197 research outputs found

    Local competition-based superpixel segmentation algorithm in remote sensing

    Full text link
    © 2017 by the authors. Licensee MDPI, Basel, Switzerland. Remote sensing technologies have been widely applied in urban environments’ monitoring, synthesis and modeling. Incorporating spatial information in perceptually coherent regions, superpixel-based approaches can effectively eliminate the “salt and pepper” phenomenon which is common in pixel-wise approaches. Compared with fixed-size windows, superpixels have adaptive sizes and shapes for different spatial structures. Moreover, superpixel-based algorithms can significantly improve computational efficiency owing to the greatly reduced number of image primitives. Hence, the superpixel algorithm, as a preprocessing technique, is more and more popularly used in remote sensing and many other fields. In this paper, we propose a superpixel segmentation algorithm called Superpixel Segmentation with Local Competition (SSLC), which utilizes a local competition mechanism to construct energy terms and label pixels. The local competition mechanism leads to energy terms locality and relativity, and thus, the proposed algorithm is less sensitive to the diversity of image content and scene layout. Consequently, SSLC could achieve consistent performance in different image regions. In addition, the Probability Density Function (PDF), which is estimated by Kernel Density Estimation (KDE) with the Gaussian kernel, is introduced to describe the color distribution of superpixels as a more sophisticated and accurate measure. To reduce computational complexity, a boundary optimization framework is introduced to only handle boundary pixels instead of the whole image. We conduct experiments to benchmark the proposed algorithm with the other state-of-the-art ones on the Berkeley Segmentation Dataset (BSD) and remote sensing images. Results demonstrate that the SSLC algorithm yields the best overall performance, while the computation time-efficiency is still competitive

    Automated High-resolution Earth Observation Image Interpretation: Outcome of the 2020 Gaofen Challenge

    Get PDF
    In this article, we introduce the 2020 Gaofen Challenge and relevant scientific outcomes. The 2020 Gaofen Challenge is an international competition, which is organized by the China High-Resolution Earth Observation Conference Committee and the Aerospace Information Research Institute, Chinese Academy of Sciences and technically cosponsored by the IEEE Geoscience and Remote Sensing Society and the International Society for Photogrammetry and Remote Sensing. It aims at promoting the academic development of automated high-resolution earth observation image interpretation. Six independent tracks have been organized in this challenge, which cover the challenging problems in the field of object detection and semantic segmentation. With the development of convolutional neural networks, deep-learning-based methods have achieved good performance on image interpretation. In this article, we report the details and the best-performing methods presented so far in the scope of this challenge

    Enhanced K-means Color Clustering Based on SLIC Superpixels Merging incorporated within the Entomology Software: AInsectID

    Get PDF
    Superpixel-based segmentation is an important pre-processing step for the simplification of image processing. The subjective nature behind the determination of optimal cluster numbers in segmentation algorithms can result in either underor over-segmentation burdens, depending on the image type. Insect wings, with their intricate color patterns, pose significant challenges for the accurate capture of color diversity in clustering algorithms, assuming a spherical and isotropic cluster distribution is used. This paper introduces a hybrid approach for color clustering in insect wings, integrating the Simple Linear Iterative Clustering (SLIC) method to generate the initial superpixels, and a DeltaE 2000 function the precisely discriminated merging of superpixels. Color differences between superpixels serve to measure homogeneity during the merging process. The proposed new algorithm demonstrates enhanced segmentation as it overcomes the issue of over-segmentation and under-segmentation, as evidenced by the results derived from the Boundary Recall, Rand index, Under-segmentation Error, and Bhattacharyya distance using ground truth data. The Silhouette score and Dunn Index are also used to quantitatively evaluate the efficacy of our new proposed clustering technique.<br/

    Understanding High Resolution Aerial Imagery Using Computer Vision Techniques

    Get PDF
    Computer vision can make important contributions to the analysis of remote sensing satellite or aerial imagery. However, the resolution of early satellite imagery was not sufficient to provide useful spatial features. The situation is changing with the advent of very-high-spatial-resolution (VHR) imaging sensors. This change makes it possible to use computer vision techniques to perform analysis of man-made structures. Meanwhile, the development of multi-view imaging techniques allows the generation of accurate point clouds as ancillary knowledge. This dissertation aims at developing computer vision and machine learning algorithms for high resolution aerial imagery analysis in the context of application problems including debris detection, building detection and roof condition assessment. High resolution aerial imagery and point clouds were provided by Pictometry International for this study. Debris detection after natural disasters such as tornadoes, hurricanes or tsunamis, is needed for effective debris removal and allocation of limited resources. Significant advances in aerial image acquisition have greatly enabled the possibilities for rapid and automated detection of debris. In this dissertation, a robust debris detection algorithm is proposed. Large scale aerial images are partitioned into homogeneous regions by interactive segmentation. Debris areas are identified based on extracted texture features. Robust building detection is another important part of high resolution aerial imagery understanding. This dissertation develops a 3D scene classification algorithm for building detection using point clouds derived from multi-view imagery. Point clouds are divided into point clusters using Euclidean clustering. Individual point clusters are identified based on extracted spectral and 3D structural features. The inspection of roof condition is an important step in damage claim processing in the insurance industry. Automated roof condition assessment from remotely sensed images is proposed in this dissertation. Initially, texture classification and a bag-of-words model were applied to assess the roof condition using features derived from the whole rooftop. However, considering the complexity of residential rooftop, a more sophisticated method is proposed to divide the task into two stages: 1) roof segmentation, followed by 2) classification of segmented roof regions. Deep learning techniques are investigated for both segmentation and classification. A deep learned feature is proposed and applied in a region merging segmentation algorithm. A fine-tuned deep network is adopted for roof segment classification and found to achieve higher accuracy than traditional methods using hand-crafted features. Contributions of this study include the development of algorithms for debris detection using 2D images and building detection using 3D point clouds. For roof condition assessment, the solutions to this problem are explored in two directions: features derived from the whole rooftop and features extracted from each roof segments. Through our research, roof segmentation followed by segments classification was found to be a more promising method and the workflow processing developed and tested. Deep learning techniques are also investigated for both roof segmentation and segments classification. More unsupervised feature extraction techniques using deep learning can be explored in future work

    DeepWheat: Estimating Phenotypic Traits from Crop Images with Deep Learning

    Full text link
    In this paper, we investigate estimating emergence and biomass traits from color images and elevation maps of wheat field plots. We employ a state-of-the-art deconvolutional network for segmentation and convolutional architectures, with residual and Inception-like layers, to estimate traits via high dimensional nonlinear regression. Evaluation was performed on two different species of wheat, grown in field plots for an experimental plant breeding study. Our framework achieves satisfactory performance with mean and standard deviation of absolute difference of 1.05 and 1.40 counts for emergence and 1.45 and 2.05 for biomass estimation. Our results for counting wheat plants from field images are better than the accuracy reported for the similar, but arguably less difficult, task of counting leaves from indoor images of rosette plants. Our results for biomass estimation, even with a very small dataset, improve upon all previously proposed approaches in the literature.Comment: WACV 2018 (Code repository: https://github.com/p2irc/deepwheat_WACV-2018

    Rich probabilistic models for semantic labeling

    Get PDF
    Das Ziel dieser Monographie ist es die Methoden und Anwendungen des semantischen Labelings zu erforschen. Unsere BeitrÀge zu diesem sich rasch entwickelten Thema sind bestimmte Aspekte der Modellierung und der Inferenz in probabilistischen Modellen und ihre Anwendungen in den interdisziplinÀren Bereichen der Computer Vision sowie medizinischer Bildverarbeitung und Fernerkundung

    Multitemporal Very High Resolution from Space: Outcome of the 2016 IEEE GRSS Data Fusion Contest

    Get PDF
    In this paper, the scientific outcomes of the 2016 Data Fusion Contest organized by the Image Analysis and Data Fusion Technical Committee of the IEEE Geoscience and Remote Sensing Society are discussed. The 2016 Contest was an open topic competition based on a multitemporal and multimodal dataset, which included a temporal pair of very high resolution panchromatic and multispectral Deimos-2 images and a video captured by the Iris camera on-board the International Space Station. The problems addressed and the techniques proposed by the participants to the Contest spanned across a rather broad range of topics, and mixed ideas and methodologies from the remote sensing, video processing, and computer vision. In particular, the winning team developed a deep learning method to jointly address spatial scene labeling and temporal activity modeling using the available image and video data. The second place team proposed a random field model to simultaneously perform coregistration of multitemporal data, semantic segmentation, and change detection. The methodological key ideas of both these approaches and the main results of the corresponding experimental validation are discussed in this paper
    • 

    corecore