10,712 research outputs found

    A NeuroGenetic Approach for Multiprocessor Scheduling

    Get PDF
    This chapter presents a NeuroGenetic approach for solving a family of multiprocessor scheduling problems. We address primarily the Job-Shop scheduling problem, one of the hardest of the various scheduling problems. We propose a new approach, the NeuroGenetic approach, which is a hybrid metaheuristic that combines augmented-neural-networks (AugNN) and genetic algorithms-based search methods. The AugNN approach is a nondeterministic iterative local-search method which combines the benefits of a heuristic search and iterative neural-network search. Genetic algorithms based search is particularly good at global search. An interleaved approach between AugNN and GA combines the advantages of local search and global search, thus providing improved solutions compared to AugNN or GA search alone. We discuss the encoding and decoding schemes for switching between GA and AugNN approaches to allow interleaving. The purpose of this study is to empirically test the extent of improvement obtained by using the interleaved hybrid approach instead of applied using a single approach on the job-shop scheduling problem. We also describe the AugNN formulation and a Genetic Algorithm approach for the JobShop problem. We present the results of AugNN, GA and the NeuroGentic approach on some benchmark job-shop scheduling problems

    An Extended Flexible Job Shop Scheduling Problem with Parallel Operations

    Get PDF
    Traditional planning and scheduling techniques still hold important roles in modern smart scheduling systems. Realistic features present in modern manufacturing systems need to be incorporated into these techniques. Flexible job-shop scheduling problem (FJSP) is one of the most challenging combinatorial optimization problems. FJSP is an extension of the classical job shop scheduling problem where an operation can be processed by several different machines. In this paper, we consider the FJSP with parallel operations (EFJSP) and we propose and compare a discrete firefly algorithm (FA) and a genetic algorithm (GA) for the problem. Several FJSP and EFJSP instances were used to evaluate the performance of the proposed algorithms. Comparisons among our methods and state-of-the-art algorithms are also provided. The experimental results demonstrate that the FA and GA achieved improvements in terms of efficiency and efficacy. Solutions obtained by both algorithms are comparable to those obtained by algorithms with local search. In addition, based on our initial experiments, results show that the proposed discrete firefly algorithm is feasible, more effective and efficient than our proposed genetic algorithm for the considered problem

    Comparative Study of Genetic and Discrete Firefly Algorithm for Combinatorial Optimization

    Get PDF
    Flexible job-shop scheduling problem (FJSP) is one of the most challenging combinatorial optimization problems. FJSP is an extension of the classical job shop scheduling problem where an operation can be processed by several different machines. The FJSP contains two sub-problems, namely machine assignment problem and operation sequencing problem. In this paper, we propose and compare a discrete firefly algorithm (FA) and a genetic algorithm (GA) for the multi-objective FJSP. Three minimization objectives are considered, the maximum completion time, workload of the critical machine and total workload of all machines. Five well-known instances of FJSP have been used to evaluate the performance of the proposed algorithms. Comparisons among our methods and state-of-the-art algorithms are also provided. The experimental results demonstrate that the FA and GA have achieved improvements in terms of efficiency. Solutions obtained by both algorithms are comparable to those obtained by algorithms with local search. In addition, based on our initial experiments, results show that the proposed discrete firefly algorithm is feasible, more effective and efficient than our proposed genetic algorithm for solving multi-objective FJSP

    An Enhanced Estimation of Distribution Algorithm for Energy-Efficient Job-Shop Scheduling Problems with Transportation Constraints

    Full text link
    [EN] Nowadays, the manufacturing industry faces the challenge of reducing energy consumption and the associated environmental impacts. Production scheduling is an effective approach for energy-savings management. During the entire workshop production process, both the processing and transportation operations consume large amounts of energy. To reduce energy consumption, an energy-efficient job-shop scheduling problem (EJSP) with transportation constraints was proposed in this paper. First, a mixed-integer programming model was established to minimize both the comprehensive energy consumption and makespan in the EJSP. Then, an enhanced estimation of distribution algorithm (EEDA) was developed to solve the problem. In the proposed algorithm, an estimation of distribution algorithm was employed to perform the global search and an improved simulated annealing algorithm was designed to perform the local search. Finally, numerical experiments were implemented to analyze the performance of the EEDA. The results showed that the EEDA is a promising approach and that it can solve EJSP effectively and efficiently.This work was supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 17KJB460018), the Innovation Foundation for Science and Technology of Yangzhou University (No. 2016CXJ020 and No. 2017CXJ018), Science and Technology Project of Yangzhou under (No. YZ2017278), Research Topics of Teaching Reform of Yangzhou University under (No. YZUJX2018-28B), and the Spanish Government (No. TIN2016-80856-R and No. TIN2015-65515-C4-1-R).Dai, M.; Zhang, Z.; Giret Boggino, AS.; Salido, MA. (2019). An Enhanced Estimation of Distribution Algorithm for Energy-Efficient Job-Shop Scheduling Problems with Transportation Constraints. Sustainability. 11(11):1-23. https://doi.org/10.3390/su11113085S1231111Wu, X., & Sun, Y. (2018). A green scheduling algorithm for flexible job shop with energy-saving measures. Journal of Cleaner Production, 172, 3249-3264. doi:10.1016/j.jclepro.2017.10.342Wang, Q., Tang, D., Li, S., Yang, J., Salido, M., Giret, A., & Zhu, H. (2019). An Optimization Approach for the Coordinated Low-Carbon Design of Product Family and Remanufactured Products. Sustainability, 11(2), 460. doi:10.3390/su11020460Meng, Y., Yang, Y., Chung, H., Lee, P.-H., & Shao, C. (2018). Enhancing Sustainability and Energy Efficiency in Smart Factories: A Review. Sustainability, 10(12), 4779. doi:10.3390/su10124779Gahm, C., Denz, F., Dirr, M., & Tuma, A. (2016). Energy-efficient scheduling in manufacturing companies: A review and research framework. European Journal of Operational Research, 248(3), 744-757. doi:10.1016/j.ejor.2015.07.017Giret, A., Trentesaux, D., & Prabhu, V. (2015). Sustainability in manufacturing operations scheduling: A state of the art review. Journal of Manufacturing Systems, 37, 126-140. doi:10.1016/j.jmsy.2015.08.002Akbar, M., & Irohara, T. (2018). Scheduling for sustainable manufacturing: A review. Journal of Cleaner Production, 205, 866-883. doi:10.1016/j.jclepro.2018.09.100Che, A., Wu, X., Peng, J., & Yan, P. (2017). Energy-efficient bi-objective single-machine scheduling with power-down mechanism. Computers & Operations Research, 85, 172-183. doi:10.1016/j.cor.2017.04.004Lee, S., Do Chung, B., Jeon, H. W., & Chang, J. (2017). A dynamic control approach for energy-efficient production scheduling on a single machine under time-varying electricity pricing. Journal of Cleaner Production, 165, 552-563. doi:10.1016/j.jclepro.2017.07.102Rubaiee, S., & Yildirim, M. B. (2019). An energy-aware multiobjective ant colony algorithm to minimize total completion time and energy cost on a single-machine preemptive scheduling. Computers & Industrial Engineering, 127, 240-252. doi:10.1016/j.cie.2018.12.020Zhang, M., Yan, J., Zhang, Y., & Yan, S. (2019). Optimization for energy-efficient flexible flow shop scheduling under time of use electricity tariffs. Procedia CIRP, 80, 251-256. doi:10.1016/j.procir.2019.01.062Li, J., Sang, H., Han, Y., Wang, C., & Gao, K. (2018). Efficient multi-objective optimization algorithm for hybrid flow shop scheduling problems with setup energy consumptions. Journal of Cleaner Production, 181, 584-598. doi:10.1016/j.jclepro.2018.02.004Lu, C., Gao, L., Li, X., Pan, Q., & Wang, Q. (2017). Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm. Journal of Cleaner Production, 144, 228-238. doi:10.1016/j.jclepro.2017.01.011Fu, Y., Tian, G., Fathollahi-Fard, A. M., Ahmadi, A., & Zhang, C. (2019). Stochastic multi-objective modelling and optimization of an energy-conscious distributed permutation flow shop scheduling problem with the total tardiness constraint. Journal of Cleaner Production, 226, 515-525. doi:10.1016/j.jclepro.2019.04.046Schulz, S., Neufeld, J. S., & Buscher, U. (2019). A multi-objective iterated local search algorithm for comprehensive energy-aware hybrid flow shop scheduling. Journal of Cleaner Production, 224, 421-434. doi:10.1016/j.jclepro.2019.03.155Liu, Y., Dong, H., Lohse, N., Petrovic, S., & Gindy, N. (2014). An investigation into minimising total energy consumption and total weighted tardiness in job shops. Journal of Cleaner Production, 65, 87-96. doi:10.1016/j.jclepro.2013.07.060Liu, Y., Dong, H., Lohse, N., & Petrovic, S. (2016). A multi-objective genetic algorithm for optimisation of energy consumption and shop floor production performance. International Journal of Production Economics, 179, 259-272. doi:10.1016/j.ijpe.2016.06.019May, G., Stahl, B., Taisch, M., & Prabhu, V. (2015). Multi-objective genetic algorithm for energy-efficient job shop scheduling. International Journal of Production Research, 53(23), 7071-7089. doi:10.1080/00207543.2015.1005248Zhang, R., & Chiong, R. (2016). Solving the energy-efficient job shop scheduling problem: a multi-objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness and total energy consumption. Journal of Cleaner Production, 112, 3361-3375. doi:10.1016/j.jclepro.2015.09.097Salido, M. A., Escamilla, J., Giret, A., & Barber, F. (2015). A genetic algorithm for energy-efficiency in job-shop scheduling. The International Journal of Advanced Manufacturing Technology, 85(5-8), 1303-1314. doi:10.1007/s00170-015-7987-0Masmoudi, O., Delorme, X., & Gianessi, P. (2019). Job-shop scheduling problem with energy consideration. International Journal of Production Economics, 216, 12-22. doi:10.1016/j.ijpe.2019.03.021Mokhtari, H., & Hasani, A. (2017). An energy-efficient multi-objective optimization for flexible job-shop scheduling problem. Computers & Chemical Engineering, 104, 339-352. doi:10.1016/j.compchemeng.2017.05.004Meng, L., Zhang, C., Shao, X., & Ren, Y. (2019). MILP models for energy-aware flexible job shop scheduling problem. Journal of Cleaner Production, 210, 710-723. doi:10.1016/j.jclepro.2018.11.021Dai, M., Tang, D., Giret, A., & Salido, M. A. (2019). Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints. Robotics and Computer-Integrated Manufacturing, 59, 143-157. doi:10.1016/j.rcim.2019.04.006Lacomme, P., Larabi, M., & Tchernev, N. (2013). Job-shop based framework for simultaneous scheduling of machines and automated guided vehicles. International Journal of Production Economics, 143(1), 24-34. doi:10.1016/j.ijpe.2010.07.012Nageswararao, M., Narayanarao, K., & Ranagajanardhana, G. (2014). Simultaneous Scheduling of Machines and AGVs in Flexible Manufacturing System with Minimization of Tardiness Criterion. Procedia Materials Science, 5, 1492-1501. doi:10.1016/j.mspro.2014.07.336Saidi-Mehrabad, M., Dehnavi-Arani, S., Evazabadian, F., & Mahmoodian, V. (2015). An Ant Colony Algorithm (ACA) for solving the new integrated model of job shop scheduling and conflict-free routing of AGVs. Computers & Industrial Engineering, 86, 2-13. doi:10.1016/j.cie.2015.01.003Guo, Z., Zhang, D., Leung, S. Y. S., & Shi, L. (2016). A bi-level evolutionary optimization approach for integrated production and transportation scheduling. Applied Soft Computing, 42, 215-228. doi:10.1016/j.asoc.2016.01.052Karimi, S., Ardalan, Z., Naderi, B., & Mohammadi, M. (2017). Scheduling flexible job-shops with transportation times: Mathematical models and a hybrid imperialist competitive algorithm. Applied Mathematical Modelling, 41, 667-682. doi:10.1016/j.apm.2016.09.022Liu, Z., Guo, S., & Wang, L. (2019). Integrated green scheduling optimization of flexible job shop and crane transportation considering comprehensive energy consumption. Journal of Cleaner Production, 211, 765-786. doi:10.1016/j.jclepro.2018.11.231Tang, D., & Dai, M. (2015). Energy-efficient approach to minimizing the energy consumption in an extended job-shop scheduling problem. Chinese Journal of Mechanical Engineering, 28(5), 1048-1055. doi:10.3901/cjme.2015.0617.082Hao, X., Lin, L., Gen, M., & Ohno, K. (2013). Effective Estimation of Distribution Algorithm for Stochastic Job Shop Scheduling Problem. Procedia Computer Science, 20, 102-107. doi:10.1016/j.procs.2013.09.246Wang, L., Wang, S., Xu, Y., Zhou, G., & Liu, M. (2012). A bi-population based estimation of distribution algorithm for the flexible job-shop scheduling problem. Computers & Industrial Engineering, 62(4), 917-926. doi:10.1016/j.cie.2011.12.014Jarboui, B., Eddaly, M., & Siarry, P. (2009). An estimation of distribution algorithm for minimizing the total flowtime in permutation flowshop scheduling problems. Computers & Operations Research, 36(9), 2638-2646. doi:10.1016/j.cor.2008.11.004Hauschild, M., & Pelikan, M. (2011). An introduction and survey of estimation of distribution algorithms. Swarm and Evolutionary Computation, 1(3), 111-128. doi:10.1016/j.swevo.2011.08.003Liu, F., Xie, J., & Liu, S. (2015). A method for predicting the energy consumption of the main driving system of a machine tool in a machining process. Journal of Cleaner Production, 105, 171-177. doi:10.1016/j.jclepro.2014.09.058Dai, M., Tang, D., Giret, A., Salido, M. A., & Li, W. D. (2013). Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm. Robotics and Computer-Integrated Manufacturing, 29(5), 418-429. doi:10.1016/j.rcim.2013.04.001Beasley, J. E. (1990). OR-Library: Distributing Test Problems by Electronic Mail. Journal of the Operational Research Society, 41(11), 1069-1072. doi:10.1057/jors.1990.166Zhao, F., Shao, Z., Wang, J., & Zhang, C. (2015). A hybrid differential evolution and estimation of distribution algorithm based on neighbourhood search for job shop scheduling problems. International Journal of Production Research, 54(4), 1039-1060. doi:10.1080/00207543.2015.1041575Van Laarhoven, P. J. M., Aarts, E. H. L., & Lenstra, J. K. (1992). Job Shop Scheduling by Simulated Annealing. Operations Research, 40(1), 113-125. doi:10.1287/opre.40.1.113Wang, L., & Zheng, D.-Z. (2001). An effective hybrid optimization strategy for job-shop scheduling problems. Computers & Operations Research, 28(6), 585-596. doi:10.1016/s0305-0548(99)00137-9Dorndorf, U., & Pesch, E. (1995). Evolution based learning in a job shop scheduling environment. Computers & Operations Research, 22(1), 25-40. doi:10.1016/0305-0548(93)e0016-mPark, B. J., Choi, H. R., & Kim, H. S. (2003). A hybrid genetic algorithm for the job shop scheduling problems. Computers & Industrial Engineering, 45(4), 597-613. doi:10.1016/s0360-8352(03)00077-

    Framework for sustainable TVET-Teacher Education Program in Malaysia Public Universities

    Get PDF
    Studies had stated that less attention was given to the education aspect, such as teaching and learning in planning for improving the TVET system. Due to the 21st Century context, the current paradigm of teaching for the TVET educators also has been reported to be fatal and need to be shifted. All these disadvantages reported hindering the country from achieving the 5th strategy in the Strategic Plan for Vocational Education Transformation to transform TVET system as a whole. Therefore, this study aims to develop a framework for sustainable TVET Teacher Education program in Malaysia. This study had adopted an Exploratory Sequential Mix-Method design, which involves a semi-structured interview (phase one) and survey method (phase two). Nine experts had involved in phase one chosen by using Purposive Sampling Technique. As in phase two, 118 TVET-TE program lecturers were selected as the survey sample chosen through random sampling method. After data analysis in phase one (thematic analysis) and phase two (Principal Component Analysis), eight domains and 22 elements have been identified for the framework for sustainable TVET-TE program in Malaysia. This framework was identified to embed the elements of 21st Century Education, thus filling the gap in this research. The research findings also indicate that the developed framework was unidimensional and valid for the development and research regarding TVET-TE program in Malaysia. Lastly, it is in the hope that this research can be a guide for the nations in producing a quality TVET teacher in the future

    Survey of dynamic scheduling in manufacturing systems

    Get PDF

    Multiprocessor task scheduling in multistage hyrid flowshops: a genetic algorithm approach

    Get PDF
    This paper considers multiprocessor task scheduling in a multistage hybrid flow-shop environment. The objective is to minimize the make-span, that is, the completion time of all the tasks in the last stage. This problem is of practical interest in the textile and process industries. A genetic algorithm (GA) is developed to solve the problem. The GA is tested against a lower bound from the literature as well as against heuristic rules on a test bed comprising 400 problems with up to 100 jobs, 10 stages, and with up to five processors on each stage. For small problems, solutions found by the GA are compared to optimal solutions, which are obtained by total enumeration. For larger problems, optimum solutions are estimated by a statistical prediction technique. Computational results show that the GA is both effective and efficient for the current problem. Test problems are provided in a web site at www.benchmark.ibu.edu.tr/mpt-h; fsp
    • …
    corecore