
Comparative Study of Genetic and Discrete Firefly Algorithm
for Combinatorial Optimization

Willian Tessaro Lunardi∗
University of Luxembourg
Luxembourg, Luxembourg

willian.tessarolunardi@uni.lu

Holger Voos†
University of Luxembourg
Luxembourg, Luxembourg

holger.voos@uni.lu

ABSTRACT
Flexible job-shop scheduling problem (FJSP) is one of the most chal-
lenging combinatorial optimization problems. FJSP is an extension
of the classical job shop scheduling problem where an operation
can be processed by several different machines. The FJSP contains
two sub-problems, namely machine assignment problem and oper-
ation sequencing problem. In this paper, we propose and compare a
discrete firefly algorithm (FA) and a genetic algorithm (GA) for the
multi-objective FJSP. Three minimization objectives are considered,
the maximum completion time, workload of the critical machine
and total workload of all machines. Five well-known instances of
FJSP have been used to evaluate the performance of the proposed
algorithms. Comparisons among our methods and state-of-the-art
algorithms are also provided. The experimental results demonstrate
that the FA and GA have achieved improvements in terms of effi-
ciency. Solutions obtained by both algorithms are comparable to
those obtained by algorithms with local search. In addition, based
on our initial experiments, results show that the proposed discrete
firefly algorithm is feasible, more effective and efficient than our
proposed genetic algorithm for solving multi-objective FJSP.

CCS CONCEPTS
• Computing methodologies→Heuristic function construc-
tion;

KEYWORDS
Firefly algorithm, Genetic algorithm, Multi-objective optimization,
Flexible job-shop scheduling

ACM Reference format:
Willian Tessaro Lunardi and Holger Voos. 2018. Comparative Study of
Genetic and Discrete Firefly Algorithm for Combinatorial Optimization. In
Proceedings of SAC 2018: Symposium on Applied Computing , Pau, France,
April 9–13, 2018 (SAC 2018), 9 pages.
https://doi.org/10.1145/3167132.3167160

∗Also with Interdisciplinary Centre for Security, Reliability and Trust (SnT).
†Also with Interdisciplinary Centre for Security, Reliability and Trust (SnT).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAC 2018, April 9–13, 2018, Pau, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5191-1/18/04. . . $15.00
https://doi.org/10.1145/3167132.3167160

1 INTRODUCTION
Production scheduling is one of the most important issues in the
planning and scheduling of modern manufacturing systems. There
are several workshop styles in the manufacturing system (including
the Job Shop Scheduling Problem, JSP). In the classical JSP, a set of
jobs must be processed on a set of machines. Each job consists of a
sequence of operations, where each operation has to be processed
without preemption on a machine which is determined in advance.
The objective is to find a processing sequence for each machine
that minimizes an objective. A typical objective is to minimize the
completion time of the last operation or also referred as makespan
[3]. In terms of computational complexity, JSP is one of the most
challenging combinatorial optimization problems and has been
proven to be an NP-hard problem [7, 13].

The inexistence of flexibility on the resources of each opera-
tion presented on JSP may meet the requirements of a traditional
manufacturing system. However, with the ushering of the fourth
industrial revolution (Industry 4.0) many computing devices, flex-
ible manufacturing systems, and numerical control machines are
introduced in order to achieve a higher level of autonomously,
customization, and flexibility. Therefore, the assumption that one
machine only processes one type of operation works in JSP but
does not reflect what we face in modern manufacturing systems.

The Flexible Job Shop Problem (FJSP) is an extension of the
classical JSP problem that allows an operation to be processed
by any machine from a given set of machines. The FJSP can be
decomposed into two sub-problems: the machine selection problem
(MS) and the operations sequencing problem (OS). The JSP contains
only the OS problem, while the FJSP deals with both the OS and
the MS problem. In this way, FJSP is NP-hard and more difficult to
solve than the JSP.

Since 1990 when this problem was first presented [2], many
methods have been presented to solve it. The current approaches
for solving FJSP mainly include exact algorithm [5], evolutionary
algorithms (EA) [11, 14, 16, 17], swarm intelligence (SI) based ap-
proaches [12, 18, 19, 23], and local search (LS) algorithms [6].

In recent years multiple evolutionary algorithms (EA) were pro-
posed to solve the FJSP. Recently, in [3], it was shown that hybrid
techniques have been applied more often than other methods for
solving FJSP. Furthermore, the technique most frequently chosen
for performing exploration in hybrid algorithms is the genetic algo-
rithm (GA). Although GA has powerful global searching ability [14],
a recently developed algorithm called the Firefly Algorithm (FA),
proposed in [20], has been shown [15, 20] to outperform Particle
Swarm Optimization (PSO) and GA for continuous optimization

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/132585892?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3167132.3167160
https://doi.org/10.1145/3167132.3167160

SAC 2018, April 9–13, 2018, Pau, France Willian Tessaro Lunardi and Holger Voos

problems. In this paper, we propose and compare a Genetic Algo-
rithm and a discrete Firefly Algorithm for solving the FJSP. Five
famous instances of FJSP are used to evaluate the performance of
both methods. Through experimental studies, the merits of each
algorithm are demonstrated clearly. Furthermore, the proposed
algorithms are compared with other state-of-the-art algorithms.

The remainder of this paper is structured as follows. The problem
formulation is discussed in Section 2. The solution representation
for both algorithms is defined in the Section 3. The discrete FA is
proposed in Section 4 and the GA is proposed in Section 5. Experi-
mental results related to the proposed approaches are reported in
Section 6. Section 7 addresses the conclusions and potential future
works.

2 PROBLEM FORMULATION
A general multi-objective minimization can be defined as: minimize
a function F (x), with P (P > 1) decision variables and Q objectives
(Q > 1), subject to several equality or inequality constraints.

Minimize
x ∈Ω

F (x) = (f1(x), ..., fq (x), ... fQ (x)) (1)

where Ω is the feasible solutions space, x = x1, ...,xp , ...,xP is the
set of p-dimensional decision variables (continuous, discrete or inte-
ger) (1 ≤ p ≤ P), i.e., a possible solution for the considered problem;
fq (x) is the qth objective function (1 ≤ q ≤ Q). It is obvious that
an exact solution to such a problem does not exist. However, the
multi-objective optimization method should optimize the different
objective functions simultaneously. More precise definitions of the
terminology used in the field of multi-objective optimization can
be found in [4].

Many studies have been devoted to the subject of multi-objective
meta-heuristic optimization and the developed methods to solve
multi-objective optimization problems can be generally classified
into three different types:

(1) The transformation towards a mono-objective problem con-
sists of combining the different objectives into a weighted
sum. Methods in this class are based on utility functions or
E-Constraint and goal programming;

(2) The non-Pareto approach utilizes operators for processing
the different objectives in a separated way;

(3) The Pareto approaches are directly based on the Pareto opti-
mality concept. They aim at satisfying two goals: converging
towards the Pareto front and also obtaining diversified solu-
tions scattered all over the Pareto front.

In this study, in order to compare with the other state-of-the-art
algorithm, the objective function is based on the first type where
we transform the multi-objective into a mono-objective problem.

The FJSP can be formulated as follows. There is a set of n jobs
and a set ofm machines.M denotes the set of all machines. Each
job i consists of a sequence of ni operations. Each operationOi j (i =
1, 2, ...,n; j = 1, 2, ...,ni) of job i has to be processed on a machine k
out of a set of given compatible machinesMi j (for k ∈ Mi j ,Mi j ⊆

M). FJSP can be classified further into two categories: partial flexibil-
ity (P-FJSP) when there isMi j ⊂ M for at least one operation, and
total flexibility (T-FJSP) when there isMi j = M for each operation
[10, 11].

In this paper, the following criteria are to be minimized:

(1) the makespan Cmax , i.e., the maximal completion time;
(2) the maximal machine workloadWmax , i.e., the maximum

working time spent on any machine;
(3) the total workload of machines T , i.e., total working time

over all machines.

During the process of solving the problem, the following assump-
tions are made:

(1) Each operation cannot be interrupted during its performance
(non-preemptive condition);

(2) Each machine can perform at most one operation at any time
(resource constraint);

(3) Each machine are continuously available;
(4) Setting up time of machines and move times between opera-

tions are negligible;
(5) Machines are independent of each other;
(6) Jobs are independent of each other.

The notation used in this paper is summarized in the following:

Indices

k : index of machines, k = 1, ...,m;
i,h : index of jobs, i,h = 1, ...,n;
j,д : index of operation sequence, j,д = 1, ...,ni ;

Parameters

n : total number of jobs;
ni : total number of operation of job i;
m : total number of machines;
Ji : the ith job;

Oi j : the jth operation of job i;
Mi j : machines able to perform operation Oi j ;
pi jk : processing time of Oi j on machine k ;

λ : an weight coefficient;

Decision variables

Cmax : maximal completion time of the machines;
Wmax : maximal workload of the machines;

Wk : workload of the machine k ;
T : total workload of the machines;
ci j : completion time of the operation Oi j ;

vi jk :

{
1 if Oi j is performed on machine k
0 otherwise;

zi jhдk :

{
1 if Oi j precedes operation Ohд on machine k
0 otherwise.

Comparative Study of Genetic and Discrete Firefly Algorithm for Combinatorial Optimization SAC 2018, April 9–13, 2018, Pau, France

The mixed integer programming model can be given as follows:

minimize F (c) = λ1Cmax + λ2Wmax + λ3T (2)
subject to

Cmax ≥ ci j ∀i, j = ni (3)
Wmax ≥Wk ∀k (4)

Wk =

n∑
i=1

ni∑
j=1

pi jkvi jk ∀k (5)

T =
∑

Wk ∀k (6)
ci j − ci(j−1) ≥

pi jkvi jk , ∀i,k ∀j = 2, ...,ni (7)
ci j ≥ pi jkvi jk ∀i, j = 1,∀k ∈ Mi j (8)
(chд − ci j − phдk)

vhдkvi jkzi jhдk ≥ 0 ∀i,h, j,д,∀k ∈ Mi j ∩Mhд (9)
(ci j − chд − pi jk)

vi jkvhдkzhдi jk ≥ 0 ∀i,h, j,д,∀k ∈ Mi j ∩Mhд (10)∑
k ∈Mi j

vi jk = 1 ∀i, j (11)

zi jhдk + zhдi jk =

vi jkvhдk ∀i,h, j,д,∀k ∈ Mi j ∩Mhд (12)
ci j ≥ 0 ∀i, j (13)
vi jk ∈ {0, 1} ∀i, j,k (14)

Objective function (2) ensures the minimization of maximal com-
pletion time, maximal workload, and total workload of themachines
and is supported by constraints (3), (4), (5), and (6). Constraints (7)
enforces each job to follow a specific operation sequence. Con-
straint (8) ensures the completion time of first operation of job
i equal to be at least the processing time of Oi j . Constraint (9)
and (10) are disjunctive constraints. It represents that an opera-
tion must be completed before the starting of another operation if
they are assigned on the same machine. Constraint (11) states that
one machine must be selected from a set of available machines for
each operation. Constraint (12) enforces to be chosen one of two
precedence relationships.

3 ENCODING AND DECODING
The adopted solution representation for both algorithms is defined
as follows. The FJSP contains two sub-problems, in this way, our
representation will contain two strings. The first one is the MS
string and the second is the OS string.

The MS string denotes the selected machine for the correspond-
ing operations of each job. The length of this string is equal to∑n
i=1 ni . Thehth part of theMS string can assume any valuek ∈ Mi j

and represents the assigned machine for operation Oi j . The oper-
ation number does not change throughout the whole searching
process.

We use the operation-based representation method for the OS
string, which is comprised of the jobs number. This representation
uses an unpartitioned permutation with

∑n
i=1 ni repetitions of the

job numbers. In this representation, each job Ji number appears
ni times in the OS string. By scanning the OS string from left

Job Operation M1 M2 M3 M4

J1 O11 1 3 4 1
O12 3 8 2 1
O13 3 5 4 7

J2 O21 4 1 1 4
O22 2 3 9 3
O23 9 1 2 2

J3 O31 8 6 3 5
O32 4 5 8 1

Table 1: FJSP with three jobs and four machines.

to right, the f th appearance of a job number refers to the f th
operation of this job. In this way, any permutation of the OS string
can be decoded into a feasible solution and avoid the use of a repair
mechanism.

When an individual or a firefly is decoded, the OS string is con-
verted into a sequence of operation at first. Given the problem
instance shown in Table 1 and the strings shown in Figure 1, the
OS string can be translated into a list of ordered operations: [O21,
O11,O31,O22,O32,O12,O13,O23]. Then each operation is assigned
to a machine according to the MS string as follows: [(O21,M1),
(O11,M2), (O31,M2), (O22,M3), (O32,M1), (O12,M4), (O13,M3), (O23,M4)].

4 FIREFLY ALGORITHM
The firefly algorithm is a nature-inspired meta-heuristic for solv-
ing continuous NP-hard problems and has been motivated by the
simulation of the social behavior of fireflies. The two fundamen-
tal functions of its flashing lights are to attract mating partners
(communication), and to attract potential prey.

In essence, FA uses the following three idealized rules [20]:
• All fireflies are unisex so that one firefly will be attracted to
other fireflies regardless of their sex;

• Attractiveness β is proportional to their brightness, thus
for any two flashing fireflies, the less bright one will move
towards the brighter one. The attractiveness is proportional
to the brightness and they both decrease as their distance
increases. If there is no brighter one than a particular firefly,
it will move randomly;

• The brightness of a firefly is affected or determined by the
landscape of the objective function.

For amaximization problems, the brightnessmay be proportional
to the objective function value. For minimization problems, the

OS 2 1 3 2 3 1 1 2

O21 O11 O31 O22 O32 O12 O13 O23

MS 2 4 3 1 3 4 2 1

O11 O12 O13 O21 O22 O23 O31 O32

Figure 1: OS and MS strings example.

SAC 2018, April 9–13, 2018, Pau, France Willian Tessaro Lunardi and Holger Voos

Current Position MS string OS string
(P) 2 4 3 1 3 4 2 1 2 1 3 2 3 1 1 2

(Pbest) 1 4 1 3 2 2 3 4 1 2 3 2 1 1 2 3

dms and dos {(1,1), (3,1), (4,3), (5,2), (6,2), (7,3), (8,4)} {(1,2), (5,6), (6,7), (7,8)}
|dms | and |dos | 7 4
Attractiveness β(r) 0.17 0.38
rand ∈ [0, 1] {0.35, 0.1, 0.09, 0.14, 0.33, 0.49, 0.32} {0.52, 0.05, 0.12, 0.69}
Movement β-step {(3,1), (4,3), (5,2)} {(5,6), (6,7)}
Position after β-step 2 4 1 3 2 4 2 1 2 1 3 2 1 1 3 2
Position after α-step 2 4 1 3 2 2 4 1 2 1 3 2 1 1 2 3

Table 2: Movement of firefly towards the global best.

brightness may be the reciprocal of the objective function value.
The pseudo code shown in Algorithm 1 abstracts the basic steps of
the FA which consists of the three rules discussed above.

4.1 Distance, Attraction and Movement
In the firefly algorithm, there are two important issues: the vari-
ation of light intensity and formulation of the attractiveness. For
simplicity, we can always assume that the attractiveness of a firefly
is determined by its brightness, which in turn is associated with
the encoded objective function.

The attractiveness function β(r) can be any monotonically de-
creasing functions such as the following generalized form

β(r) = β0e
−γrm , m ≥ 1, (15)

where β0 is the attractiveness at r = 0, and r is the distance between
two fireflies. As it is often faster to calculate 1/(1 + r2) than an
exponential function [20], the Equation (15) can be approximated
as

β(r) =
β0

1 + γr2
. (16)

The distance between any two fireflies i and j , at position xi and
x j , respectively can be defined as a Cartesian distance:

ri j = ∥xi − x j ∥=

√√√ d∑
k=1

(xik − x jk)
2, (17)

where xik is the kth component of the spatial cordinate xi of ith
firefly.

The random movement of a firefly i towards another more
brighter firefly j is determined by

xi = xi + β0e
−γr 2i j (xi − x j) + α ϵi , (18)

where the second term considers a firefly’s attractiveness, the third
term is randomization with α being the randomization parameter,
and ϵi is a vector of random numbers drawn from a Gaussian
distribution or uniform distribution. In a simplest form, ϵi can be
replaced by rand− 1/2, where rand is a random number generator
uniformly distributed in [0,1]. For most applications we can take
β0 = 1, α ∈ [0, 1]. In this implementation of the algorithm we used
β0 = 1.0, α ∈ [0, 1] and γ ∈ [0.01, 0.15].

4.2 Discretization
The FA has been originally developed for solving continuous opti-
mization problems and cannot be directly applied to solve discrete
optimization problems. The main challenges for using the FA to
solve FJSP are computing the discrete distance between two fireflies,
and how they move in the coordination. In this work, we extend
the discretization proposed in [12], and is done for the following
issues described below.

4.3 Distance
The distance between two fireflies is defined by the distance be-
tween the permutation of its strings. There are two possible ways
to measure the distance between two permutations:

(a) Hamming Distance;
(b) The number of the required swaps of the first solution in

order to get the second one.
The distance between the MS string of two fireflies can be mea-

sured by using Hamming distance. The Hamming distance between
two permutations is the number of non-corresponding elements
in the sequence. The example of Hamming distance is given as
follows: given two MS strings where Pms = {2 4 3 1 3 4 2 1} and
Pms
best = {1 4 1 3 2 2 3 4}, we compare every item and record the
number of bits whose machine indices are not equal. Hence, the
Hamming distance (Pms , Pms

best) = 7. The distance between two OS

Algorithm 1 Firefly Algorithm

1: Objective function f (x), x = (x1, ...,xd)
T

2: Generate initial pop. P of fireflies xi (i = 1, 2, ...,n)
3: Light intensity Ii at xi is determined by f (xi)
4: Define light absorption coefficient γ
5: while (t < MaxGeneration) do
6: for each xi ∈ P do
7: for each x j ∈ P do
8: if (Ii < Ij) thenMove xi towards x j end if
9: Vary β with distance r via exp[−γr]
10: Evaluate solutions and update light intensity
11: end for j
12: end for i
13: Rank fireflies and find the current global best
14: end while

Comparative Study of Genetic and Discrete Firefly Algorithm for Combinatorial Optimization SAC 2018, April 9–13, 2018, Pau, France

P1 2 1 3 2 3 4 1 4

O1 2 3 1 2 3 4 1 4

P2 3 2 4 1 4 3 1 2

O2 1 2 4 3 4 3 1 2

P1 2 1 3 2 3 4 1 4

Jobset1 = {2, 4}, Jobset2 = {1, 3}

(a) POX crossover

P1 2 1 3 2 3 4 1 4

O1 2 3 1 2 3 4 1 4

P2 3 2 4 1 4 3 1 2

O2 3 2 2 1 4 3 1 4

P1 2 1 3 2 3 4 1 4

Jobset1 = {2, 4}, Jobset2 = {1, 3}

(b) JBX crossover

Figure 2: Crossover operators for OS string.

strings of two fireflies can be measured with the so called swapping
distance. The swapping distance is the number of minimal required
swaps of one permutation in order to obtain the other one [12].
Given two OS strings Pos = {2 1 3 2 3 1 1 2} and Posbest = {1 2 3 2 1 1
2 3}, the swapping distance (Pos , Posbest) = 4.

4.4 Attraction and movement
In this study we break up the movement given in equation (18)
into two sub-steps: β-step and α-step as given in equation (19) and
equation (20) respectively.

xi = β(r)(x j − xi) (19)
xi = xi + α(rand − 1/2) (20)

The attraction steps β and α are not interchangeable, thereby,
β-step must be computed before α-step while finding the new po-
sition. Both steps are explained in details bellow. Table 2 illustrates
a firefly position update towards the global best. The parameters
used in this illustration are as follows: β0 = 1,γ = 0.1,α = 1.

4.4.1 β-step. In this procedure, an insertion mechanism and a
pair-wise exchange mechanism are used to advance the MS string
and OS string of a firefly towards the global best firefly position.
At first, all necessary insertions in the MS string and all pair-wise
exchanges in the OS string, to make the elements of the current
firefly equal to the best firefly, are found and store in dms and
dos respectively. The hamming distance and swap distance are
respectively defined by |dms | and |dos |, and stored in r . The β
probability is computed using equation (16). Furthermore, we have
to define which elements of dms and dos will be used to change
the current solution. In this way, for each element of dms and dos
is accessed and a random number rand ∈ [0, 1] is generated. In
this way, if rand ≤ β , then the corresponding insertion/pair-wise
exchange is performed on the elements of the current Firefly.

4.4.2 α-step. In this procedure, a swapping mechanism is used
to shift the permutation into one of the neighbouring permuta-
tions. Equation (21) approximate equation (20), where randint ∈

[0,
∑n
i=1 ni].

xi = xi + α(randint) (21)

The α-step is applied by choosing an element position and swap
with another non-equal position in the string which is also chosen
at random. This procedure is similar to the swapping mutation
shown in the Figure 4.

5 GENETIC ALGORITHM
Genetic algorithm (GA), proposed in [9], is a class of algorithms
based on the abstraction of Darwinian evolution of biological sys-
tems. Starting from an initial population, the algorithm applies
genetic operators in order to produce offspring. At each generation,
every new individual corresponds to a solution, i.e., a schedule of
the given FJSP instance.

5.1 Genetic Operators
In this paper, each string is subjected to its own genetic operators.
Three commonly used genetic operators, selection, crossover, and
mutation, will be briefly discussed in the following sub-sections.

5.1.1 Selection. In GAs, the selection operator is used to select
the individuals according to their fitness and maintain the highest
quality chromosomes and characteristics within the population.
In our algorithm, the selection strategy includes two parts: the
method of keeping the best individuals and tournament selection.
The method of keeping the best individuals is to copy the 1% of
the best individuals for the next generation. The tournament se-
lection strategy, proposed in [8], works as follows: two solutions
are selected randomly as the parent solutions, if a random number
generated between 0 and 1 is smaller than the probability r which
usually is set to 0.8, then we select the better one; otherwise, we
select the other one.

5.1.2 Crossover. Crossover is the recombination of two parent
chromosomes through the exchange of a part of one chromosome
with a corresponding part of another in order to produce offspring.
In this paper, two crossover operators: (a) precedence operation
crossover (POX), proposed in [21]; (b) job-based crossover (JBX),
proposed in [22]; are adopted for the OS string. During the OS string
crossover procedure, one crossover operator is selected randomly.

SAC 2018, April 9–13, 2018, Pau, France Willian Tessaro Lunardi and Holger Voos

P1 2 4 3 1 3 4 2 1

O1 2 4 3 2 4 4 2 1

P2 3 2 4 2 4 2 3 1

O2 3 2 4 1 3 2 3 1

P1 2 4 3 1 3 4 2 1

Figure 3: Two point crossover.

The basic working procedure of POX is described as bellow (two
parents are denoted as P1 and P2; two offspring are denoted as O1
and O2). Figure 2 shows an example of POX crossover operator.

(1) The Job set J = {J1, J2, J3, ..., Jn } is divided into two groups
Jobset1 and Jobset2 randomly;

(2) Any element in P1 which belongs to Jobset1 are appended to
the same position inO1 and deleted in P1; any element in P2
which belongs to Jobset1 are appended to the same position
in O2 and deleted in P2;

(3) the remaining elements in P2 are appended to the remaining
empty positions in O1 seriatim; and the remaining elements
in P1 are appended to the remaining empty positions in O2
seriatim.

The second crossover operator for OS string is the job-based
crossover (JBX). The basic working procedure of JBX is described
below. Figure 2 shows an example of JBX crossover operator.

(1) The Job set J = {J1, J2, J3, ..., Jn } is divided into two groups
Jobset1 and Jobset2 randomly;

(2) Any element in P1 which belongs to Jobset1 are appended
to the same position inO1; any element in P2 which belongs
to Jobset2 are appended to the same position in O2;

(3) Any element in P2 which belongs to Jobset2 are appended
to the remaining empty positions in O1 seriatim; and any
element in P1 which belongs to Jobset1 are appended to the
remaining empty positions in O2 seriatim.

For the MS string, a standard two-point crossover has been
adopted as the crossover operation. In this operation, two posi-
tions are selected at random. Based on the selected positions, two
children strings are created by swapping all elements between the
positions of the two parent strings. Figure 3 shows an example of
two-point crossover.

5.1.3 Mutation. The mutation can provide some extra variation
into the current population, which can enhance the diversity. The
mutation probability should be small as a large one will be adverse
for the information preservation of the good chromosomes. In
this paper, the swapping mutation [22], has been adopted for the
OS string. In this procedure, two positions are selected and its
respective elements are swapped. A single point mutation is used
for the MS string. In this procedure, a position of the MS string is

P 2 1 3 2 3 4 1 4

O 2 1 4 2 3 3 1 4

Figure 4: Swapping mutation.

Instance P(f a)/P(дa) G(f a)/G(дa) γ pc pm

4 × 5 50/100 100/80 0.05 0.85 0.01
8 × 8 50/250 300/80 0.05 0.85 0.01
10 × 7 50/400 400/80 0.05 0.85 0.01
10 × 10 50/500 500/80 0.05 0.85 0.01
15 × 10 100/2000 1000/100 0.10 0.85 0.01

Table 3: Parameters of FA and GA.

selected, and a new machine is assigned for its respective operation.
Figure 4 shows an example of swapping mutation.

6 EXPERIMENTAL RESULTS
This section describes the computational experiments used to eval-
uate the performance of the proposed algorithms. In order to con-
duct the experiment, we implement the algorithm in C++ on an
Intel Core i7 2.70GHz × 8, with 8 GB memory. To test the perfor-
mance of the algorithms, five representative instances have been
taken into this experiment. The dimensions of the instances range
from 4 jobs × 5 machines to 15 jobs × 10 machines. In order to
fairly compare our proposed work with other state-of-the-art al-
gorithms, we adopted a common set of weight coefficients, define
by: λ1 = 0.5, λ2 = 0.3, λ3 = 0.2. The best and average results of
experiments from 50 different runs were collected for performance
comparison.

6.1 Setting parameter
Each instance can be characterized by the following parameters:
number of jobs (n), number of machines (m), and operation Oi, j of
job i . The parameters of the FA consist of the population size Pf a ,
maximum number of generationsGf a , attractiveness of fireflies β0,
light absorption coefficient γ , and randomization α . In this exper-
iments, the β0 and α parameters were kept at 1. The parameters
of the GA consist of population size Pдa , maximum number of
generationsGдa , crossover probability pc and mutation probability
pm . The detailed parameters of the proposed FA and GA for the
problem instances are presented in the Table 3.

6.2 Problem 4 × 5
This is a T-FJSP small-scale instance in which 4 jobs with 12 opera-
tions are to be performed on 5 machines. Both proposed approaches
obtained the same solutions characterized by the following values:

(1) makespan Cmax = 11, maximal workloadWmax = 10, total
workload T = 32.

(2) makespan Cmax = 12, maximal workloadWmax = 8, total
workload T = 32.

Comparative Study of Genetic and Discrete Firefly Algorithm for Combinatorial Optimization SAC 2018, April 9–13, 2018, Pau, France

Alдorithm
4 × 5 8 × 8 10 × 7 10 × 10 15 × 10

f1 f2 f3 CPU f1 f2 f3 CPU f1 f2 f3 CPU f1 f2 f3 CPU f1 f2 f3 CPU

AL+CGA 16 10 34 — 15 13 79 — — — 7 5 45 — 23 11 93 —— 16 13 75 — — 24 11 91
PSO+SA — — 15 12 75 — — — 7 6 44 — 12 11 91 —— 16 13 73 — — —
PSO+TS 12 8 32 0.34 14 12 77 1.67 — — 7 6 43 2.05 11 11 93 10.88

— — 15 12 75 — — — — —
AIA — — 14 12 77 0.76 — — 7 5 43 8.97 11 11 93 109.22
MILP 12 8 32 0.56 14 12 77 1.54 11 10 62 1.36 7 5 43 2.08 11 11 93 411.74

Prop. GA 11 10 32 0.29 14 12 77 0.90 11 10 62 1.57 7 6 42 2.02 12 12 93 18.7612 8 32 15 12 75 11 11 61 8 5 42 12 10 95
Prop. FA 11 10 32 0.11 14 12 77 0.64 11 10 62 0.84 7 5 43 1.07 11 11 93 6.8612 8 32 15 12 75 11 11 61 7 6 42 12 11 91

f1 = Cmax , f2 =Wmax , and f3 = T . — equals not available.
Table 4: Comparison of results with five Kacem instances.

The average computational time for the FA and GA are respectively
0.11 and 0.29 seconds. In Figure 5 the solution (1) is presented using
Gantt chart.

6.3 Problem 8 × 8
This is a P-FJSP instance, in which 8 jobs with 27 operations are
to be performed on 8 machines. The best solutions obtained by
both proposed approaches are the same and characterized by the
following values:

(1) makespan Cmax = 14, maximal workloadWmax = 12, total
workload T = 77.

(2) makespan Cmax = 15, maximal workloadWmax = 12, total
workload T = 75.

The average computational time for the FA and GA are respectively
0.64 and 0.90 seconds. In Figure 6 the solution (1) is presented using
Gantt chart.

6.4 Problem 10 × 7
This is a T-FJSP instance, in which 10 jobs with 29 operations are
to be performed on 7 machines. The best solutions obtained by
both proposed approaches are the same and characterized by the
following values:

(1) makespan Cmax = 11, maximal workloadWmax = 10, total
workload T = 62.

(2) makespan Cmax = 11, maximal workloadWmax = 11, total
workload T = 61.

The average computational time for the FA and GA are respectively
0.84 and 1.57 seconds. In Figure 7 the solution (1) is presented in a
Gantt chart.

6.5 Problem 10 × 10
This is a T-FJSP instance, in which 10 jobs with 30 operations are
to be performed on 10 machines. The best solutions obtained by
the proposed FA can be characterized by the following values:

(1) makespan Cmax = 7, maximal workloadWmax = 5, total
workload T = 43.

(2) makespan Cmax = 7, maximal workloadWmax = 6, total
workload T = 42.

The best solutions obtained by the proposed GA can be character-
ized by the following values:

(1) makespan Cmax = 7, maximal workloadWmax = 6, total
workload T = 42.

(2) makespan Cmax = 8, maximal workloadWmax = 5, total
workload T = 42.

The average computational time for the FA and GA are respectively
1.07 and 2.02 seconds. In Figure 8 the solution (1) obtained by the
FA is presented in a Gantt chart.

6.6 Problem 15 × 10
This is a large-scale T-FJSP instance, in which 15 jobs in a total of 56
operations are to be performed on 10 machines. The best solutions
obtained by the proposed FA can be characterized by the following
values:

(1) makespan Cmax = 11, maximal workloadWmax = 11, total
workload T = 93.

M1 O2,1 O1,3 O4,1

M2 O1,2 O3,2 O4,2

M3 O3,1 O2,3

M4 O1,1 O3,3 O3,4

M5 O2,2

0 1 2 3 4 5 6 7 8 9 10 11

Cmax = 11,Wmax = 10,T = 32.

Figure 5: Gantt chart of the problem 4 × 5.

SAC 2018, April 9–13, 2018, Pau, France Willian Tessaro Lunardi and Holger Voos

M1 O5,1 O8,1 O3,3

M2 O4,1 O8,2 O6,3

M3 O6,1 O7,1 O2,1 O4,3 O8,4

M4 O3,2 O2,2 O7,3

M5 O1,1 O1,2 O2,4

M6 O4,2 O5,3 O1,3

M7 O3,1 O5,2 O2,3 O5,4

M8 O6,2 O7,2 O8,3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Cmax = 14,Wmax = 12,T = 77.

Figure 6: Gantt chart of the problem 8 × 8.

(2) makespan Cmax = 12, maximal workloadWmax = 11, total
workload T = 91.

The best solutions obtained by the proposed GA can be character-
ized as follows:

(1) makespan Cmax = 12, maximal workloadWmax = 12, total
workload T = 93.

(2) makespan Cmax = 12, maximal workloadWmax = 10, total
workload T = 95.

The average computational time for the FA and GA are respectively
6.86 and 18.76 seconds. In Figure 9 the solution (1) obtained by the
FA is presented in a Gantt chart.

6.7 Performance Comparison
In addition to the comparison made among the proposed FA and
GA, our approaches are compared with AL+CGA [11], PSO+SA
[18], PSO+TS [23], MOGA [17], AIA [1]. MOGA is based on Pareto-
optimality and the other use the same weighted summation of
objectives. Table 4 presents the comparison of the results on the
five cases. The three objectives are considered simultaneously. It
can be seen from Table 4 that the proposed algorithms are compa-
rable to the other algorithms and more efficient for small instances.

M1 O4,1 O1,1 O5,2 O2,2 O10,3

M2 O5,1 O10,1 O9,2 O5,3 O8,3

M3 O7,1 O6,1 O6,2 O6,3

M4 O8,1 O8,2 O4,2

M5 O9,1 O1,2 O3,3 O4,3

M6 O3,2 O7,2 O10,2 O7,3

M7 O3,1 O2,1 O1,3 O9,3

0 1 2 3 4 5 6 7 8 9 10 11

Cmax = 11,Wmax = 10,T = 62.

Figure 7: Gantt chart of the problem 10 × 7.

M1 O1,1 O2,1 O7,1

M2 O8,2 O8,3

M3 O1,2 O4,2 O7,2

M4 O10,2 O1,3 O5,3 O4,3 O7,3

M5 O8,1 O10,3

M6 O10,1 O9,1 O6,1 O9,3

M7 O4,1 O9,2 O3,3 O6,3

M8 O3,2

M9 O5,1 O5,2 O6,2

M10 O3,1 O2,2 O2,3

0 1 2 3 4 5 6 7

Cmax = 7,Wmax = 5,T = 43.

Figure 8: Gantt chart of the problem 10 × 10.

The computational results of the proposed algorithm dominate the
AL+GCA and the PSO+SA for solving the four instances, (i.e., 4 ×
5, 8 × 8, 10 × 10, and 15 × 10). In comparison with the PSO+TS
algorithm for solving the four instances, our approaches are more
efficient and obtained richer optimal solutions. In comparison with
the AIA algorithm for solving the four instances, our approaches
obtained richer solutions with less computational resources. In
comparison with the Pareto-based MOGA algorithm, our proposed
approaches are more efficient, however less effective for larger
instances. Table 4 shows that our proposed discrete FA when com-
pared to the results obtained from the other algorithms that also
uses weighted summation approach, it performs at the same level
or better with respect to three objective functions in a very short
time, for all five instances.

M1 O1,1 O14,1 O10,2 O7,1 O6,2 O10,4 O8,4

M2 O13,1 O1,2 O6,1 O5,3 O3,3 O7,2 O13,4

M3 O9,1 O9,2 O1,3 O2,2 O15,3

M4 O2,1 O8,3 O2,4 O3,4

M5 O4,1 O4,2 O12,2 O14,4 O15,4

M6 O5,2 O11,2 O4,3 O15,2 O12,3 O5,4

M7 O11,1 O3,1 O8,1 O3,2 O9,3 O11,4 O12,4

M8 O12,1 O15,1 O8,2 O14,3

M9 O5,1 O14,2 O11,3 O1,4

M10 O10,1 O13,2 O13,3 O10,3 O2,3 O4,4 O9,4

0 1 2 3 4 5 6 7 8 9 10 11

Cmax = 11,Wmax = 11,T = 93.

Figure 9: Gantt chart of the problem 15 × 10.

Comparative Study of Genetic and Discrete Firefly Algorithm for Combinatorial Optimization SAC 2018, April 9–13, 2018, Pau, France

0 200 400 600 800 1000

10

20

30

40

Figure 10: Convergence for the instance 10 × 10.

0 2000 4000 6000 8000 10000 12000 14000

20

40

60

80

Figure 11: Convergence for the instance 15 × 10.

Based on the results of the above five instances, it can be seen
that the proposed discrete firefly algorithm is more effective and
efficient than the proposed genetic algorithm. In Figure 10 and 11,
we draw the decrease of the average F (x) over five runs for the
instances 10 × 10 and 15 × 10. Note that the FA converges faster
when compared to the GA.

7 CONCLUSION AND FUTUREWORK
The multi-objective flexible job-shop scheduling problem has at-
tracted several researcher’s attention. The complexity of this prob-
lem leads to the appearance of many meta-heuristics approaches.
Currently, the research concentrates on the hybrid algorithms. In
this paper, we put forward a comparison among a discrete fire-
fly algorithm and a genetic algorithm for solving multi-objective
FJSP. We combine the different objective functions into a weighted
sum, where the objective function includes the minimization of
makespan, maximal workload and total workload of machines. Ex-
perimental results on five instances show that when compared to
the results obtained from the state-of-the-art methods that used
weighted summation approach, the proposed discrete FA is more ef-
ficient for small instances and performed at the same level or better
with respect to three objective functions. In addition, based on our
experiment, the fact that firefly algorithm converges faster than
the genetic algorithm, support the premise that the combination of
FA with a local search method (e.g., tabu search) with an effective
neighborhood function could generate better hybrids than those
which uses GA for exploration.

Future research directions include combining the FA and local
search methods to construct a hybrid algorithm to solve scheduling
problems.

REFERENCES
[1] A Bagheri, Mostafa Zandieh, Iraj Mahdavi, and Mehdi Yazdani. 2010. An arti-

ficial immune algorithm for the flexible job-shop scheduling problem. Future
Generation Computer Systems 26, 4 (2010), 533–541.

[2] Peter Brucker and Rainer Schlie. 1990. Job-shop scheduling with multi-purpose
machines. Computing 45, 4 (1990), 369–375.

[3] Imran Ali Chaudhry and Abid Ali Khan. 2016. A research survey: review of
flexible job shop scheduling techniques. International Transactions in Operational
Research 23, 3 (2016), 551–591.

[4] Kalyanmoy Deb and Deb Kalyanmoy. 2001. Multi-Objective Optimization Using
Evolutionary Algorithms. John Wiley & Sons, Inc., New York, NY, USA.

[5] Yunus Demir and S Kürşat İşleyen. 2013. Evaluation of mathematical models
for flexible job-shop scheduling problems. Applied Mathematical Modelling 37, 3
(2013), 977–988.

[6] LM Gambardella and M Mastrolilli. 1996. Effective neighborhood functions for
the flexible job shop problem. Journal of scheduling 3, 3 (1996), 3–20.

[7] Michael R Garey, David S Johnson, and Ravi Sethi. 1976. The complexity of
flowshop and jobshop scheduling. Mathematics of operations research 1, 2 (1976),
117–129.

[8] David E Goldberg and Kalyanmoy Deb. 1991. A comparative analysis of selection
schemes used in genetic algorithms. Foundations of genetic algorithms 1 (1991),
69–93.

[9] John H. Holland. 1992. Adaptation in Natural and Artificial Systems: An Introduc-
tory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT
Press, Cambridge, MA, USA.

[10] Imed Kacem, Slim Hammadi, and Pierre Borne. 2002. Approach by localization
and multiobjective evolutionary optimization for flexible job-shop scheduling
problems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews) 32, 1 (2002), 1–13.

[11] Imed Kacem, Slim Hammadi, and Pierre Borne. 2002. Pareto-optimality approach
for flexible job-shop scheduling problems: hybridization of evolutionary algo-
rithms and fuzzy logic. Mathematics and computers in simulation 60, 3 (2002),
245–276.

[12] S Karthikeyan, P Asokan, S Nickolas, and Tom Page. 2015. A hybrid discrete
firefly algorithm for solvingmulti-objective flexible job shop scheduling problems.
International Journal of Bio-Inspired Computation 7, 6 (2015), 386–401.

[13] Eugene L Lawler, Jan Karel Lenstra, Alexander HG Rinnooy Kan, and David B
Shmoys. 1993. Sequencing and scheduling: Algorithms and complexity. Hand-
books in operations research and management science 4 (1993), 445–522.

[14] Xinyu Li and Liang Gao. 2016. An effective hybrid genetic algorithm and tabu
search for flexible job shop scheduling problem. International Journal of Produc-
tion Economics 174 (2016), 93–110.

[15] Michael Lohrer. 2013. A comparison between the firefly algorithm and particle
swarm optimization. Ph.D. Dissertation. Oakland University.

[16] F Pezzella, G Morganti, and G Ciaschetti. 2008. A genetic algorithm for the
flexible job-shop scheduling problem. Computers & Operations Research 35, 10
(2008), 3202–3212.

[17] Xiaojuan Wang, Liang Gao, Chaoyong Zhang, and Xinyu Shao. 2010. A multi-
objective genetic algorithm based on immune and entropy principle for flexible
job-shop scheduling problem. The International Journal of Advanced Manufactur-
ing Technology 51, 5 (2010), 757–767.

[18] Weijun Xia and Zhiming Wu. 2005. An effective hybrid optimization approach
for multi-objective flexible job-shop scheduling problems. Computers & Industrial
Engineering 48, 2 (2005), 409–425.

[19] Li-Ning Xing, Ying-Wu Chen, Peng Wang, Qing-Song Zhao, and Jian Xiong. 2010.
A knowledge-based ant colony optimization for flexible job shop scheduling
problems. Applied Soft Computing 10, 3 (2010), 888–896.

[20] Xin-She Yang. 2010. Nature-inspired metaheuristic algorithms. Luniver press.
[21] Chaoyong Zhang, Peigen Li, Yunqing Rao, and Shuxia Li. 2005. A new hybrid

GA/SA algorithm for the job shop scheduling problem. Evolutionary computation
in combinatorial optimization (2005), 246–259.

[22] Guohui Zhang, Liang Gao, and Yang Shi. 2011. An effective genetic algorithm
for the flexible job-shop scheduling problem. Expert Systems with Applications
38, 4 (2011), 3563–3573.

[23] Guohui Zhang, Xinyu Shao, Peigen Li, and Liang Gao. 2009. An effective hy-
brid particle swarm optimization algorithm for multi-objective flexible job-shop
scheduling problem. Computers & Industrial Engineering 56, 4 (2009), 1309–1318.

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Encoding and Decoding
	4 Firefly Algorithm
	4.1 Distance, Attraction and Movement
	4.2 Discretization
	4.3 Distance
	4.4 Attraction and movement

	5 Genetic Algorithm
	5.1 Genetic Operators

	6 Experimental Results
	6.1 Setting parameter
	6.2 Problem 4 Lg 5
	6.3 Problem 8 Lg 8
	6.4 Problem 10 Lg 7
	6.5 Problem 10 Lg 10
	6.6 Problem 15 Lg 10
	6.7 Performance Comparison

	7 Conclusion and Future Work
	References

