the covariance matrix) of the estimate of the model state (Kalman and Bucy, 1961;
Grewal and Andrews, 2015).

In our case, we have a non-linear model, but we assimilated the scalar state variable
CC directly. Thus, no additional observation is present. Both facts simplify the EKF
procedure and make the updating computationally very efficient. Assuming we have the
estimates of the state variable xk and its uncertainty Pk at time step instant tk. We
now obtain a new observation value yk+1 at the next time instant tk+1. Then, the EKF
performs a predictor step for the model state

x̂k+1 = f(xk) (2.10)

using the original non-linear model. Additionally, the uncertainty is predicted as:

P̂k+1 = FkPkFk (2.11)

Here, we assume that the model has no error and uses an approximation Fk ≈ f
′(xk)

for the derivative of the model function. In our case, this derivative is also a scalar. Now,
the Kalman gain is computed as:

Gk+1 = P̂k+1

P̂k+1 +Rk+1
(2.12)
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where Rk+1 is the uncertainty in the measurement yk+1. Now, the correction step
computes new estimates of the state and its uncertainty as:

xk+1 = x̂k+1 +Gk+1(yk+1 − x̂k+1) (2.13)

Pk+1 = (1−Gk+1)P̂k+1 (2.14)

We computed the derivative approximation needed in Equation 2.11 by a finite
difference formula:

Fk = f(xk)− f(xk−1)
xk − xk−1

= x̂k+1 − x̂k
xk − xk−1

(2.15)

This approximation uses only already computed quantities. In the first assimilation
step (k = 0), a modification is needed to replace the value xk−1 and f(xk − 1).

As mentioned previously, after accounting for clouds and cloud shadows, the re-
maining observations were not too frequent. In case of frequent observations, the updated
uncertainty can be propagated continuously throughout the whole EKF process. In our
case, however, we often encountered large time gaps in between observations. This im-
plies that the assimilation cannot take place in every time step of the model. Thus, the
function f in Equation 2.10 represents not just one model step, but rather summarizes a
concatenation of model steps between subsequent time instants tk and tk+1 where mea-
surements are available. As a consequence, the derivative approximation in Equation 2.15
is an average of the derivative of the model in the interval [tk, tk+1]. As indicated in Sec-
tion 2.2.2.1, AquaCrop-OS varies significantly in its simulation procedures depending on
growth stages and environmental influences. Thus, this kind of averaging of the derivative
seems to be reasonable. As noted above, the derivative for the first assimilation step has
to be approximated in a slightly different way. Here, we used a state at a time instant in
the interval [t = 0, t1] instead of xk−1.

The uncertainty in the state is initially assumed to be 0.2. The uncertainty in the
measured values was estimated as the standard deviation of all CC values at the observed
location and time (i.e., all pixels of a field on the field-level and pixels in the 3 × 3
neighborhood on the pixel-level).

2.2.3.3 New Updating Scheme

Figure 2.4 demonstrates the main processing steps for our new method. Preparation of CC
data (green), weather data (blue), and yield maps (yellow) were discussed in Section 2.2.1
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and uncertainty quantification (dark blue) was covered in Section 2.2.2.4. In this section
and the next, we will explain the details of the actual updating process and accuracy
assessment (grey).

Figure 2.4. Flowchart of pre-processing steps and the new updating algorithm. Colors refer to
different aspects: Sentinel-2 CC data (green), weather input data (blue), yield data preparation
(yellow), uncertainty quantification (dark blue), and the actual simulation and updating process
(grey).

The fundamental idea behind our approach is to balance all uncertainties (relating to
the model and the CC observations) to obtain the updated value. To do so, we represented
all uncertainties as PDFs (see Section 2.2.2.4). We then obtained a hypothetical optimal
Gaussian distribution, as described by a mean µ and a standard deviation σ, that balances
all uncertainties in terms of statistical distance (see Figure 2.5). In other words, we
assumed that the mean of a distribution minimizing statistical distances to all PDFs will
provide us with a better estimate given the available information. We employed PSO to
search for the mean and standard deviation of this optimal Gaussian distribution.

The central element of this technique is the representation of distance or similarity
between probability distributions or their respective PDFs. There are a number of statisti-
cal distance and divergence metrics proposed in the literature. Some of the most common
ones are the Hellinger distance, the Kullback–Leibler divergence, and Bhattacharyya dis-
tance (Hellinger, 1909; Kullback and Leibler, 1951; Bhattacharyya, 1946).

When comparing calculations measuring the statistical distance of the optimal Gaus-
sian distribution to a set of uncertainty PDFs, the different metrics behaved similarly.
Figure 2.6 demonstrates this with example cases where three PDFs at different locations
and with different standard deviations are considered. The values shown for the different
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Figure 2.5. Idealized representation of optimal Gaussian distribution (solid dark grey line) and
summed uncertainty probability density functions (solid light grey lines). Maximum likelihood
estimators (MLE) of the uncertainty probability density functions indicated by vertical dotted
lines, updated CC value (i.e., location of optimal Gaussian distribution) indicated by vertical
dashed line. This example represents a common case in our tests with model-related uncertainties
and remote sensing observations indicating different value ranges for optimal CC.

distance metrics were obtained using a brute force algorithm moving an optimal distri-
bution of standard deviation 0.05 from 0.01 to 0.99 through the search space. These
demonstrative cases are, however, drastically simplified as they assume all PDFs to be
perfectly symmetric Gaussian distributions and keep the standard deviation of the opti-
mal distribution fixed. Additionally, this example case only assumes three PDFs while the
situation logically becomes much more heterogeneous when more are considered.

Figure 2.6a,b show that in cases where the PDFs are relatively far apart, the three
distance metrics behave similarly. Although magnitudes may differ significantly, the gen-
eral shapes (number and location of local optima) are quite similar. If we consider the case
where the three PDFs are located closely to one another, however, problems arise. Here,
as illustrated in Figure 2.6c, all three distances failed to establish a clear minimum within
the search range and instead produced single peaks or plateaus. This produced a situa-
tion with two potential minimum solutions at the extremes. In searching for the minimum
value, the algorithm would run off to either side. In this special case of only Gaussian
normal distributions, this is equivalent to choosing either the upper or the lower bound
as the updated value. This may be mitigated, as attempted in a previous implementation
(Wagner et al., 2019), by using the mean squared distance of the Maximum Likelihood
Estimator (MLE) of the optimal distribution to the MLEs of all uncertainty PDFs. This
approach, however, has two major drawbacks. First, using the MLE as an indicator for the
position of a distribution is only representative if it is a unimodal, approximately normal
distribution. Second, it necessitates an additional processing step to determine the MLEs.
Although obtaining MLEs is a straightforward optimization problem (maximizing the sum
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Figure 2.6. Three simplified example cases (a–c) of Hellinger distance, Kullback–Leibler diver-
gence, Bhattacharyya distance, and the distance metric of 2.16 used in this study (scales on the
first three inverted). Solid black lines represent the distance of an optimal distribution moving
through the search space according to three uncertainty PDFs (locations indicated by dotted grey
vertical lines). Vertical dashed lines indicate the minimum value the optimizer would obtain.

of probabilities in all PDFs), it adds to the processing time and introduces a potential error
source. Due to this drawback, we decided to employ a different metric described as:

D(fopt(µ, σ), fsum) =
N∑
i=1

(
qi ·

(pi − µ)
σ

)2
(2.16)

where fopt(µ, σ) and fsum are the optimal Gaussian distribution defined by µ and σ
and the sum of all uncertainty PDFs, respectively. Furthermore, qi is the probability value
of the summed uncertainty PDFs. Although this definition violates at least two important
criteria of a metric as it is neither symmetric nor is it limited to the range (0, 1), we may
still refer to it as such for simplicity. Fundamentally, this metric weights the probabilities
of the uncertainty PDFs based on their distance to the optimal distribution measured in
standard deviations (z-scores). As shown in Figure 2.6, using this metric, we can ensure a
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clear minimum within the search space, even in the case of PDFs located very closely to
one another.

Additionally, we addressed the possibility that not all PDFs may have the same rele-
vance for the update. We therefore introduced a weighting, following the assumption that
PDFs that are more similar to the currently simulated CC value of the model contain less
new information than those that were more dissimilar. To represent this, we employed the
Hellinger distance to introduce a weighting of the individual PDFs. We obtained weights
by calculating the Hellinger distance for each uncertainty PDF to a narrow Gaussian
distribution around the currently simulated CC value, following the equation:

H(P,Q) = 1√
2

√√√√ N∑
i=1

(√pi −
√
qi)2 (2.17)

where P and Q are two distributions with pi and qi describing the probabilities of
the two distributions at point i. The Hellinger distance ranges between 0 (identical) to 1
(no overlap). We used the resulting distance values to establish normalized exponential
weights:

wi = exp(αH(fi, fsim))∑n
j=0 exp(αH(fj , fsim)) (2.18)

where fi is the PDF representing the respective uncertainty and fsim is the distribu-
tion around the simulated CC value. The denominator represents the sum of all Hellinger
distances, ensuring summation to unity. This further allows us to introduce α, a simple
multiplicative factor that determines the magnitude of weights with higher values of α
leading to more emphasis on dissimilar PDFs (i.e., those with larger Hellinger distance).
Combining Equation 2.16 with the weights determined in Equation 2.18 results in an
optimization problem of the form:

min
N∑
i=1

(D(fopt(µ, σ), fsum) · wi) (2.19)

This objective function, however, may lead to the process of finding an optimum
with a very large standard deviation σ. Although such an extremely flat distribution
would indeed minimize statistical distances, it is not a useful solution for our approach.
If the distribution is essentially flat, the mean value may be positioned anywhere in the
CC range without having any significant effect on statistical distance. In other words, a
flat distribution would allow for any CC value to be an optimal solution. To avoid this,
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we penalized σ of the optimal Gaussian distribution. This leads to our final optimization
problem:

min
N∑
i=1

(D(fopt(µ, σ), fsum) · wi) + σ (2.20)

We then searched for optimal values of µ and σ to minimize Equation 2.20. A
drawback in terms of computation, however, is that values around the optimum tend to be
generally very small and the minimum is not as distinct in cases where PDFs are far apart,
like in Figure 2.6a,b. This puts a larger emphasis on the proper settings and reliability of
the optimizer used. The theoretically unbounded, but in our observations generally small
value range of this metric, however, facilitated the introduction of constraints compared
to, for example, the Kullback–Leibler divergence with observed values between 0.02 and
over 30.

2.2.3.4 Performance Analysis

The comparison of updating schemes involved three test situations: field-level, pixel-level,
and pixel-to-field aggregated level estimations where we simulated yield on a pixel basis
and compared the mean of these individual estimates to the observed mean yield of the
field. We performed this analysis on the pixel-level validation dataset and therefore did
not use all pixels. Still, the large size of 40% of all pixels ensured a representative sample
of pixels for all fields. As stated earlier, we did not have in situ measurements of canopy
cover or regular samples of biomass in the field. It was therefore not our goal to obtain
realistic CC time series or closely recreate biomass development. Instead, our comparison
relies primarily on the capacity for improving yield predictions.

We considered two versions of our method: one with a fixed (user-defined) value
for the weighting factor α and an adaptive one letting PSO automatically determine α in
the process. Previous tests on the calibration data showed quite high values of α around
5–10 were advantageous for field-level simulations, while on the pixel-level, values around
1–2 were preferable. In our comparison, we compared these settings with the results
obtained by the adaptive weighting within the continuous range 1–10. We also evaluated
the capability of our method to incorporate different uncertainties by adding uncertainty
sources one at a time and observing the effect on performance. First, we introduced
remote sensing data into the update, then parameter-related and, finally, weather-related
uncertainty.
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We used three metrics to analyze the results. The main metric for overall perfor-
mance in the results was the RMSE.

RMSE =

√√√√ 1
N

N∑
i=1

(yi − ŷi)2 (2.21)

where yi describes the reference yield value and ŷi is the predicted value. To deter-
mine bias in the results, we used the mean percentage error (MPE).

MPE = 100 · 1
N

N∑
i=1

ŷi − yi
yi

(2.22)

Furthermore, we calculated the R2 scores.

R2 = 1−
∑N
i=1(yi − ŷi)2∑N
i=1(yi − ȳ)2

(2.23)

where ȳ is the mean of the reference data. To incorporate the inherent uncertainty
that is present in any sort of yield measurement, we also employed a percentage match
metric (i.e., counting the predicted values that fall within a certain range) around the
respective reference value (in this case +/−20%).

pmatch = 100 · 1
N

|yi − ŷi| ≤ 0.2 · yi 1

else 0
(2.24)

2.3 Results

In this section, we describe the performance of yield predictions of AquaCrop-OS on the
field-level, pixel-level, and pixel-to-field aggregated level. The very low values of R2 we
observed throughout all experiments did not benefit the interpretation and were therefore
omitted from descriptions. We analyze and address this topic specifically in Section 2.3.4
and the discussion (Section 2.4).

2.3.1 Field-Level Yield Estimation

The results in Table 2.3 show that without assimilation, AquaCrop-OS produced rather
poor results with a RMSE of 1.32 t/ha and a quite significant bias, expressed in an MPE of
15.2%, which indicates a tendency of the model to overestimate yield. The simple updating
scheme had no effect in terms of accuracy, but inverted the bias to an underestimation.
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The EKF performed better with a significant reduction of RMSE to 1.20 t/ha and a
slightly smaller bias.

Table 2.3. Accuracies of the AquaCrop-OS field-level yield estimation on the validation dataset
using different updating schemes. Uncertainties refer to the PDFs considered. RS: remote sensing;
pars: parameter-related; weather: weather-related.

Updating α Uncertainties RMSE
[t/ha]

MPE
[%]

R2 Pmatch
[%]

none - - 1.32 15.2 0.01 70.0
simple - - 1.37 −15.6 0.09 70.0
EKF - - 1.20 −14.8 0.35 70.0
new method 5 RS 1.14 −10.5 0.08 85.0
new method 5 RS, pars 1.09 4.3 0.04 75.0
new method 5 RS, pars, weather 1.04 5.7 0.06 75.0
new method 10 RS 1.23 −7.5 0.13 80.0
new method 10 RS, pars 1.11 4.20 0.10 85.0
new method 10 RS, pars, weather 1.05 4.0 0.11 80.0
new method auto RS 1.25 −8.4 0.12 75.0
new method auto RS, pars 1.09 4.5 0.15 75.0
new method auto RS, pars, weather 0.90 5.90 0.21 80.0

Figure 2.7. Scatter plots of measured vs. predicted yield on the field-level for (left to right)
simple update, EKF update, and the new method (adaptive; all three uncertainties).

Our new PSO method performed similar to or better than the EKF with the two α
values of 5 and 10 when using all three uncertainties. Using only remote sensing inputs
led to small changes in RMSE, but inverted the bias from positive to negative in all
setups, similar to what we observed in the simple and EKF updates. Adding parameter-
related uncertainties led to an improvement in both RMSE and MPE, while the subsequent
addition of weather-related input affected results only slightly, and sometimes slightly
deteriorated MPE. The adaptive version performed comparably and even outperformed
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the non-adaptive ones occasionally. Overall, when using all three uncertainties, model
results improved by up to 0.42 t/ha in the RMSE, 11.2% in MPE, and 15% in terms of
pmatch. All versions of our approach were particularly successful in reducing bias. This
is also apparent in the scatter plot in Figure 2.7. It also indicates a tendency of the new
method to reduce the range of predictions by avoiding low results < 5 t/ha.

2.3.2 Pixel-Level Yield Estimation

Table 2.4 shows that on the pixel-level, the model with no updating again produced a
high RMSE and showed a bias of 12.7%. Both simple updating and the EKF inverted
the bias to an underestimation of −14.9 % and −13.3 %, respectively. Interestingly, both
techniques increased the inaccuracies.

Table 2.4. Accuracies of AquaCrop-OS pixel-level yield estimation on the validation dataset using
different updating schemes. Abbreviations as in Table 2.3.

Updating α Uncertainties RMSE
[t/ha]

MPE
[%]

R2 Pmatch
[%]

none - - 1.52 12.7 0.08 65.6
simple - - 1.88 −14.9 0.07 43.8
EKF - - 1.79 −13.3 0.08 45.6
new method 1 RS 1.80 −12.9 0.06 43.6
new method 1 RS, pars 1.43 1.8 0.07 64.4
new method 1 RS, pars, weather 1.47 2.5 0.07 64.9
new method 2 RS 1.72 −12.7 0.05 49.0
new method 2 RS, pars 1.47 0.2 0.06 61.3
new method 2 RS, pars, weather 1.50 3.2 0.07 64.9
new method auto RS 1.82 −12.8 0.05 46.2
new method auto RS, pars 1.52 −2.9 0.07 59.7
new method auto RS, pars, weather 1.48 1.1 0.09 62.1

The new method performed better when using remote sensing and parameter-related
uncertainties, while adding weather-related uncertainty did not improve the results con-
sistently. Still, even the best results only reduced the RMSE by about 0.09 t/ha. Despite
that, it again managed to reduce the bias significantly. The adaptive version seemed to
incorporate the different uncertainties more consistently, as indicated by decreasing RMSE
and MPE with each added uncertainty. The scatter plot in Figure 2.8 supports these find-
ings. As previously mentioned, the new method reduced the bias through slightly higher
predictions with a slightly smaller range.
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Figure 2.8. Scatter plots of measured vs. predicted yield on the pixel-level for (left to right)
simple update, EKF update, and the new method (adaptive; all three uncertainties). To improve
visual interpretation, we displayed only a subset of 400 data points.

2.3.3 Pixel-To-Field Aggregated Yield Estimation

Table 2.5. Accuracies of AquaCrop-OS yield estimation on the validation dataset aggregating
pixel-level simulations to the field-level using different updating schemes. Abbreviations as in Table
2.3.

Updating α Uncertainties RMSE
[t/ha]

MPE
[%]

R2 Pmatch
[%]

none - - 1.12 11.6 0.09 72.2
simple - - 1.36 −12.5 0.11 69.4
EKF - - 1.33 −13.3 0.09 61.1
new method 1 RS 1.27 −10.9 0.10 72.2
new method 1 RS, pars 0.92 1.6 0.11 86.1
new method 1 RS, pars, weather 0.96 3.2 0.11 80.6
new method 2 RS 1.26 −10.5 0.10 72.2
new method 2 RS, pars 0.95 0.6 0.05 83.3
new method 2 RS, pars, weather 0.97 1.3 0.07 80.6
new method auto RS 1.28 −10.4 0.08 69.4
new method auto RS, pars 0.96 −2.4 0.09 86.1
new method auto RS, pars, weather 0.92 1.5 0.07 86.1

In general, the aggregated results (Table 2.5) are better than those on the pixel-level,
indicating a benefit from aggregation. When compared to field-level results, however,
differences become apparent. Without an update, the model produced better results on
the aggregated than on the field-level, while the simple update showed no significant
difference. The EKF, however, performed worse on aggregated scales than on field-wise
runs, indicated by a higher RMSE. The new method, in comparison, provides similar
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or better results on the aggregated compared to the field-level and bias tended to be a
bit smaller. Results for the different uncertainty setups generally behaved in accordance
to the observations in previous sections. Compared to the model without updating, we
observed only small improvements for all updating schemes. Again, the scatter plot in
Figure 2.9 shows a smaller range, but also a reduction in bias in the predictions using the
new method compared to simple updating and EKF.

Figure 2.9. Scatter plots of measured vs. predicted yield on the pixel-to-field aggregated level for
(left to right) simple update, EKF update, and the new method (adaptive; all three uncertainties).

2.3.4 R2 Performance

As mentioned previously, we generally observed low R2 values in all yield estimations.
This is particularly surprising, since even good RMSE and MPE values were associated
with low R2 values. The scatter plots in previous sections also indicate low correlations
between the predicted and measured yield values.

The time series plot in Figure 2.11 may hint at causes behind different behavior of
the updating techniques as well as the Sentinel-2 CC observations. As mentioned earlier,
CC observations were often very different from what the AquaCrop-OS model simulated
by default. In this example, observations were much lower than the CC predicted by
the model (without update), especially in the earlier growth stages. The EKF updates
were therefore particularly low in many cases, while the new method often performed less
dramatic corrections.

An explanation could be a bias toward drastic underestimation in some cases and
overestimation in others. This kind of bias would not manifest itself in a metric like MPE,
but may become obvious when looking at outputs individually. We therefore investigated
the results of the fields with the worst predictions. Figure 2.10 shows an example for
extreme over- and underestimations in one of the fields. Overall results using the EKF
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Figure 2.10. Example map of the pixel-wise differences between the simulated and in situ yield
values (< 0 underestimation, > 0 overestimation) for EKF updating (left) and adaptive PSO
updating (right). Maps are smoothed with a 3 × 3 mean filter to reduce noise.

Figure 2.11. Example for time series of CC updating on the field-level showing the default
simulation without updating and the corresponding updated CC values from simple updating
(equivalent to observed CC), EKF updating, and the new method using α = 5 and the adaptive
version.

update had a more obvious bias towards underestimations (≤ −3 t/ha). The new method
also produced significant errors, but they tended to be slightly more evenly distributed and
less dramatic in most cases. Nevertheless, both results demonstrate similar trends with
regions of overestimation near the top left and right as well as the bottom left boundaries
in Figure 2.10. The remaining parts were mostly underestimated, in particular near the
center and at the right border of the field. These issues may be explained by mixed pixels
and often observed low yields near the boundaries of the field that are not captured by
the model.
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2.4 Discussion

In this study, we introduced a new updating method based on PSO to simulate wheat
yield using the AquaCrop-OS model. As mentioned previously, our comparison addressed
the results of different updating schemes applied to the same yield prediction scenario.
We compared performances on different scales.

Overall, the new method performed better than a simple update and similar or better
than the EKF update approach. It was particularly successful in reducing the bias in the
estimation and outperformed both the simple update and the EKF update in this respect.
However, the EKF is designed to correct random errors in the model state rather than
systematic errors, so state augmentation or bias correction may improve its performance in
this respect (De Lannoy et al., 2007). Furthermore, other techniques such as the ensemble
Kalman filter or particle filter updates may better address non-linearities in the model.

Settings chosen for the update largely determined performance. The weighting factor
α had a significant impact and the optimal value was scale-dependent. This would pose
the need for prior testing and calibration by the user, which is not ideal for most applica-
tions. Further research may reveal a best practice for the setting of α, which may depend
on the number and/or type of uncertainty PDFs or scale. The adaptive version, however,
showed promising results via self-adjusting α. It performed comparably to other settings
on all scales, even though in most cases, it was not the best-performing updating scheme.
Instead of guidance for the manual adjusting of α, it may be preferable to improve the way
is involved in the objective function. Another observation in this context is that higher α
(values of five and higher) seemed to be advantageous on the field-level. One may argue
that remote sensing observations are superior to the simulation and therefore a higher
weighting automatically led to a significant improvement in predictions. This interpreta-
tion, however, contrasts with the poor results obtained when using remote sensing-related
uncertainty alone or in the simple update. It is more likely that the reason lies in model-
related uncertainties, which often are distributed (skewed) normally around or close to
the simulated CC value, while remote sensing observations differed significantly. There-
fore, a larger weight on remote sensing-related uncertainty is required to “outweigh” the
two similar model-related distributions. This interpretation is further supported by the
fact that the field-level required higher α values than the pixel-level. In our pixel-level
implementation, we used the same model-related uncertainty PDFs (based on 10,000 sim-
ulations each), but considered only the immediate neighborhood of the pixel. Naturally,
heterogeneity in such a small, spatially constrained sample is much smaller. Therefore, the
distribution of the remote sensing-related uncertainties in the pixel neighborhood tends
to be narrower than that of the entire field, consequentially leading to a smaller prob-
ability of an overlapping with the current simulated CC of AquaCrop-OS. The result is
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that most remote sensing predictions are assigned a Hellinger distance of 1 and therefore
receive higher weights than on the field-level, even with a comparatively small α. This
situation may be addressed by altering the kernel bandwidth or analyzing different scales,
numbers of pixels, etc. to possibly observe a relationship between the number of PDFs or
sample size and the optimal α values to choose. The other approach may be the use of an
adaptive version that seemed to adjust to the different levels quite effectively, which was
demonstrated in its comparable performance to the fixed versions.

Regarding uncertainties, all versions of the new method managed to incorporate
different PDFs successfully. Using only remote sensing uncertainty led to poor results,
probably because of the way the weighting was handled: in case of having only one uncer-
tainty input, that distribution will always be assigned a weight of 1 (see Equation 2.18).
Results are expected to be close to those of a simple replacement update because the
remote sensing-related PDF is the only one considered. An obtained optimal distribution
would then obviously be located closely to the observed pixel or field mean CC value. In
case of an actual normal distribution of values, it must be identical.

As expected, adding model-related uncertainty always improved results, except for
adding the weather PDF, which was unable to enhance the performance consistently. A
possible reason could be the similarity of the two distributions as indicated in Figure 2.2.
Adding parameter-specific uncertainty PDFs rather than an all-in-one PDF may prove
a better alternative in the future. This also highlights the importance of choosing the
relevant type of uncertainty and its correct quantification. However, further research may
be necessary to ensure a proper incorporation of all PDFs. This task would be closely
linked to the improvement in optimizing α, but may also involve increasing the 3 × 3
pixel neighborhood with a larger rectangular or circular one.

Another observation was that R2 values were generally poor throughout all analyses,
methods, and scales. Our investigation revealed that many fields contained regions of
significant over- and underestimations. These frequent outliers may cause the low R2
values, even in cases with relatively good RMSE and MPE values. The new method
seemed to be less likely to underestimate yield than EKF updating, but showed similar
overall trends.

In this context, we also cannot exclude the possibility of significant bias in the
Sentinel-2 CC data itself. The low errors mentioned in the original report on the algo-
rithm suggest good performance (Weiss and Baret, 2016). However, the datasets used
for both training and validation of the artificial neural networks in the algorithm were
obtained from radiative transfer simulations rather than in situ experimental data may
therefore not be representative for all situations. The fact that low R2 values were present
in all updating results further indicates that they are probably unrelated to the updating
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methods themselves, but are connected to issues in the CC inputs or in situ yield data.
This is further supported by the facts that pixel-level predictions were much worse and
the simple update performed particularly poorly. Data on the pixel-level may therefore be
unreliable. By increasing the detail in the process (i.e., the number of individual simula-
tions per field), the broader trend is captured, but individual pixel-wise yield predictions
are not matched. Nevertheless, as no external in situ measurements were available in our
study area, we could not validate the quality conclusively.

Finally, AquaCrop-OS may also introduce unknown uncertainties. Even with care-
ful calibration, it is difficult to scale such a model to represent conditions in a num-
ber of fields distributed over a large area, let alone different spatial scales. On top of
performance-related questions, pre-processing requirements are important for applications.
The approach in the implementation described here requires extensive pre-processing.
Our technique, however, is flexible regarding the type of uncertainty representation, fu-
ture applications would not need to rely on a computation-intensive approach like Monte
Carlo simulations and kernel density estimation. Instead, if previous knowledge about
the characteristics of the model is available, simple functional relationships may represent
uncertainties, for example.

2.5 Conclusions

We presented a method for updating model variables during simulation, taking into ac-
count uncertainties in both the model and the assimilated data. We described the method
for assimilating remote sensing data into a dynamic crop model for improving yield esti-
mation. The method proved to be comparable to other existing updating techniques, but
was particularly capable of reducing bias in the estimations and managed to incorporate
different sources of uncertainties.

We described the process specifically for the application in our study. The principle
is, however, easily transferrable to other models or model variables. Its flexibility regarding
the representation of uncertainties would also allow an adaptation to different situations
where Monte Carlo simulations may not be feasible. Previous knowledge about the model
in question would allow a representation of uncertainties by a simple functional relationship
or a set of distributions.

Further research may be needed to analyze the behavior of the technique regarding
different numbers of uncertainties and potential improvement in incorporating them into
the updating scheme. Additionally, improvements to the distance metrics, objective func-
tion, and weighting may also be of interest as well as the applicability to different remote
sensing datasets and pixel neighborhood sizes. It is also possible to analyze improve-
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ments regarding the optimal distribution, for example, by adding skewness or kurtosis.
Furthermore, additional comparisons to other non-linear updating techniques such as the
ensemble Kalman filter may provide valuable insights.
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Abstract

Knowledge of the location and extent of agricultural fields is required for many appli-
cations, including agricultural statistics, environmental monitoring, and administrative
policies. Furthermore, many mapping applications, such as object-based classification,
crop type distinction, or large-scale yield prediction benefit significantly from the accurate
delineation of fields. Still, most existing field maps and observation systems rely on his-
toric administrative maps or labor-intensive field campaigns. These are often expensive to
maintain and quickly become outdated, especially in regions of frequently changing agri-
cultural patterns. However, exploiting openly available remote sensing imagery (e.g., from
the European Union’s Copernicus programme) may allow for frequent and efficient field
mapping with minimal human interaction. We present a new approach to extracting agri-
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cultural fields at the sub-pixel level. It consists of boundary detection and a field polygon
extraction step based on a newly developed, modified version of the growing snakes active
contours model we refer to as graph-based growing contours. This technique is capable
of extracting complex networks of boundaries present in agricultural landscapes, and is
largely automatic with little supervision required. The whole detection and extraction
process is designed to work independently of sensor type, resolution, or wavelength. As a
test case, we applied the method to two regions of interest in a study area in the north-
ern Germany using multi-temporal Sentinel-2 imagery. Extracted fields were compared
visually and quantitatively to ground reference data. The technique proved reliable in
producing polygons closely matching reference data, both in terms of boundary location
and statistical proxies such as median field size and total acreage.

3.1 Introduction

Throughout the second half of the 20th century, the growing demand for agricultural
products was largely met by either an expansion of agricultural lands or an intensified
production. Both may cause environmental concerns (Graesser and Ramankutty, 2017;
Tilman et al., 2001). While cropland expansion slowed down due to the limited available
land and improving technology, the intensification of agricultural production went along
with increasing emissions, negative effects on soil and groundwater, and changing land use
patterns (Graesser and Ramankutty, 2017; Tilman et al., 2001; Barrett et al., 2001).

Therefore, the timely and accurate monitoring of agricultural landscapes and pro-
duction systems is crucial. In national cadasters such as the Land Parcel Identification
Systems or the Integrated Administration and Control Systems promoted by the Euro-
pean Union, land use changes have been addressed for a long time (García-Pedrero et al.,
2017; European Court of Auditors, 2016; Sagris and Devos, 2008; Inan et al., 2010). These
systems may offer valuable and accurate datasets, but they often rely on historic adminis-
trative maps, manual field delineations based on satellite or airborne imagery, and in-situ
mappings via Global Positioning Systems (GPS) tracking (García-Pedrero et al., 2017).
However, manual approaches are time-consuming, costly, and often subjective, and there-
fore of limited use in regions with frequently changing field structures or cropping patterns
(García-Pedrero et al., 2017; Tiwari et al., 2009; Rahman et al., 2019; Da Costa et al.,
2007).

The accurate mapping of the location, size, and shape of individual fields is im-
portant for the implementation of precision agriculture, crop yield estimations, resource
planning, and environmental impact analysis (García-Pedrero et al., 2017; Rahman et al.,
2019; Turker and Kok, 2013). It enables insights into the degree of mechanization, agri-
cultural practices, and production efficiency in a region, and allows better implementation
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of administrative policies such as subsidy payments and insurance (García-Pedrero et al.,
2017; Yan and Roy, 2016). Additionally, extracting individual fields is a crucial pre-
liminary step for many analytical and mapping applications, including the monitoring
of field management and calculating agricultural statistics (Graesser and Ramankutty,
2017; García-Pedrero et al., 2017; Turker and Kok, 2013). Especially crop type and land
use mapping benefit from knowledge of precise field locations, as object-based classifica-
tion techniques usually outperform pixel-based ones (Turker and Kok, 2013; Rydberg and
Borgefors, 2001; Watkins and van Niekerk, 2019).

The timely and accurate land use monitoring of agricultural landscapes and pro-
duction systems is therefore crucial, especially in highly fragmented landscapes with high
spatial heterogeneity due to diversity in sizes, shapes, and crops and a high temporal
heterogeneity due to changes of field patterns, management practices, and crop rotation
(García-Pedrero et al., 2017; Gonzalo-Martín et al., 2016).

Given the increasing availability of satellite remote sensing data, Earth observation
has the capacity to aid in the setup of cost-effective automatized mapping systems. Agri-
cultural monitoring in general has a long history in remote sensing, dating back to the
original Landsat mission and the Large Area Crop Inventory Experiment (LACIE) (Yan
and Roy, 2016; MacDonald and Hall, 1980). In recent decades, various applications have
been explored, including large-scale yield prediction, land use mapping, crop type classi-
fications, plant health monitoring, and precision farming (Atzberger, 2013; Mulla, 2013;
Dorigo et al., 2007). With the increasing availability of remote sensing data through open
data policies, agricultural services and automatized parcel-level monitoring are becoming
more prevalent (Barrett et al., 2001; Borgogno Mondino and Corvino, 2019). Still, remote-
sensing-based boundary detection and field extraction have seen relatively little research
interest in comparison, and robust techniques for automatic field delineation are still rare
(Watkins and van Niekerk, 2019; Yan and Roy, 2014).

Many previous field extraction approaches are concerned with the location and extent
of fields within the image rather than extracting precise polygons. Examples include
the use of edge detection and morphological decomposition to segment fields in Landsat
imagery or training random forest classifiers on image features such as mean reflectance
values (Yan and Roy, 2014; Debats et al., 2016). Rahman et al. (2019) followed a different
approach by attempting to delineate fields using statistical data on crop rotation patterns.
Other studies intended to extract field boundaries. For example, García-Pedrero et al.
(2017) trained a classifier to determine delineation between adjacent superpixels near
potential field boundaries. Tiwari et al. (2009) used color and texture information to
first segment the image using fuzzy logic rules and then refined the field boundaries using
snakes. Turker and Kok (2013) attempted to detect sub-boundaries within known fields
via perceptual grouping using Gestalt laws. Recently, Watkins and van Niekerk (2019)
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compared multiple edge detection kernels as well as watershed, multi-threshold, and multi-
resolution segmentations in their capacity for field boundary detection. Their results
indicated that the combination of the Canny edge detector and the watershed segmentation
algorithm produced the best results. While most of these studies rely on high-resolution
satellite data, da Da Costa et al. (2007) explored the potential to delineate vine parcels
in very-high-resolution data from unmanned aerial vehicles. They used texture metrics
and specific patterns in the vine fields to extract the precise locations of field boundaries.
Recently, the use of convolutional neural networks was explored in Masoud et al. (2019).

In this study, we present a new approach to agricultural field extraction that allows
for both the detection of boundaries and the automatic extraction of individual fields as
polygons on a sub-pixel level. We merge image enhancement and edge detection tech-
niques with a new modified active contour model and graph theory principles to obtain
smoother field boundaries than possible in regular image segmentation alone. Further,
the new approach provides a largely unsupervised contour extraction tracking the spatial
relationships and interconnectivity of a complex boundary set and makes it possible to
produce an interconnected network of contours rather than a set of separate segments.

As natural boundaries like hedges are easier to detect than differences due to crop
types, field boundaries are often difficult to separate depending on the current growth
stage or types of crops (Rydberg and Borgefors, 2001). Following previous studies, we
therefore combine multi-temporal remote sensing observations to enhance boundaries that
may only become visible during certain growth stages or management steps. The structure
of the methodology can be regarded as two-fold, consisting of the pre-processing and edge
detection steps on one hand and separate field boundary detection and polygon extraction
steps on the other.

The structure of this paper is as follows: Section 3.2 describes the study area and
the data we used. Section 3.3 introduces the methodology, while Section 3.4 and Section
3.5 present and discuss the results for our study area. Lastly, Section 3.6 summarizes the
most important findings and provides a brief outlook on further research.

3.2 Data and Materials

3.2.1 Study Area

Our study area is located in northern Germany in the state of Schleswig-Holstein. The
landscape is hilly but with low elevations. The climate of the region is temperate/oceanic
(warm summers, wet winters; Cfb in Koeppen-Geiger climate classification) (Kottek et al.,
2006). Soils are predominantly para brown earths, podzol-brown earths, and pseudogleys
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originating from glacial deposits (Bundesanstalt für Geowissenschaften und Rohstoffe,
2018).

The region is dominated by agricultural use. It is rather heterogeneous with a
mixture of small to mid-sized towns, forests, and agricultural areas with varying intensities
of use. Farming in the region is highly industrialized and purely rain-fed. Main agricultural
crops are cereals such as wheat, barley, and rye as well as maize and rapeseed (Ministerium
für Energiewende, Landwirtschaft, Umwelt, 2020). Field shapes are irregular, with no
predominant patterns. Field characteristics and distribution are heterogeneous, with sizes
ranging from below 1 to above 10 ha. As seen in Figure 3.1, the landscape consists of
a mixture of fields of different sizes and shapes. The whole study area had an extent
of roughly 11.5 × 7.0 km2. Within it, we selected two 2.5 × 2.5 km2 regions of interest
(ROIs) for detailed analysis (see Figure 3.1). We created a reference dataset for each of
them representing all fields that should be extracted from the subset alone (i.e., all fields
contained entirely within the subset).

Figure 3.1. Sentinel-2 greyscale image of the study area and the two regions of interest (ROIs).

3.2.2 Satellite Imagery

For our study, we used Sentinel-2 Level-2A atmospherically corrected imagery. To cover
different growth stages and maximize the differentiation of neighboring fields (see Section
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3.3.2), we explored scenes throughout the 2019 crop growing season (March until late
October). Considering only observations without cloud cover over the study area, our
dataset consisted of six scenes in March, April, June, July, August, and September. To
provide sufficient spatial detail, we focused only on the 10-m-resolution red, green, and blue
(RGB) bands of Sentinel-2. This further allows us to explore the potential applicability
of our method to other sensors with a more limited selection of wavelength bands or even
a standard RGB setup.

3.2.3 Reference Data

State cadastral data containing administrative plots served as a reference (Arbeitsgemein-
schaft der Vermessungsverwaltungen der Länder der Bundesrepublik Deutschland, 2016).
Although the boundaries in this dataset sometimes aligned with actual field boundaries of
2019, manual updating was required based on field surveys and recent satellite imagery.
Considering that the 10 m spatial resolution of Sentinel-2 limited the capacity to extract
very small plots, we excluded all polygons below a size of 0.5 ha.

Interpretation of field conditions proved difficult. On some occasions, fields appeared
as separate at one point in time (e.g., due to separate tilling) but merged in later images.
In other cases, the delineation of two adjacent plots was difficult (see also Section 3.5).

3.2.4 Land Cover Mask

As we were only interested in agricultural areas, we masked all non-agricultural landscapes
using land cover maps. We considered two products: the CORINE land cover data of 2018
and the Land Cover DE product of the German Aerospace Center (DLR) (Weigand et al.,
2020; Büttner et al., 2017). Previous investigation demonstrated superior quality of the
DLR product in our study area, but we still occasionally observed some urban and other
non-agricultural areas as being misclassified. We therefore decided to use a combination
of the two products to create a conservative land cover mask.

3.3 Methodology

The flowchart in Figure 3.2 provides an overview of the workflow of our approach. After
providing some background on pixel value transformation and active contours, we first
describe the image pre-processing and enhancement (green) in Section 3.3.2, then pro-
ceed with the edge detection (blue) in Section 3.3.3 before describing seed point selection
(yellow) as well as contour and polygon extraction in Section 3.3.4 and Section 3.3.5.
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Figure 3.2. Flowchart of the boundary detection and field extraction procedures (LULC: land
use/land cover map). Stages of the process are highlighted in different colors: pre-processing in
green, edge detection in blue, seed point selection in yellow, and contour and subsequent polygon
extraction in grey.

3.3.1 Background

3.3.1.1 Sub-Pixel Image Transform

To perform analyses on the sub-pixel level, we dynamically transformed the pixel grid
data of the images using a barycentric transform, which represent the location of a point
within a triangle (or more generally a simplex) as the center of mass (i.e., the barycenter)
in relation to its vertices (Yiu, 2000).

Barycentric coordinates have proved to be useful in finite element analysis and com-
puter graphics applications, and are superior to simple distance-weighted transforms. To
obtain the value of a given point, the three closest grid points in the image are selected
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as vertices of the triangle. The value is then computed as a linear combination of these
vertices based on the following equations:

Px = Wv1Xv1 +Wv2Xv2 +Wv3Xv3 (3.1)

Py = Wv1Yv1 +Wv2Yv2 +Wv3Yv3 (3.2)

Wv1 +Wv2 +Wv3 = 1 (3.3)

Wv1 = (Yv2 − Yv3)(Px −Xv3) + (Xv3 −Xv2)(Py − Yv3)
(Yv2 − Yv3)(Xv1 −Xv3) + (Xv3 −Xv2)(Yv1 − Yv3) (3.4)

Wv1 = (Yv3 − Yv1)(Px −Xv3) + (Xv1 −Xv3)(Py − Yv3)
(Yv2 − Yv3)(Xv1 −Xv3) + (Xv3 −Xv2)(Yv1 − Yv3) (3.5)

Wv3 = 1−Wv1 −Wv2 (3.6)

where v1, v2, and v3 denote the three vertices of the triangle, Xvi and Yvi are the
x- and y-coordinates of the vertex vi, and Px and Py are the x- and y-coordinates of the
interior point. Wv1, Wv2, and Wv3 are the weights assigned to each vertex. As long as a
point is located within the triangle, all three weights are ≥ 0 and sum up to 1.

3.3.1.2 Active Contours and Growing Snakes

Active contours (also called snakes) were first introduced by Kass et al. (1988) for object
delineation. The concept is based on the energy minimization of a deformable spline or
polyline. The spline is initiated either via user input (e.g., a rough sketch around the object
of interest) or automatically in the object’s vicinity. The snake then follows two influencing
factors: the external and internal energy. The external energy given by the image (e.g.,
the gradient magnitude) directs the snake towards the contour of interest. The internal
energy determines the shape of the snake and usually consists of two parts: continuity and
smoothness or curvature, often represented by the first and second derivative. They limit
the curvature of the contour and the distance between individual points. This ensures that
the snake does not expand or contract indefinitely or become discontinuous. A traditional
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snake is described as a parametric curve f(s) = [x(s), y(s)], s ∈ [0, 1], following the energy
given by the equation below (Kass et al., 1988; Xu and Prince, 1998):

E =
∫ 1

0

1
2
[
α||f ′(s)||2 + β||f ′′(s)||2

]
+ Eext (f(s)) ds (3.7)

where f ′(s) and f
′′(s) describe the first and second derivatives of the parametric

curve f(s) and α and β are weighting parameters that determine the influence on continuity
(first derivative) and curvature (second derivative). Eext (f(s)) is the external energy. One
major drawback of the original model (and many subsequent variants for that matter) is
the difficult choice of initial placement due to high sensitivity regarding initialization
(Velasco and Marroquin, 2003).

Many variants of the active contour model have been proposed to address various
drawbacks or expand the model for use in new applications, including geodesic contours
using level sets and various different external energies such as edge distance transform or
gradient vector flow (Xu and Prince, 1998; Caselles et al., 1997). The aim of our use case
was not to detect single objects, but rather to extract a complex network of contours that
may not even be interconnected and conserve contour relationships. Given the irregular
sizes and shapes of fields in our study area, it should further be independent of shape or
size priors.

We therefore focused on the so-called growing snakes model introduced by Velasco
and Marroquin, which was designed particularly for complex topologies where traditional
active contours may struggle (Velasco and Marroquin, 2003). Growing contours are initial-
ized on seed points along the contour itself and grow (or “move”) in steps perpendicular to
the local gradient direction (i.e., along the contour). Movement in each step is determined
by selecting the position of highest gradient magnitude out of a set of possible locations.
The process proceeds until the snake approaches an existing contour point. In this case,
the growth process stops, forming either a T-junction or a closed line. Although capable of
tracking heterogeneous boundaries, this method simply follows local maxima. Therefore,
it has a tendency to create discontinuous contours, as it does not consider the smoothness
of the curve and requires an additional smoothing step.

We observed that growing contours had a tendency to get “off track” easily when
the image gradient was heterogeneous, especially at corner points of multiple edges. Fol-
lowing the local maximum of gradient magnitude, the contour moves away from the actual
boundary. Once this happens, it will create false boundaries along any local maxima it
encounters. To address this, we experimented with user-defined constraints, for example,
allowing only a certain number of steps with low magnitudes before terminating the snake.
However, this introduced another level of complexity, as the threshold may be dependent
on the strength of the edge currently being explored. If the snake is initiated on a very
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strong edge, a conservative threshold may ascertain good results; however, the process
may stop prematurely if the explored edge is rather weak.

Another issue we encountered was the already mentioned tendency to produce dis-
continuous lines, either failing to represent sharp 90° turns and crossing edges or producing
false turns. To avoid this, we limited the maximum amount of turns allowed and experi-
mented with different movement schemes. Again, these modifications produced unreliable
results and added complexity to the parameter settings. Hence, we developed a new
graph-based growing contour model, described in Section 3.3.4.

3.3.2 Image Pre-Processing

The initial stage in our procedure is image pre-processing, serving multiple purposes: (a)
removing non-agricultural areas; (b) reducing noise; (c) removing undesired effects due
to sub-field features such as crop rows; and (d) enhancing actual field boundaries. The
process comprised four parts. First, we mask non-agricultural areas based on the land
use mask and created an RGB composite using bands 4, 3, and 2 of each scene. This
particular band arrangement is not a prerequisite for further processing steps, and any
three-band composite would suffice.

Second, we perform noise reduction and image smoothing. Particularly in edge detec-
tion, noise reduction is important to reduce the amount of spurious edges. In the context
of this study, we define noise as any kind of non-boundary feature that may interfere with
the boundary detection steps (e.g., soil and plant growth patterns). Although convolution
of the image with a Gaussian kernel is a common approach, it has the negative side effect
of blurring out potentially relevant edges as well. As we are particularly interested in edges
corresponding to field boundaries, it is desirable to conserve stronger edges. To achieve
this, we employ bilateral filtering. The bilateral filter combines a Gaussian distribution
in the spatial domain (as regular Gaussian smoothing), defined by a standard deviation
σs , with a Gaussian distribution in the value domain, defined by a standard deviation σr
(Tomasi and Manduchi, 1998). While the former determines the weighting of neighbor-
ing pixels based on their distance from the center pixel, the latter determines how values
are weighted based on similarity to the center pixel. Edges in the image refer to sharp
changes in image reflectance. Therefore, a smaller σr will conserve even weaker edges,
while a larger σr will lead to a stronger blurring. The definition of the two distributions
should be chosen carefully to ensure that weak, potentially irrelevant, edges are removed
while strong edges are conserved.

Third, we transform the RGB image into the YUV color space. The YUV color
space, similar to the closely related YCbCr color model, transforms the RGB information
such that luminance is stored in the Y component while U and V refer to chrominance
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information. This enables image enhancement with reduced color information distortion.
Fourth, we apply a sigmoid transform to the Y component to increase contrast of the
image (Braun and Fairchild, 1998). The sigmoidal function S(x) is defined as follows:

S(x) = 1
1 + eαs(xi−x0) (3.8)

where xi is the reflectance of a pixel, αs is the slope of the sigmoidal curve (gain),
and x0 controls the centering of the sigmoid curve (offset).

As illustrated in Figure 3.3, luminance images in our observations were usually bi-
modal, with the two peaks representing dark areas such as fully grown crops and bright
areas such as dry open soil, respectively. The cutoff location of the sigmoid function can
be adaptively positioned between the two peaks to increase contrast between dark and
bright parts in the image. In the last step, we transform the YUV data back to RGB color
space for subsequent steps.

Figure 3.3. Example histogram of a luminance image. Vertical dashed lines illustrate the location
of the two peaks used for positioning the cutoff location of the sigmoid transformation.
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3.3.3 Edge Detection and Enhancement

We convolve each of the three bands of each scene with the Sobel operator in both x- and
y-directions:

Kx =


−1 0 1
−2 0 2
−1 0 1

 , Ky =


1 2 1
0 0 0
−1 −2 −1

 (3.9)

We sum up the resulting gradient images to highlight recurring edges and use the
summed horizontal and vertical gradient images to obtain overall gradient magnitude g
and gradient direction θ following the formulas:

g =
√
I2
x + I2

y (3.10)

θ(x, y) = arctan

(
Iy
Ix

)
(3.11)

where Ix and Iy are the gradient images in x- and y-directions.

Figure 3.4. Examples of pre-processing steps.

Despite smoothing, the gradient magnitude still contains spurious edges caused by
crop rows and other features within some fields. Some of these edges are rather strong and
consistent (appearing in multiple scenes) and could not be removed by filtering alone. To
overcome this and further emphasize the actual field boundaries, we exploit the shape and
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appearance of boundaries by applying a Meijering filter to the magnitude image (Meijering
et al., 2004). This filter was originally designed for medical purposes to extract neurites
from microscopic images. It uses the eigenvectors and eigenvalues of the second-derivative
(Hessian) matrix of the image to determine the “ridgeness” of a pixel. By applying this
filter, we can exploit the curvilinear structure of the field boundaries in the image (see
Figure 3.4).

As seen in Figure 3.4, many remaining spurious edges disappeared or were at least
substantially reduced. Further, the Meijering filter provided a good representation of the
actual contour shape compared to the sometimes uneven and blurred appearance of the
gradient magnitude image. The resulting image was normalized and was the basis for
most subsequent procedures, referred to as (gradient) magnitude.

3.3.4 Graph-Based Growing Contours

We overcome the limitations observed in the growing snakes model (see Section 3.3.1.2)
with a newly developed modified growing contours model called graph-based growing con-
tours (GGC). The goal of our GGC technique is not only to locate potential field bound-
aries but also to facilitate the extraction of the actual fields. The main improvement lies
in a newly designed movement based on graph theory concepts. We aimed to address
five goals: (a) improve the quality of extracted contours and reduce the need for repeated
smoothing; (b) introduce adaptive behavior to accurately trace the contours of different
shapes (smooth curves, sharp corners, straight lines etc.); (c) increase the capacity to
extract complex, irregular networks with multiple crossing edges and T-junctions via au-
tomatic branching; (d) improve the handling of “dead ends”; (e) automatically create an
interconnected network of contours rather than a set of separate segments.

Parts of this concept were inspired by the methodology by Aganj et al., who used
a Hough transform and orientation distribution functions for fiber tracking in diffusion-
weighted magnetic resonance images (Aganj et al., 2011). In a similar fashion, we employ
principles of graph theory to extract the most likely boundary paths in a local neighbor-
hood.

3.3.4.1 Seed Point Selection

The technique is rather flexible with respect to initialization, but ideally starts at one or
multiple points on the boundaries of interest. In case of an interconnected network of
boundaries, even a single initial seed point is often sufficient to extract all boundaries in
the image. However, to ensure coverage over a larger area, multiple potential seeds are
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preferable. This also ensures that weakly connected parts of the boundaries are correctly
extracted.

Our observations showed that initializing the method on individual seed points con-
secutively provided the best results. The process starts on one seed point and proceeds
until termination before being re-initialized on the next seed point. We therefore gener-
ate multiple seed points by selecting one point per 50 × 50 pixel image tile of the scene.
For each tile, we limit the choice to those pixels located on strong edges. To determine
potentially useful starting points, we assume that points near changing gradient direction
such as corners or crossings of multiple edges are most suitable. These points allow the
quick exploration of several branches and usually do not run the risk of producing only
dead ends. As seen in Figure 3.5, regions along a single boundary are usually areas of
similar gradient direction, while regions near corners, curves, and crossings contain gradi-
ents of different directions (Gregson, 1993). To transfer this to an easy-to-use metric, we
approximate the local anisotropy. Isotropy is defined as being direction-invariant (Perona
and Malik, 1990). Following this definition, pixels along edges are more anisotropic (low
isotropy), while those near corners and crossings of multiple boundaries are less anisotropic
(high isotropy).

Figure 3.5. Visualization of gradient magnitude (greyscale) and gradient direction (arrows) on
the left and anisotropy on the right. Darker levels of grey indicate higher values.

We approximate local anisotropy by sampling the gradient direction in a pattern
around each pixel (similar to Section 3.3.4.2). We then determine the predominant or
primary gradient direction by assigning the vectors to 16 bins between −1

2π and +1
2π.

The bin containing the largest number of vectors defines the predominant direction. We
then project all vectors onto the main directional unit vector as well as the unit vector
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normal to it. We calculate the total magnitude of projected vectors in both directions and
obtain anisotropy via:

Ianiso = 1−
min

(∑I
0 ||projvmainvi||,

∑I
0 ||projvnormvi||

)
max

(∑I
0 ||projvmainvi||,

∑I
0 ||projvnormvi||

) (3.12)

where vmain and vnorm are the main directional and normal vectors, respectively,
vi describes a given local gradient direction vector, and I is the number of all sampled
vectors. If the total magnitude in both directions is similar, anisotropy is low. If the
magnitude in one direction is much larger than the other, we observe a high anisotropy
(see Figure 3.5). This information is used to select points of high isotropy as seed points.

3.3.4.2 Generating a Local Graph

At each end point, the model starts by creating a directed, weighted graph. Firstly, a set
of points around the end point is sampled on the sub-pixel level using a concentric circular
pattern, as seen in Figure 3.6. The pattern is defined by an inner radius rmin, an outer
radius rmax, the number of points on the initial (innermost) circle ni, and the number of
evenly spaced circles nc. Moving outwards, the number of points doubles with each circle,
creating a homogeneous pattern. This ensures that each point on a circle has the same
number of neighbors on the next circle. As seen in Figure 3.6, the pattern also ensures
straight connections from each point of the inner circle to the outermost one.

The sampled points represent nodes in a local directed, unweighted graph G = (V,E)
constructed based on a set of rules:

• The center point and all sampled points are nodes V in the graph.

• The center node is linked via edges to all nodes of the initial circle with equal weights.

• Each subsequent node is connected to the same number ne of nearest nodes on the
next larger circle via directed, outgoing edges E.

• In the direction of the previous contour location, nodes of the graph are masked to
avoid backtracking.

All edges (except the ones originating at the center) are weighted based on:

wi,j = Di,j

gj
(3.13)

where wi,j is the weight of the edge E(vi, vj), Di,j is the Euclidian distance between
the nodes i and j, and gj is the gradient magnitude at node j. This weighting allows
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Figure 3.6. Example of a local graph with number of circles nc = 4, initial circle size ni = 8, and
allowed connections per node ne = 5. The bold horizontal arrow indicates the current direction of
movement.

for consideration of both distance between the points (favoring shorter paths in terms of
Euclidian distance) and regions of higher magnitude (favoring locations along an edge in
the image).

In constructing the graph, nc may be regarded as a metric of accuracy or smoothness
because, given the same radius, more points will tend to create smoother curves (see Figure
3.7). Similarly, the number of allowed connections from each point to the next circle ne
will influence both the smoothness and the capacity for sharper directional changes (see
Figure 3.7). We presume the number of points on the initial circle ni as a parameter of
potential directionality, which may influence the capacity to consider different directions.
The parameter rmax may be regarded as a “step size”.

As illustrated in Figure 3.7, different paths may lead to each point along the outer
circle. This ensures the capacity to represent different shapes of contours, including sharp
corners or smooth curvatures. However, the distance component in the weighting Equation
3.13 ensures that smoother curves are preferred. The complexity of the graph and, as a
result, processing time, increase with larger values of ni, ne, and nc.
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Figure 3.7. Illustration of possible paths from the center point of the local graph to a sink point
on the outermost circle (indicated in red) for three different graph setups.

3.3.4.3 Movement

To determine the branches (i.e., directions of movement) at a current point, a shortest-path
search starting at the center node (source) of the local graph to all nodes of the outermost
circle (sinks) is initiated using Dijkstra’s algorithm (Dijkstra, 1959). There are various
potential ways of deciding subsequent directions. One may simply search for local minima
or select a certain number of shortest paths. However, boundary features in the image
usually expand over multiple end nodes on the circle. This may lead to multiple selected
paths corresponding to the same image feature while other less-pronounced features remain
unconsidered.

To avoid this, we first select the overall shortest path as the first branch. We take
the location of the first path as a reference and split the graph into subsections around
−1

2π and +1
2π from the main direction. Subsequent paths are selected only within these

sections of the graph. The shortest paths in each of the sections are selected as potential
branches (see Figure 3.8, right panel). If there are two edges branching at a very small
angle, the two boundary features usually diverge quickly. This can still be represented in
the graph (see Figure 3.8, right panel).

Any selected paths that are longer than a certain threshold Lmax are omitted. This
ensures superfluous branches to die off quickly rather than continuing indefinitely and leads
to a dynamically changing number of end points and automatic termination of “dead ends”.

An end point of the contour is terminated if no valid paths are found, if the current
point is near the image boundaries, or if it is near an already existing contour point. In
the latter case, the two points are connected.
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Figure 3.8. Main steps of movement in local graph (left to right): local graph with overall
shortest path indicated in red; subsections in which to search for other paths; three selected paths
to proceed with. The bold horizontal arrows indicate the current direction of movement.

3.3.5 Polygon Creation and Post-Processing

The output of GGC is a large undirected network (graph) of interconnected contour points.
The next challenge is to transform this network of field boundaries into a set of individual
field polygons. Simple clustering or associating points with certain shapes in the image are
unreliable because points are usually part of multiple neighboring fields, and field shapes
may be quite heterogeneous. We did not intend to introduce any assumptions about field
shapes or contour arrangements.

Again, we make use of graph theory concepts. In theory, this is as simple as finding
cycles in the graph, but in practice some problems may arise. On the one hand, the
network may become very large, especially if small step sizes are used (i.e., small rmax),
making the process of detecting cycles computationally demanding. On the other hand,
the process requires a correctly interconnected network with no false edges or gaps.

To improve performance and increase reliability, we decided to create local polygons
using a subset of boundary points. To achieve this, we transform the set of edges in the
output graph to a binary contour image by drawing a binary edge map. We then employ
a flood fill algorithm creating a segment representing the rough extent of a given field as
defined by the extracted contours. Then, we extract the nodes of the network located
within a certain distance from the boundary pixels of the flood fill segment. A new field
boundary graph is created where each node is connected to its four nearest neighbors. This
may produce an over-connected graph. The polygon representing the field is extracted by
finding the longest cycle in this local network. To refine the polygons, we further employ
adaptive Gaussian filtering and the Ramer–Douglas–Peucker algorithm (Deng and Cahill,
1993; Ramer, 1972; Douglas and Peucker, 1973).



Chapter 3. Extracting Agricultural Fields Using Graph-Based Growing Contours 59

3.3.6 Selecting Optimal Parameters

The pre-processing steps are particularly crucial for the performance of our approach,
especially the correct filtering of the images. Regarding the parameters of the GGC
model, we decided to set constant values for many of them to reduce complexity of the
optimization task. In the two ROIs, we chose four parameters for optimization to obtain
representative results: the two standard deviations defining bilateral filtering σr and σs,
the gain αs in the sigmoid transformation, and the maximum allowed path length Lmax
in GGC. For other settings we found ni = 8, rmax = 6, and ne = 7 to be good default
values in both ROIs.

We obtained an optimum parameter setting for both ROIs using differential evolution
in a “rand-best/1/bin” strategy with a population size of 20, differential weight of 0.3,
and crossover rate of 0.8 (Das and Suganthan, 2011; Charalampakis and Dimou, 2015).
We visually compared the obtained extraction results to a representative image and the
reference datasets. The target variable of optimization was the mean Jaccard index (see
Section 3.3.7). In both ROIs, the differential evolution converged within 20 iterations and
determined an optimal parameter set as given in Table 3.1. Optimal settings for both ROIs
were overall similar in terms of a quite large difference between σr and σs and relatively
high values of αs.

Table 3.1. Optimal settings obtained from optimizing polygon extraction for the two regions of
interest.

σr σs αs Łmax

ROI 1 0.18 1.98 41.7 237.4
ROI 2 0.20 2.14 49.3 209.4

3.3.7 Performance Evaluation

We used a quantitative metric to evaluate the difference between extracted polygons and
those in the reference set. We employed the frequently used Jaccard Index as our main
reference metric because it is a common metric performing well for automatic segmentation
(Jozdani and Chen, 2020). In a pre-cursor step, extracted and reference polygons need
to be matched (Jozdani and Chen, 2020). Considering the set of reference polygons X =
{xi : i = 1, ..., n} and the set of extracted polygons Y = {yj : j = 1, ..., n}, we can define
multiple subsets. Following Clinton et al. (2010), we can distinguish:
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Yai = {yj : the centroid of xi is in yj}

Ybi
= {yj : the centroid of yj is in xi}

Yci = {yj : area (xi ∩ yj) /area (yj) > 0.5}

Ydi
= {yj : area (xi ∩ yj) /area (xi) > 0.5}

Y ∗
i = Yai ∪ Ybi

∪ Yci ∪ Ydi

Based on these matchings, we calculated the Jaccard Index (McGuinness and O’Connor,
2010; Ge et al., 2007):

JACij = 1− area (xi ∩ yj)
area (xi ∪ yj)

, yj ∈ Y ∗
i (3.14)

Resulting values range from 0 to 1, with 0 indicating an optimal segmentation. If the
set of matched polygons is empty, JACij is set to 1. All values calculated for individual
polygons were averaged. In addition, we used statistical information in the form of the
number of fields, median and standard deviation of field sizes, and total acreage as proxies
for performance of field extraction. We focused our detailed analysis on the two ROIs
but also briefly discuss the performance on the whole study area using both parameter
settings.

3.4 Results

As shown in Figure 3.9, the overall appearance of the extraction results in both ROIs
was close to a visual interpretation of the image. The general arrangement of extracted
fields was matched and most shapes were correctly delineated, closely following the visible
boundaries in the images. Spatially isolated phenomena such as patches of wet soil, grass
growing within bare fields, or uneven growth stages within a field did not confuse the
extraction as long as they were located at some distance from the field boundaries (see
Figure 3.9, fields near the top of ROI 1 and at the center-right in ROI 2). However, if they
were located close to or directly on a boundary, they could cause irregular field shapes or
incorrect indents in the outline (e.g., Figure 3.9, ROI 2 center).

Uncertainties may also occur in case of temporally isolated distinctions, for exam-
ple, when adjacent fields are only distinguishable at a specific point in time but remain
homogeneous otherwise. Our approach was successful in detecting field boundaries, even
if they were just visible in a single image. For example, the two elongated fields in the top
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Figure 3.9. Results of field extraction for the two ROIs showing extracted contours, corresponding
extracted polygons, and the reference dataset for comparison.

left in ROI 1 appear to be one large field in all but the one observation pictured, where
only the northern half is ploughed (see Figure 3.9). In such cases, the strength of the
delineating features is crucial (Section 3.5).

The method further detected some additional fields near the boundaries of the image
that were not part of the reference dataset. This was due to the actual fields extending
slightly outside the ROI, while the extraction still detected a large portion of the field.

Table 3.2 presents the statistics for the two ROIs. In general, results were close to
those of the reference datasets. The total acreage of all fields showed a high agreement for
both ROIs. Median field sizes in the two ROIs were quite different, with ROI 1 containing
mostly smaller fields (median size 5.08 ha in the reference data) than ROI 2 (median
size of 8.67 ha). Delineated field contours and sizes in ROI 1 matched accurately with a
difference in median field size of just 0.52 ha. In ROI 2, however, the offset in median field
size was more significant (1.39 ha). The number of fields extracted was off by -4 and +2
in ROIs 1 and 2, respectively. This was due to some larger fields being mistaken for two
separate plots or vice versa, as well as the above-mentioned extraction of additional fields
near the image boundaries.
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Table 3.2. Field statistics in the two regions of interest.

Field
Count

Median
Field Size
[ha]

St.Dev.
Field Size
[ha]

Total
Acreage
[ha]

ROI 1

extracted 41 5.60 8.45 362.60
reference 45 5.08 8.04 359.14
difference −4 0.52 0.42 3.46
perc. diff. −8.9 % 10.2 % 5.2 % 1.0 %

ROI 2

extracted 26 10.05 12.21 390.16
reference 24 8.67 12.72 393.69
difference 2 1.39 −0.51 −3.53
perc. diff. 8.3 % 16.0 % −4.0 % −0.9 %

Results on the whole study area are shown in Figure 3.10 for both parameter setups.
Both showed mixed results. In some areas (especially near the respective ROIs), results
were good but performance deteriorated further away from the regions for which the
settings were optimized.

3.5 Discussion

The presented GGC method proved reliable in extracting complex networks of boundaries
with minimal supervision. Once initiated, it automatically detected relevant boundaries
in the image, often only requiring a single seed point. Automatic branching at diverging
or crossing edges worked reliably, and “dead ends” (i.e., undesired branches following
spurious edges) were avoided for the most part. This ensured the successful extraction of
many of the irregularly shaped fields in the reference data.

The field extraction approach produced good results in terms of statistical charac-
teristics of the field structure in the two ROIs. The total acreage was matched very closely.
Overall, ROI 2 proved more challenging than ROI 1, possibly due to a more heterogeneous
appearance because of wet soils and uneven growth patterns. This became apparent in
the overestimated median field size. The total number of fields extracted in the two ROIs
also reflected some issues. The algorithm missed some very small fields, while merging
some larger, heterogeneous ones. However, as mentioned before, interpretation of actu-
ally separated fields vs. separately managed parts of one larger field is difficult, and may
explain some of these issues.
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Figure 3.10. Results of field extraction for the whole study area using parameter settings of ROI
1 (top) and ROI 2 (bottom) as listed in Table 3.1.

The proposed method further proved reliable in extracting even narrow field strips
and many smaller plots, but was occasionally confused by inconsistencies near urban
areas or single man-made structures. This may be addressed through better masking of
undesired objects, but would require much better knowledge of conditions in the area or
significantly more pre-processing time. For such cases, further research is needed to ensure
higher reliability.

We also observed uncertainties regarding temporally confined features like temporar-
ily wet soils or field management, which can introduce heterogeneities within a single field.
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In such cases, delineation is may be ambiguous. In part, the use of multi-temporal data
sets helped to enhance weaker but consistent field boundaries. In most cases, our technique
was capable of detecting weak but consistent boundaries. Problems occurred, however, if
the separation only appeared in a single observation: if the boundary is pronounced, the
algorithm is capable of correctly delineating the fields, even if a separation is only visible
in one observation. However, if groups of adjacent fields are separated by a weak border,
they may be detected as a single large field (see Figure 3.9, ROI 1 bottom left). The point
at which different appearances or spatially or temporally constrained boundaries actually
justify a separation into multiple fields is debatable. However, by adjusting Lmax, the user
can influence the degree to which the model considers weaker boundaries. Since there is
a trade-off between detecting weak boundaries and reducing the risk of extracting false
boundaries, more research is needed to address this issue – for example, by adapting pre-
processing steps such as contrast stretching or edge detection to the individual images or
by introducing a dynamic weighting.

Overall, we observed that the pre-processing had the greatest influence on the per-
formance of the whole process. The filtering and edge enhancement steps we employed
proved for the most part effective in reducing background noise and highlighting actual
field boundaries. Especially, the use of multi-temporal Sentinel-2 data to emphasize weaker
structures and the Meijering filter to reduce spurious edges proved useful. In general, the
better the prior boundary detection step, the more reliable and efficient the GGC contour
extraction process can be. With a more reliable and homogeneous input, a larger radius
rmax can be chosen without the need to increase the number of circles nc too much. This
would speed up the process and reduce the number of iterations required.

The spatial resolution of Sentinel-2 also limits the approach. Although 10 m resolu-
tion is sufficient in most cases, it may hamper the precise extraction of very small fields.
Overall, we found the spatial resolution to be suitable for this task, but we expect that
higher resolutions would provide better results. We would further speculate the “sweet
spot” resolution to be between 1 and 5 m for this type of application. At this scale,
delineation would become even more accurate and would make it possible to distinguish
smaller objects such as single man-made structures, narrow hedges, or trees. However,
with sub-meter resolutions, separating meaningful information from “noise” like soil tex-
ture or individual plants may become difficult. Moreover, processing time would increase
dramatically and the benefit from additional detail would probably not outweigh the draw-
backs. Future research may explore the performance of our technique on higher-resolution
imagery.

It became apparent that different parameter settings are required for reliable field
extraction in the two ROIs, in both the pre-processing and the actual extraction steps.
This was particularly obvious in applications to the whole study area, and may have
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been aggravated by the heterogeneous structure of the agricultural landscape. Different
circumstances in different parts of the region led to inconsistent results when using the
same settings for the entire area. As mentioned previously, this was mainly due to different
requirements in the boundary detection step. In the future, it would be desirable to explore
an adaptive procedure that chooses parameters based on characteristics such as structure,
morphology, and statistics of the input imagery. Judging from the results of this study,
subsets even smaller than 2.5 × 2.5 km2 may be advantageous to allow local adaptations,
even at field scales. As mentioned above, further improvements to the algorithm may
also include pre-processing and boundary detection steps. Considering not only different
scene characteristics but also the date of image acquisition in a time series may improve
delineation results, for example, via dynamic image filtering and enhancement procedures
depending on the characteristics of individual images. Further, analysis of image stacks
may be employed to dynamically select desirable features (e.g., by giving higher weights
to images with more pronounced boundary features). The polygon refinement may also
be adapted to criteria such as predominant field shapes and required detail.

It is also desirable to ensure that higher values of Lmax do not result in more dead
ends along extracted boundaries but only prolong movement along relevant but weak
boundaries.

3.6 Conclusions

We presented a new method for field boundary detection and subsequent field polygon
extraction based on image enhancement, edge detection, and a new version of the growing
snakes active contours model called graph-growing contours. The approach succeeded in
extracting field boundaries on the sub-pixel level from a set of Sentinel-2 RGB images.
The method is very flexible in its application, as it is not restricted to imagery of a
certain sensor, resolution, or wavelength, but can utilize any combination of bands as an
RGB input. The boundary extraction step using the new GGC model also requires little
supervision. Once initialized, it automatically extracts even large networks of complex
interconnected boundaries.

There were some issues with respect to weak field boundaries, urban structures, or
temporary disturbances such as wet soil patches in fields. However, most of these are
probably best addressed in the pre-processing steps and are not inherent flaws of the
extraction procedure. The flexibility of the presented contour extraction allows the use of
any kind of image-like data representing field boundaries. The polygon extraction method
may therefore be used in combination with other field boundary detection algorithms. We
are currently exploring the potential to improve the process with respect to small-scale
image features, inconsistencies at edges, and better highlighting of relevant vs. irrelevant
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boundary features. Further, we plan to generalize and scale up the extraction procedure
to larger areas – possibly even landscape scales. This may require further work regarding
automatic adaptation to local conditions and available imagery or improvements to the
boundary detection step.
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Abstract

Field mapping and information on agricultural landscapes is of increasing importance for
many applications. Monitoring schemes and national cadasters provide a rich source of
information but their maintenance and regular updating is costly and labor-intensive.
Automatized mapping of fields based on remote sensing imagery may aid in this task
and allow for a faster and more regular observation. Although remote sensing has seen
extensive use in agricultural research topics, such as plant health monitoring, crop type
classification, yield prediction, and irrigation, field delineation and extraction has seen
comparatively little research interest. In this study, we present a field boundary detection
technique based on deep learning and a variety of image features, and combine it with
the graph-based growing contours (GGC) method to extract agricultural fields in a study
area in northern Germany. The boundary detection step only requires red, green, and
blue (RGB) data and is therefore largely independent of the sensor used. We compare
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different image features based on color and luminosity information and evaluate their
usefulness for the task of field boundary detection. A model based on texture metrics,
gradient information, Hessian matrix eigenvalues, and local statistics showed good results
with accuracies up to 88.2%, an area under the ROC curve (AUC) of up to 0.94, and F1

score of up to 0.88. The exclusive use of these universal image features may also facilitate
transferability to other regions. We further present modifications to the GGC method
intended to aid in upscaling of the method through process acceleration with a minimal
effect on results. We combined the boundary detection results with the GGC method for
field polygon extraction. Results were promising, with the new GGC version performing
similarly or better than the original version while experiencing an acceleration of 1.3×
to 2.3× on different subsets and input complexities. Further research may explore other
applications of the GGC method outside agricultural remote sensing and field extraction.

4.1 Introduction

Field mapping is a topic of increasing relevance. Knowledge of field sizes, shapes, and
distributions is valuable for a wide variety of topics, ranging from precision agriculture
to biodiversity mapping, agricultural policy, yield estimation, and cropland classification
(García-Pedrero et al., 2017; Rahman et al., 2019; Turker and Kok, 2013). Today, moni-
toring is mostly based on field campaigns, administrative maps, and manual airborne or
satellite imagery interpretation (García-Pedrero et al., 2017). However, such approaches
are time-consuming and costly, and require manual interpretation. Regularly updated
and standardized national cadasters, such as the Land Parcel Identification Systems or
the Integrated Administration and Control Systems promoted by the European Union,
can mitigate this but are still prone to subjective interpretation in the mapping process
and difficulty of evaluating information (García-Pedrero et al., 2017; Sagris and Devos,
2008; Inan et al., 2010; European Court of Auditors, 2016). Furthermore, financial and
labor limitations often hamper timely updates.

Remote sensing promises to alleviate these issues through regular large-scale obser-
vations of agricultural landscapes and much lower cost thanks to increasing amounts of
freely accessible data. As a result, earth observation data has seen extensive use in agri-
cultural applications over the years, covering topics such as crop type classification, plant
health monitoring and stress detection (Jégo et al., 2012; Verrelst et al., 2014; Liu et al.,
2010; Belgiu and Csillik, 2018; Kussul et al., 2016; Peña et al., 2014). The topic of field
boundary detection and field extraction, however, has received relatively little interest so
far.

Field boundary detection is commonly tackled through edge detection, clustering,
and segmentation techniques, as well as machine learning classifications such as random
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forest (Watkins and van Niekerk, 2019; Yan and Roy, 2014; Tiwari et al., 2009; Debats
et al., 2016). Other approaches include the use of image characteristics such as texture and
statistical modeling (Rahman et al., 2019; Da Costa et al., 2007). Frequently, separation
of individual fields is performed via segmentation of pixels or clusters of pixels, ultimately
limiting the accuracy of extracted fields.

Simultaneously, artificial intelligence methods, such as artificial neural networks
(NNs), have frequently proven their merits in the context of edge detection, classifica-
tion, and segmentation (Peña et al., 2014; El-Sayed et al., 2013; Kemker et al., 2018;
Längkvist et al., 2016). Recently, research has focused on convolutional NNs that were
also applied to field boundary detection (Masoud et al., 2019; Waldner and Diakogian-
nis, 2020; Persello et al., 2019; Kamilaris and Prenafeta-Boldú, 2018). Neural networks
have the advantage of being capable of extracting highly non-linear relationships and have
proven to be highly capable in different classification tasks. However, a drawback often
noted is the difficulty of transferring results obtained in one region or on a specific dataset
to another.

In a previous publication, we presented a full workflow combining agricultural field
boundary detection and polygon extraction steps (Wagner and Oppelt, 2020). Starting
from image pre-processing and enhancement, we combined edge detection, contour detec-
tion, and, finally, field polygon extraction. We used a newly developed, modified growing
contours method, called graph-based growing contours (GGC), to extract complex net-
works of contours present in agricultural field boundaries. This method is flexible regarding
the input information used and proved to be promising in extracting field boundaries, even
in rather complex environments.

However, this process is naturally dependent on the quality of the field boundary
map used as an input. Despite extensive pre-processing and image enhancing, contours
in the previous study were often heterogeneous in strength, and it proved to be difficult
to create a reliable boundary map for the subsequent field polygon extraction steps. This
necessitated optimization of local parameter settings to achieve comparable results in
different parts of an image. Further, we had to resort to small step sizes in the extraction
procedure, resulting in longer processing time and hampering scale-up to larger scenes.

To address these drawbacks and enable large-scale applications of our methodology,
in this study we explore an improved boundary detection approach. We decided to use
multilayer perceptron neural networks (MLP-NNs) and aimed to develop a structure with
a high potential of performing well under different environments and in different loca-
tions (Bishop, 2006). Following an extensive literature review, we selected a large number
of potentially useful input features for successful agricultural boundary detection using
MLP-NNs. We explored the usefulness of different features based on various image char-
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acteristics and developed a boundary detection model based on study areas located in the
east of the state of Schleswig-Holstein, Germany. By limiting our analysis only to the red,
green, and blue (RGB) bands of Sentinel-2 (S-2), we wanted to demonstrate the use of
only the most basic imagery, making our approach largely independent of the sensor.

We further introduce an improved version of the previously presented GGC algorithm
with scalability in mind. We apply both versions of the GGC algorithm to the obtained
boundary maps and analyze results of the boundary detection and the extracted polygons,
as well as processing speed of the different GGC algorithms.

The paper is structured as follows. In Section 4.2, we describe the study area and
the data we used. Section 4.3 presents the methodology, including image feature prepa-
ration, input selection, and model training. Section 4.4 shows results of the boundary
detection and performance of subsequent polygon extraction. Section 4.5 discusses results
and Section 4.6 summarizes the most important findings.

4.2 Data and Materials

4.2.1 Study Areas

We obtained data from two study areas in the state of Schleswig-Holstein, Germany (see
Figure 4.1). Both were predominantly used for agricultural purposes. Field sizes were
rather heterogeneous in both regions, ranging from below 1 ha up to about 75 ha. Fields,
especially in study area 1, were often irregular in shape. The landscape structure is a
mixture of agricultural areas with small forests, grasslands, and smaller urban agglomer-
ations.

The study areas are located in the so-called “Schleswig-Holsteinisches Hügelland”, a
hilly but low-elevation region along the coast of the Baltic Sea in northern Germany that
forms one of three large landscape zones in the state of Schleswig-Holstein. The climate
is temperate/oceanic with warm summers and wet winters (Cfb in the Koeppen–Geiger
climate classification) (Kottek et al., 2006). Farming in the region is rain-fed and highly
industrialized. Common agricultural crops include cereals such as wheat and barley but
also maize and rapeseed (Statistisches Amt für Hamburg und Schleswig-Holstein, 2019).

4.2.2 Satellite Imagery

We used Sentinel-2 Level-2A atmospherically corrected imagery. For each study area, we
considered observations over the 2019 growing season (March to October) and selected
those with no cloud cover over the respective study area. We considered three observation
times in early (March), mid (June), and late (September) growing season. To allow for
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Figure 4.1. Maps of study areas 1 (left) and 2 (right).

high spatial detail and independence of very specific wavelength bands, we used only
10-m-resolution red, green, and blue (RGB) bands. Pre-processing included filtering of
each band to reduce noise and remove undesired features. Considering our interest in
field boundaries, we opted for using bilateral filtering rather than traditional Gaussian
smoothing. The bilateral filter is an edge-preserving filter balancing similarity in the
spatial and spectral domains to smooth the image while still conserving strong edges
(Tomasi and Manduchi, 1998). The filtered images were then transformed from RGB to
CIELAB color space to separately observe information on luminosity (l) and color (a, b)
in the images.

4.2.3 Reference Data

We used cadastral data as a reference (Arbeitsgemeinschaft der Vermessungsverwaltungen
der Länder der Bundesrepublik Deutschland, 2016). This data, however, represented
purely administrative borders and needed manual updating based on field surveys and
recent satellite imagery to accurately represent conditions in 2019. We omitted fields that
were not clearly discernable in S-2 imagery, e.g., very small or thin and elongated fields.
Table 4.1 contains some general information about the study areas.
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Table 4.1. Field statistics in the two regions of interest based on the updated reference datasets.

Study Area Total Extent Field Sizes Field Count
1 ~13.5 × 12.4 km2 ~0.9 to 75 ha ~1400
2 ~0.2 × 7.5 km2 ~0.8 to 50 ha ~600

4.3 Methodology

The flowchart in Figure 4.2 demonstrates the structure of our methodology. The pre-
processing (green) was discussed in Section 4.2.2. In this chapter, we start with describing
the image features we obtained in Section 4.3.1 (blue), followed by the boundary detec-
tion model development, including feature selection and hyperparameter tuning (yellow),
in Section 4.3.2. Finally, we describe the modified GGC method and the field polygon
extraction process (grey) in Section 4.3.3.

Figure 4.2. Flowchart of the methodology. Different stages highlighted in colors: pre-processing
in green, image feature preparation in blue, boundary detection model development in yellow, and
contour detection and field polygon extraction in grey.

4.3.1 Image Feature Preparation

We undertook an extensive literature review on topics of edge detection, boundary de-
tection, and segmentation, and selected a set of potentially useful input features for field
boundary detection. We distinguished applications on the luminosity (l) and the color
channels (a, b) in the CIELAB color space. Table 4.2 provides an overview of all inputs
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we considered. In the following sub-sections, we briefly describe the concepts behind the
features and how we obtained them. In the text, we also refer to features and feature
groups by their numbers in Table 4.2 as F1, F2, G1, G2, etc. All inputs were scaled
linearly to a range of 0 to 1 based on the overall minima and maxima observed.

Table 4.2. Overview of features and respective feature groups considered for boundary detection.

Feature Group Feature
G1 image gradient (l) F1 gradient magnitude (l)
G2 image gradient (a, b) F2 gradient magnitude (a, b)
G3 local statistics (l) F3 variance (l)

F4 skewness (l)
F5 kurtosis (l)

G4 local statistics (a, b) F6 variance (a, b)
F7 skewness (a, b)
F8 kurtosis (a, b)

G5 Hessian matrix (l) F9 eigenvalue along ridge (l)
F10 eigenvalue across ridge (l)

G6 Hessian matrix (a, b) F11 eigenvalue along ridge (a, b)
F12 eigenvalue across ridge (a, b)

G7 texture metrics (l) F13 contrast (l)
F14 correlation (l)
F15 asm (l)
F16 homogeneity (l)

G8 texture metrics (a, b) F17 contrast (a, b)
F18 correlation (a, b)
F19 asm (a, b)
F20 homogeneity (a, b)

G9 angular dispersion (l) F21 modified angular dispersion (l)
G10 angular dispersion (a, b) F22 modified angular dispersion (a, b)
G11 homogeneity measures (l) F23 PEG (l)

F24 QEG (l)
G12 homogeneity measures (a, b) F25 PEG (a, b)

F26 QEG (a, b)
G13 local cues (l) F27 brightness gradient (l)

F28 texture gradient (l)
G14 local cues color (a, b) F29 color gradient (a, b)

4.3.1.1 Image Gradient

The image gradient is the first derivative of the image and highlights discontinuities. To
obtain gradient magnitude (F1, F2), we first applied the Sobel operator in both x- and
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y-directions:

Kx =


−1 0 1
−2 0 2
−1 0 1

 ,Ky =


1 2 1
0 0 0
−1 −2 −1

 (4.1)

We then obtained gradient magnitude g based on the following formula:

g =
√
I2
x + I2

y (4.2)

where Ix and Iy are the gradient images in x- and y-direction. For the application
on color layers (F2), we summed up the individual gradient images Ix and Iy before
calculating magnitude and direction from the result.

4.3.1.2 Local Statistics

We calculated local statistics for each pixel based on a 5 × 5 kernel neighborhood (F3-F8).
We considered three statistical measures: variance and the third and fourth standardized
moments, skewness and kurtosis (NIST, 2020). The variance is defined as the spread of
values in a (normal) distribution:

σ2 = 1
N

N∑
i=1

(xi − µ)2 (4.3)

where xi, ..., xn are the sampled values, µ is the mean of the sample, and N is the
sample size.

Skewness refers to the asymmetry of a distribution. A negative skewness means
the tail of the distribution to the left is longer and the distribution “leans to the right”;
a positive skewness represents a longer tail to the right and the distribution “leans to
the left”. We used the Fisher–Pearson coefficient formula to obtain skewness in the local
sample (NIST, 2020):

µ̃3 =
∑N
i=1

(xi−µ)3

N

σ3 (4.4)

where σ is the standard deviation.

Kurtosis describes the shape of a distribution in terms of its “curvedness”, i.e., how
convex or concave the shape of the underlying distribution is. We used the following
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formula to calculate kurtosis (NIST, 2020):

µ̃4 =
∑N
i=1

(xi−µ)4

N

σ4 (4.5)

In the case of application to color channels, we considered the maximum of the two
results (F6-F8).

4.3.1.3 Hessian Matrix

Following concepts described in Meijering et al. (2004), Ando (2000), and Sato et al. (1998),
we used the Hessian matrix of the image to obtain information on ridge-like structure
strength and orientation.

The Hessian matrix of a 2D image I(x) is given by:

∆2I(x) =

 δ2

δx2
δ2

δxδy
δ2

δyδx
δ2

δy2

 (4.6)

where δ2

δx2 , etc. are the partial second derivatives of the image I. Following the
descriptions by Sato et al., we obtained the eigenvectors e1(x) and e2(x) of ∆2I(x) and
their corresponding eigenvalues λ1 and λ2 (Sato et al., 1998). The eigenvector with the
higher eigenvalue represents the direction in which the second derivative is maximal. In
the case of a line-like structure, the eigenvalue across the line (or across ridge) is high and
the eigenvalue along the line is low.

We use the eigenvalues along and across the ridge (F9–F12) as potential inputs to
the model.

4.3.1.4 Second-Order Texture Metrics

The concept of the grey-level co-occurrence matrix (GLCM) and the derived second-order
texture metrics was first introduced by Haralick et al. (1973) as a means to quantify
the texture of imagery for classification. The GLCM refers to a matrix capturing the
spatial relationship of values in a raster by counting how often two values occur together
(“co-occurrence”) considering different directions (horizontal, vertical, two diagonals) and
different distances (steps apart).

At first, a quantization is performed in which the image values are assigned to a fixed
number of gray levels. We performed quantization error minimization to reduce the data
to 32 grey levels. We considered four second-order texture metrics: contrast, correlation,
angular second momentum (ASM), and homogeneity (“inverse difference moment” in the
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original paper) (F13–F20):

Contrast =
N−1∑
i=0

N−1∑
j=0

Pi,j (i− j)2 (4.7)

Correlation =
N−1∑
i=0

N−1∑
j=0

Pi,j

(i− µi)(j − µj)√
(σ2
i )(σ2

j )

 (4.8)

ASM =
N−1∑
i=0

N−1∑
j=0

P 2
i,j (4.9)

Homogeneity =
N−1∑
i=0

N−1∑
j=0

Pi,j
1 + (i− j)2 (4.10)

where i and j are two quantization values (or coordinates in the GLCM), Pi,j is the
probability value of the cell (i, j), N is the number of columns and rows in the GLCM
(i.e., the number of grey levels), and µi, µj , σi, σj are the means and standard deviations
of the marginal distributions of Pi,j .

We considered all four possible angles (0◦, 45◦, 90◦ and 135◦) with a maximum of
two steps in the 5 × 5 neighborhood. Final texture metrics for each pixel were obtained
as the mean of all outputs of the process. In case of color layers, we took the mean of the
resulting metrics in the two channels.

4.3.1.5 Angular Dispersion

Following the concept of angular dispersion introduced by Gregson (1993) and the frac-
tional anisotropy described in Aganj et al. (2011), we calculated a modified angular disper-
sion metric similar to the local anisotropy we used for seed point selection in our previous
study (Wagner and Oppelt, 2020). The concept is based on the observation that gradient
direction tends to be homogeneous along edges or boundaries in an image while they are
heterogeneous (“dispersing”) if no clear boundary is present or boundary directions are
changing, for example, at crossings of multiple edges or along sharp curves.

To approximate this, we consider the mean direction of gradient angles and the
normal to it. By projecting all gradient direction vectors onto the two main directions, we
calculate angular dispersion as follows:

Idisp = 1−

min
(∑I

0 ||projvmeanvi||,
∑I

0 ||projvnormvi||
)

max
(∑I

0 ||projvmeanvi||,
∑I

0 ||projvnormvi||
)
 (4.11)
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where vmean and vnorm represent the mean directional and normal vectors, vi de-
scribes a given local gradient direction vector, and I is the number of all sampled vectors.
If the total magnitude of vectors projected in the mean and the normal direction is iden-
tical, we obtain a value of 0 (low dispersion); if the two total magnitudes differ largely, we
obtain a value close to 1 (high dispersion).

We consider gradient directions in a 3 × 3 pixel neighborhood (F21-F22).

4.3.1.6 Homogeneity Measures

Ando presented an approach for edge and corner detection based on gradient covariance
(Ando, 2000). The cross-correlation matrix is given as:

fx
fy

 [fx fy
]

=

Sxx Sxy

Syx Syy

 (4.12)

where Sxx, Sxy, etc. refer to the cross-correlations of the image derivatives fx and
fy. Based on these cross-correlations, he defines two homogeneity measures:

PEG =
(Sxx − Syy)2 + 4S2

xy

(Sxx − Syy)2 + σ4
EG

(4.13)

QEG =
4(SxxSyy − S2

xy)
(Sxx − Syy)2 + σ4

EG

(4.14)

with σ4
EG being a small constant to avoid division by zero at completely flat areas

in the image. The two measures show different behaviors: while PEG reaches 1 where
grayness varies one-dimensionally, i.e., near edges or ridges in the image, QEG reaches 1
where grayness variation is omnidirectional, i.e., at centers of circular symmetry or corners
(F23–F26). For color images, we used the maximum of the two color results.

4.3.1.7 Local Cues

Martin et al. (2004)presented a set of local cues based on brightness, color, and texture
information to observe boundaries in images. Their reasoning is that different types of
boundaries exist in images. Traditional image gradient approaches only observe sharp
changes in image intensities, so their techniques aim to provide gradient information on
color and texture as well (F27–F29).

They achieve this by transforming RGB images to the CIELAB color space and sepa-
rating the luminosity (l) from the color bands (a, b). To obtain local gradient information,
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luminosity values in a local disk centered on each pixel and divided into two halves along
a diameter are sampled. A dissimilarity between the two halves indicates the presence of
a strong gradient and thereby a possible boundary. First, histograms of values in each
disk half are created by sampling a kernel density estimate of the sampled values. The
gradient is then obtained as the χ2 distance between the two histograms:

χ2(P,Q) = 1
2

N∑
i=1

(pi − qi)2

pi + qi
(4.15)

with P and Q referring to the two distributions and pi and qi being the sampled
probabilities. Local color gradients are obtained in the same fashion by applying the same
procedure to both color channels and then adding the two marginal gradients to a joint
gradient.

In the case of texture, the approach is based on what the authors refer to as “textons”.
At first, a filter bank of 13 different filters is applied to the neighborhood of each pixel.
The filters contain a difference of Gaussian filters, as well as a set of elongated, oriented
even- and odd-symmetric Gaussian second derivative filters. The responses of all filters
are then clustered via k-means to obtain the so-called textons. The rest of the procedure
is similar to the brightness and color gradients: textons are assigned to bins in a histogram
and the local texture gradient is derived as the χ2 distance between the two histograms
of the disk halves.

In all three cases (brightness, color, and texture) the final gradient is obtained by
taking the maximum gradient observed in 16 orientations in the range [−π, π]. As we did
not train a separate classifier as in the original paper, we computed textons on individual
image subsets. Due to the limited amount of data, we observed that a reduced number of
32 clusters (versus 64 in the original paper) was preferable.

4.3.2 Boundary Detection

4.3.2.1 Dataset Preparation

To create the training data, we considered areas in proximity to our reference data as a
possible input. Boundary samples were taken from the rasterized polygon boundaries of
the reference data and non-boundary samples were considered from a distance of up to 8
pixels from the boundaries. We avoided selecting non-boundary samples in the vicinity of
the boundaries within a two-pixel-wide buffer to enhance the sample set. Datasets were
balanced to contain 50% boundary and 50% non-boundary samples and then randomly
split into calibration (60%, 310,928 samples), validation (20%, 103,642 samples) and test
(20%, 103,642 samples) sets.
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4.3.2.2 Model Development Setup

We used fully-connected MLP-NNs for boundary detection. We considered the task of
boundary detection as a binary classification problem, distinguishing any type of field
boundary pixel as represented by the reference data from any type of non-boundary pixels.
This results in a rather heterogeneous non-boundary class, as agricultural fields, nearby
forests, urban agglomerations, streets, etc. may end up being selected as non-boundary
examples. Using additional classes by distinguishing different kinds of land cover may have
been advantageous in terms of classification accuracy but was not considered in order to
achieve a result that can serve as a direct input to the subsequent field extraction steps.
The output node was scaled using a sigmoid function.

We used the stochastic gradient descent optimizer (SGD) with momentum of 0.9 to
train the model using the log loss function (Hastie et al., 2009; Robbins and Monro, 1951):

Hp(q) = − 1
N

N∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)) (4.16)

where p(yi) is the predicted probability (output value between 0 and 1) and yi is
the class label of the given sample point (0 or 1). The smaller the resulting log loss value,
the better the prediction. Theoretically, log loss can become infinitely large when the
prediction is worse than a purely random guess.

4.3.2.3 Input Feature Selection

As seen in Table 4.2, we obtained a total of 29 input features. We categorized them into
14 groups based on concept (see Section 4.3.1) and on image information used (luminosity
vs. color). For each feature, we considered values from the three observation times in
April, June, and September.

Feature selection was performed through quality ranking. We first trained a default
model of topology x-30-1 with each set of input feature groups for 10,000 epochs and
ranked results from best (1) to worst (max) based on validation loss. The overall rank of
each input feature group was obtained by summing up the ranks of all test runs involving
the respective feature group. For example, if the test run ranked 1 was based on groups
2, 3, and 7, then the total score of all three groups would be increased by 1. As a result,
we obtained an overall ranking that represents the relative performance of each group in
all test runs with the lowest total rank number representing the best-performing group.

We started with single groups as inputs, then pairs, triplets, quadruplets, and, fi-
nally, quintuplets. At each stage, we dropped the two lowest ranking feature groups.
Results are presented in Section 4.4.1.1 as relative importance, i.e., the ratio of the lowest
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total score achieved in the corresponding step to the scores of each group, resulting in
importance scores between 0 and 1, where the best-performing group of each step achieves
an importance of 1.

4.3.2.4 Hyperparameter Tuning and Model Training

We considered five hyperparameters for tuning: number of hidden layers, number of nodes
per hidden layer, type of activation function in hidden layers, learning rate and dropout
rate (random dropout probability) per hidden layer. Table 4.3 lists the considered settings.

Table 4.3. Hyperparameters considered (selected parameters in bold text).

Hyperparameter Considered Values
Number of hidden layers 2, 3, 4, 5
Number of nodes per hidden layer 15, 20, 25, 30, 35, 40, 45, 50
Type of activation function Sigmoid, ReLU
Learning rate 0.01, 0.001, 0.0001, 0.00001
Dropout rate per hidden layer 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%

We first performed a manual pre-testing to obtain some insights into the model
behavior and the effects of different hyperparameter values to reduce the number of settings
that need to be considered in the tuning stage. Our pre-testing showed that a single
hidden layer was insufficient to obtain best results, although larger numbers of hidden
layers beyond five also showed no advantage. Results for the number of hidden nodes were
inconclusive, with no clear tendency towards larger or smaller numbers. Learning rates of
0.01 and below proved beneficial, as well as dropout rates of 20 % or higher, especially to
avoid overfitting late in the training process.

We performed the tuning via a random search. We trained each model for 10,000
epochs and selected the one with the lowest validation loss as the parameter set for final
model training. We trained and validated the model on the full calibration and validation
datasets, respectively. The final model (four hidden layers of 35 hidden nodes each, rec-
tified linear unit (ReLU) activation function, learning rate of 0.0001, and dropout rate of
80%) was trained for 100,000 epochs (Nair and Hinton, 2010).

4.3.2.5 Boundary Map Post-Processing

To further improve quality of the output, we transformed the probability map into a binary
boundary map by setting a threshold of 0.5. We further excluded non-agricultural areas
using CORINE land cover data of 2018 and the Land Cover DE product of the German
Aerospace Center (DLR) and highlighted the boundaries of those areas to allow for the
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contour extraction to detect them (Weigand et al., 2020; Büttner et al., 2017). To further
refine the boundaries, we calculated the boundary strength as the share of boundary pixels
in a 3 × 3 pixel neighborhood. This helps guide the contour extraction towards the center
of the boundaries (see Section 4.3.3).

4.3.2.6 Quality Assessment

For final model evaluation, we employed multiple accuracy metrics. First, we used sensi-
tivity (true positive rate), specificity (true negative rate), accuracy, and F1 score as general
indicators of model performance, calculated as follows (Hastie et al., 2009):

Sensitivity = TP

TP + FN
(4.17)

Specificity = TN

FP + TN
(4.18)

Accuracy = TP + TN

N
(4.19)

F1 = 2TP
2TP + FP + FN

(4.20)

where TP is the number of samples correctly classified as positive (true positive),
TN is the number of samples correctly classified as negative (true negative), FP is the
number of samples falsely classified as positive (false positive), and FN is the number of
those falsely classified as negative (false negative). N represents the whole sample size.
All four metrics range from 0 to 1 and 0% to 100%, respectively. A score of 1 or 100%
indicates a perfect result.

Further, we obtained the area under the receiver operating characteristic (ROC)
curve as a probability-based indicator of model performance. The ROC curve represents
the trade-off between the true positive rate and false positive rate by plotting the two
measures against each other for multiple thresholds. The area under the curve (AUC),
i.e., its integral, is used as an indicator for a model’s capacity to separate two classes in
a binary classification (Hastie et al., 2009). An AUC of 1 represents a perfect distinction,
while an AUC of 0.5 indicates a purely random classification.
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4.3.3 Field Extraction

4.3.3.1 The Graph-Based Growing Contours Method

For field polygon extraction, we employ an active contours algorithm based on growing
contours (or snakes) that we presented recently (Wagner and Oppelt, 2020; Velasco and
Marroquin, 2003). Active contours in general were introduced for object delineation and
are based on energy minimization (Kass et al., 1988). An initial spline or polyline follows an
external and an internal energy, representing information from the image (e.g., gradient
magnitude or local intensities) and the shape of the contour. While the former guides
the snake towards the contour of interest, the latter influences curvature and the size of
the snake, preventing it from creating discontinuous shapes and collapsing or expanding
indefinitely.

However, agricultural field boundaries are rather complex networks of contours that
are sometimes only loosely interconnected and can be quite irregular in shape. Therefore,
using shape priors or any previous assumptions may limit performance of an algorithm in
different environments with varying characteristics (field sizes, shapes, locations, etc.).

The growing snakes concept introduced by Velasco and Marroquin addressed com-
mon drawbacks of many active contour models regarding sensitivity to initiation, i.e., ini-
tial position and shape priors, as well as difficulties in extracting discontinuous contours
of many separate or highly irregularly shaped objects (Velasco and Marroquin, 2003). To
achieve this, the growing snakes are initiated on seed points on the contour of interest and
grow along it. As the growth follows local maxima, it tends to create irregular shapes and
requires repeated smoothing.

In our applications to field boundaries, however, we observed that growing snakes
tended to get “off track” easily. As they follow local maxima of the input image, any
irregularities, especially near corner points or intersections of multiple boundaries, may
easily move them away from the actual boundary. Further, we observed limitations in
representing sharp turns.

Following these insights, we developed a modified growing contours model called
graph-based growing contours (GGC). Our main goals were to (a) improve the quality of
extracted contours and reduce the need for repeated smoothing; (b) introduce adaptive
behavior allowing the tracing of contours of different shapes (straight lines, curves, sharp
changes in direction, etc.); (c) enable automatic branching to explore multiple parts of a
boundary network automatically and represent crossings as well as T-junctions; (d) reduce
“dead ends”; and (e) extract an interconnected network rather than separate contour
segments.
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To achieve this, we replaced the growth step of the original growing snakes with a
more sophisticated approach based on graph theory principles. Instead of simply searching
for a local maximum in a set of possible steps, we generate a local graph by sampling
around each current end point at each growth step. The GGC method works at sub-pixel
accuracy. We used a barycentric transform to obtain values at a sub-pixel level (Yiu,
2000).

The graph is defined by an inner radius rmin, an outer radius rmax, the number
of vertices on the innermost circle ni, and the number of evenly spaced circles nc. The
parameter ne defines the number of connections of each vertex to vertices on the next-
larger circle. Starting from the innermost circle, the number of points doubles with each
circle to obtain a homogeneous pattern, in which each vertex on a circle has the same
number of neighbors on the next circle (see Figure 4.3). Vertices in the direction of the
previous step are masked to avoid retracing of contours.

Figure 4.3. Example of local graph in graph-based growing contours. The large horizontal arrow
indicates the direction of movement.

The sampled points are used as vertices in a directed, weighted graph G = (V,E) as
shown in Figure 4.3, where each edge (except for those originating at the center point) is
weighted based on:

wi,j = Di,j

gj
(4.21)
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where wi,j is the weight of the edge connecting vertices vi and vj , Di,j is the Euclidian
distance between the two vertices, and gj is the gradient magnitude (or any other boundary
strength indicator used) at vertex vj . The resulting weights favor shorter paths (smaller
Euclidian distance) and paths along boundaries in the image (higher boundary strength).

The different settings in constructing the graph (rmin, rmax, ni, nc, ne) may be
regarded as parameters for adjusting step size, precision, capacity to represent sharper
directional changes, and complexity of the graph.

At each iteration, each current end point is explored for possible branches. Shortest
path searches from the center vertex (source) to each vertex of the outermost circle (sinks)
are initiated. Firstly, the single shortest path defines the first branch. The graph is then
separated into two subsections at +1

2π and −1
2π from the first branch (see Figure 4.4).

The shortest path in each segment is then considered as a further branch. Any branch
exceeding a certain maximum length Lmax is ignored to quickly omit possible “dead ends”.
If no valid path is found or the end point is near an already existing contour point or the
image boundaries, the end point is terminated. As such, the number of end points changes
with each iteration, dynamically exploring various contours.

Figure 4.4. Main steps of movement in local graph: determine overall shortest path in graph
(left); select shortest paths in subsections (right).

4.3.3.2 Modifications and Adaptive Masking

In our previous study, we observed two main drawbacks of the GGC method. Firstly,
there is a significant trade-off between precision of the contour extraction and complexity
of the local graph as expressed by the number of circles nc per unit distance in a given
step size rmax. Higher complexity dramatically increases the number of vertices and
edges considered and consequently slows down the process. Secondly, different quality
of boundary inputs to the GGC method requires a different behavior. If the boundary
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map provided is inconsistent or accuracy is low, following the provided magnitude values
may result in “zig-zag” curves and irregular shapes, even when considering distances (see
Equation 4.21).

To address the complexity issue, we acknowledge that it is not necessary to consider
the entire local graph at a given position. In fact, only those parts of the graph that cover
actual boundary structures are of interest. Therefore, it would be desirable to exclude
certain parts of the graph and thereby reduce the number of possible paths to explore in
the movement step. We achieve this by first sampling the local magnitudes at all points
of the graph. We then apply Otsu’s method to obtain an optimal threshold, separating
high and low values in the local neighborhood histogram (Otsu, 1979). By removing all
sample points below the threshold, we effectively drop those parts of the graph that do
not correspond to any boundary structures (see Figure 4.5).

Figure 4.5. Examples for adaptive masking of vertices in the graph. Light grey points indicate
removed points of the local graph, blue points represent those retained after masking.

The aspect of input quality can be addressed by modifying the weighting in Equation
4.21. If the input map is less reliable, a higher emphasis on shorter (and smoother) paths
would be advantageous. If the input map is very accurate, however, the model may more
closely follow the provided boundaries to create a more accurate result. Therefore, we
introduce the factor β that can be used to increase or decrease the relevance of magnitudes
relative to the distance between vertices:

wi,j = Di,j

β · gj
(4.22)

To ensure consistency, Lmax is scaled by 1
β to allow using comparable values of Lmax,

regardless of the β used.
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4.3.3.3 Field Polygon Extraction

Using the output of the GGC model as an undirected network or graph of contour points,
we intend to produce actual field polygons. Theoretically, finding cycles in the graph would
be a possible approach to distinguishing different fields. The large size of the resulting
graph, however, makes this task computationally demanding. Further, even a few missing
connections may result in incorrectly created polygons or cycles not found.

Following our previous methodology, we therefore transform the contour output
of the GGC method into a binary edge map (Wagner and Oppelt, 2020). We use a
flood fill algorithm initiated on local maxima of a Euclidian distance transform from the
binary boundaries to create a segment representing the rough extent of a field as described
by the extracted contours. We then only consider those vertices close to the segment
and a new over-connected unweighted and undirected graph is produced in which each
vertex is connected to its four nearest neighbors. The field polygon is then obtained using
the longest cycle in this network. Finally, polygons are refined using adaptive Gaussian
filtering and the Ramer–Douglas–Peucker algorithm (Deng and Cahill, 1993; Douglas and
Peucker, 1973; Ramer, 1972).

4.4 Results

We provide statistical and visual results for the boundary detection as well as the subse-
quent field polygon extraction steps. For the sake of brevity, we focus visual comparisons
on study area 2.

4.4.1 Boundary Detection

4.4.1.1 Input Feature Importance

The step-wise feature importance ranking resulted in relative importance values listed in
Table 4.4. As step five (quintuplets) did not allow for much further distinction in quality,
we ultimately arrived at the six feature groups (in order of importance): G8, G4, G14,
G1, G6, and G5 and the corresponding 13 features F17–F20, F6–F8, F29, F1, F11–F12,
and F9–F10. Multiplying by the three time steps, this resulted in a total of 39 inputs for
the boundary detection model.

This demonstrates texture metrics (G8), local statistics (G4), local cues (G14), gra-
dient magnitude (G1), and Hessian matrix eigenvalues (G5 and G6) to be the most relevant
for boundary detection. Overall, it seems that color information was significantly more
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Table 4.4. Results of feature importance ranking. Values are given as relative importance values
(ratio to best achieved for any feature group in all test runs of the respective step).

Round 1 Round 2 Round 3 Round 4 Round 5
G1 0.20 0.19 0.30 0.49 0.83
G2 0.17 0.19 0.29 0.47 -
G3 0.25 0.19 0.28 - -
G4 1.00 0.54 0.48 0.69 0.94
G5 0.33 0.22 0.29 0.51 0.75
G6 0.50 0.35 0.39 0.53 0.79
G7 0.10 0.18 - - -
G8 0.11 1.00 1.00 1.00 1.00
G9 0.07 - - - -
G10 0.08 - - - -
G11 0.09 0.18 0.26 - -
G12 0.13 0.22 0.30 0.48 -
G13 0.08 0.17 - - -
G14 0.14 0.20 0.28 0.55 0.88

useful than luminosity, as in most feature types, those applied on color channels were
preferred over luminosity ones. The only exception in this respect is image gradient.

Texture metrics on color images were particularly useful and continuously achieved
the best ranks in all steps except the first one. This initial underperformance may be
explained by similar results across all feature groups in the initial tests, except for the two
“outliers”, G9 and G10 (angular dispersion), which showed very little merit with validation
loss barely better than a purely random guess. Further, Hessian matrix eigenvalues proved
relevant in terms of both luminosity and color, while local statistics and local cues were
again most useful in terms of color.

4.4.1.2 Performance Metrics

We evaluated the boundary detection model on the test dataset: once on the full dataset
and once only on those samples that were actually agricultural according to the land cover
maps. We made this distinction to analyze potential effects of basic “post-processing”
based on prior knowledge of results.

As seen in Table 4.5, accuracies tend to be slightly better in study area 2 compared to
1. Nevertheless, results for both areas are similar, indicating a comparable performance
of the model. Overall accuracies are reduced by a lower sensitivity while specificity is
generally high. The high AUC values of 0.92 and greater indicate a very reliable distinction
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of the classes. Masking of non-agricultural areas slightly increases performance in all
metrics, reaching accuracies of up to 88.2% and AUC of 0.94.

Table 4.5. Accuracy metrics of the field boundary detection for the test dataset.

Full Dataset Only Non-Agricultural Areas
Study Area 1 & 2 1 2 1 & 2 1 2
Sensitivity 77.9% 77.3% 79.1% 81.6% 81.3% 82.5%
Specificity 92.1% 92.9% 93.2% 93.5% 93.2% 94.4%
Accuracy 83.8% 83.4% 84.8% 87.2% 87.8% 88.2%
F1 0.85 0.85 0.86 0.87 0.87 0.88
AUC 0.92 0.92 0.93 0.94 0.94 0.94

4.4.1.3 Visual Comparison

Figure 4.6 provides side-by-side comparisons of the predicted boundary probability map,
the masked binary map, the boundary strength map, and the reference boundary map for
three subsets.

The comparison shows that most boundaries are correctly detected and overall ap-
pearance is matched quite well, although extracted boundaries tend to be thicker than
those drawn in the reference dataset. Problems, however, occur near urban areas (first
example top right, third example top right). The heterogeneous structure of these built-up
areas is frequently confused with actual field boundaries when they have not been masked
using the two land cover maps. Similar issues occur near groups of small fields where
the model struggles to separate multiple boundaries in close proximity. In some cases,
the land cover based masking excluded some structures that may have been considered
agricultural field boundaries (first example top center).

Further, there are cases where the model originally seemed to detect some weaker
boundary patterns within the fields that were not part of the reference set (third example
bottom left), or it missed some smaller boundary segments (first example center right).

4.4.2 Field Extraction Results

We compare the default version of the GGC method as presented in our previous publi-
cation and the new adaptive version (Wagner and Oppelt, 2020). Settings were selected
through manual testing of different settings and visual interpretation of results. According
to the results of manual testing, we chose the following setting: rmax = 12, nc = 8, Lmax
= 20, and β = 1.25.
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Figure 4.6. Comparison of boundary detection results in study area 2. Columns represent the
model probability output, the binary output after land cover masking, the final boundary strength
map, and the final reference dataset (boundaries thickened for visualization). Rows represent
different subsets.

4.4.2.1 Visual Comparison

As seen in Figure 4.7 and Figure 4.8, distribution and general shapes of extracted polygons
often closely resemble those of the reference polygons. However, shapes tend to be a bit
smoother and edges more rounded (e.g., Figure 4.7 and Figure 4.8 bottom center). Smaller
fields, in particular, were occasionally missed or merged with larger fields (e.g., Figure 4.7
and Figure 4.8 top center). This can be explained in part by issues in the prior boundary
detection step, e.g., inconsistent boundaries or some falsely detected boundaries within
the fields. Other fields were also missed by the process, again partly due to the boundary
detection step (e.g., Figure 4.7 and Figure 4.8 bottom left).

In particular, clusters of small fields pose problems (see Figure 4.7 and Figure 4.8
bottom left). As mentioned in Section 4.4.1.3, boundaries are sometimes difficult to delin-
eate here and the subsequent extraction may be confused if multiple adjacent boundaries
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Figure 4.7. Result of the adaptive graph-based growing contours (GGC) field polygon extraction.

Figure 4.8. Result of the non-adaptive GGC field polygon extraction.

are merged. Additionally, large gaps within fields due to larger non-agricultural areas,
such as clusters of trees, occasionally led to errors in the extraction (e.g., Figure 4.7 and
Figure 4.8 bottom center), confusing the extraction process.

When comparing the adaptive and non-adaptive version, the results look very sim-
ilar. Differences are visible in some polygons being detected by only one of the versions
(e.g., Figure 4.7 and Figure 4.8 center and bottom center). In many cases, the adaptive
version seems to be a bit less likely to miss fields entirely.
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4.4.2.2 Processing Speed and Upscaling

Our testing revealed the actual processing time to be highly dependent on the implemen-
tation. Therefore, the results in this section are presented as a relative comparison of
the adaptive and non-adaptive versions rather than a reference for actual processing time.
The test runs were performed on an Intel Core i7-4790K CPU with four cores at 4.0 Ghz
(4.4 Ghz turbo boost) in single-core execution and 32 GB of memory. Table 4.6 shows an
overview of execution speed and the number of contour points extracted as an indication
of the complexity of the given scene.

Table 4.6. Comparison of processing speed and number of extracted contour points in adaptive
vs non-adaptive GGC for differently sized areas. Processing acceleration indicates the reduction
in processing time of the adaptive version in relation to the non-adaptive version.

Settings rmax=5, nc=4, Lmax=14 rmax=12, nc=8, Lmax=20

Acceleration Points
extracted Acceleration Points

extracted
2.5×2.5 km2 subset 1.3× ~5,500 2.2× ~3,800
5.0×5.0 km2 subset 1.3× ~20,000 2.2× ~14,000
10.2×7.5 km2 subset 1.3× ~55,000 2.3× ~40,000

Results demonstrate the adaptive version achieved a substantial acceleration com-
pared to the non-adaptive version at all subset sizes and settings. The advantage is more
substantial for larger graphs.

4.5 Discussion

Analysis of the selected input features revealed that most features obtained from color
channels outperformed those based on luminosity. Sequentially dropping the lowest per-
forming groups highlighted texture metrics, eigenvalues of the Hessian matrix, local statis-
tics, local cues, and gradient magnitude as useful. Homogeneity measures, however,
showed poorer performance, and angular dispersion did not provide enough information to
obtain good boundary detection. It may be interesting for future applications to further
explore the effect on performance if the groups dropped were added back into the input set
or comparisons were performed on an even more granular level evaluating each individual
feature.

The MLP-NN model proved capable of accurately detecting field boundaries. Hy-
perparameter selection showed multiple layers to be advantageous, combined with a high
dropout rate of 80% and a learning rate of 0.0001. Results of the boundary detection
model were good, with high accuracies that could be further increased by removing non-
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agricultural areas from the output. This is particularly promising when considering the in-
put being solely comprised of RGB channels. For both study areas combined, we obtained
an accuracy of 87.2%, F1 score of 0.87, and AUC of 0.94 after removing non-agricultural
areas. These results also seem competitive when compared to another deep learning ap-
proach recently presented by Masoud et al. (2019). They proposed a field boundary
detection based on convolutional NNs trained on S-2 10-m and 20-m resolution imagery
of multiple test sites in the Netherlands. They reported an overall best F1 score of 0.67
and an average F1 score of 0.63 for all test sites. Further, the overall best sensitivity and
specificity values were 0.69 and 0.66, respectively. However, a direct comparison may be
difficult, as they used more bands, including near-infrared channels, and merged different
spatial resolutions, but did not consider multi-temporal imagery in their approach. This
may partly explain the difference in performance. Another approach based on convolu-
tional NNs was presented by Persello et al. (2019). They reported performance similar to
that obtained here with F1 scores of up to 0.830 when using WorldView-2/3 data for field
delineation in smallholder farms in Nigeria and Mali.

Visual comparisons further revealed that the boundary detection sometimes observed
boundaries that were not part of the reference dataset, while it missed other parts. In
some of these cases, it is debatable if results are objectively wrong, as interpreting certain
structures can be difficult if they only occur at some time of the growing season, e.g.,
due to field management or cropping patterns. The boundaries produced tended to be
broader than a precisely hand-drawn delineation and may appear “blurred”. This is mostly
a result of the appearance of many of the input features, such as gradient magnitude, that
do not provide a sharp distinction but rather a gradual highlighting of discontinuities in
the image. As the model predictions, however, were intended as an input to the following
GGC method, they are not required to be flawless. The β value > 1 selected as best for
the extraction step further indicates a high quality of the boundary detection result. For
other applications, further post-processing or modifications to the modeling step may be
required.

Another advantage of the boundary detection approach presented here is that it is
scalable and should be relatively easy to transfer to other regions and landscapes. The
inputs to the model are universal image features and exclusively based on regular RGB
imagery, enabling an adaptation to other satellite, unmanned aerial vehicle (UAV), or
airborne sensors. Further research may also explore the use of higher resolution imagery
that offers more accurate field delineations and helps resolve more detail to effectively
extend the process to even smaller field sizes.

Field extraction results were also promising and proved to work well when given
a consistent, high quality input map. This also allowed the use of a much larger step
size than in our previous study. The new adaptive version of GGC obtained very similar
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results as the non-adaptive one, while drastically reducing processing time. It is therefore
more suited for larger-scale applications. A further advantage could be that settings such
as Lmax may not be as crucial as in the previous version because the automatic masking
step removes much of the ambiguity of a heterogeneous environment.

Nonetheless, despite the improved detection step, groups of very small fields or
very heterogeneous structures posed problems in field polygon extraction. Fields were
occasionally merged or missed entirely. While it also did not extract all fields accurately
as represented in the reference set, the adaptive version seemed to suffer slightly less from
those issues. One reason for this may be that masking less relevant parts of the graph
also avoids following erroneous paths. For example, cases in which there are small spots
of high boundary strength within a field due to false detections can result in a path being
selected that attempts to connect to this point, even if other vertices on the way should
clearly not be considered boundaries. By masking weaker vertices, the adaptive version
may effectively avoid any possible path to such falsely detected boundary spots.

Another observation was that extracted fields tended to be more rounded in shape
and sharp 90◦ angles were occasionally missed. This is in part due to the field extraction
steps following the GGC application (see Section 4.3.3.3). The over-connected nature
of the graph used as a basis for polygon creation can result in rounded shapes when
connections “cut out” the actual corner points. Therefore, further research may be needed
to improve the transferring of the GGC output to polygons.

Furthermore, it may be interesting to explore other applications of the GGC method-
ology outside of field delineation. As it is fundamentally a growing active contour technique
and independent of the context or the type of input given, its application may extend out-
side its original use case.

4.6 Conclusions

We demonstrated a new field boundary detection approach based on deep learning and
explored a large number of image features obtained from S-2 RGB imagery. We merged
it with the GGC method for field polygon extraction and further introduced an improved
version of the GGC approach that increases scalability through automatic masking of the
local graph to reduce complexity without affecting quality of the output.

The analysis of a large number of possible input features revealed interesting insights
regarding their usefulness for this particular task. While some features such as local
statistics, texture metrics, image gradient, Hessian matrix eigenvalues, and local cues
were valuable inputs, others such as angular dispersion and homogeneity measures were
less useful. Color information was more valuable than luminosity in most cases. The use
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of these universal image features may also facilitate adapting the methodology to other
sensors and resolutions.

The boundary detection model obtained high accuracies but tended to produce
broader boundary lines. The quality of the output map benefited from post-processing
based on land cover masking. Limitations of the results were, to a large extent, success-
fully mitigated by the subsequent GGC method. Nonetheless, issues remain regarding
performance on non-agricultural areas in case there is no land cover mask available. Fur-
ther research may be needed, including closer analysis of input features (settings, types
of features to use, etc.), as well as exploring different types of classification models. The
use of different time steps and the relevance of multi-temporal compared to single image
classification may also be further investigated.

The new, adaptive version of GGC proved to be much faster than the original version
without compromising quality of the extraction result. A logical next step may be to apply
the technique at an even larger scale, e.g., at county or state level. Beyond that, the nature
of the GGC approach also allows exploring further applications outside of field extraction
and agricultural remote sensing.
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Chapter 5

Synthesis

5.1 Main Achievements

The aim of this thesis was to address three main topics: (1) remote sensing data assim-
ilation in dynamic crop models, (2) agricultural field boundary detection, and (3) field
contour and polygon extraction. This was done by developing multiple new methods. The
main results are discussed in the following subsections.

5.1.1 Remote Sensing Data Assimilation

Research objective 1: Enabling flexible representation of different measurement-
and model-related uncertainties in an assimilation technique for remote sensing data
in dynamic crop models.

Chapter 2 addressed the topic of remote sensing data assimilation by incorporating
Sentinel-2 derived canopy cover (CC) data into the AquaCrop-OS model to improve yield
prediction in winter wheat. The described data assimilation approach proved comparable
in performance to the Extended Kalman filter that served as a reference. In particular, it
was capable of reducing bias in the model results.

The method successfully incorporated multiple sequentially added uncertainties in-
dicating a capacity for flexible error handling. The weighting factor α was introduced
to adjust importance of more dissimilar uncertainty probability density functions in the
updating process, allowing for the user to decide on the degree of influence of individual
uncertainties and observations considered. This weighting, however, was shown to be de-
pendent on the application level (pixel vs field vs aggregated). This implies the need for
prior experimentation or testing by the user to select the appropriate value for optimal
results. Furthermore, the implementation presented in the study relying on Monte Carlo
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simulations and kernel density estimation required significant prior processing and was
therefore computationally quite expensive. This may aggravate application in some cases
and make the method less appealing for operational use.

Both these limitations were discussed and addressed in the study. Firstly, the adap-
tive version in which not only the optimal Gaussian distribution but also the weighting
factor α is determined by the optimization process, demonstrated good results on all
scales without further user input. Secondly, the flexibility of the optimization procedure
allows for use of different kinds of uncertainty representations and does not require the
computationally demanding approach chosen for this example study. Especially if more
knowledge about measurement and model uncertainties is available, extensive processing
can be avoided, for example, by using functional representations.

Overall, yield prediction results in this study were not particularly accurate which
may have multiple reasons. Firstly, despite local calibration the AquaCrop-OS model may
struggle to accurately represent conditions in the region. Secondly, the lack of in-situ
measurements and reliance on coarser scale weather inputs meant that the only source
of spatial dynamics in the model was the remote sensing data assimilated on only a few
time steps of the simulation. Thirdly, the local accuracy of the input data is largely
unknown and may cause an over- or undercorrection of the default model simulation (see
below). Results on field-level were better than those on pixel-level which further suggests
aggregation effects.

There was some concern about the performance with respect to R2 scores that were
also discussed extensively in chapter 2. The reasons for the poor R2 performance through-
out all applications and assimilation techniques are still not fully understood. It is likely,
though, that issues originated from the CC input data that was used because all tested
methods were equally affected. Possibly, a different way of representing the uncertainty
in these datasets would have been advantageous to better highlight inconsistencies or
unreliable data points. However, necessary background information was lacking as no ref-
erence measurements in the fields were available to serve as benchmarks to evaluate actual
performance on location.

5.1.2 Field Boundary Detection

Research objective 2: Developing field boundary detection methods based on
limited image information (RGB imagery) and exploring the usefulness of image
features for improved detection performance using deep learning models.

Chapters 3 and 4 addressed the topic of field boundary detection in two different
ways. In chapter 3, a workflow was presented that relies primarily on universal image pro-
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cessing techniques and RGB inputs (hereafter referred to as “image processing approach”).
This was intended to ensure a high flexibility in adapting the method to different sensors
and landscapes. The methodology described in chapter 4, however, took a different ap-
proach by expanding on the image processing aspect and employing deep learning tech-
niques to train a more powerful classifier for field boundary detection (hereafter referred
to as “deep learning approach”).

The combination of enhanced multi-temporal imagery with adaptive noise reduction,
edge detection and homogenization in the image processing approach worked well on local
levels but required parameter tuning to adapt to conditions within a certain subset. The
test area used in this study was quite heterogeneous with very irregular field sizes and
shapes and especially temporally and spatially irregular soil patterns (incl. water-logging)
making it a difficult example region for such an application. Nevertheless, the fact that
local parameter tuning was necessary even when comparing different regions of interest
within the same study area, demonstrated the need for a more universal approach.

In general, the inconsistent nature of natural boundary features poses problems.
Field boundaries may consist of delineations between adjacent fields or to other land cover
types such as forests, rivers and lakes or urban areas and streets. They may comprise of
only narrow strips of grass or bare soil, hedges and trees, or man-made objects like fences,
roads and buildings. Some boundaries are also difficult to interpret due to changing
appearance over time or limited visibility.

The varying characteristics of field boundaries lead to significantly different behavior
in the imagery as well. A boundary originating from an adjacent road, for example, shows
a similar signature throughout the year, while a management pattern may disappear at
later crop growth stages. Moreover, multiple kinds of patterns may occur along a single
boundary between two fields. A human observer may easily interpret these as one con-
sistent boundary but a local filtering technique may produce a very heterogeneous result
consisting of stronger and weaker boundary parts. These issues raise multiple questions:
Should a field that is managed separately but grown with the same crop be considered
as two separated or one uniform field? How should adjacent fields that are temporarily
distinct but homogeneous at other times be handled? Should weak, barely visible bound-
aries be treated the same way as more obvious ones? Do different growth patterns suffice
as a reason to separate a field into two parts? Unfortunately, there is no definitive answer
to these questions introducing a certain ambiguity to the task and the interpretation of
results. This proved particularly problematic in the subsequent contour extraction (see
chapter 5.1.3).

These experiences led to the development of the deep learning approach based on
universal image features extracted from three time steps in the growing season. The
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study was intended to not only present a potential method for field boundary detection
and its suitability as a pre-step for contour and polygon extraction, but also to allow
insights into the usefulness of different image features that may serve as input for other
boundary detection techniques. The topics of edge detection, contour extraction and
semantic segmentation have been under extensive research in the image processing field
(Cheng et al., 2001; Papari and Petkov, 2011; Bansal et al., 2013). By selecting an extensive
list of features, separated by concept and type of image information, it was possible to
establish the different value of these inputs for the specific task of field boundary detection.
The analysis showed that those features based on color information were often superior
to those based on luminosity. The best-performing features were those based on second-
order texture metrics, local statistics, gradient magnitude, local cues and Hessian matrix
eigenvalues.

Results of the presented model were good and comparable to others in recent liter-
ature. Nevertheless, it still required some post-processing to achieve best results. Aside
from superior performance, the model has the advantage of fast execution and more ho-
mogeneous boundary results than the image processing approach. This manifested itself
in a more consistent contour extraction performance with no local adaptation needed.

Furthermore, its concept makes it adaptable to other regions as well. Although it
has not been tested yet, one can assume that the universal nature of the image features
used would work in a similar way in other regions. The fact that the model was trained on
two separate areas and performed very similarly in both, further supports this assumption.
Nevertheless, when used in a different environment, a new model would have to be trained.

As reference data was only available for one year, it was also not investigated if
a model trained on data from one year could perform similarly in following years. In
theory, the concept would allow for such a temporal transfer but in practice it may prove
challenging. Due to the fact that growing patterns may change and onset and end of the
growing season can shift year by year, the multi-temporal nature of the model may limit
its transferrability to subsequent years. In addition, remote sensing observations may not
always be available around the time needed. It may be interesting to investigate, how
much of an impact slight variations in seasonal patterns or different observation dates
have on performance.

5.1.3 Contour and Polygon Extraction

Research objective 3: Developing a method for effective automatized extraction of
complex, heterogeneous boundary networks and subsequent creation of field polygons
at sub-pixel level with minimal supervision.
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In chapter 3 the new Graph-based Growing Contours (GGC) method was presented.
It is a modification of the growing snakes model by Velasco and Marroquin (2003) and
was designed specifically for extracting heterogeneous, interconnected networks of contours
which are very common in agricultural landscapes. The adaptive nature of the technique
allows automatic branching and exploration of multiple boundaries while conserving spa-
tial relationships and locations of contour points for subsequent polygon extraction steps.
The user has extensive control over the behavior of the model by modifying its central
element, the local graph used to define movement at contour end points.

The method itself is a generally applicable contour extraction method from the
family of active contours. It is not constrained to remote sensing imagery or agricultural
applications but may be adapted to different contexts. A major advantage is its flexible,
mostly unsupervised execution. Even initiation on a single seed point was often sufficient
for automatic extraction of the entire boundary network of a larger image subset. Once
started, GGC does not require any manual input and returns a full set of extracted contour
points of theoretically arbitray precision (i.e. point spacing).

However, the trade-off between precision and complexity is one of the central issues
to be addressed. As became obvious in the first applications, the extraction is sensitive
to the input data. Although it managed to handle heterogeneous outputs of the image
processing approach to boundary detection, it was incapable of fully compensating for its
flaws. The partly inconsistent nature of boundary detection results made the choice of
settings difficult and required small step sizes to avoid confusion by local heterogeneities.
This was a main reason for the need of local parameter optimization. Given a more reliable
input, such as the deep learning results, it proved to be significantly more consistent and
did not require extensive parameter tuning.

Performance was further aided by the modifications presented in chapter 4. By adap-
tively masking areas considered for contour growth, contour extraction got less susceptible
of getting “off track”. This also led to a significant speed-up through reducing the num-
ber of vertices considered in the movement step allowing for higher precision at a given
processing time. As a side effect, the relevance of maximum path length was reduced as
many “wrong paths” were already excluded in the prior masking step, effectively reducing
the risk of dead ends that previously caused indents and “zig-zag” patterns in extracted
polygons.

The subsequent polygon extraction based on a flood fill algorithm and local selec-
tion of contour points was fast and reliable. Resulting polygons were sometimes more
“rounded” than the actual fields which is often caused either by errors in the boundary
detection at corner points or the tendency of GGC to follow shorter paths that do not
trace the exact corner but form a “shortcut”. This was partly addressed by adding a
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user-defined factor influencing the relative importance of boundary strength compared to
shorter Euclidian distance in the weighting of the edges in the local graph.

On top of the already mentioned means of speeding up the contour extraction (local
masking), a crucial aspect in processing speed is the choice of seed points for the polygon
extraction step. Original implementations used seed points arranged on a regular grid
across the image (e.g. 10 × 10 pixels). However, this poses issues when attempting to
cover many fields of different size and shape. A very fine grid ensures that all fields are
covered but also dramatically increases the number of seed points to consider and, as a
result, processing time. A looser grid risks missing smaller fields or even larger ones if
they happen to lie in between the grid spacing which is especially likely when they are
irregularly shaped. A good compromise was found by searching for local maxima on a
Euclidian distance transform to the extracted boundaries. This effectively locates seed
points roughly at the center of a field at the furthest distance from the boundaries and
proved reliable in covering even heterogeneous field arrangements.

5.2 Potential Synergies

Many applications in agricultural modeling and remote sensing benefit from an object-
based rather than pixel-based application. This was also supported by findings in chapter
2 where field-level yield prediction was significantly better than pixel-level predictions.
Therefore, applications like crop type distinction and land cover classification, crop moni-
toring and agricultural statistics are often performed on clusters or segments rather than
individual pixels (Ma et al., 2017; Weiss et al., 2020). Of course, in an ideal case extracted
segments would accurately represent individual fields.

One of the original motivations behind the field boundary detection and field extrac-
tion studies was to provide functionality for achieving a better segmentation that actually
represents separate fields in the landscape. This is particularly relevant for the appli-
cation of dynamic crop models that are not designed to run efficiently on a large scale,
for example, a whole Sentinel-2 scene. If it was possible to correctly delineate individual
fields within the agricultural areas, it would dramatically reduce the number of model runs
required to adequately cover even large regions with more accurate field-level predictions
rather than simulations on randomly sampled pixels or coarsely distinguished clusters.

Existing large-scale applications of dynamic crop models such as the Crop Growth
Monitoring System (CGMS) often rely on highly aggregated input on the scale of multiple
km2 (van Diepen et al., 1994). A combination of a dynamic crop model applied on field-
level based on extracted fields on a large regional scale may prove an effective way of
exploiting high-resolution satellite imagery and allowing for much higher spatial detail



Chapter 5. Synthesis 101

while mitigating the high computational demand and poor scalability of many dynamic
crop models.

This idea may be further expanded by incorporating a crop type classification in
the process to detect crops grown on the extracted fields and adjust the crop model para-
metrization accordingly. The flexible nature of the data assimilation technique presented
here may also allow to incorporate different uncertainties depending on crop type and
environmental characteristics.

Another advantage of field-level analyses is that most agricultural statistics and
available information is provided on field- or farm-level. Therefore, incorporating addi-
tional information about management, fertilization, soil etc. is much easier on field-level
than gaining access to high-resolution sub-field level measurements. The better data basis
opens up more research paths and more detailed modeling.

5.3 Conclusions and Future Research Challenges

All presented techniques showed promising results and potential for synergetic use that
may be explored in future studies. Multiple opportunities remain, however, to explore
new applications as well as methodological changes.

The data assimilation approach may require some further improvements, regarding
mainly two aspects: less computationally expensive ways of representing uncertainties and
methodological improvements to the underlying statistical techniques and its adaptive
behavior.

The adaptive version presented in chapter 2 was already promising but further im-
provements should be investigated. Application of the technique to different situations,
models and variables may reveal more insights into the appropriate incorporation of highly
dissimilar input uncertainties and handling of multiple variables at once. Establishing
rules for selecting or adjusting the weighting factor α would be useful as well in case user
interaction is strictly required or desired.

Further improvements to the method could lie in adding skewness and/or kurtosis
to the representation of the optimal Gaussian distribution that is used for balancing the
uncertainties. Especially the former may be valuable in a case as presented in chapter 2
where multiple observations/uncertainties show very similar behavior with only one being
a drastic outlier (in this case usually the remote sensing input). Allowing for skewness in
the optimal distribution could potentially improve the capability of successfully balanc-
ing out multiple different and highly unevenly distributed uncertainty probability density
functions. An extended comparison of different statistical distance metrics and a more
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detailed analysis of their effects on the assimilation may be informative as well. Similarly,
modifications of the objective function and its penalties could be further investigated.

As already discussed in chapters 2 and 5.1.1, the uncertainty quantification part
of the study may not be a best practice for other applications as it required extensive
pre-processing in the form of Monte Carlo simulations and kernel density estimation. It
would be interesting to see how the data assimilation technique behaves with different
types of uncertainty functions. Although, in theory, it does not put constraints on the
type of uncertainty representation being used, it would be important to know what effects
this may have. Further research may also address comparisons to other data assimilation
methods such as the particle filter or the ensemble Kalman filter that are also commonly
used for updating of crop models.

The field boundary detection studies also implied multiple ways for further research
and improvement. A first path of improving would be to make them independent of multi-
temporal observations. The need for multi-temporal data poses a limitation in regions with
few observations due to cloud cover or in applications to other sensors with longer revisit
times. An ideal boundary detection would therefore work on single images of arbitrary
timing. The limitations discussed in chapters 3 and 4, however, have to be overcome.

First of all, agricultural landscapes change dramatically in appearance not only from
one year to the next but also throughout the growing season. Fields that may be easily
distinguishable outside or early in the season may be almost indistinguishable late in the
season, and vice versa. These effects are further influenced by location, weather, temporary
soil and growth patterns, yearly changing growing conditions, as well as predominant crop
types in the region of interest. Therefore, if only a single image is considered, a detection
algorithm must work on very limited information aggravating not only detection on the
current image but also successful transfer of information to following years.

The most straightforward solution to this is the limitation of model development to
very narrowly defined constraints, for example, the use of imagery from only one specific
time of the year or a specific time in the growth cycle of certain crops. Defining these
constraints, however, is in and of itself difficult and ultimately limits the applicability of the
model. If no imagery is available for the specified timeframe or the exact timing cannot
be precisely determined (e.g. due to unusual growing conditions during exceptionally
hot/cold or dry/wet summers), the model may not be applicable at all.

Another, more comprehensive approach may be to allow the model to learn under
many different conditions, i.e. creating a training dataset that covers different times of the
year and even extreme conditions. However, this makes the model much more complex and
training more difficult. Handling the drastically varying inputs may ultimately prevent
the model from achieving comparable performance to a more specialized one. It would
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also require a large amount of reference data over the course of multiple years which is
usually not available.

Instead, it is imaginable that an ensemble of models may be a good solution. By
training multiple models on data from different time steps within the growing season, the
ensemble as a whole may be more flexible in handling data gaps within the season or
changing patterns from year to year.

A second path of improvement would be the distinction of different land cover types.
The presented techniques relied on prior masking of non-agricultural landscapes. This is,
however, not always possible as recent accurate land cover maps are not always available.
It is therefore desirable to make models work largely independently of ancillary data.
Introducing a distinction of agricultural from non-agricultural land could also be a possible
way to improving performance as a whole, especially for the deep learning approach. As
the training datasets so far consisted only of boundary and any type of non-boundary
samples, the non-boundary class is very heterogeneous mixing samples from fields, nearby
forests, urban areas and possibly even water bodies. Adding detail by separating parts of
this large group of samples may faciliate more accurate distinctions.

A third path of improving boundary detection may be to introduce shape and consis-
tency in the training rather than a pixel-by-pixel detection. This may make the detection
more “human-like” as it ensures that coherent structures are formed and gaps within
boundaries are avoided. Ideally, local discrepancies or heterogeneous boundary strength
do not prevent a boundary from being recognized in full (see chapter 5.1.2). Furthermore,
this could lead to more precise delineation in contrast to a more “blurred” out appearance
as is often the case in the presented approaches. Convolutional Neural Networks may be
the better choice in this respect.

The existing approaches could further be explored in the context of other sensors,
including different spatial resolutions and spectral wavelength bands. As mentioned in
chapter 3, a spatial resolution of 1-5 m may be optimal for this type of application. Lower
resolutions do not allow for precise delineation under certain circumstances and suffer
from lack of detail in environments with very small fields or varying boundary structures,
while higher resolutions would probably introduce mostly unnecessary additional informa-
tion that would lead to more confusion than added value for the classification. The low
requirements for input data (RGB) could enable application of the methods presented in
chapters 3 and 4 to a variety of higher-resolution sensors, including UAV and airborne
imagery.

Regarding contour extraction, further challenges will lie in improving the trade-
off between precision and processing time. As discussed in chapters 3 and 5.1.3, higher
accuracy of extracted contours in the Graph-based Growing Contours approach requires
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a much more complex local graph. Similarly, less reliable boundary detection inputs
require smaller step sizes and higher detail. Although this was already mitigated by the
modifications introduced in chapter 4, further research may discover other, more effective
ways.

Another important aspect is the polygon creation out of the extracted contours.
Issues remain in handling very small fields and the mentioned tendency of producing
“rounded” shapes and indents. However, arguably, most of these issues do originate from
remaining inconsistencies in the boundary detection results and the overconnected graph
that is created in the current implementation of the polygon creation step. Additionally,
few remaining dead ends created by the contour extraction step lead to errors in the
polygon representation.

Finally, all methods described in previous chapters may be applied in different con-
texts and research fields. The data assimilation approach does not need to be limited to
updating of a single state variable in dynamic crop models but could be applied to incorpo-
rating, for example, soil and plant measurements or information on external stresses with
the goal of accurate plant health or canopy development simulation rather than biomass
and yield prediction. It may also be applied to completely different types of models en-
tirely.

The contour extraction and polygon creation techniques may even be applied to
topics outside of remote sensing or agricultural monitoring. The image processing basis of
the GGC method allows the application beyond its original scope to any kind of imagery
for different purposes, including natural or medical images.
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