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Abstract—Superpixel-based segmentation is an important pre-
processing step for the simplification of image processing. The
subjective nature behind the determination of optimal cluster
numbers in segmentation algorithms can result in either under-
or over-segmentation burdens, depending on the image type.
Insect wings, with their intricate color patterns, pose signif-
icant challenges for the accurate capture of color diversity
in clustering algorithms, assuming a spherical and isotropic
cluster distribution is used. This paper introduces a hybrid
approach for color clustering in insect wings, integrating the
Simple Linear Iterative Clustering (SLIC) method to generate
the initial superpixels, and a DeltaE 2000 function the precisely
discriminated merging of superpixels. Color differences between
superpixels serve to measure homogeneity during the merging
process. The proposed new algorithm demonstrates enhanced
segmentation as it overcomes the issue of over-segmentation and
under-segmentation, as evidenced by the results derived from the
Boundary Recall, Rand index, Under-segmentation Error, and
Bhattacharyya distance using ground truth data. The Silhouette
score and Dunn Index are also used to quantitatively evaluate
the efficacy of our new proposed clustering technique.

Index Terms—Image Processing, Superpixels, SLIC, Color
Merging, K-means Clustering

I. INTRODUCTION

Insects such as butterflies, often display intricate color
patterns which are present not only from the presence of
pigments, but also through structural coloration [1]. Struc-
tural coloration results from the interaction of light with
nano/microstructural features on the wing surface, which
diffracts light to develop iridescence [2]. Color differences
induced by changes in lighting and from nano/microscopic
structures that create angle-dependent coloration, fall below
the threshold of perception in average human eyes [3]. To
account for this, specialized image acquisition techniques are
commonly used in conjunction with image analysis techniques
to enable detailed research on the structural and optical prop-
erties of insect wings [2], [4]. In view of the image analysis
and computer vision techniques used, clustering algorithms
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can be seen as playing a key role in decoding and categorizing
variable color patterns. Complex color patterns in insect wings
coupled with additional challenges like inconsistencies in
lighting, high dimensionality, and intricate combinations of
hues, pose difficulties for traditional clustering algorithms,
particularly in terms of the normalization of coloration [5]. K-
means clustering is an unsupervised learning technique widely
employed to group pixels by their color similarities, enabling
the subsequent segmentation and identification of distinct color
regions [6]. Although K-means clustering is unsupervised,
the number of clusters, ‘K’, is still a user-defined parameter
and is required due to how the algorithm is designed. The
K-means clustering algorithm is computationally efficient,
however, over- or under-segmented pixels may result from
unsuitable choices for the value of K [7]. Additionally, K-
means clustering does not account for spatial relationships in
data, leading to potential issues in the effective capturing of
spatial coherence. Applying K-means clustering to insect wing
colorization thus poses challenges, due to its limitations in
capturing spatial dependencies [8].

The application of superpixel segmentation as a pre-
processing technique enhances K-means clustering, and ren-
dering the algorithm more robust to variations in intensity,
intricacies in color combinations, and irregularities in insect
wing color patterns. There are various methods for superpixel
segmentation [9], but fundamentally, superpixel segmentation
is a computer vision technology, which divides a digital
image into distinct identical segments. Each segment, known
as a superpixel, constitutes a cluster of pixels, consolidating
those that share the highest similarity. Various criteria for
homogeneity can be employed to determine the similarity
of superpixels, encompassing colors, texture information, and
spatial coherence [9]. Generally, an effective superpixel seg-
mentation algorithm yields elevated similarity within a region,
while maintaining low inter-region similarity and highlighting
significant superpixels. This is as opposed to the retention of
the original complexity of thousands of individual pixels [10].

SLIC (Simple Linear Iterative Clustering) is the most widely
used superpixel segmentation algorithm in computer vision



applications [11], which has already been used for insect wing
recognition via color-based segmentation into superpixels for
enhanced pattern recognition [12]. It is an effective and
enhanced K-means method that requires a predefined number
of clusters. SLIC introduces a parameter called “compactness”,
which influences the shape of the generated superpixels [13].
Additionally, parameter choices including superpixel count
and compactness, are known to influence SLIC results. Recent
research aims to develop parameter-free approaches to address
issues related to providing inappropriate cluster numbers [14].

Image segmentation techniques are categorized in accor-
dance with the image elements employed, specifying dis-
tinctions between pixel-wise and superpixel-wise segmenta-
tion [15] [16]. The superpixel segmentation groups together
neighboring pixels with similar characteristics into percep-
tually meaningful and homogeneous regions. In contrast to
individual pixel-based approaches, the superpixel segmenta-
tion approaches reduces both processing time and memory
requirements [17]. Nonetheless, a notable limitation of the
superpixel-based segmentation approach is in its sensitivity
to the initial segmentation quality. The initialization of a high
count of superpixels can compromise segmentation efficacy,
especially in images with low-contrast edges, shadows, and
which contain similarities between foreground and background
[18].

Superpixel segmentation methods are categorized as either
graph-based or gradient ascent [19] [20]. Graph-based methods
treat pixels as nodes in a graph, with edges representing
pairwise relationships between neighboring pixels. Contrarily,
gradient ascent methods delineate boundaries and identify
regions of interest within an image. The gradient ascent
method is particularly effective in capturing variations in
image intensity or texture, making it valuable for superpixel
segmentation where a smooth transition between different
regions is desirable [21]. Commonly used gradient ascent
methods used for image color segmentation include Normal-
ized Cuts, Graph Cuts, Mean Shifts, Quick Shifts, SLIC, and
region competition [22].

SLIC requires pre-specifying the number of superpixels,
and an improper selection may cause under-segmentation or
over-segmentation, impacting the quality of the result [13].
To address the issue of over-segmentation in SLIC, merg-
ing algorithms can be employed to combine closely related
superpixels to achieve a more balanced and meaningful seg-
mentation. Three critical considerations in the workflow of
region merging include determining the starting point for
merging regions, the order in which merging takes place,
and the criteria defined for merging [23]. Spatial Merging
[24], Color Homogeneity Merging [25], Boundary Merging
[26], and Texture-Based Merging [27] are the most widely
used merging methods used to overcome the issue of over-
segmentation. More recent approaches use machine-learning
algorithms to combine diverse features and train classifiers,
providing probabilities for the merging of regions [28]. Most
recent studies show a color quantization algorithm based on a
binary splitting formulation of MacQueen’s online k-means,

which addresses initialization and acceleration issues with
significant speed improvement over popular batch k-means
algorithms [29] [30].

A high-quality rapid image segmentation framework has
been used to identify an optimal threshold using a hierarchical
multi-level image segmentation (MLIS) approach [31]. Here,
the authors initially segmented textural and noisy images,
after which they employed a local information based SLIC
approach (LI-SLIC) and over-segmented superpixels were
merged based on a probability distribution among superpixels.
Importantly, the authors thus show that using this methods
enables the automated generation of an appropriate number
of superpixels [31]. The generation of an appropriate number
of superpixels after initializing SLIC is still an unresolved
problem nevertheless, if when the superpixel parameter is
adjusted using a quality metrics-based algorithm [32]. A
color and texture segmentation algorithm proposed in [33]
builds upon SLIC by incorporating region merging to address
the limitations of SLIC in considering neighbor information
during the segmentation process. Local Binary Patterns (LBP)
and color histogram descriptors were employed to compute
both texture and color information for individual regions. The
normalized cross-correlation was subsequently used to mea-
sure the similarity between adjacent superpixels. The author
introduced an enhanced boundary adherence SLIC (BSLIC),
a modification of SLIC for superpixel generation that uses
three main modifications: (1) the hexagonal initialization of
cluster centers, (2) the selection of specific edge pixels as
centers, and (3) the inclusion of boundary representations in
distance measurements. The segmentation quality of BSLIC
was assessed using boundary recall and under-segmentation
error metrics. Both the hexagonal distribution of cluster centers
and the use of exact edge pixels for center initialization,
was noted to improve boundary adherence in edge-across
superpixels [34].

Recent advancements in neural network-based clustering
algorithms have shown promising results in the research field
[35]. However, these state-of-the-art methods often demand
substantial amounts of labeled data for effective training,
facing challenges in training time, interpretability, hyperpa-
rameter tuning, and susceptibility to overfitting, unlike tradi-
tional clustering algorithms. Despite advancements in neural
network-based clustering algorithms, many researchers still
prefer combining clustering-based segmentation with neural
networks due to its interpretability, computational efficiency,
ability to handle unlabeled data, and robustness to noise [36]
[37] [38].

In this paper, we propose a hybrid approach employing
SLIC and superpixels merging based on color differences
as a pre-processing step for K-means clustering, leveraging
the benefits of both methods. Our approach consists of three
primary phases designed to address over-segmentation caused
by the initialization of SLIC with a high count of superpixels.
These are: (1) the initialization of superpixels, which produces
a set of over-segmented superpixels by SLIC, (2) superpixel
merging utilizing the DeltaE 2000 (also known as ∆E00)



function to calculate the color similarity between neighboring
superpixels (∆E00 is a color difference formula used to quan-
tify the imperceptible difference between two colors [39]), and
(3) K-means clustering by choosing the desired number of
clusters to group similar superpixels. SLIC provides a spatially
coherent initialization that aligns well with the image content
and K-means is then applied adaptively within these regions.
This allows for more flexible and efficient color clustering,
especially in the context of insect wings. ∆E00 addresses
the issue of over-segmentation in SLIC in this study. The
effectiveness of the color approach is evaluated by Boundary
Recall (BR), Rand index (RI), Under-segmentation Error (UE),
Bhattacharyya distance, Silhouette score, and Dunn index.

II. METHODOLOGY

A. Development of a 4-Phase Method

We introduce a novel enhanced K-Means clustering ap-
proach incorporated into the AInsectID open-source entomol-
ogy software developed by using MATLAB R2022a. [40].
AInsectID digitally analyzes high-resolution images of insect
wings and bypasses physical capture for color analysis, re-
vealing distinct color patterns in the digital representation. The
flow diagram in Figure 1 illustrates the design of our proposed
method, which consists of four phases:

1) Image pre-possessing: In the first phase, an RGB
image is converted into an LAB image. LAB separates
brightness (luminance) information (the L channel) from
chromatic information (the a and b channels). The LAB
color space offers superior handling of color variations
across brightness as compared to RGB.

2) SLIC Clustering: In the second phase, we apply an
SLIC algorithm to segment the image. This enables
the production of a substantive number of superpixels,
referred to as over-segmentation. It involves the ini-
tialization of the center of a superpixel on the grid,
Sg , which is achieved by defining the desired number
of superpixels denoted, k. N represents the total pixel
count in the image as shown in Equation (1).

Sg =

√
N

k
(1)

A local neighborhood search is conducted to locate
pixels that are close in both color and spatial distance to
each superpixel center. Once found, each pixel is then
assigned to the cluster.

3) Superpixel Merging: Merging superpixels in SLIC
based on color involves the combining of adjacent su-
perpixels that exhibit similar color characteristics. In the
third phase, the pixels are assigned to the nearest center
by weighted distance. During this step, each pixel, i, in
the superpixel is linked to its closest superpixel neighbor,
k, for situations where the search region intersects with
i. Exploration for similar pixels involves a search within
a region of size 2Sg × 2Sgm centered around the center
of the superpixel. By constraining the size of the search

region, the algorithm is expedited as it reduces the
number of distance calculations. The calculation of the
weighted distance, D, involves both color and spatial
differences as in Equation (2). The normalization of both
spatial distance and color distance (Ns, Nc) is performed
according to their respective maximum values.

D =

√(
Ss

Ns

)2

+

(
Sc

Nc

)2

(2)

Equation (3), the color similarity metric, Sc, measures
the difference between the color values of two super-
pixels. It functions as an Euclidean distance in the color
space, where pi and pj are the values of two pixels
in different superpixels, and L, a, and b represent the
LAB color channels. The Euclidean distance measures
the color similarity between the two superpixels in 5-
D color space. If the Euclidean distance is small, the
superpixels are considered ‘similar’ in 5-D color space.

Sc(pi, pj) =
√
(Li − Lj)2 + (ai − aj)2 + (bi − bj)2

(3)
Moreover, a spatial distance metric, Ss, is defined to
measure the spatial proximity of two superpixels, as
shown in Equation (4), where (xi, yi) and (xj , yj) are
the pixel coordinates of pi and pj , respectively.

Ss(pi, pj) =
√
(xi − xj)2 + (yi − yj)2 (4)

The maximum anticipated spatial distance, Ns, within a
given cluster, matches the sampling interval Ns = Sg .
Conversely, color distances can exhibit significant vari-
ations across clusters. Hence, determining the expected
maximum color distance (Nc) within a specific cluster
is not simple and is often designated as a constant, m.
After substituting these premises in Equation (2), we
obtain the weighted distance as Equation (5).

D =

√(
Ss

Sg

)2

+

(
Sc

m

)2

(5)

The superpixel centers undergo iterative updates after the
assignment of pixels to their nearest superpixel centers.

4) K-Means Clustering After the color merging is com-
plete, each superpixel is represented by its average color
and treated as a data point in a feature space. This infor-
mation is then used as input to the K-Means algorithm,
with the desired number of clusters, K. Average colors
are calculated by summing the color values of all pixels
within the superpixel and dividing by the number of
pixels as shown in Equation (6), where Li, ai, and bi are
L, A and B channels of all pixels within the superpixel
region, Nk represents the total number of pixels in the
superpixel, k, and Lk, ak, bk indicates average color.

Lk, ak, bk =

(∑
i∈k Li

Nk
,

∑
i∈k ai

Nk
,

∑
i∈k bi

Nk

)
(6)



Fig. 1: Flow diagram describing our proposed clustering model as applied in AInsectID for insect wings based on color.

K-Means clustering combines the pixels of superpixels
within the same cluster to create larger regions.

B. Color Difference Analysis with DeltaE 2000

In our work, two superpixels were merged based on color
differences. The color distance between two superpixels is
calculated using the ∆E00 function. The merging process in-
volves the selecting of pairs of superpixels with color distances
below a threshold, T , after which they are merged into a single
superpixel. In color science, Just Noticeable Difference (JND)
represents the smallest color difference that an average human
eye can detect. A ∆E00 value below ‘1’ is often considered
as being below the typical JND threshold, meaning that the
color difference is so small that it is unlikely to be noticed
by the majority of observers under normal viewing conditions
[41]. The formula calculates the imperceptible color difference
between two superpixels by considering the sensitivity of the
human eye to changes in lightness. (∆L′), chroma (∆C ′), and
hue (∆H ′) as shown in Equation (7).

∆E00 =
√
(∆L′)2 + (∆C ′)2 + (∆H ′)2 (7)

After identifying the most suitable matching superpixels, the
label of the optimal match is substituted with the label of the

kth superpixel. The superpixels with the closest match exhibit
a distance below the predefined threshold, T . This procedure
was repeated for all pairs of neighboring superpixels until
the point in the iterative process where no further superpixels
could be merged based on the predefined threshold.

C. Evaluation Metrics

In this study, both qualitative and quantitative assessments
were conducted to evaluate the performance of our proposed
superpixel segmentation method. Our qualitative approach
considers the visual comparison of outputs, while quantita-
tively, we employ the following six metrics as a means to
assessing the differences between methods: Boundary Recall
(BR), Rand index (RI), Under-segmentation Error (UE), Bhat-
tacharyya distance (DB) (each of the preceding being super-
vised using the ground truth data, and the Silhouette Score
and Dunn Index (each of which were used as unsupervised
quantitative matrices to evaluate the efficacy of our proposed
clustering technique without ground truth). We detected the
edges of SLIC and proposed image segmentation using a
Canny edge operator [42] in order to effectively compare
against ground truth. Each of our supervised and unsupervised
quantiative assessment methods are described in more detail
below:



• Boundary Recall (BR) assesses how effectively the
algorithm captures and aligns with the true boundaries
between superpixels in an image, specifically focusing on
the accuracy of the algorithm in identifying boundaries
between color-based superpixels. Boundary recall hence
represents the percentage of real edges that closely align
with the edges of a superpixel [13]. As in Equation (8),
TP refers to the number of pixels that are correctly
labeled as belonging to the superpixels in both segmen-
tation and ground truth, while FN refers to the number
of pixels that are incorrectly labeled as not belonging
to the superpixel in segmentation but belonging to the
superpixel in the ground truth. Finally, n represents the
total number of pixels within the ground truth superpixel.

Recall =
1

n

n∑
i=1

(
TPi

TPi + FNi
) (8)

The resulting value of BR will range between 0 and 1,
where 1 indicates perfect boundary recall, and 0 indicates
that no correct boundaries have been identified.

• Rand Index (RI) is used to evaluate the similarity
between the segmentation results and the ground truth as
shown in Equation (9), where FP represents the number
of pixels that are incorrectly labeled as belonging to the
superpixel in the segmentation but not in the ground
truth, and TN represents the number of pixels that are
correctly labeled as not belonging to the superpixels in
both segmentation and ground truth.

RI =
TP + TN

TP + TN + FP + FN
(9)

The Rand Index ranges from 0 to 1, where 1 indicates
a perfect match between segmentation and ground truth,
and 0 indicates no agreement [9].

• Undersegmentation Error (UE) measures the extent
to which the superpixels exceed the boundaries of the
ground truth regions. The equation for UE is shown in
Equation (10), where Si is an arbitrary ground truth
region, M describes the number of ground truth regions,
N is the total number of pixels in the image, pj refers
to any superpixel that intersects with Si, P in

j shows the
section of pj that overlaps with Si, and P out

j shows the
part of pj that does not overlap with Si. The double
summation represents the calculation for each ground
truth region, Si, and each superpixel, pj , that intersects
with Si. The inner summation involves an intersection of
a superpixel pj with the ground truth region (Si). This
minimum pixel count serves as an under-segmentation
penalty. A UE value of 0 indicates perfect segmentation
with no under-segmentation error, while a value of 1
implies complete failure in adhering to the ground truth
boundaries [10].

• Silhouette Score is used to measure how well-defined
and separated clusters are in a given clustering result. It
quantifies the quality of clustering by assessing the cohe-

sion within clusters and the separation between clusters
[6]. Equation (11) shows a Silhouette score for a single
superpixel, where a(i) refers to the average color distance
between a superpixel and other superpixels within the
same color cluster, and b(i) defines the smallest average
color distance to a superpixel in a different color cluster.

Silhouette Scorei =
b(i)− a(i)

max(a(i), b(i))
(11)

The overall Silhouette score for all superpixels is the
average of these individual silhouette scores as shown in
Equation (12), where S is the total number of superpixels.

Overall Silhouette Score =
1

S

S∑
i=1

Silhouette Scorei

(12)
Higher Silhouette scores indicate superior superpixel
clustering where the superpixels within the same cluster
have more color similarities and where clusters are more
distinct from one another.

• Dunn Index is a clustering validation metric that as-
sesses the compactness of clusters and the separation
between different clusters [43]. As shown in Equation
(13), dist(Ci, Cj) is the distance between clusters Ci and
Cj (typically the minimum pairwise distance between
points in different clusters), and diam(Ck) is the diameter
of a cluster Ck (the maximum pairwise distance between
points within the same cluster).

Dunn Index =
mini ̸=j (dist(Ci, Cj))

maxk (diam(Ck))
(13)

The Dunn Index is particularly useful for datasets with
irregularly shaped clusters, providing insights into the in-
ternal structure of clusters. A higher Dunn Index implies
that clusters are compact and well-separated.

• Bhattacharyya Distance (DB) is employed to quantify
the similarities between the color distributions of seg-
mented images and ground truth. It extracts and com-
pares normalized color histograms from both segmented
and ground truth images. The histograms represent the
distribution of colors in each image [44]. DB ranges
from 0 to 1, where 0 indicates complete similarity and 1
indicates complete dissimilarity between the two color
distributions being compared. In this evaluation, high-
resolution microscopic images are used as ground truth.
These images capture the precise colors present in the
butterfly wing, providing an accurate representation of
the intricate color details.

III. RESULTS AND DISCUSSION

Both quantitative and qualitative metrics derived from our
proposed clustering method are discussed in this section.
Figure 2 qualitatively illustrates the visual outcomes for one
of the images of size 256×256 from a dataset comprising 200
images of butterfly wings that have a broad variety of colors.



UE =
1

N

 M∑
i=1

 ∑
pj :pj∩Si=∅

min
(
|P in

j |, |P out
j |

)× 100% (10)

The ground truth images used in this study were sourced
from the Natural History Museum (NHM) butterfly dataset
[45], which contains manually annotated images to include
details about the wing structure and are available under a
CC-BY-4.0 licence. High-resolution microscopic images with
high-resolution color details were purchased (standard licence)
from the iStock butterfly wing microscopic database [46].
These databases are designed to enable the classification and
morphological analysis of butterfly species.

SLIC segmentation was applied with k=500. After seg-
mentation, superpixels were merged based on the proximity
of color by ∆E00. Superpixels were merged using various
thresholds (ranging from 0 to 1) and compactness values
(ranging from 5 to 30). Using these ranges optimal values
were identified as m = 10 for compactness and T = 0.5 for
the threshold.

As observed from the visual outcomes, Figure 2, SLIC
produced smaller, and more irregular segments that our pro-
posed clustering model, especially in regions containing subtle
variations in color. In contrast, our proposed clustering method
utilizes ∆E00 to merge segments with perceptually similar col-
ors. This can be understood as important for maintaining high
color segmentation quality where the color information plays
a vital role. Our method demonstrates improved reductions
in fragmenting regions based on minor color differences. By
setting a threshold of 0.5, we establish a tolerance level for the
color differences. Minor color variations below this threshold
are considered similar. Color differences below the threshold
that might have led to fragmented regions have now hence
been effectively grouped. In this way, the algorithm avoids
creating unnecessary regions of fragmentation for subtle color
discrepancies, resulting in larger and more homogeneous seg-
ments.

To quantitatively support our qualitative visual outputs, we
analyzed the segmentation and clustering results as shown
in Table I. When we apply boundary recall to butterfly-
segmented images and their corresponding ground truth, our
method yields high BR values when compared against SLIC
techniques. This indicates that our color merging approach is
adept at identifying boundaries, showcasing its proficiency in
preserving and differentiating color clusters. Higher BR indi-
cates the proposed segmentation is more coherent and visually
meaningful as it reduces the problem of over-segmentation
generated by SLIC. Moreover, it preserved color boundaries,
allowing for a more accurate representation of color hue in the
images. Similarly, in the context of the under-segmentation
error, our color merging approach demonstrates low values
as compared to SLIC, indicating effectiveness in mitigating
under-segmentation issues, as distinguished between various
regions based on colors, as it minimizes the merging of

distinct colors. This results in a more concise representation
of the underlying structures with reduced loss of fine-grained
details. In addition, our segmentation shows a high RI, which
signifies the segmentation method closely aligns with the true
grouping of pixels and ascertaining the agreement between
proposed and ground truth. Conversely, a low RI for traditional
SLIC in the case of butterfly images suggests a mismatch
between the SLIC and ground truth segmentations, indicating
low agreement and potential inaccuracies in the segmentation
results as compared to our proposed segmentation.

Moreover, we employed high-resolution microscopic im-
ages of butterfly wings as ground truth to quantitatively assess
our proposed color clustering method, (cf. Figure 3). We
compared between the color distributions obtained through
our method and SLIC directly against the high-resolution
microscopic images using the Bhattacharyya distance, DB .
Our method results in a distinctly lower DB when compared
against SLIC, indicating that our approach is more effective
in preserving the color distribution and similarity between
the segmented regions and the ground truth. A lower Bhat-
tacharyya distance signifies a closer match between the color
distribution of our method and the ground truth, emphasizing
its efficacy in color clustering. Furthermore, we conducted a
comprehensive evaluation of our clustering results using both
the Silhouette score and the Dunn index. Our outputs reveal
a significant improvement in clustering quality as evidenced
by an enhancement in both the silhouette score and the Dunn
index. This suggests that our method not only enhances the
internal cohesion of clusters but also improves their separation,
leading to more meaningful and well-defined clustering results.
All quantitative matrices tested indicate our proposed method
yields enhanced segmentation outcomes.

The merging algorithm can intelligently terminate at con-
vergence, where no further superpixels can be merged based
on the defined threshold and the appropriate number of
superpixels has been achieved, effectively addressing issues
related to under-segmentation. Additionally, We determined
less superpixels for an image segmentation task based on
our quantitative matrices, while evaluating the performance
of the segmentation algorithm across different numbers of
superpixels. Our approach achieves boundary adherence while
employing an average smaller number of superpixels for
images in the insect wings dataset as compared to SLIC.
It indicates the effectiveness of our method in producing
accurate segmentation results with a reduced computational
burden, which is particularly valuable in the context of image
processing.

CONCLUSIONS AND FUTURE WORK

In conclusion, our proposed hybrid approach employs SLIC,
∆E00 color difference-based merging, and K-means clus-



Fig. 2: AInsectID visual segmentation evaluation of SLIC results and those extracted from our proposed model. Original image
used with the permission of [45] under a CC-BY-4.0 licence.

TABLE I: Quantitative Evaluation of Proposed Segmentation and Clustering Results

Methods Evaluation Metrics
UE BR RI Silhouette Dunn DB Superpixel Count

K-Mean – – – 0.90 0.34 –
SLIC 0.30 0.75 0.70 – – 0.7 80

Proposed Segmentation 0.07 0.87 0.88 – – 0.3 25
Proposed Clustering – – - 0.97 0.62 – –

tering to combines spatial information and perceptual color
differences to analyze insect wing colors. Firstly, SLIC ef-
fectively considers both color similarity and spatial proximity
to create the initial superpixels. Secondly, the ∆E00 color
difference calculation enhances precision in discriminating
subtle color variations, accounting for hue, lightness, and
chroma. Benefitting from the strengths of both algorithms,
our proposed method achieved more accurate and nuanced
clustering of insect wing colors, as compared to solely using
K-means and SLIC. Moreover, our proposed approach can
automatically determine the number of required superpixels
that are considered to be optimal as compared to SLIC,
effectively addressing issues related to under-segmentation.
This is enabled by leveraging the ∆E00 function for enhanced
adaptability in the segmentation process. Our proposed method
yields enhanced segmentation results compared to previous
methods, with reduced computations, which is particularly
valuable in the context of insect image processing. Despite the
satisfactory performance achieved by the proposed method to
automatically decide the number of superpixels by superpixel
merging, it still retains a dependency on the optimal value
of the threshold. In future work, the merging process could
be enhanced by automatically adapting the merging threshold

based on the overall image color variance with an aim of
converging towards 100% color clustering accuracy.
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