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Chapter 1

Zusammenfassung

Diese Monographie beschäftigt sich mit Methoden und Anwendungen des semantischen La-
beling. In diesem Kapitel geben wir zunächst die Motivation der Arbeit an, gefolgt von
einem Überblick über unsere Beiträge zu den interdisziplinären Bereichen der Computer Vision
sowie medizinischer Bildverarbeitung und Fernerkundung. Wir ausführen dabei Wahrschein-
lichkeitsmodelle auf graphen. Unsere Beiträge werden mit Beispielbildern illustriert und decken
drei Anwendungsgebiete ab, wobei jedem Gebiet ein separater Teil der Monographie gewid-
met ist: (I) Regionsegmentierung, (II) medizinische Bildanalyse, und (III) Bildklassifizierung
in der Fernerkundung. Die Übersicht Struktur dieser Monographie ist in Abbildung 1.1.

Graphical Models

Computer Vision Medical Image Analysis Remote Sensing

• Scene understanding
• Semantic segmentation
• Visual tracking

• Multi-region segmentation
• Brain tumor classification
• Brain tumor segmentation

• Building extraction
• Scene classification
• Hyperspectral classification

Figure 1.1: Die Übersicht Struktur dieser Monographie.
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1. ZUSAMMENFASSUNG

Motivation

Während Menschen stets aussagekräftige Informationen aus visuellen Daten fast mühelos ex-
trahieren, stellt es sich heraus, dass selbst einfache Aufgaben wie Erkennung aus visuellen
Daten, Detektion und Verfolgung von Objekten, Szeneninterpretation herausfordernde Prob-
leme für Maschinen sind. Die Entwicklung künstlicher Systeme, die visuelle Informationen
genauso zuverlässig wie Menschen verarbeiten können, hat viele potenzielle Anwendungen
in Bereichen wie künstliche Intelligenz, Robotik, medizinische Bildgebung, Überwachung,
Fernerkundung, Unterhaltung oder Sportwissenschaft. Das übergeordnete Ziel ist dabei, das
menschliche visuelle System durch Computer zu simulieren.

Ein grundlegendes Ziel der Computer Vision ist es, die semantischen szenenbezogenen In-
formationen zu extrahieren, das nennt man „Scene Understanding“ (Szenenverstehen). Scene
Understanding ist die Grundlage für viele Anwendungen: Überwachung, autonomes Fahren,
Verkehrssicherheit, Roboternavigation, visuell kontrollierte mobile Navigationssysteme oder
Aktivitätserkennung. Scene Understanding aus einem Bild oder einer Videosequenz erfordert
viel mehr als einfach eine Aufzeichnung und Speichern oder das Extrahieren bestimmter Merk-
male. Das Hauptziel ist es, eine Abbildung von Sensordaten auf semantische Informationen zu
finden. Das ist eine sehr anspruchsvolle Aufgabe, unter anderem aufgrund der Variabilität der
Daten. Diese Variabilität kann z.B. aufgrund von physikalischen Bedingungen auftreten, wie
zum Beispiel der Beleuchtung oder die Lage der Szene relativ zum Sensor, oder durch die in-
trinsische Natur der Daten selbst. Daraus resultiert die Notwendigkeit der Erfassung von lokale,
globale, oder dynamischen Aspekte der Szene. Um eine aussagekräftige Szenenbeschreibung
zu erhalten müssen alle Informationen, die aus einer Szene extrahiert werden können, im Kon-
text betrachtet werden. Allerdings, während es leicht für den Menschen ist, erweist es sich als
immer noch schwierig, derartige Informationen durch Computer zu erhalten.

Im Allgemeinen, lässt sich Scene Understanding als Labeling Problem formulieren in-
dem jeder nicht beobachteten verborgenen Variable eine Klasse zugeordnet wird. Die Labels
entsprechen verschiedenen Schätzungen wie beispielsweise einer Objektklasse bei Objektseg-
mentierung (Yang, 2015; Yang & Rosenhahn, 2014), einem Tiefenwert bei 3D-Rekonstruktion
(Huang et al., 2015), einem Pixelintensität im Fall der Bildentrauschen oder der Lage eines Ob-
jekts bei der Verfolgung (Müller et al., 2013). Die Labels sind in der Regel bedingt voneinander
abhängig, somit sind die Ausgabe stark strukturiert. Probabilistische graphische Modelle bieten
einen allgemeinen Rahmen für die statistische Modellierung, Inferenz und das Lernen in kün-
stlichen Vision-Systemen. Markovsche Zufallsfelder (MRF) sind die am häufigsten verwende-
ten graphischen Modellen im Computer-Vision, mit denen man lokale Kontextinformationen
in das Model einbauen kann. In MRFs werden die Abhängigkeiten zwischen den Variablen
in einer Wahrscheinlichkeitsverteilung durch Kanten zwischen den entsprechenden Knoten in
einem Graphen repräsentiert. In Computer Vision wurden MRFs bei den frühen Arbeiten (Be-
sag, 1974, 1986; Geman & Geman, 1984) volkstümlich. Eine Einschränkung dieser Modelle
ist allerdings dass man damit nur lokale Merkmale verwenden kann. Diese Einschränkung
wurde durch sogenannte bedingte Zufallsfelder (Conditional Random Fields – CRF) überwun-
den (Kumar & Hebert, 2003a; Lafferty et al., 2001). Bei diesen Modellen können beliebige
Funktionen verwendet werden, jedoch auf Kosten eines rein diskriminativen Ansatzes.
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Das Ziel dieser Monographie ist es, die Methoden und Anwendungen des semantischen
Labelings zu erforschen. Unsere Beiträge zu diesem sich rasch entwickelten Thema sind bes-
timmte Aspekte der Modellierung und der Inferenz in probabilistischen Modellen und ihre An-
wendungen in den interdisziplinären Bereichen der Computer Vision sowie medizinischer Bild-
verarbeitung und Fernerkundung. Im folgenden Abschnitt fassen wir unsere wissenschaftlichen
Beiträge zusammen.

Beiträge

Regionsegmentierung

Der erste Teil dieses Werks besteht aus Kapiteln, die verschiedene probabilistische grafische
Modelle zusammen mit ihrer Anwendung auf Probleme der Bildsegmentierung, Objektseg-
mentierung und Tiefenupsampling, Szeneninterpretation, Videosegmentierung und Tracking
anwenden.

Bildsegmentierung durch Bilayer Superpixel Gruppierung

Bildsegmentierung ist ein fundamentales low-level Problem der Computer Vision und der Bild-
verarbeitung. Es bereitet die Basis für high-level Bildverständnis wie zum Beispiel Objek-
terkennung, Bildersuche, Aktivitätserkennung, etc.

Obwohl es bereits eine Vielzahl von Segmentierungstechniken gibt, bleibt Segmentierung
ein offenes Problem, da Bilder eine große Diversität und Mehrdeutigkeiten beinhalten. Die
Aufgabe der Segmentierung ist es, Bildpixel in visuel bedeutsame Regionen einzuteilen, die
für weitere Verarbeitung, z.B. bei der Erkennung, nützlich sind. Ansätze in der Literatur bein-
halten Normalized Cuts (Shi & Malik, 2000), Mean Shift (Shi & Malik, 2000), grafenbasierte
Methoden (Felzenszwalb & Huttenlocher, 2004b), und ultrametrische Contour Maps (Arbe-
laez et al., 2011). In dieser Arbeit formulieren wir Segmentierung als die Aufgabe, Superpixel
zu gruppieren. Wir schlagen einen neuen, grafenbasierten Segmentierungsalgorithmus vor, der
es ermöglicht, gleichzeitig unterschiedliche Eigenschaften von Bilayer-Superpixel zu intergri-
eren. Die Grundidee ist es, Segmentierung als Gruppierung von einer Untermenge von Super-
pixeln zu formulieren, die einen Bilayergrafen teilt, dessen Kanten die Ähnlichkeit zwischen
den Superpixeln beschreiben. Zunächst konstruieren wir dafür einen bipartiten Graphen, der
Superpixel-Eigenschaften und Eigenschaften mit großer Reichweite beinhaltet. Dann werden
Eigenschaften mit mittlerer Reichweite in einem hybriden Grafenmodell eingebunden. Das
Segmentierungsproblem wird dann durch spektrales Clustern gelöst. Dieser Ansatz ist vollau-
tomisch, bottom-up, und benötigt kein überwachtes Training. Diese Arbeit ist auf der Asian
Conference on Pattern Recognition (ACPR) veröffentlicht worden (Yang, 2013).

Schätzung des Layouts aus Innenraumaufnahmen mit Störobjekten durch trajektorien-
basierte Priors

Das Schätzen der Layouts oder der Struktur eines Innenraums ist wichtig für zahlreiche Auf-
gaben, z.B. Analyse von Aktivitäten (McKenna & Charif, 2004), Navigation von Robotern
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Figure 1.2: Vorgehen bei der unüberwachten, CRF basierten Szenensegmentierung für Regionen
ohne Aktivität Die erste Spalte zeigt die Eingabedaten inklusive Bilder der Überwachungsszene,
Trajektorien der Schüsselpunkte und Linien im Szenenbild. Die zweite Spalte zeigt die drei Merk-
male, die verwendet werden um unäre Klassenpotentiale zu definieren: die Farbprioren, die rela-
tive, quantisierte Gröe und die Oberflächenorientierung. Die binäre Potentiale der Ordnungs- und
der Glattheitsbedingungen werden hinzugefügt, um die Nachbarschaft homogener Regionen zu
bestimmen. Die Inferenz findet die optimale Szenensegmentierung durch Energieminimierung des
CRF.

(Thrun et al., 2004), Szenenverständnis (Saleemi et al., 2010) oder das Plazieren von Objek-
ten (Jia et al., 2013). Der aktuelle Stand der Technik verwendet für diesen Zweck entweder
räumlich Bildmerkmale (Hedau et al., 2009) oder trajektorienbasierte zeitliche Information
(Zhang et al., 2011). Keines der beiden Merkmale ist jedoch ausreichend um das Layout eines
Innenraums zu bestimmten. Die größte Herausforderung für merkmalsbasierte Techniken ist
die Tatsache, dass die meisten Innenräume mit Möbeln und Dekoration bestückt sind. Diese
verschleiern meist die geometrische Struktur der Szene und verdecken die Grenzen zwischen
Wand und Boden. Anschein und Verteilung von Stördaten kann in verschiedenne Innenräu-
men stark voneinander abweichen, so dass es extrem schwer ist, sie konsistent zu modellieren.
Aus ähnlichen Gründen clustern trajektorenbasierte Techniken normalerweise die Daten der
Trajektorien und modellieren nur die Pfade (Zhang et al., 2011). Sie kümmern sich nicht um
Stördaten oder Ruheplätze in der Szene.

Obwohl Bildmerkmale und Trajektionsdaten an sich nicht ausreichend sind für zuverläs-
sige Bestimmung des Szenenlayouts, können sie doch für eine zuverlässigere Bestimmung
kombiniert werden. Wir schlagen einen Algorithmus vor, der das szenensemantische Kon-
textmodell durch Bildsegmentierung unüberwacht lernt. Dazu verwenden wir die Trajekto-
rien nicht direkt zur Layoutschätzung, sondern unser Segmentierungsalgorithmus verwendet

4



sowohl Bildmerkmale als auch trajektorienbasierte Merkmale. So können wir auch die Ruhe-
und Sitzflächen in der Szene modellieren. Dazu nehmen wir an, dass es eine statische und
unkalibrierte Überwachungskamera in der Szene gibt. Unter Verwendung von Pixel-Farbe und
perspektivischen Hinweisen der Szene, wird jeder Pixel einer Klasse zugewiesen, die Sitzgele-
genheiten, den Boden, oder statische Regionen wie Wände oder Decke beschreiben. Die glob-
ale topologische Ordnung der Klassen, in der sich z.B. Sitzgelegenheiten und Hintergrund
über dem Fußboden befinden müssen, wird über eine Ordnungsbedingung lokal in ein Condi-
tional Random Field ( CRF ) eingefügt. Abbildung 1.2 gibt einen Überblick über CRF basierte
Segmentierung für unüberwachte Szenenlayoutbestimmung. Ein Inferenzalgorithmus, der auf
Graph Cut basiert, wird auf unser CRF angewendet, um die endgültige Segmentierung oder das
Layout zu bestimmen. Die vorgeschlagenen Methode liefert auch auf schweren realen Szenen
sehr genaue Segmentierungen. Diese Arbeit ist in Image Vision Computing (IVC) (Shoaib
et al., 2014) erschienen.

Gemeinsame Objektsegmentierung und Tiefenupsampling

In den letzten Jahren ist die gemeinsame Verwendung von Tiefensensoren und Kameras im-
mer bliebter geworden. Davon profitieren auch viele Computer Vision Anwendungen. Diese
Arbeit wendet sich der tiefengestützten objektbasierten Bildsegmentierung und bildbasierten
Tiefenupsampling zu. Erstere Aufgabe verwendet Tiefeninformation um Bilder in Regionen
zu segmenitieren, die Objekten entsprechen. Vorherige Arbeiten zu dieser Aufgabe verlassen
sich zumeist auf dichte Tiefenkarten aus Stereobildpaaren (Ladickỳ et al., 2012; Sengupta
et al., 2013). In letzter Zeit, sind auch dünnbesetzte 3D Punktwolken und die rekonstru-
ierten, korrespondierende Tiefenkarten in semantischer Segmentierung für Straßenszene be-
nutzt worden (Chen et al., 2014; Huang et al., 2014). In diesen Arbeiten, ist Tiefeninfor-
mation entweder als geometrischer Prior oder als feste Bedingung im Rahmen eines Markov
Rrandom Fields (MRF) integriert worden, um so die Segmentierung zu verbessern. Unsere
zweite Aufgabe, nämlich hochaufgelöste Tiefenkarten aus wenigen Meßwerten zu erzeugen,
verwendet hochaufgelöste Bilder als Führung. Existierende Forschung verwendet hauptsäch-
lich Techniken wie bilaterales Filtern (Yang et al., 2007), Sparse Representation (Gong et al.,
2014), oder MRF (Diebel & Thrun, 2005; Zhu et al., 2010). Es ist jedoch eine gemein-
same Schwäche beider Aufgaben, dass sie anfällig für Fehler in die Anleitung sind. Genauer
gesagt, die Genauigkeit der Bildsegmentierung läßt nach, wenn die verwendete Tiefenkarte
verrauscht ist oder verwaschene Kanten aufweist. Genauso führt ein Segment, das mehrere
Objekte durchqueren, zu einer falschen Auflösungserhöhung der Tiefenkarte. Um solche eine
Fehlerfortpflanzung zu verhindern, schlagen wir vor, diese beiden Probleme simultan zu lösen.

Wir schlagen eine gemeinsame Methode vor, um tiefenassistierte Objektsegmentierung und
bildassistent Tiefenupsampling durchzuführen. Dazu formulieren wir diese beiden Aufgaben
als ein Bi-Task Labeling Problem, das in einem Markov random field (MRF) definiert wird.
Eine Methode alternierender Richtungen wird für die gemeinsame Inferenz angepasst, so dass
jedes Unterproblem alternierend gelöst wird. Dabei wird das Unterproblem der Bildsegmen-
tierung mit Graph Cuts gelöst, ein Algorithmus der diskrete Objektlabel sehr effizient berech-
net. Tiefenupsamlling wird durch das Lösen eines linearen Gleichungsystems adressiert, das
kontinuierliche Tiefenwerte liefert. Wie Abbildung 1.3 zeigt, werden durch dieses Vorgehen
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robuste Ojektsegmentierungen und genaue Tiefenkarten erreicht. Diese Arbeite ist in IEEE
Signal Processing Letters (SPL) (Huang et al., 2015).
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Figure 1.3: Ergebnisse der Objektsegmentierung und des Tiefenupsamplings auf dem KITTI
Datensatz. (A) Eingabebild. (B) Objekte Saat. (C) Wahre Objektsegmentierung. (D) Ergebnis der
gemeinsamen Segmentierung. (E) Ergebnisse einer Segmentierung ohne Tiefenupsampling. (F)
Dünnbesetzte Tiefenkarte. (G) Ergebnisse des gemeinsamen Tiefenupsamplings. (H) Tiefenup-
sampling ohne Objektsegmentierung.

Ein generisches probabilistisches graphisches Modell zur regionsbasierten Szeneninter-
pretation

Die Aufgabe der semantischen Szeneninterpretation ist es, die Bildregionen und ihre Beziehun-
gen untereinander semantischen Klassen zuzuordnen. Dies ist ein essentieller Bestandteil
vieler Computer-Vision-Anwendungen, wie z.B.: Objekterkennung, 3D-Rekonstruktion oder
Wahrnehmung in der Robotik. Auf Grund der mehrdeutigen Erscheinung der semantischen
Klassen in verschiedenen Bilder, stellt die korrekte semantische Szeneninterpretation eine
schwierige Herausforderung dar (Tsotsos, 1988). Die Ursache dieser mehrdeutigen Erschei-
nung liegt zum einen in den physikalischen Bedingungen, wie z.B. der Beleuchtung oder der
Pose der Beispiel Szenenkomponenten relativ zur Kamera.

Bilder künstlicher Szenen, wie z.B. Bilder einer Fassade, zeigen starke kontextuelle Ab-
hängigkeiten in Form von räumlichen Interaktionen zwischen verschiedenen Komponenten.
Benachbarte Pixel gehören oft der selben Klasse an und unterschiedliche Regionen erscheinen
oft in bestimmten räumlichen Konfigurationen. Die Modellierung solcher räumlichen und
hierarchischen Strukturen ist entscheidend für das Erreichen einer guten Klassifikationsge-
nauigkeit.

Graphische Modelle, ob gerichtet oder ungerichtet, bieten ein bewährtes Mittel zur statis-
tischen Modellierung der oben genannten Abhängigkeiten. Für diesen Zweck werden häu-
fig zwei Arten graphischer Modelle eingesetzt: Bayesnetze (BNs) (Sarkar & Boyer, 1993),
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(a) Multi-scale segmentation

(b) The graphical model

Figure 1.4: Illustration der Struktur des graphischen Modells. Blaue Kanten zwischen den Knoten
repräsentieren, die Nachbarschaft innerhalb einer Skala (ungerichtete Kanten), rote gestrichelte
Kanten repräsentieren die hierarchischen Beziehungen zwischen verschiedenen Regionen (un-
gerichtete oder direkte Kanten).

basierend auf gerichteten Graphen und Random-Fields (RFs) (Besag, 1974), basierend auf un-
gerichteten Graphen. RFs beschreiben hauptsächlich gegenseitige Abhängigkeiten, wie z.B.
räumliche Korrelation. BNs werden hingegen meist zur Modellierung von kausalen Beziehun-
gen verwendet. Beide Arten von Modellen wurden erfolgreich in Computer-Vision eingesetzt.
Allerdings haben beide auch bestimmte Beschränkungen in Bezug auf die Repräsentation der
Beziehungen verschiedener Variablen. BNs sind nicht geeignet um symmetrische Beziehungen
darzustellen. RFs bieten eine natürliche Möglichkeit zur Modellierung solcher Beziehungen.
Sie sind jedoch nicht geeignet um kausale Abhängigkeiten zu beschreiben. Der Hauptbeitrag
unserer Arbeit ist die Entwicklung eines generischen statistischen Graphischen Modells zur
Szeneninterpretation, siehe Abbildung 1.4, welches verschiedene Typen von Bild-Features,
sowie räumlicher struktureller und hierarchischer Information nahtlos integriert. User Mod-
ell vereinigt Ideen existierender Methoden, wie z.B. Conditional-Random-Fields (CRFs). Die
Arbeit ist auf der International Conference on Computer Vision Theory and Applications (VIS-
APP) (Yang, 2015) veröffentlicht worden.
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1. ZUSAMMENFASSUNG

Videosegmentierung mit gemeinsamen Objekt- und Trajektorienlabelling

Unüberwachte Videoobjektsegmentierung ist ein schwieriges Computer-Vision-Problem, da
hier grosse Datenmengen verarbeitet werden müssen und das Erscheinungsbild von Objekten
sich im Laufe des Videos signifikant verändern kann. Objektsegmentierung bietet die Grund-
lage für eine Vielzahl potentieller Anwendungen, wie z.B. Objekterkennung, 3D-Rekonstruktion,
Aktivitätserkennung und Video-Retrieval. Auf Grund dieser vielen Anwendungsmöglichkeiten,
gibt es in den letzten Jahren eine zunehmende Zahl von Arbeiten (Grundmann et al., 2010; Lee
et al., 2011), die sich mit dem Thema beschäftigen. Viele Ansätze erweitern Einzelbildmeth-
oden zur Anwendung auf mehrere Bilder, wobei sie die Redundanz entlang der Zeitachse und
die Glattheit des Bewegungsfeldes ausnutzen. Solche Ansätze leiden unter Problemen wie
Drift, Verdeckung und dem veränderlichen Erscheinungsbild der Objekte. Die Nutzung von
Features, die sich zeitlich über mehrere Videobilder erstrecken, könnten Helfen diese Prob-
leme zu lösen. In der Tat ist es so, dass Videomaterial viele solcher Langzeitinformationen
enthält. Beispiele sind Objektbewegung, zeitliche Kontinuität, sowie die Interaktion von Ob-
jekten über einen grösseren Zeitraum. Bewegungsegmentierung nutzt solche Informationen
und formuliert so eine Clusteraufgabe um Pixel in aller Frames zu gruppieren. Existierende
Bewegungsegmentierungsmethoden liefern allerdings nur an diskreten und vereinzelten Posi-
tionen Resultate (Brox & Malik, 2010).

Um die oben genannten Probleme zu bewältigen formulieren wir Bild- und Bewegungseg-
mentierung als gemeinsame Aufgabe. Hier stellen wir eine Methode zur Segmentierung des
Vordergrungs in Raum und Zeit vor. Unser Ansatz beachtet Objektränder, wie in Abbil-
dung 1.5 gezeigt, und erzeugt zudem ein Trajektorien-Labelling. Anders als bisherige Meth-

Figure 1.5: Videoobjektsegmentierung.

oden segmentieren wir die Pixel mit Hilfe eines neuen, räumlich dicht, zeitlich jedoch dünn
formulierten, graphischen Modells.

Der wissenschaftliche Hauptbeitrag unserer Arbeit ist ein vollautomatischer Bottom-Up-
Ansatz zur Kombination von Objekt- und Bewegungssegmentierung. Unser Ansatz ist als In-
ferenz in einem vereinigtem CRF-Modell formuliert. Das CRF beschreibt Pixelklassifikation
und Trajektorienclustering in einer einzigen Energiefunktion, die sowohl dichte lokale Interak-
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tionen als auch einige globale Abhängigkeiten zusammenfasst. Wir optimieren über Pixel und
Trajektorien in einem gemeinsamen Lösungsraum mit Hilfe eines Raum-Zeit-CRF: Sowohl
Vordergrundsegmentierung als auch Trajektorienclustering werden mit Hilfe von Potential-
funktionen abgebildet. Ein auf Koordinatenabstieg basiertes Optimierungsverfahren wird ver-
wendet um die Inferenz in dem Modell durchzuführen. Nach unsrem Kenntnisstand ist dies
die erste Arbeit, die Objektsegmentierung und Trajektorienclustering in einem gemeinsamen
probabilistischen Modell kombiniert. Die Arbeit erschien auf der IEEE Winter Conference on
Applications of Computer Vision (WACV) (Yang & Rosenhahn, 2014).
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Figure 1.6: Particle Belief Propagation. Links: Message-Passing-Mechanismus. Rechts: MCMC-
Sampling des Beliefs b(xs) mit einer Beispielhaften Samplekette eines Particles (blau) und dem
korrespondierendem Histogramm (rot).

Slice Sampling Particle Belief Propagation

Markov-Random-Fields (MRFs) bilden ein wirksames Instrument zur Modellierung von Ab-
hängigkeiten zwischen beobachteten Variablen. Inferenz ist in solchen Modellen ein Problem,
dass bereits in der Vergangenheit breit angegangen wurde. MRFs und ihre Inferenzmetho-
den können in zwei Kategorien eingeteilt werden, in diskrete und kontinuierliche Labelling-
Probleme. Die meisten Arbeiten zum Thema Inferenz in MRFs befassen sich mit diskreten
Problemen (Boykov et al., 2001; Kolmogorov, 2006). Oft können solche Methoden nicht
ohne weiteres auf Probleme angewendet werden, für die ein kontinuierlicher Label-Raum eine
natürlichere Wahl wäre. Das Relational-Feature-Tracking bietet hierfür ein Beispiel (Salz-
mann & Urtasun, 2012). In jüngerer Zeit wurden Message-Passing-Algorithmen zur Anwen-
dung auf kontinuierlichen, statt auf diskreten, Problemen vorgeschlagen (Ihler & McAllester,
2009; Peng et al., 2011; Sudderth et al., 2010). Diese Methoden nutzen Markov Chain Monte
Carlo (MCMC) Sampling um Message-Verteilungen zu approximieren. Alle bisherigen An-
sätze basieren auf Metropolis-Hastings-Sampling. Diese Sampling-Strategie besteht aus zwei
Schritten: (a) Kandidaten-Partikel werden aus einer Proposal-Verteilung gezogen, die leicht
zu samplen ist. (b) Die Kandidaten werden auf Basis einer Transitionsverteilung zufällig en-
tweder akzeptiert oder verworfen. Bei dieser Strategie ist die Wahl der Proposal-Verteilung von
grosser Wichtigkeit. Hier muss ein Kompromiss zwischen dem schnellen Erforschen des Lö-
sungsraums (eine breite Verteilung ist vorteilhaft) und einer hohen Akzeptanzrate (geringe Be-
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1. ZUSAMMENFASSUNG

wegung ist vorteilhaft) gefunden werden. Eine schematische übersicht wird in Abbildung 1.6
dargestellt.

#1

· · ·

#377

· · ·

#467

· · ·

Figure 1.7: 2D-Feature-Tracking-Beispiel.

Der wissenschaftliche Hauptbeitrag unserer Arbeit ist ein neuer Particle-Belief-Propagation-
Algorithmus, der Slice-Sampling (SPBP) anstatt Metropolis-Hastings-Sampling verwendet.
Unsere Methode nutzt die Struktur der PBP-Message-Passing-Gleichungen aus um direktes
Sampling aus der Zielverteilung zu ermöglichen. Hierzu benötigt sie keine schwer zu op-
timierende Proposal-Verteilung. Voraussetzung für unsere Methode ist allerdings eine ana-
lytische Beschreibung oder Begrenzung der Potentialfuntionen. Unsere Methode wurde an-
hand einer komplexen 2D-Relational-Feature-Tracking-Anwendung (siehe Abbildung 1.7) ver-
ifiziert. Die Arbeit erschien auf der IEEE International Conference on Computer Vision (ICCV)
(Müller et al., 2013).

Medizinische Bildanalyse

Im zweiten Teil dieser Habilitation werden Ansätze für die medizinische Bildanalyse beschrieben,
die sowohl einen Graph Prior, als auch Dictionary Learning verwenden und angewandt werden
für Semantic Labeling, Segmentierung, Tumorklassifikation und -segmentierung.

Multi-Region Labeling und Segmentierung unter Verwendung eines Topologischen Vor-
wissens und Atlas-Informationen in Bildern von Gehirnen

Die medizinische Bildsegmentierung und das Erkennen anatomischer Strukturen, entsprechend
der vorliegenden Art des Gewebes, sind wichtig für eine akkurate Diagnose und Therapie. Wir
schlagen einen neuen Ansatz für Labeling und Segmentierung mehrerer Bereiche/Regionen
vor. Dieser basiert auf einem topologischen Vorwissen des zu segmentierenden Graphen, Reg-
istrierung der Label und topologischen Informationen eines Atlas, unter Verwendung einer
Multi-Levelset Energieminimierung. Wir verwenden einen topologischen Graph Prior und At-
las Informationen um eine Kontur zu erstellen, basierend auf der Topologie, repräsentiert durch
Relationen im Graph. Diese Methode ist dazu in der Lage, angrenzende Objekte mit sehr ähn-
lichen Grauwerten zu segmentieren, die mit Standardmethoden nur schwer zu trennen sind. Der
topologische Graph wird von einem schlecht aufgelösten und verrauschten Bild auf die topol-
ogische Information des Atlas registriert, um die Labels der Regionen zu erhalten. Wir präsen-
tieren einen Graph Prior und Registrierungstechniken, um zu erklären, wie sie zu präzisen
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Segmentierungen und Klassifikationen mehrerer Regionen führen. Der vorgestellte Algorith-
mus kann verrauschte und schlecht aufgelöste Regionen von Gehirnen aus MRI Bildern unter-
schiedlicher Modalität segmentieren und klassifizieren, wie in der Abbildung 1.8 zu sehen.

Diese Arbeit erschien in Computerized Medical Imaging and Graphics Journal (CMIG) (Al-
Shaikhli et al., 2014c).

Gehirntumorklassifikation unter Verwendung von Sparse Coding und Dictionary Learn-
ing

Die frühe Erkennung von Gehirntumoren ist für eine effektive Behandlung sehr wichtig. Die
Klassifikation von Gehirntumoren wird als eine der wichtigsten und anspruchsvollsten Auf-
gaben in der medizinischen Bildverarbeitung angesehen, da es schwer fällt, relevante Informa-
tionen zu extrahieren, mit denen der Tumor von normalem Gehirngewebe zu unterscheiden ist.
Der Beitrag besteht aus einer modifizierten Sparse Coding und Dictionary Learning basierten
Klassifikation. Wir verwenden die K-SVD Methode, um das Dictionary und die Sparse Cod-
ing Steps zu aktualisieren. Auf Grund der hohen Ähnlichkeit der Pixelwerte zwischen nor-
malen Gewebe und Tumorgewebe und darüberhinaus der Variabilität in Form, Ort und Grösse
des Tumors, ist zusätzlich eine Verwendung von topologischen und texturbasierten Merkmalen
gerechtfertigt, um das Dictionary zu lernen. Basierend auf der (unveränderten) Topologie eines

Figure 1.8: Beispiele eines multi-region Labeling und Segmentierung. (a) Stellt die Eingabebilder
und die Ground Truth Daten da, (b) zeigt die Segmentierung mit einem topologischen Graphen
und Atlas Information, (c) zeigt die Segmentierung mit einem topologischen Graphen ohne Atlas
Information.
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1. ZUSAMMENFASSUNG

Figure 1.9: 3D Gliom Segmentierung der BraTS Trainingsdaten. In jedem Beispiel enthält die
erste Spalte die Eingabebilder (axiale, koronale und sagittale Ebene), die zweite Spalte die 2D
Tumor Segmentierung und die vierte Zeile die 3D Rekonstruktion des Tumors.

normalen Gehirns treffen die topologischen Merkmale eine Aussage darüber, ob es sich um
einen normalen oder abnormalen Fall handelt. In Anwesenheit eines Tumors wird sich die
Topologie eines normalen Gehirns verändern. Zusätzlich geben die texturbasierten Merkmale
eine gute Unterscheidung der Typen des Gehirntumors. Das Neue an unserem Algorithmus ist
die Verwendung von Topologie- und Textur-basierten Merkmalen für das Lernen, anstatt direkt
auf den Pixelwerten zu lernen. Diese Arbeit erschien auf der IEEE International Conference
on Image Processing (ICIP) (Al-Shaikhli et al., 2014a).

Coupled Dictionary Learning für Automatische Mulit-Label Gehirntumorsegmentierung
in Flair MRI Bildern

Wir schlagen einen neuen gekoppelten Dictionary Learning Ansatz vor (ein Dictionary der
originalen Bilddaten und eines der assoziierten Labels), für eine automatische multi-label Seg-
mentierung von Gehirntumoren, illustiert in Abbildung 1.9. Der Beitrag besteht aus einer
neuen, voll-automatischen multi-label Segmentierung, welche gekoppelte Dictionaries verwen-
det, die aus einer Trainingsdatenmenge mit einer einzigen Bildmodalität (Flair MRI), assoziiert
mit gelabelten Bildaten (Ground Truth Segmentierung), gelernt wurden. Aus der Trainings-
datenmenge der Bilder werden Patches extrahiert und zu einer Matrix in einem Dictionary
zusammengefügt. Jeder Patch hat einen korrespondierenderen Patch in einem Label Dictio-
nary. Das Label Dictionary repräsentiert die vier Labels des Vordergrunds (Nekrose, enhanced
Tumor, non-enhanced Tumor und ödem) und ein Label für den Hintergrund. Für Tests benötigt
die vorgestellte Methode Bilder der Modalität single MRI als Testdaten. Nachdem die Patches
aus den Trainingsdaten extrahiert wurden, wird die Ähnlichkeit zwischen den Patches der Test-
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Figure 1.10: Hybride Repräsentation für die Extraktion von Gebäuden. Ein Marked-Point-Prozess
wird für die Repräsentation von High-Level-Wissen verwendet, d.h. für die Gebäude und ihre Rela-
tionen. Ein Markov Random Field repräsentiert Low-Level-Informationen, d.h. die Eigenschaften
aller Pixel. Jeder markierte Punkt auf dem High-Level steht für ein Gebäude und entspricht einer
rechteckigen Region im Markov Random Field auf dem Low-Level.

daten und denen des Dictionaries der Bilder der Trainingsdaten bestimmt. Danach werden die
korrespondierenden Teile in dem Label Dictionary ausgewählt. Das Label Dictionary wird ver-
wendet, um die Vordergrund- und Hintergrundlabel für die Segmentierung mittels Graph-Cut
zur Verfügung zu stellen.

Diese Arbeit wurde auf dem International Symposium on Visual Computing (ISVC) (Al-
Shaikhli et al., 2014b) präsentiert.

Fernerkundungsbildklassifikation

Der dritte Teil dieser Monographie besteht aus Kapiteln, wurde die Kopplung von Markovsche
Zufallsfelder (MRF), Marked-Point Prozessen (MPP) und Gaußprozessen (GP) für die Fern-
erkundungsbildklassifikation beschreiben.

Kombination von MRFs und MPPs für die Extraktion von Gebäuden in Fernerkundungs-
bildern

Die automatische Extraktion von Gebäuden aus Fernerkundungsbildern ist ein aktives Forschungs-
feld. Trotz der Forschungsbestrebungen der letzten Jahrzehnte ist eine voll automatische Ex-
traktion schwierig. Das Hauptproblem ist die Art der Repräsentation von Objekten und Bildern
(Mayer, 1999). Statistische Ansätze bieten einen mächtigen Rahmen für Modellierung und
Inferenz. Markov Random Fields und Marked-Point-Prozesse können kontextbedingte En-
titäten gut repräsentieren. Mittels MRFs können Low-Level-Informationen bezüglich einzelner
Bild-Pixel und Interaktionen zwischen Pixeln effizient repräsentiert werden. Andererseits kann
High-Level-Wissen, wie beispielsweise freie semantische Strukturen oder variable Topology,
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1. ZUSAMMENFASSUNG

nur schwer in MRFs integriert werden. Auf der Basis von Spatial-Point-Prozessen kann High-
Level-Wissen eingespeißt werden, indem man Punkte und Punktverbindungen mit Markierun-
gen verknüpft. Konkrete Formen können mit geometrischen Markierungen repräsentiert wer-
den. Allgemeine Formen können aufgrund des Bildinhalts jedoch nicht bestimmt werden. Dies
ist eine Folge der unzureichenden Repräsentation mittels Low-Level-Informationen.

Motiviert durch die komplementären Charakteristika von MRFs und MPPs kombinieren
wir beide Ansätze. So können wir Low-Level-Informationen und High-Level-Wissen gle-
ichermaßen repräsentieren. Auf Basis der kombinierten Repräsentation entwickeln wir einen
Ansatz, welcher Gebäude aus einzelnen Fernerkundungsbildern extrahiert, siehe Abbildung 1.10.
Diese Arbeit erschien im ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, ISPRS Congress (Chai et al., 2012).

Multi-Source Multi-Scale Hierarchical Conditional Random Field für die Fernerkun-
dungsbildklassifikation

Figure 1.11: Ein Klassifikationsergebniss des MSMSH-CRF-Modells auf den Beijing-Airborne-
Daten (Zhang et al., 2013), Links: Fernerkundungsbild, Mitte: LiDAR-Punkt-Wolke, Rechts: Klas-
sifikationsergebnis (rot - Gebäude, blau - Straße, grün - Vegetation).

Die Fusion von Fernerkundungsbildern mit LiDAR-Daten verbindet komplementäre Infor-
mationen für Fernerkundungsanwendungen wie Objektklassifizierung und -erkennung. Diese
Arbeit präsentiert ein neues Multi-Source Multi-Scale Hierarchical Conditional Random Field
(MSMSH-CRF), welches Features aus Fernerkundungsbildern und LiDAR-Punkt-Wolken für
Bildklassifikation verbindet. Der Hauptbeitrag dieser Arbeit ist ein neues CRF-basiertes Mod-
ellierungsschema für komplementäre Multi-Source-Daten, wie beispielsweise die Textur von
Fernerkundungsbildern und die Elevation in LiDAR-Daten.

Um verschiedene Ebenen von Kontextinformationen in Bildern zu nutzen, schlagen wir
hierarchische Multi-Skalen-Potentiale vor, welche durch die Aggregation von Evidenz von der
lokalen zur globalen Ebene erweitert werden. Zieht man die Kopplung des selben Objekts
in den Fernerkundungsbildern und den LiDAR-Daten in Betracht, besteht der Nutzen der hi-
erarchischen Multi-Source-Potentiale darin, vollen Nutzen aus der Kategorie-Konsistenz von
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Multi-Source-Daten zu ziehen. Abbildung 1.11 zeigt exemplarische Ergebnisse der MSMSH-
CRF-Klassifikation.

Diese Arbeit erscheint in den ISPRS Annals of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, Photogrammetric Image Analysis (PIA) (Zhang et al., 2015).

Verbindung von Gaußprozessen und Markov Random Fields für die hyperspektrale Bild-
klassifikation

Figure 1.12: Hyperspektrale Bildklassifikationsergebnisse. Oben links: Daten von indischen
Pinien, Oben rechts: Ground Truth, Unten links: Klassifikationsergebnis des GP, Unten rechts:
Klassifikationsergebnis des GP-MRF.

Die ergiebigen Informationen von hyperspektralen Daten ermöglichen die Charakterisierung,
Identifikation und Klassifikation der Erdoberfläche mit verbesserter Genauigkeit und Robus-
theit. Kernel-basierte Methoden in Form von SVMs haben sich bezüglich Genauigkeit und
Robustheit als exzellenten Ansatz für HSI erwiesen (Camps-Valls & Bruzzone, 2005; Melgani
& Lorenzo, 2004). Gaußprozesse (GPs) stellen einen weiteren Repräsentanten von potentiell
vielversprechenden kernel-basierten Methoden dar. Allerdings haben Bayessche GPs bisher
nicht viel Aufmerksamkeit in der Fernerkundungs-Community erhalten.

Diese Arbeit präsentiert ein Framework für ein GP-MRF, welches GPs und MRFs für die
genaue Klassifikation von hyperspektralen Fernerkundungsbilddaten verbindet. Diese Meth-
ode nutzt die Beziehungen zwischen benachbarten Pixeln und integriert sie in die spektrale
Information, um spektral-spatiale Klassifikation zu ermöglichen. Das Framework besteht aus
zwei Schritten. Erstens: Ein GP sagt Klassen-Wahrscheinlichkeiten für jeden Pixel vorher.
Zweitens: Ein MRF extrahiert räumliche Kontextinformationen aus der Labelvorhersage des
ersten Schritts. Die Klassifikationsergebnisse werden dann aus den spektral-spatialen Infor-
mationen geschlossen. Durch Regularisierung des MRFs konnten verbesserte Klassifikation-
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1. ZUSAMMENFASSUNG

sergebenisse erzielt werden, siehe Abbildung 1.12. Die Arbeit erscheint im Rahmen des IEEE
Joint Urban Remote Sensing Event (JURSE) (Liao et al., 2015).

16



Chapter 2

Summary

This monograph studies the methods and applications of semantic labeling. In this chapter,
we review the motivation of our work and our contributions in the interdisciplinary fields of
computer vision, medical imaging and remote sensing. We argue in support of probabilistic
models. Our contributions are illustrated with sample image results and cover three classes
of application domains, each one being devoted a separate part of the monograph: (I) object
segmentation, (II) medical image analysis, and (III) remote sensing image classification. The
overview structure of this monograph is illustrated in Figure 2.1.

Graphical Models

Computer Vision Medical Image Analysis Remote Sensing

• Scene understanding
• Semantic segmentation
• Visual tracking

• Multi-region segmentation
• Brain tumor classification
• Brain tumor segmentation

• Building extraction
• Scene classification
• Hyperspectral classification

Figure 2.1: Overview structure of the thesis.
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2. SUMMARY

Motivation

While humans constantly extract meaningful information from visual data almost effortlessly,
it turns out that simple visual tasks such as recognizing, detecting and tracking objects or
understanding what is going on in the scene are extremely challenging problems for machines.
To design artificial vision systems that can reliably process information as humans do has
many potential applications in fields such as artificial intelligence, robotics, medical imaging,
surveillance, remote sensing, entertainment or sports science. It is therefore our ultimate goal
to be able to emulate the human visual system with computational algorithms.

A fundamental goal of computer vision is to discover the semantic information within a
given scene, so called scene understanding. Scene understanding is the basis for many applica-
tions: surveillance, autonomous driving, traffic safety, robot navigation, vision-guided mobile
navigation systems, or activity recognition. Understanding the scene in an image or video re-
quires much more than recording and storing it and extracting some features. The overall goal
is to find a mapping to derive semantic information from sensor data, which is an extremely
challenging task partially due to the ambiguities in the appearance of the data. These ambigu-
ities may arise either due to the physical conditions such as the illumination and the pose of
the scene components with respect to the sensor, or due to the intrinsic nature of the data itself.
Therefore, there is the need of capturing local, global or dynamic aspects of the acquired ob-
servations, which are to be utilized to understand what is occurring in a scene. All information
which is possible to extract from a scene must be considered in context in order to get a com-
prehensive scene understanding, but this information, while it is easily captured by humans, is
still difficult to obtain from machines.

Generally speaking, scene understanding can be formulated as a labeling problem that
tries to assign a label to each unobserved hidden variable. The labels correspond to various
estimation, such as an object class label in the case of object segmentation (Yang, 2015; Yang
& Rosenhahn, 2014), a depth label in the case of depth upsampling (Huang et al., 2015), a pixel
intensity in the case of image denoising, or location and orientation in the case of relational
tracking (Müller et al., 2013). The labels are typically conditionally dependent on each other
and the output labeling tends to be highly structured. Probabilistic graphical models provide a
generic framework for statistical modeling, inference and learning in artificial vision systems.
Markov random fields (MRFs) are the most commonly used graphical models in computer
vision, which allow one to incorporate local contextual information in a principled manner.
In MRFs, the dependencies among variables in a probability distribution are represented by
edges connecting corresponding nodes in a graph. MRFs have been made popular in computer
vision by the early works of Besag (1974, 1986); Geman & Geman (1984). Their limiting
factor that they only allow for local features has been overcome by conditional random fields
(CRFs) (Kumar & Hebert, 2003a; Lafferty et al., 2001), where arbitrary features can be used
for labeling, at the expense of a purely discriminative approach.

The task is to infer the most probable or maximum a posteriori (MAP) labelling of the ran-
dom field, and can be found by minimizing the corresponding energy function (Yang, 2011).
In general, minimizing the energy function is NP-hard. But, there exist a number of algorithms
which compute the exact solution for a particular family of the energy functions in polynomial
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time. For example, max-product belief propagation exactly minimizes the energy functions
defined over the graphs with no loops (Yedidia et al., 2000). However, many energy functions
encountered in MRF and CRF models are NP-hard to minimize (Kolmogorov & Rother, 2007).
Most multi-label energy functions are non-submodular. They are instead solved using the ap-
proximate algorithms. These algorithms belong to two categories: message passing algorithms,
such as sum-product algorithm, belief propagation (Yedidia et al., 2000), tree-reweighted mes-
sage passing ((Kolmogorov, 2006; Wainwright et al., 2005)), and move making algorithms,
such as Iterated Conditional Modes (Besag, 1986), αβ-swap, and α-expansion (Boykov et al.,
2001).

The aim of this monograph is to studies the methods and applications of semantic label-
ing. We contribute to this active topic with the modeling and inference aspects of probabilistic
models and their applications in the interdisciplinary fields of computer vision, medical imag-
ing and remote sensing, which is shown in the following sections.

Contributions

Object Segmentation

The first part of this monograph consists of chapters that explore different probabilistic graph-
ical models and their applications to the problems of image segmentation, object segmentation
and depth upsampling, scene interpretation, video segmentation and tracking.

Image Segmentation by Bilayer Superpixel Grouping

Image segmentation is a fundamental low-level problem in computer vision and image pro-
cessing. It provides the basis for high-level image understanding such as object recognition,
image retrieval, activity recognition,etc.. Despite a variety of segmentation techniques have
been proposed, it remains a challenging problem due to the broad diversity and ambiguity in
an image. The task of segmentation is to group image pixels into visually meaningful objects,
which are useful for further processing such as recognition. It has long been a challenging
problem in computer vision and image processing. Approaches to image segmentation in
the literature include normalized cuts (Shi & Malik, 2000), mean shift (Comaniciu & Meer,
2002), graph-based method (Felzenszwalb & Huttenlocher, 2004b), and ultrametric contour
maps (Arbelaez et al., 2011). We address the segmentation as a superpixel grouping problem.
We propose a novel graph-based segmentation framework which is able to integrate different
cues from bilayer superpixels simultaneously. The key idea is that segmentation is formulated
as grouping a subset of superpixels that partitions a bilayer graph over superpixels, with graph
edges encoding superpixel similarity. We first construct a bipartite graph incorporating super-
pixel cue and long-range cue. Furthermore, mid-range cue is also incorporated in a hybrid
graph model. Segmentation is solved by spectral clustering. Our approach is fully automatic,
bottom-up, and unsupervised. The work appeared at the Asian Conference on Pattern Recog-
nition (ACPR) (Yang, 2013).
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Estimating Layout of Cluttered Indoor Scenes Using Trajectory-based Priors

Estimating layout or structure of an indoor scene is important for many tasks, such as activity
analysis (McKenna & Charif, 2004), robot navigation (Thrun et al., 2004), scene understanding
(Saleemi et al., 2010) or object placement (Jia et al., 2013). State of the art methods either use
spatial image features (Hedau et al., 2009) or use trajectory based temporal information (Zhang
et al., 2011) for this purpose. However, either of the features are not enough to estimate the
indoor scene layout. A major challenge for image features based techniques arises from the fact
that most indoor scenes are cluttered by a lot of furniture and decorations (Wang et al., 2013).
They often obscure the geometric structure of the scene, and also occlude boundaries between
walls and the floor. Appearances and layouts of clutters can vary drastically across different
indoor scenes, so it is extremely difficult to model them consistently. Similarly trajectory based
techniques normally cluster the trajectory data and model only the paths (Zhang et al., 2011).
They do not take care of the clutter or resting places in the scene.
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Figure 2.2: Unsupervised scene segmentation procedure for inactivity zones using CRF. First col-
umn shows the input data including image of the surveillance scene, key-point trajectories and lines
in the scene image. Second column shows the three features used to define unary class potentials,
i.e. color priors, relative quantized height and surface orientations. Binary potentials, i.e. ordering
and smoothness constraints are added to define homogeneous regions neighborhood relationship.
Inference procedure finds the optimal scene segmentation by minimizing energy on CRF.

Though image features and trajectory data are not self sufficient for reliable scene layout
estimation but they can be used together to achieve reliable indoor scene layout estimation. We
propose a mechanism which learns the scene semantic context model using image segmenta-
tion mechanism in an unsupervised way. We do not use trajectories directly for scene layout
estimation rather our segmentation mechanism used features both image and trajectory based
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features. We are also able to model the resting or sitting places in the scene. We assume that
we have a static and uncalibrated surveillance camera in the scene. Using pixel-level color and
perspective cues of the scene, each pixel is assigned to a particular class either a sitting place,
the ground floor, or static background areas like walls and ceiling. The global topological order
of classes, such as sitting objects and background areas are above ground, is locally integrated
into a conditional random field (CRF) by an ordering constraint. Figure 2.2 gives an overview
of the CRF-based image segmentation for unsupervised scene layout estimation procedure. A
graph cut based inference algorithm is run on our CRF to define the final scene segmentation
or layout. The proposed method yields very accurate segmentation results on challenging real
world scenes. The work appeared in Image Vision Computing (IVC) (Shoaib et al., 2014).

Joint Object Segmentation and Depth Upsampling

In recent years, the conjunctive use of ranging sensors and cameras has become more and more
popular, which benefits many computer vision applications. This work focuses on depth as-
sisted object-level image segmentation and image guided depth upsampling. The former takes
advantage of depth information to segment an image into regions that correspond to objects.
Previous works on this problem mainly rely upon depth maps inferred from dense stereo vi-
sion (Ladickỳ et al., 2012; Sengupta et al., 2013). Recently, sparse 3D point clouds and the
reconstructed corresponding dense depth maps are exploited as well in semantic segmentation
for road scenarios (Chen et al., 2014; Huang et al., 2014). In these works, depth information
is integrated either as geometric priors or as hard constraints within a Markov random field
(MRF) framework to improve segmentation performance. The latter problem, aiming to gener-
ate high-resolution depth maps from sparse measurements, takes high-resolution visual images
as guidance. Existing researches mainly use techniques such as bilateral filtering (Yang et al.,
2007), sparse representation (Gong et al., 2014), or MRF (Diebel & Thrun, 2005; Zhu et al.,
2010). However, a common weakness shared by both is that they suffer from errors existing in
their guidance. More specifically, the performance of image segmentation will be degenerated
if the used depth map is noisy or overly smoothed on edges. Likewise, a segment that crosses
over object boundaries may lead to wrong depth upsampling results. In order to prevent from
such error propagation, we propose to solve these two problems jointly.

We propose a joint method to perform both depth assisted object-level image segmenta-
tion and image guided depth upsampling. To this end, we formulate these two tasks together
as a bi-task labeling problem, defined in a Markov random field (MRF). An alternating direc-
tion method is adopted for the joint inference, solving each sub-problem alternatively. More
specifically, the sub-problem of image segmentation is solved by Graph Cuts, which attains
discrete object labels efficiently. Depth upsampling is addressed via solving a linear system
that recovers continuous depth values. By this joint scheme, robust object segmentation results
and high-quality dense depth maps are achieved, as shown in Figure 2.3. The work appears in
IEEE Signal Processing Letters (SPL) (Huang et al., 2015).
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Figure 2.3: Object-level image segmentation and depth upsampling results on the KITTI dataset.
(A) Original Image. (B) Object seeds. (C) Object-level image segmentation ground truth. (D) Joint
segmentation result. (E) Stand-alone segmentation result. (F) Sparse depth map. (G) Joint depth
upsampling result. (H) Stand-alone depth upsampling result.

A Generic Probabilistic Graphical Model for Region-based Scene Interpretation

The task of semantic scene interpretation is to label the regions of an image and their relations
into semantically meaningful classes. Such task is a key ingredient to many computer vision
applications, including object recognition, 3D reconstruction and robotic perception. The prob-
lem of scene interpretation in terms of classifying various image components in the images is a
challenging task partially due to the ambiguities in the appearance of the image data (Tsotsos,
1988). These ambiguities may arise either due to the physical conditions such as the illumina-
tion and the pose of the scene components with respect to the camera, or due to the intrinsic
nature of the data itself. Images of man-made scenes, e. g. building facade images, exhibit
strong contextual dependencies in the form of spatial and hierarchical interactions among the
components. Neighboring pixels tend to have similar class labels, and different regions appear
in restricted spatial configurations. Modeling these spatial and hierarchical structures is crucial
to achieve good classification accuracy, and help alleviate the ambiguities.

Graphical models, either directed models or undirected models, provide consistent frame-
works for the statistical modeling. Two types of graphical models are frequently used for
capturing such contextual information, i. e. Bayesian networks (BNs) (Sarkar & Boyer, 1993)
and random fields (RFs) (Besag, 1974), corresponding to directed and undirected graphs. RFs
mainly capture the mutually dependent relationships such as the spatial correlation. On the
other side, BNs usually model the causal relationships among random variables. Both have
been used to solve computer vision problems, yet they have their own limitations in represent-
ing the relationships between random variables. BNs are not suitable to represent symmetric
relationships that mutually relate random variables. RFs are natural methods to model sym-
metric relationships, but they are not suitable to model causal or part-of relationships. Our key
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(a) Multi-scale segmentation

(b) The graphical model

Figure 2.4: Illustration of the graphical model architecture. The blue edges between the nodes
represent the neighborhoods at one scale (undirected edges), and the red dashed edges represent
the hierarchical relation between regions (undirected or directed edges).

contribution is the development of a generic statistical graphical model for scene interpretation,
as illustrated in Figure 2.4, which seamlessly integrates different types of the image features,
and the spatial structural information and the hierarchical structural information defined over
the multi-scale image segmentation. It unifies the ideas of existing approaches, e. g. conditional
random field and Bayesian network, which has a clear statistical interpretation as the MAP es-
timate of a multi-class labeling problem. The work appears at the International Conference on
Computer Vision Theory and Applications (VISAPP) (Yang, 2015).

Video Segmentation with Joint Object and Trajectory Labeling

Unsupervised video object segmentation is a challenging problem in computer vision because
it involves a large amount of data and object appearance may significantly change over time.
Object segmentation is the basis for many potential applications including object tracking,
object recognition, 3D reconstruction, activity recognition, and video retrieval. Due to its po-
tential applications, there is increasing number of works (Grundmann et al., 2010; Lee et al.,
2011) addressing the problem of video object segmentation in recent years. Many approaches
extend single image segmentation techniques to multiple frames, exploiting the fact that there
is redundancy along the time axis and that the motion field is smooth. The problems associated
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with these methods include drift, occlusion, and appearance adaption. Integrating long-term
cues in the segmentation process might help solve these problems. In fact, video provides
rich additional cues beyond a single image. These cues include object motion, temporal con-
tinuity, and long-range temporal object interactions, etc. Motion segmentation exploits these
cues, which formulates clustering objectives to group pixels from all frames. However, motion
segmentation results are only in discrete and sparse positions available (Brox & Malik, 2010).

We overcome aforementioned problems by merging image segmentation and motion seg-
mentation. We propose a method to obtain a spatio-temporal foreground segmentation of a
video that respects object boundaries, as shown in Figure 2.5, and at the same time perform
trajectory labeling. Different from previous approaches, we address the foreground segmen-

Figure 2.5: Video object segmentation. Input: unannotated video. Output: Foreground object in
each frame.

tation by partitioning frames using a novel graphical model on pixel level, which is dense in
spatial domain, yet sparse in temporal domain. The main scientific contribution is a fully au-
tomatic and unsupervised bottom-up approach for the combination of object segmentation and
motion segmentation, which is formulated as inference in a unified CRF model. The CRF
contains pixel labeling and trajectory clustering in a single energy function, which integrates
dense local interaction and sparse global constraints. We optimize over pixels and trajectories
in the joint space via a space-time CRF: both foreground estimation and trajectory clustering
are modeled as energy potentials. An optimization scheme based on a coordinate ascent style
procedure is proposed to solve the inference problem. To the best of our knowledge, this work
is the first one to combine object labeling and trajectory clustering in a unified probabilistic
framework. The work appeared at the IEEE Winter Conference on Applications of Computer
Vision (WACV) (Yang & Rosenhahn, 2014).

Slice Sampling Particle Belief Propagation

Markov Random Fields (MRFs) are a powerful tool for modeling relational dependencies among
observations. Inference in such models is an inherent problem which has been widely addressed
in the past. MRFs, and hence its inference methods, can be classified in two categories: dis-
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cretely and continuously labeled problems. Most works on MRF optimization specialize on
a discrete label space (Boykov et al., 2001; Kolmogorov, 2006). Often such approaches are
hard to apply on tasks where a continuous label space would be a more natural choice, such
as feature tracking with relational constraints (Salzmann & Urtasun, 2012). Recently, message
passing approaches working in continuous rather than discrete label space were proposed (Ihler
& McAllester, 2009; Peng et al., 2011; Sudderth et al., 2010). These approaches use MCMC

methods to approximate the message distributions. All previously proposed MCMC based belief
propagation methods use Metropolis-Hastings (MH) sampling. This sampling strategy consists
of two steps: (a) sampling a candidate particle from an easy to sample proposal distribution,
and (b) accept or reject the candidate depending on a transition probability. Applying this sam-
pling technique involves a careful design of the proposal distribution, which is a compromise
between exploring the label space (using a broad proposal distribution) and maximizing the
transition acceptance ratio (minimize sample moves) at the same time. A schematic overview
of the PBP framework is shown in Figure 2.6.
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Figure 2.6: Particle Belief Propagation framework. Left: Message passing mechanism. Right:
MCMC particle sampling of the belief b(xs) with an exemplary MCMC sampling chain of one par-
ticle (blue) and its corresponding histogram (red).
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Figure 2.7: Relational 2D feature tracking example.

The main scientific contribution is a novel particle belief propagation algorithm using slice
sampling (S-PBP) instead of Metropolis-Hastings. This method exploits the structure of the PBP

message passing equations for direct sampling from the target distribution and does not depend
on a proposal distribution which is difficult to tune, provided the unary and binary potentials
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are defined by analytic functions or can be bounded by one. Our findings are verified on a
complex 2D relational feature tracking application as shown in Figure 2.7. The work appeared
at the IEEE International Conference on Computer Vision (ICCV) (Müller et al., 2013).

Medical Image Analysis

The second part of this monograph consists of chapters that describe both graph prior and dic-
tionary learning approaches for medical image analysis, with applications to semantic labeling
and segmentation, tumor classification and segmentation.

Multi-Region Labeling and Segmentation Using a Graph Topology Prior and Atlas Infor-
mation in Brain Images

Medical image segmentation and anatomical structure labeling according to the types of the
tissues is important for accurate diagnosis and therapy. We propose a novel approach for multi-
region labeling and segmentation, which is based on a topological graph prior, registration of
the labels, and the topological information of an atlas, using a multi-level set energy minimiza-
tion method. We consider topological graph prior and atlas information to evolve the contour
based on a topological relationship presented via a graph relation. This method is capable
of segmenting adjacent objects with very close gray level that would be difficult to segment
correctly using standard methods. The topological graph is registered from the low resolution
and noisy source image to the topological information of an atlas to obtain region labeling.
We present the graph prior and label registration techniques to explain how it gives precise
multi-region segmentation and labeling. The proposed algorithm is capable of segmenting and
labeling different regions in noisy or low resolution brain MRI images of different modalities,
as shown in Figure 2.8. The work appeared in Computerized Medical Imaging and Graphics
Journal (CMIG) (Al-Shaikhli et al., 2014c).

Brain Tumor Classification Using Sparse Coding and Dictionary Learning

Early identification of brain tumors is important to treat the tumors effectively. Multi-class
brain tumor classification is considered as one of the most important and challenging tasks
in medical imaging due to the difficulty to extract the relevant information that can help to
discriminate the tumor from the normal brain tissue. The contribution is a modified sparse
coding and dictionary learning based multi-class classification. We proposed to use the K-
SVD method to update both of the dictionary and sparse coding steps. Furthermore, due to the
high degree of similarity in pixel intensities between normal brain tissue and tumor, and the
variability of the tumor shape, location, and size, this variability justifies the use of topological
and texture features to learn the dictionary. The topological feature gives information whether
the case is normal or abnormal based on the assumption that the topology of normal brain is
fixed. Therefore, the presence of tumor in the brain will change the normal brain topology. In
addition, the texture features provide a good discrimination of the brain tumor types. The main
novelty in our algorithm is the use of topology and texture features for learning, instead of

26



applying learning directly on pixel values. The work was presented at the IEEE International
Conference on Image Processing (ICIP) (Al-Shaikhli et al., 2014a).

Coupled Dictionary Learning for Automatic Multi-Label Brain Tumor Segmentation in
Flair MRI images

We propose a novel coupled dictionary learning approach (one dictionary of the original image
data and one of the associated label image data) of automatic multi-label brain tumor seg-
mentation, as shown in Figure 2.9. The contribution is a novel fully automatic algorithm for
multi-label segmentation using coupled dictionaries learned from single modality (Flair MRI
modality) image training data with associated label image data (ground truth segmentation).
Patches are extracted from the training image data and concatenated to a matrix in a dictionary.
Each patch has its corresponding patch in a label dictionary. The label dictionary represents
four foreground labels (necrosis, enhanced tumor, non-enhanced tumor, and edema) and one
background label. For testing, the proposed method requires single MRI modality input of the
testing data. After extracting the patches from the test image data, the patch similarity is re-
trieved between the patches of the testing data and these in the dictionary of the training image
data, then the corresponding atoms in the label dictionary are selected. The label dictionary is
used to provide the foreground and background labels for graph-cut segmentation. The work
was presented at the International Symposium on Visual Computing (ISVC) (Al-Shaikhli et al.,

Figure 2.8: Examples of a multi-region labeling and segmentation. (a) are the input images and
the ground truth, (b) are the segmentation results with topological graph and atlas information, (c)
are the segmentation results with topological graph without atlas information.
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2014b).

Figure 2.9: 3D Multi-label glioma segmentation of BraTS testing data. In each example, the first
column is the input image data (axial, coronal, and sagittal planes), the second column is the 2D
tumor segmentation, the fourth row is 3D tumor reconstruction.

Remote Sensing Image Classification

The third part of this monograph consists of chapters that discuss the integration of marked
point process, Gaussian process and Markov random field for remote sensing image classifica-
tion.

Combine Markov Random Fields and Marked Point Processes to Extract Building from
Remotely Sensed Images

Automatic building extraction from remotely sensed images is a popular research topic. In
spite of the research efforts of the past decades fully automatic extraction is still a challenging
task. The key issue is representation of objects and images (Mayer, 1999). Statistical ap-
proaches provide a strong framework of modeling and estimation. Markov random fields and
marked point processes represent context-dependent entities well. Based on Markov random
fields (MRFs), low-level information referring to the single image pixels and interaction be-
tween neighboring pixels are represented concisely. However, high-level knowledge, such as
free semantic structures and variable topology, can not be represented by MRFs conveniently.
Based on spatial point process, high-level knowledge can be introduced via marks attached
to the points and the relationships between neighboring points. While specific shapes can be
represented by geometric marks, general shape can not be determined based on image content.
This problem results from the weakness of representing low-level information.
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Motivated by the complementary characteristics of MRFs and marked point processes, we
combine them to represent both low-level information and high-level knowledge. Based on
this representation, we propose an automatic approach for extracting buildings from single
remotely sensed image, as illustrated in Figure 2.10. At high level, rectangles are used to
represent buildings, and a marked point process is constructed to represent the buildings on
ground scene. Interactions between buildings are introduced into the the model to represent
their relationships. At the low level, a MRF is used to represent the statistics of the image
appearance. Histograms of colors are adopted to represent the building’s appearance. The high-
level model and the low-level model are combined by establishing correspondences between
marked points and nodes of the MRF. We adopt reversible jump Markov Chain Monte Carlo
(rjMCMC) techniques to explore the configuration space at the high level, and adopt a Graph
Cut algorithm to optimize configuration at the low level. We propose a top-down schema to
use results from high level to guide the optimization at low level, and propose a bottom-up
schema to use results from low level to drive the sampling at high level. The work appeared at
the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
ISPRS Congress (Chai et al., 2012).

Figure 2.10: Hybrid representation for building extraction. Marked point process is adopted to
represent the high-level knowledge, i.e. the buildings and their distribution. Markov random field
is adopted to represent the low-level information, i.e. the properties of all pixels. Each marked
point at the high level denotes one building, and it corresponds to one rectangular region in the
Markov random field at the low level. The high-level model and the low-level model are combined
together by establishing correspondences of marked points at the high level and regions at the low
level. High-level knowledge is introduced as a priori term in the MRF and low-level information is
introduced into data term in the marked point process.
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Multi-Source Multi-Scale Hierarchical Conditional Random Field Model for Remote Sens-
ing Image Classification

Fusion of remote sensing images and LiDAR data provides complimentary information for the
remote sensing applications, such as object classification and recognition. This work presents
a novel multi-source multi-scale hierarchical conditional random field (MSMSH-CRF) model
to integrate features extracted from remote sensing images and LiDAR point cloud data for im-
age classification. The main contribution of this work is a novel CRF-based modeling scheme
exploiting the complementarity of multi-source data such as the texture in remote sensing im-
ages and the elevation in LiDAR data. To exploit different levels of contextual information in
images, the multi-scale hierarchical potentials are proposed in our model, which is then en-
hanced by evidence aggregation from a local to global level. Considering the interrelation of
the same objects in remote sensing images and LiDAR data, multi-source hierarchical poten-
tials are proposed in the model to make full use of the category consistency of multi-source
data. Figure 2.11 shows the example results of MSMSH-CRF classification method. The work
appears at the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, Photogrammetric Image Analysis (PIA) (Zhang et al., 2015).

Figure 2.11: The classification result from the MSMSH-CRF model on the Beijing Airborne
Data (Zhang et al., 2013), Left: remote sensing image, Middle: LiDAR point cloud, Right: classi-
fication result (red - building, blue - road, green - vegetation).

Integration of Gaussian Process and Markov Random Field for Hyperspectral Image
Classification

The abundant spectral information contained in hyperpsectral data enable the characterization,
identification, and classification of the land-covers with improved accuracy and robustness.
The kernel-based methods represented by SVMs have been proved as an excellent classifica-
tion approach for HSI in terms of accuracy and robustness (Camps-Valls & Bruzzone, 2005;
Melgani & Lorenzo, 2004). Gaussian processes (GPs) are another representative of potentially
promising kernel-based methods. However, Bayesian GPs have not received much attention in
remote sensing community.
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This work presents a framework GP-MRF, which combines GPs and MRFs for accurate
classification of hyperspectral remote sensing image data. This method exploits the relationship
between adjacent pixels and integrates it into spectral information to obtain spectral-spatial
classification. This framework consists of two steps. Firstly, a GP classifier yields pixelwise
predictive probability for each class. Secondly, an MRF is applied to extract spatial contextual
information in the label map from the first step. Then the classification results are inferred from
the spectral-spatial information. By means of MRF regularization an enhanced classification
result has been obtained, as illustrated in Figure 2.12. The work appears at the IEEE Joint
Urban Remote Sensing Event (JURSE) (Liao et al., 2015).

Figure 2.12: Hyperspectral image classification results. Top Left: Data of Indian Pines, Top Right:
ground truth, Bottom Left: classification result of GP, Bottom Right: classification result of GP-
MRF.
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OBJECT SEGMENTATION
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Chapter 3

Image Segmentation by Bilayer
Superpixel Grouping

The task of image segmentation is to group image pixels into visually meaningful objects.
It has long been a challenging problem in computer vision and image processing. In this
chapter we address the segmentation as a superpixel grouping problem. We propose a novel
graph-based segmentation framework which is able to integrate different cues from bilayer
superpixels simultaneously. The key idea is that segmentation is formulated as grouping a
subset of superpixels that partitions a bilayer graph over superpixels, with graph edges encoding
superpixel similarity. We first construct a bipartite graph incorporating superpixel cue and
long-range cue. Furthermore, mid-range cue is also incorporated in a hybrid graph model.
Segmentation is solved by spectral clustering. Our approach is fully automatic, bottom-up,
and unsupervised. We evaluate our proposed framework by comparing it to other generic
segmentation approaches on the state-of-the-art benchmark database. An earlier version of this
chapter appeared at the Asian Conference on Pattern Recognition (ACPR) (Yang, 2013).

3.1 Introduction

Image segmentation is a fundamental low-level problem in computer vision and image pro-
cessing. It provides the basis for high-level image understanding such as object recognition,
image retrieval, activity recognition,etc.. Despite a variety of segmentation techniques have
been proposed, it remains a challenging problem due to the broad diversity and ambiguity in
an image. The task of segmentation is to group image pixels into visually meaningful objects,
which are useful for further processing such as recognition.

In image segmentation, one has to consider a prohibitive number of possible pixel group-
ings. Using prior information about object appearance, or other scene content significantly sim-
plifies the problem. For instance, many segmentation techniques are formulated as a Markov
random field based energy minimization problems. However, the corresponding energy func-
tions typically include terms that require prior object knowledge in terms of user interaction
(Rother et al., 2004) or knowledge about object appearance. Approaches to image segmen-
tation in the literature include normalized cuts (Ncut) (Shi & Malik, 2000), mean shift (MS)
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(Comaniciu & Meer, 2002), graph-based method (FH) (Felzenszwalb & Huttenlocher, 2004b),
and ultrametric contour maps (UCM) (Arbelaez et al., 2011). In recent years an increasingly
popular way to solve image segmentation problem uses superpixels (Achanta et al., 2012).
This allows features to be computed over a larger spatial support. In most cases, they are
used to initialize segmentation. Endres & Hoiem (2010) generated multiple proposals by vary-
ing the parameters of a conditional random field built over a superpixel graph. We think of
segmentation as a bottom-up preprocessing step for high-level computer vision tasks such as
indexing and recognition, providing substantial reduction in the computational complexity of
these tasks. It is therefore unclear how segmentation methods that use strong prior knowledge
are applicable for object recognition from large databases.

In this work we address the image segmentation as a superpixel grouping problem, based
on the observation that object boundaries are often reasonably well approximated by super-
pixel boundaries. We propose a novel graph-based segmentation framework which is able
to integrate cues from bilayer superpixels simultaneously. Our approach is fully automatic,
bottom-up, and unsupervised. The key idea is that segmentation is formulated as grouping
a subset of superpixels that partitions a bilayer graph over superpixels, with graph edges en-
coding superpixel similarity. We first construct a bipartite graph incorporating superpixel cue
and long-range cue (neighboring superpixels in two layer). Segmentation is solved by spectral
clustering. Furthermore, mid-range cue (neighboring superpixels within one layer) is also in-
corporated in a hybrid graph model. Given an image, we first compute two layer superpixel
segmentation of the image. Based on two superpixel images, segmentation is performed as a
superpixel grouping problem.

3.2 Problem Formulation

In this section, we propose a novel graph-based segmentation framework which is able to
integrate different cues from bilayer superpixels simultaneously. We formulate segmentation
as a superpixel grouping problem, based on the observation that object boundaries are often
reasonably well approximated by superpixel boundaries. A bipartite graph is constructed to
incorporate superpixel cue and long-range cue. Segmentation is then solved using spectral
clustering. Furthermore, we propose a hybrid graph model that incorporates superpixel cue,
mid-range cue, and long-range cue.

3.2.1 Bipartite Graph Construction

We construct a bipartite graph over two layer superpixels of one image I , as shown in Fig-
ure 3.1. Superpixels are generated by some unsupervised segmentation algorithms, such as
NCut (Shi & Malik, 2000), UCM (Arbelaez et al., 2011), SLIC (Achanta et al., 2012), etc..
Formally, let Gb = (U, V,EUV ) be a bipartite graph with node set U ∪ V corresponding to
two layers of superpixels and EUV corresponding to graph edges between two layers, where
U = {ui}ni=1 and V = {vj}mj=1. Given the above bipartite graph Gb = (U, V,EUV ), the task
is to partition it into k groups. We further define an edge weight wij to encode the similarity
between two superpixels ui and vj in two layers that are connected by an edge. The weight
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Figure 3.1: The proposed bipartite graph model of image segmentation. A black dot denotes a
pixel while a red square denotes a superpixel.

matrixW = (wij)n×m is constructed as follows, which could also be seen as an across-affinity
matrix between U and V ,

wij =


α if |ui ∩ vj | = min(|ui| , |vj |)
e−βdij if ui ∼ vj
0 otherwise

(3.1)

where |ui ∩ vj | is the number of pixels in the intersection between superpixels ui, vj , dij de-
notes the distance 1 between the features of superpixels ui and vj , ∼ denotes a certain neigh-
borhood between superpixels 2, and α, β are free parameters controlling the balance between
the superpixel cue and the long-range cue, respectively. By this construction, two neighboring
superpixels are more likely to be grouped together if they are closer in feature space.

In Bagon et al. (2008), the easiness and difficulty of describing one superpixel ui is eval-
uated by its description length in terms of visual codewords. Inspired by Bagon et al. (2008),
we define the distance as the Kullback-Leibler divergence between two superpixels ui and vj .
Specifically, given a dictionary of visual codewords, and the histogram of occurrence of the
codewords in ui, we define

dij = − log KL(ui, vj) (3.2)

where KL denotes the Kullback-Leibler divergence. Below, we explain how to extract the

1For example, if color space is used as the feature space, and a superpixel ui (vj) is represented by the average
color ci (cj) of the pixels within it, then dij = ‖ci − cj‖2.

2For example, ui ∼ vj , if ui is spatially adjacent to vj or most similar to vj in terms of (average) color. This
neighborhood relationship is adopted in this work.
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dictionary of codewords. First, SIFT descriptors (Lowe, 2004) are extracted for each pixel of
the superpixel at a fixed scale and orientation, using the fast SIFT framework in Vedaldi &
Fulkerson (2008). The pixel descriptors are then clustered using K-means (with K = 100).
All pixels grouped within one cluster are labeled with a unique codeword id of that cluster.
Then, the histogram of their occurrence in every superpixel is estimated.

3.2.2 Superpixel Spectral Clustering

To make spectral clustering method applicable to our problem, we can simply denote an ex-
panded similarity matrix

S =

[
O W
W T O

]
(3.3)

where W is the across-affinity matrix of the bipartite graph Gb. Note that this similarity matrix
is sparse and symmetric. We denote by

L = In+m −H−1/2SH−1/2 (3.4)

the Laplacian matrix, where In+m is identity matrix and H the diagonal matrix composed of
the row sums of S (Shi & Malik, 2000). It can be easily shown that for any S with nonneg-
ative elements, the Laplacian matrix is symmetric positive semi-definite. Spectral clustering
captures essential cluster structure of a graph using the spectrum of graph Laplacian matrix.
Mathematically, it solves the generalized eigen-problem (Shi & Malik, 2000):

Lν = γHν (3.5)

where γ and ν are corresponding eigen-values and eigen-vectors. The first k generalized eigen-
vectors r1, · · · , rk of the generalized eigen-problem Eq. (3.5) are computed by Lanczos method
(Golub & Loan, 1996), where k is the cluster number. Let R ∈ <(n+m)×k be the matrix con-
taining the vectors r1, · · · , rk as columns. The n + m rows of R can thus be easily clustered
by k-means (Ng et al., 2001) or certain discretization technique (Yu & Shi, 2003).

3.2.3 Hybrid Graph Model

In the above graph construction, our graph model incorporates both long-range grouping cues
by bilayer graph construction and short-range superpixel cues by superpixel representation. In
addition, mid-range smoothing cues could naturally be incorporated in this graph model, which
we call hybrid graph model. let G = (U, V,EUV , EU , EV ) be a expanded general graph from
the bipartite graph Gb with EU corresponding to graph edges within one layer of U and EV
corresponding to graph edges within the layer of V , as shown in Figure 3.2.

We define an edge weight pii′ (qjj′) to encode the similarity between two spatially adjacent
superpixels ui (vj) and ui′ (vj′) that are connected by an edge as follows

pii′ = TD(ui, ui′) (3.6)

where TD(ui, ui′) = ‖ti − ti′‖1. ti is the histogram of Texton occurrence of superpixel ui.
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3.2 Problem Formulation

Figure 3.2: The proposed hybrid graph model of image segmentation. A black dot denotes a pixel
while a red square denotes a superpixel.

The weight matrix for the layer of U is P = (pii′)n×n. In the same way, the weight matrix for
the layer of V is Q = (qjj′)m×m. The histogram of Texton occurrence is computed as follows.
We first convert I to grayscale and convolves it with the set of 17 Gaussian derivative and
center-surround filters (Arbelaez et al., 2011), as shown in Figure 3.3. We use 8 oriented even-
and odd-symmetric Gaussian derivative filters and a center-surround (difference of Gaussians)
filter. Each pixel is associated with a 17-d vector of responses, containing one entry for each
filter. These vectors are then clustered using K-means (with K = 64). The cluster centers
define a set of image-specific textons and each pixel is assigned the integer id of the closest
cluster center. Then, the histogram of their occurrence (ti) in every superpixel (ui) is estimated.

Figure 3.3: Filters for creating Textons (Arbelaez et al., 2011).

Based on the across-affinity matrix W , and similarity matrices P and Q, we can denote an
expanded similarity matrix

S̃ =

[
P W
W T Q

]
(3.7)

Then image segmentation using this hybrid graph model can be solved in a similar manner
by spectral clustering in Section 3.2.2. Simply replace S by S̃ in Eq. (3.4) to compute the
Laplacian matrix. The overall superpixel segmentation algorithm is summarized in Figure 3.4.
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Input: Image I , k: number of clusters

1. Partition I into superpixels U and V by segmentation algorithm
2. Construct the graph G = (U, V,EUV , EU , EV )
3. Compute across-affinity matrix W based on Eq. (3.1)
4. Compute affinity matrix P (Q) based on Eq. (3.6)
5. Build similarity matrix S̃ according to Eq. (3.7)
6. Compute the Laplacian matrix L
7. Compute the first k generalized eigenvectors r1, · · · , rk of Eq. (3.5)
8. Let R ∈ <(n+m)×k be the matrix containing the vectors r1, · · · , rk as columns, use
k-means algorithm to cluster (n+m) rows of R into k groups

Output: k clusters

Figure 3.4: Image segmentation by bilayer superpixel grouping

3.3 Experimental Results

We evaluate the proposed image segmentation algorithm on some images from Berkeley Seg-
mentation Data Set (BSDS), and compare it with state-of-the-art methods.

Implementation details Our framework builds a graph on superpixel nodes, which are
generated by SLIC (Achanta et al., 2012), though other choices are also possible. The main
reason of choosing SLIC is that it is currently state-of-the-art superpixel segmentation algo-
rithm and practically efficient. The SLIC parameters are the region size and the regularizer.
For our experiments, we set region size proportional to the image size to make around 200 and
100 superpixels for two layers for every image. The regularizer is set as 0.15 for all the images.
The parameters in the bipartite graph construction are set as follows α = 0.9, and β = 0.35.
The number of clustering k is set to 6 for all the experiments.

Results Figure 3.5 shows the segmentation results for an example image. The red bound-
ary overlays with the superpixel segmentation image for visualization. By comparing with
mean shift, normalized cut and UCM segmentation methods, our proposed bipartite and hybrid
segmentation methods produce more reasonable results with respect to object boundaries and
small objects.

Some more segmentation examples of BSDS images can be visualized in Figure 3.6. The
top 4 rows are perceptually satisfactory results, and the bottom 2 rows show the typical failure
cases. We report the results from the flat clustering with only local neighborhood information,
bipartite segmentation results, and hybrid segmentation results. These results demonstrate the
high performance of our methods on this dataset. Note that it is usually difficult for many seg-
mentation algorithms, even the ones incorporating high-level shape priors, to segment highly
textured objects from textured background. Our methods provides perceptually satisfactory
results in the bear and lion images. For the typical failure cases, these images usually contain
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Figure 3.5: Segmentation example of lion image. Top row (from left to right): original image,
mean shift (Comaniciu & Meer, 2002) segmentation result, normalized cut (Shi & Malik, 2000)
result with 6 region partition, normalized cut result with 30 region partition, and UCM (Arbe-
laez et al., 2011) result; Bottom row: flat clustering result with local neighborhood information,
bipartite segmentation result (bottom layer), bipartite segmentation result (top layer), hybrid seg-
mentation result (bottom layer), and hybrid segmentation result (top layer).

complex object appearance and texture background.

3.4 Conclusion

We have presented a novel graph-based framework for image segmentation, which is formu-
lated as grouping a subset of superpixels that partitions a bilayer graph over superpixels, with
graph edges encoding superpixel similarity. A bipartite graph is constructed to incorporate
superpixel cue and long-range cue. Segmentation is then solved using spectral clustering. Fur-
thermore, we propose a hybrid graph model that incorporates superpixel cue, mid-range cue,
and long-range cue. The scheme is fully automatic, bottom-up, and unsupervised. The exper-
iments demonstrate the high performance of our approach on the challenging dataset. Future
work should study the incorporation of high-level cues.

41



3. IMAGE SEGMENTATION BY BILAYER SUPERPIXEL GROUPING

Figure 3.6: Segmentation example of BSDS images. Top 4 rows (from left to right): original
image, flat clustering result with local neighborhood information, bipartite segmentation result,
and hybrid segmentation result (the red boundary overlays with the superpixel segmentation image
for visualization). Bottom 2 rows: typical failure cases.
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Chapter 4

Estimating Layout of Cluttered Indoor
Scenes Using Trajectory-based Priors

Given a surveillance video of a moving person, we present a novel method of estimating layout
of a cluttered indoor scene. In this chapter, we propose an idea that trajectories of a moving
person can be used to generate features to segment an indoor scene into different areas of
interest. We assume a static uncalibrated camera. Using pixel-level color and perspective
cues of the scene, each pixel is assigned to a particular class either a sitting place, the ground
floor, or static background areas like walls and ceiling. The global topological order of classes,
such as sitting objects and background areas are above ground, is locally integrated into a
conditional random field by an ordering constraint. The proposed method yields very accurate
segmentation results on challenging real world scenes. We focus on videos with people walking
in the scene and show the effectiveness of our approach through quantitative and qualitative
results. The proposed estimation method shows better estimation results as compared to the
state of the art scene layout estimation methods. We are able to correctly segment 90.3% of
background, 89.4% of sitting areas and 74.7% of the floor. An earlier version of this chapter
appeared in Image Vision Computing (IVC) (Shoaib et al., 2014).

4.1 Introduction

Estimating layout or structure of an indoor scene is important for many tasks, such as activity
analysis (McKenna & Charif, 2004), robot navigation (Oriolo et al., 1998; Thrun et al., 2004),
scene understanding (Saleemi et al., 2010; Zhang et al., 2011) or object placement (Jia et al.,
2013; Jiang et al., 2012; Xu et al., 2002). Specifically for the analysis of elderly activity, scene
layout provides a semantic context knowledge that is necessary for long-term observation. With
the help of scene context, we can localize a person and monitor his daily behavior. Semantic
context also benefits the unusual event prediction, such as fall detection (Debard et al., 2012).
Lying on the sofa has a different interpretation from lying on the floor. With semantic context
information usual lying on sofa can be taken as usual activity.

Keeping these important aspects and applications in mind, different mechanisms have been
proposed for indoor scene layout estimation. State of the art methods either use spatial image
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features (Hedau et al., 2009; Lee et al., 2010; Wang et al., 2010) or use trajectory based tem-
poral information (McKenna & Charif, 2004; Zhang et al., 2011) for this purpose. However,
either of the features are not enough to estimate the indoor scene layout. A major challenge
for image features based techniques arises from the fact that most indoor scenes are cluttered
by a lot of furniture and decorations (Wang et al., 2013). They often obscure the geometric
structure of the scene, and also occlude boundaries between walls and the floor. Appearances
and layouts of clutters can vary drastically across different indoor scenes, so it is extremely
difficult (if not impossible) to model them consistently. Similarly trajectory based techniques
normally cluster the trajectory data and model only the paths (Hu et al., 2004; Zhang et al.,
2011). They do not take care of the clutter or resting places in the scene. The modeling of
resting areas (McKenna & Charif, 2004) has been done using stop points of a trajectory inside
a resting place. This mechanism can not reliably used in case of noise in the trajectory data. A
normal stop outside a resting area might be take as a resting place.

Though image features and trajectory data are not self sufficient for reliable scene layout
estimation but they can be used together to achieve reliable indoor scene layout estimation.
In this work, we propose a mechanism which learns the scene semantic context model using
image segmentation mechanism in an unsupervised way. We do not use trajectories directly
for scene layout estimation rather our segmentation mechanism used features both image and
trajectory based features. We are also able to model the resting or sitting places in the scene.
An overview of the approach is as follows. We assume that we have a static and uncalibrated
surveillance camera in the scene. Given a moving person in the scene, we first model the
trajectory of moving person using a set of key-points on his silhouette. We identify or cluster
the regions corresponding to feet locations of moving person as floor. Given a potential floor
area, we define the relative height of each point relative to the floor. Similarly using lines and
trajectories we define the orientation of each point in the scene. We now incorporate height,
orientation and color information into a conditional random field(CRF) to define relationship
between different points in the scene. Figure 4.5 gives an overview of the CRF-based image
segmentation for unsupervised scene layout estimation procedure. A graphcut based inference
algorithm is run on our CRF to define the final scene segmentation or layout.

4.1.1 Contributions

The key contributions of this work are as follows:

1. Indoor scene layout estimation using both trajectory data of a moving person and image
features. The estimation process is fully automatic and unsupervised. We do not use any
training data. No assumptions are about the structure of the scene.

2. Efficiently estimation scene structure in the presence of scene clutter. We classify scene
clutter either as sittable areas or scene background. Modeling resting areas as a separate
class improves overall scene layout estimation process.

3. We show that using line segments instead of voting based straight lines we can obtain
better orientation map or surface normals. Improvement in orientation map improve
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overall scene layout estimation by providing correct orientations for resting places like
sofa and bed.

4. Experiments are performed on a new dataset of scene videos with moving person along
with publicly available videos of the indoor scenes and better segmentation results are
achieved. We show using quantitative and qualitative results that by combining trajectory
information of moving persons with image attributes, we can obtain an accurate indoor
scene layout, superior to geometric methods. We will make the data and segmentation
results publicly available for comparison.

The rest of the work is organized as follows. Related work and contributions of this work
are described in Section 4.2. The proposed scene layout estimation mechanism is elaborated
in Section 4.3. Image segmentation mechanism used for scene layout estimation is explained
in Section 4.4. The performance of the approaches are evaluated in Section 4.5. The pro-
posed approach is compared with other approaches in this section followed by a conclusion in
Section 4.6.

4.2 Related Work

Layout of indoor scenes have been estimated in literature mainly using single-image segmen-
tation (Hedau et al., 2009; Lee et al., 2010; Pero et al., 2011, 2012; Schwing & Urtasun, 2012;
Wang et al., 2010). Such techniques use the image attributes like line segments, geometric
context and color etc to define 3D structure or geometry of the scene. However, recognition of
scene structure using only image features is challenging. In Hedau et al. (2009); Hoiem et al.
(2007), different features are learned from a image database and then these learned features
are used to train a classifier to segment a scene into different layers like ceiling, walls, clutter
etc. Used features like color context are not discriminative enough for different classes. Due
to color similarity a part of a wall might be detected as scene clutter or vice versa. Another set
of approaches tries finding volumetric structures inside the scene to define different objects in
the single images (Gupta et al., 2011; Hedau et al., 2010; Lee et al., 2010; Pero et al., 2012).
They are able to find cubic objects like beds etc. They have high dependencies on straight lines
in the scenes. In home environment it is difficult to detect all straights lines on objects due to
cluttered scene and occlusions. Such approaches fail to detect objects like bed or sofa if they
do not have enough straight lines and cubic constraint is not fulfilled.

Some other techniques use supplementary information like laser range data (Schuster et al.,
2010), or Kinect 3D data (Koppula et al., 2011; Silberman et al., 2012; Taylor & Cowley, 2012)
for scene layout estimation. Similarly different areas in a scene are marked as sittable using 3D
data by their ability to support a sitting action (Grabner et al., 2011). Structure from camera
motion has also been used in the layout estimation of the indoor scenes (Tsai et al., 2011).

Tracking information has also been used in literature to couple different actions with cer-
tain regions in the scene. Resting areas were modeled as a Gaussian mixture using minimum
description length by clustering image points where a person stopped in the scene in McKenna
& Charif (2004). Simply using tracking information is not sufficient enough for scene layout
estimation while a person stopping outside a resting area might be taken as a resting area.
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Figure 4.1: Height computation. (a) Process for finding the floor of a point p, (b) Process to
compute the height of the point p.

Some other trajectory based approaches (Grabner et al., 2011; Gupta et al., 2011; Shoaib
et al., 2011; Wu & Aghajan, 2011) detect different areas in the scene by object interactions.
For example a chair or a sofa is detected when some one sits in a particular scene area. Motion
or person interactions alone are not reliable enough for scene layout estimation. Motion-based
feature like speed are affected by the errors in moving object detection mechanism. Similarly
user interactions based methods are dependent on user detection and posture classification.
Any error in these two module will propagate in scene layout estimation process.

In our work we build on these efforts and take one step further to jointly segment scene and
sitting places. We combine trajectory information of the moving persons along image attributes
like color and perspective cues to segment indoor scene into activity areas like floor, inactivity
areas or sittable places like bed, table, sofa and the remaining image area as background. We
assume that sitting places are higher than floor and have orientation similar to floor. As objects
like tables can also be used sitting and poses same attributes, we also consider them as sitting
places.

4.3 Unsupervised Scene Layout Estimation

In order to estimate layout of a given scene, we use trajectory of coarse body motion as a
reliable low level feature. In our case a trajectory T is a sequence of K correspondences

T = {T1, ..., Tt, ....TK}

where vector Tt = [H(x, y), C(x, y), F (x, y)] compactly represents a person’s location in
terms of its corresponding key-points at time t. In order to find the key-points in each frame
moving persons are segmented from the background scene using a combination of color and
gradient-based background subtraction method (Shoaib et al., 2009). We then use connected
component analysis to find center of mass C(x,y) and ellipse fitting to define head location
H(x,y). Assuming the person in standing posture, feet location F(x,y) is defined by projecting
a medial axis from head to the silhouette bottom. Each key-point is a 2d location in the image
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referred to as point (x,y) in coming text in this chapter.
The correspondence vectors Tt are monitored over time to record certain parameters from

the movements of the persons. The scene areas through which feet or lower body centroid (in
case of person to object occlusion) F pass are marked as floor areas B. Figure 4.2 shows the
key-points extracted from a video and the unsupervised learning process for floor area B.

4.3.1 Features for Segmentation

For the layout estimation we use three types of information, namely color, height map H and
orientation map O. We consider the layout estimation as a segmentation problem and define a
conditional random field (CRF) (Lafferty et al., 2001) using our three features. We will explain
this procedure in Section 4.4.

Height map Height map describes the relative homogeneous height h of each pixel with
respect to the floor B. Highly probable floor pixels have height zero. In order to define the
height for rest of the pixels in an image, we compute vanishing points [vx, vy, vz] in the scene.
We use a combination of trajectory information (Junejo & Foroosh, 2006) and lines for this
purpose. In order to minimize the effects of noisy trajectories we follow a RANSAC-based
method to classify inliers and outliers and in turn to find three orthogonal vanishing points.
The vanishing line of the floor plane can then be found by the two vanishing points vx and vy:
VL = vx × vy. The key-points information in the form of head to feet HF and centroid to
feet CF correspondences serve as a basis for height computation. For height computation we
need the projection of every point p on the floor plane. Thus to define the floor of point p, first
a nearest known correspondence is found. Then using nearest correspondence and vanishing
line VL a line is projected to the ground plane to define the floor. In order to find the floor for
the current point p vanishing line VL can be used. Figure 4.1(a) shows the process of finding
the floor of a point. Initially a line connecting the top point T (on the medial axis of a nearest
standing posture) and point p is intersected with the vanishing line VL. From the point of
intersection v a bottom line can be projected back to the known floor point F . The unknown
floor point B is orthogonal to the current point p on the bottom line.

In order to find the homogeneous height of point p, we need a known standing posture
Hr, Br as reference and the vanishing line VL (Criminisia et al., 1999). We can then use basic
trigonometry to find the height of a point p.

H

R
=
|p−Br| |∞ −Hr|
|Hr −Br| |∞ −Br|

(4.1)

Orientation map An orientation map defines the major orientation of each pixel with respect
to the world using vanishing points. In order to compute an orientation map, the orientation of
each line in the image is defined. Orientation of the lines can be used to define the orientation
of the surface lying between lines (Lee et al., 2009). Orientation of a point is decided by the
surface on which it is lying.

Orientation of a line segment can be computed by the vanishing point that lies on the
extension of the line segment in the image. Common line detectors (Duda & Hart, 1972; Matas
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(a) (b)

(c) (d)

Figure 4.2: Unsupervised learning procedure for floor area. (a) Key-points, (b) Key-points cor-
respondences, head points drawn in blue, body centroids in green and feet centroids in red, (c)
candidate floor mesh for feet centroids, (d) floor area by filtering small disconnected areas.

et al., 2000) like hough transform try to find straight lines in an image using a voting-based
strategy. If pixels more than a threshold vote for a line then this line is taken as valid in an
image. We want to use the orientation map for modeling resting places. Resting places like
a sofa or a bed may not have enough straight lines due to their irregular shape and irregular
boundaries. Thus common line detectors fail to find sufficiently many lines. This fact can be
seen in Figure 4.3(b) where a voting-based method (Matas et al., 2000) fails to detect enough
lines on the small sofa and the bed, which in turn resulted in wrong orientations in these areas. It
can be observed in Figure 4.3(a) that resting places in the scene may not have enough straight
lines instead they have many irregular line segments and curves that can be detected for the
orientation map generation. Irregular lines do not follow the basic definition of a straight line
and cannot be represented by the linear equation y = mx+ b. Thus all the points on a irregular
line might not have same slope m. As voting based techniques follow a fixed slope m, hence
they have problems with irregular lines. Secondly, random alignments of pixels might generate
wrong lines in cluttered indoor scene. Instead of searching for straight lines, we followed a
method (Grompone von Gioi et al., 2012) to identify line segments in the scene.

Let Lo = lo,1, lo,2, ..., lo,n be the set of line segments of orientation o, where o ∈ [x, y, z]
denotes one of the three orientations. Orientation o of a line is determined by a parallelism
check of a line with known vanishing points (vx, vy, vz). Figure 4.4(a) shows the orientations
of lines, Lz drawn in red, Ly drawn in green, Lx drawn in blue while lines with unknown
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(a) (b) (c)

Figure 4.3: Lines in the scene. (a) shows the edges in the scene, (b) shows the lines by a hough
transform based voting mechanism (Matas et al., 2000), (c) shows the lines by line growing mech-
anism (Grompone von Gioi et al., 2012).

(a) (b) (c)

Figure 4.4: Orientation and height maps. (a) shows the lines membership for a particular orienta-
tion, (b) shows the orientation map using line segments, (c) shows the height map.

orientations are drawn in yellow.
For the pixel orientation a "sweep" of the lines in an image area towards the corresponding

vanishing point is calculated. For example a sweep S(lx,i, vy, α) of a line lx,i towards a van-
ishing point vy by amount α is the set of pixels that is supported by line lx,i to be orientation
z (Lee et al., 2009). Figure 4.4(c) shows the quantized height of each pixel. Floor points with
lowest possible height are drawn in black. Pixels with very low height are drawn red. Pixels
that have height less than the average body centroid height are in the probable areas of inac-
tivity zones, and are drawn green. Pixels higher than body centroids are drawn in yellow, and
pixels having height higher than head positions are drawn in white. The pixels whose height
can not be estimated due to lack of neighbors are drawn in blue.

4.4 Joint Conditional Segmentation

Figure 4.5 gives an overview of the CRF-based image segmentation for unsupervised scene
layout estimation procedure. First column shows the original surveillance scene image, key-
point trajectories of the moving persons and lines in the scene image. Second column shows
the three features used to define unary class potentials i.e color priors areas are used to de-
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Figure 4.5: Unsupervised scene segmentation procedure for inactivity zones using CRF. First col-
umn shows the input data including image of the surveillance scene, key-point trajectories and lines
in the scene image. Second column shows the three features used to define unary class potentials.
i.e. color priors, relative quantized height and surface orientations. Binary potentials, i.e. ordering
and smoothness constraints are added to define homogeneous regions neighborhood relationship.
Inference procedure finds the optimal scene segmentation by minimizing energy on CRF.

fine Gaussian distributions of different classes. Quantized height defines the relative height
of each pixel in the image, and surface orientations defines the normal orientations at each
pixel. Color prior areas for different classes are selected using their known reliable properties.
Binary potentials, i.e. ordering and smoothness constraints are added to define homogeneous
regions neighborhood relationship. Graph cut based inference procedure is used to find the
optimal scene segmentation by minimizing energy on CRF. Different areas in an indoor scene
are modeled using joint conditional multi-class segmentation. Initially we segment a scene into
homogeneous regions based on color and height information (Felzenszwalb & Huttenlocher,
2004b). Using prior knowledge of the potential floor B in the scene and pixel-level informa-
tion then each homogeneous region is assigned to either ground floor GF , one of the sitting
places ST or static background BG. The global topological order of the classes such as rest-
ing places are above ground and background is also above ground or at same level as resting
places, is locally integrated in to a CRF (Barth et al., 2010; Lafferty et al., 2001) by ordering
constraints. For a given image withN homogeneous regions, each homogeneous region and its
corresponding pixels can take a unique label from a set L, where L = l1, ..., lN represent the
assignment of potential classes C1, ..., CJ to each homogeneous region. The optimum labeling
is computed by finding the minimum energy configuration of the CRF. The energy function
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characterizing the CRF used for the scene segmentation is as follows

E(L, f,Θ) =
N∑
i=1

Φ(li, fi,Θ) +
∑

(a,b)∈B

Ψ(la, lb, fa, fb,Θ) (4.2)

where Φ denotes set of unary potentials which are defined for all the classes using all the
features. Ψ denotes a pairwise term which depends upon labels of neighboring homogeneous
regions a and b. The feature vector fi defines the color, height and orientation of the of each
homogeneous region, i.e. fi = {hi, oi, ci}. The parameter set Θ includes the knowledge of
color seed areas of the different classes and relative position of different classes in the scene.
The color seed areas define prior colors for different sitting places ST = {ST1, ..., STM}, floor
GF and background BG in the scene. These areas are defined using some basic properties
and feature set fi. Sitting places ST are the areas or surfaces in the scene that have vertical
orientation and they are higher than floor surface. Floor GF is the area with zero height and
vertical orientation, while background BG are the areas with highest heights and orientations
other than vertical. These prior areas are only used to define the color potentials for different
classes and do not impact other potentials. They are also not involved in the segmentation
process directly.

4.4.1 Unary Potentials

Unary potentials capture the labeling preference for a single class. Each potential function
is defined for all candidate classes Cj . Each potential function has different discriminative
criteria for different target classes. We use the following three unary potentials in our CRF
model. Height potential encodes the relative quantized height Hi of each homogeneous region
in the scene image w.r.t. the ground floor. Ground floor is considered to have zero height, the
background class has regions that are higher than any other class. While sitting places or areas
are considered to be near floor and have lower height than the background. The height potential
is given by

ΦH
1 (li = Cj , fi,Θ) =


− log s(Hi −Hmin, λgs, k

j
gs), Cj = GF

− log Π(Hi, λ
j
st,

´Hmin, ´Hmax, k
j
st), Cj = STm

− log s(Hi −Hmax, λbg, k
j
bg), Cj = BG

(4.3)

where minimum height Hmin, ´Hmin and maximum height Hmax, ´Hmax values are decided
using known average key-point heights. s(x, λ, k) is one dimensional sigmoid function with
width λ and turning point at x = 0, scaled to the range k with

s(x, λ, k) = (kmax − kmin)/(1 + exp(−x/λ)) + kmin

Similarly Π is a gating function for input x that is composed of two opposite sigmoid functions
with slope λ
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Π(x, xmin, xmax, λ, k) =

(kmax − kmin) · (s(x− xmin, λ, 0, 1)− s(x− xmax, λ, 0, 1)) + kmin
(4.4)

The orientation potential encodes the orientations or normals of homogeneous regions accord-
ing to the orientation of the surfaces on which they lie. The ground surface GF have vertical
orientation Ov. The sitting places ST have both horizontal and vertical parts. Hence they have
either horizontal Oh or vertical orientation Ov. The background areas BG should always have
one of the two horizontal orientation Oh. The orientation potential is given by

ΦO
2 (li = Cj , fi,Θ) =


− log d(x,Ov, k

j), Cj = GF

− log d(x,Ov, k
j) ∨ − log d(x,Oh, k

j), Cj = STm

− log d(x,Oh, k
j), Cj = BG

(4.5)

where d is a customized delta function that returns higher potential in case of match and lower
potential otherwise

d(x, o, k) = (kmax − kmin) · δ(x, o) + kmin

Color potentials are modeled for the color similarity in the potential class areas using modified
Gaussian mixture models(GMM). We define a separate GMM for each prior or seed area of
a class. The parameters for each GMM are defined from color values in the seed area in the
scene. The color potential is

Φc
3(li = Cj , fi,Θ) =


− log gmm(c,Θgs, k

j
gs), Cj = GF

− log gmm(c,Θst, k
j
st), Cj = STm

− log gmm(c,Θbg, k
j
bg), Cj = BG

(4.6)

where modified gmm is

gmm(x, ĆNx , k) = (kmax − kmin) · [
N∑
n=1

max(g(x, Ćnx , k))] + kmin (4.7)

g is a bell-shaped, zero-mean, multi-dimensional Gaussian function with covariance matrix Ćx,
defined as

g(x, Ćx, k) = (kmax − kmin) · exp(−1/2xT Ć−1
x x) + kmin

where c is a mean RGB vector, x is the distance of vector c from mean vector of a particular
Gaussian.
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4.4.2 Binary Potentials

Binary or pairwise potentials Ψ define the preferences for labels over two neighboring ho-
mogeneous regions. Two neighboring regions with the same class should be assigned high
likelihood τ1 otherwise low likelihood τ2. We also integrate the relative hierarchy of different
classes within the binary potentials. For two neighboring homogeneous regions on rows va and
vb where va ≤ vb the binary terms are given as follows

Ψ(la = Cja, lb = Cjb, fa, fb,Θ) = − log


τ1, ja = jb

τ2, ja 6= jb ∧ (ja ≺ jb ∨ (va = vb ∧ oa = oh))

τ3, ja 6= jb ∧ ja ⊀ jb ∧ va < vb
(4.8)

where j represent the relative ordering of two homogeneous regions. If we assume that the
rows in image increase downward and the row above va have orientation oh then we assign
higher potential τ2, because BG has only horizontal orientation and it should be above all.

4.4.3 Inference Using Graph Cut

The energy functionE(L, f,Θ) in Eq. (4.2) is solved using a graph-cut based inference method.
The inference method tries to find the optimal solution where total energy using potentials is
minimum for labeling (Delong et al., 2012). It is assumed that all the individual nodes in graph
share the same state (label) space. For the pairwise potentials, it is achieved that the energy for
two labels taking similar values should be less than the energy for them taking different values.
At pixel-level either 4 or 8 neighborhood can be considered to define pair-wise relationships.
This predefined neighborhood do not exist in the graph for homogeneous regions, as number
of neighbors vary for each homogeneous region. Hence we define pair-wise relationships for
all neighbors of a homogeneous region.

4.5 Scene Layout Estimation Results

We compared the proposed scene layout estimation method with state of the art scene layout
estimation methods (Hedau et al., 2009; Lee et al., 2010) on several scenes. First we compare
our layout estimation results with techniques that estimate indoor scene layout using single-
image segmentation (Hedau et al., 2009; Lee et al., 2010). Later we shall show that the layout
estimation results can be improved using depth information. Single-image segmentation tech-
niques use the line segments to define 3D structure or geometry of the scene. We used the
original softwares publicly provided by the authors on their websites (Hedau et al., 2009; Lee
et al., 2010). Software from Lee et al. (2010) generates only the bounding box for the room
layout. For comparison we colored the background area in the bounding box to blue. Simi-
larly software from Hedau et al. (2009) generates the room layout estimate where each wall
and roof has a different color. As we are interested in the background area as whole, thus we
gave all background areas like walls and roof a uniform blue color. In order to evaluate the
layout estimation, we captured five indoor scene videos using standard video surveillance net-
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work cameras for our experiments. A person walked across the scene for about 2 to 5 minutes.
Additionally we used 3 video sequences from publicly available standard datasets (Edgcomb
& Vahid, 2012). We assume a perspective camera view of the scene with minimum possible
tilt. For pixel-wise comparison of estimation results, we generated the ground-truth for all the
scenes. We marked spatial layout of the room along the resting places. All the background
areas are colored blue, all resting places as green and floor as black.

Figure 4.7, Figure 4.8, Figure 4.9 and Figure 4.10 show the original images and layout
estimation results for qualitative evaluation of these scenes. Our dataset represents different
possible indoor scenarios like living room, bed room, office, working computer lab, dining area
etc. The videos in dataset are in different resolutions ranging from 352 × 288 to 1024 × 768.
The scene images have been captured in varying lighting conditions like doors and windows
open or closed, artificial light on or off.

CRF based segmentation normally depends on different parameters. We performed an
offline parameters optimization using particle swarm optimization (Qian & Yasuda, 2008). The
CRF parameters are not sensitive and follow the intuitive rules for different potentials. They
can take a range of values between 0 and 1, while still giving the similar segmentation results.
We use the following minimum and maximum unary potential levels kjgs,bg,st = [0.1, 0.9].
To accommodate the vertical parts in sitting areas in case of horizontal orientation we use
kOst = [0.1, 0.5] in all our experiments. For binary terms we used the values τ1 = 0.85,
τ2 = 0.15 and τ3 = 0.001. Similarly λbg > 0 λgs < 0 and λst > 0.

4.5.1 RGB-based Results

Qualitative Results In first set of experiments we analyzed the role of different unary and
binary potentials. Figure 4.6 illustrates the importance of different potentials introduced in our
approach. Our trajectory based height feature plays an important role. It not only improves
the scene layout but also benefits in the detection of resting places. Figure 4.6 shows the
segmentation results for an indoor home scene for different configurations. Original scene
image is shown in (a). The manually labeled ground truth image is shown in (b). Background
BG is drawn in blue, sitting places ST are drawn in green, while floor is drawn in black.
Final scene segmentation using all of the unary and binary potential for homogeneous regions
is illustrated in (c). It can be observed that proposed mechanism correctly identified all the
inactivity zones in the scene. Some false segmentations also appears on walls that can not be
avoided at homogeneous regions level and shall be removed at object-level processing. In some
areas vertical wall areas behind a sitting place got merged with the inactivity. Such vertical
areas do not harm the objective of inactivity zones because they just extend the wall support
area of an inactivity zone. In Figure 4.6(d-f) either a unary or binary potential is removed to
judge its effect on the segmentation process. In the absence of orientation or color information
background areas like wall are wrongly detected as inactivity zone. In the absence of height
major parts of inactivity zones got detected either as background or floor. Figure 4.6(g) shows
the segmentation using only the unary potentials. A number of wrong areas appear with in
the actual classes. Figure 4.6(e-f) shows the segmentations using pixel-based unary and binary
potentials or only unary potentials. Segmentation at pixel-level can not detect some resting
areas properly. A large number of pixels belonging to resting areas are wrongly detected either
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as background or ground floor.
Along internal comparison we also compare our results qualitatively with state of the art

methods. Figure 4.7, Figure 4.8, Figure 4.9 and Figure 4.10 show the scene layout estimation
results for different indoor scenes using the proposed and reference methods. First rows in
Figure 4.7 and Figure 4.8 show the original scenes images LivingLab, StudentLab and Livin-
gRoom, while the first rows in Figure 4.9 and Figure 4.10 show the original scenes images Sur-
faceClean, Pace and OfficeW. The second row in all Figures shows the corresponding ground
truths. The third rows in Figure 4.7 and Figure 4.9 show the scene layouts estimated using
proposed method. The third rows in Figure 4.8 and Figure 4.10 show the estimation results
using Lee et al. (2010), while the last row in these figures show the results using Hedau et al.
(2009). The color represents the most probable class at a specific homogeneous region. Blue
represents background, black represents floor and green represents the sitting places or scene
clutter. In results from Lee et al. (2010), background and floor areas are enclosed in a blue
color box. Two upper portions in this box represent left and right walls, while lower portion
represents the floor area. Sitting places are enclosed in cubic shapes. The method mainly use
the line segments in the scene to define a geometry or 3D structure of the scene and assume
that clutter in the scene follow a volumetric constraint. It finds the room structure in the form
of walls and ceiling well but it is unable to detect the majority of the sitting areas because they
do not obey a volumetric constraint due to the absence of straight lines. Different rest areas
like sofa or bed might have curvy surface and lack straight lines. The third column shows the
scene layout estimation results using Hedau et al. (2009). They use a training-based method
and learn different features for different scene areas from a set of scene images. A large number
of pixels belonging to sitting areas are wrongly detected either as background or ground floor
due to their similarity in training data for wrong class.

Quantitative Results In order to compare the proposed method quantitatively we generated
confusion matrices and pixel-wise accuracy graphs. Confusion matrix are used to analyze the
percentage of correctly and wrongly classified pixels using standard parameter sets for the
estimation methods. Pixel-wise accuracy graphs are used to analyze the accuracy of all the
classes in a scene image while changing a particular parameter of the estimation method.

Table 4.1 shows a confusion matrix for the mean and standard deviation of segmentation
results for different scenarios using the training based mechanism proposed by Hedau et al.
(2009). We compared the layout estimation result image with its ground-truth for each scene.
The mean and standard deviation values are calculated using comparison values for all the
scenes. Both the ground floor GF and sitting places ST show lower number of true positives.
This is mainly due to the similarity of features for different classes in the training data.

Table 4.2 shows a confusion matrix for the mean and standard deviation of segmentation
results for different scenarios using the proposed method. As compared to reference method,
we achieve better segmentation or estimation for backgroundBG and sitting places ST . This is
mainly due to the introduction of height feature in the segmentation process. Height classifies
the different classes like resting places, floor and background even if they have very similar
color and orientation. The ground floor GF shows lower number of true positives. This is
mainly due to unavailability of trajectory information in some floor regions.
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(a) Original image (b) Ground truth (c) Final segmentation

(d) without orientation informa-
tion

(e) without color (f) without height

(g) unary only (h) pixel based segmentation (i) pixel based unary only

Figure 4.6: Labeling results using different combinations of unary and binary potentials. A par-
ticular unary or binary potential is removed is identify its importance in the segmentation process.
The color represents the most probable class at a specific pixel homogeneous region in the scene
image. Blue represents background, black represents floor and green represents the sitting places.

Table 4.1: Confusion matrix for the segmentation results by Hedau et al. (2009) (mean and stan-
dard deviation).

GT BG GF ST
BG 0.8339 ±0.0819 0.0188 ±0.0165 0.1473 ±0.0843
GF 0.0448 ±0.0783 0.7514 ±0.1595 0.2038 ±0.1219
ST 0.1281 ±0.2006 0.1262 ±0.1187 0.7457 ±0.2369
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(a) LivingLab (b) StudentLab (c) LivingRoom

(d) Ground truth (e) Ground truth (f) Ground truth

(g) Proposed method (h) Proposed method (i) Proposed method

Figure 4.7: Scene Layout estimation results for different indoor scenes using proposed method.
First row shows the original scenes images, LivingLab, StudentLab, LivingRoom. The second row
shows the corresponding ground truths. The third row shows the scene layouts estimated using
proposed method. The color represents the most probable class at a specific homogeneous region.
Blue represents background, black represents floor and green represents the sitting places or scene
clutter.

Table 4.2: Confusion matrix for the segmentation results by proposed mechanism (mean and stan-
dard deviation).

GT BG GF ST
BG 0.903 ±0.0635 0.0028 ±0.0022 0.087 ±0.0627
GF 0.066 ±0.0671 0.7469 ±0.0797 0.182 ±0.1243
ST 0.064 ±0.0514 0.33 ±0.0265 0.894 ±0.0416
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(a) LivingLab (b) StudentLab (c) LivingRoom

(d) Ground truth (e) Ground truth (f) Ground truth

(g) Lee et al. (2010) (h) Lee et al. (2010) (i) Lee et al. (2010)

(j) Hedau et al. (2009) (k) Hedau et al. (2009) (l) Hedau et al. (2009)

Figure 4.8: Scene Layout estimation results for different indoor scenes using reference methods.
First row shows the original scenes images, LivingLab, StudentLab, LivingRoom. The second
row shows the corresponding ground truths. The third row shows the estimation results using Lee
et al. (2010), while the last row shows the estimation results using Hedau et al. (2009). The color
represents the most probable class at a specific homogeneous region. Blue represents background,
black represents floor and green represents the sitting places or scene clutter. In case of Lee et al.
(2010) results background is enclosed in a blue color box, sitting places are enclosed in cubic
shapes while rest of the scene is considered as floor.
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(a) SurfaceClean (b) Pace (c) OfficeFromW

(d) Ground truth (e) (f)

(g) proposed method (h) (i)

Figure 4.9: Scene Layout estimation results for different indoor scenes using proposed method.
First row shows the original scenes images, SurfaceClean, Pace, OfficeW. The second row shows
the corresponding ground truths. The third row shows the scene layouts estimated using proposed
method.
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(a) SurfaceClean (b) Pace (c) OfficeFromW

(d) Ground truth (e) (f)

(g) Lee et al. (2010) (h) Lee et al. (2010) (i) Lee et al. (2010)

(j) Hedau et al. (2009) (k) Hedau et al. (2009) (l) Hedau et al. (2009)

Figure 4.10: Scene Layout estimation results for different indoor scenes using reference methods.
First row shows the original scenes images, SurfaceClean, Pace, OfficeW. The second row shows
the corresponding ground truths. The third row shows the scene layout estimation results using Lee
et al. (2010), while the last row shows the results using Hedau et al. (2009).
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We perform a second quantitative evaluation for scene layout using pixel-wise accuracy
comparison between the segmentation results and the ground truth (Gould et al., 2008). Pixel-
wise accuracy represents the sum of accuracy for all classes in a scene image.

Acc =
TPBG + TPGF + TPST

N
(4.9)

This accuracy term is calculated for different values of a parameter. In this experiment, the
parameter is basically number of homogeneous regions that are used as an initial input for final
scene segmentation.

Figure 4.11 shows pixel-wise accuracy curves for different indoor scenes using proposed
and a reference method (Hedau et al., 2009). Different accuracy values are derived by chang-
ing number of homogeneous regions in the scene image. As both proposed and and reference
method (Hedau et al., 2009) use homogeneous regions as an initial input to perform layout es-
timation. Hence, we used different number of homogeneous regions as a parameter to compare
the performance of two methods. First row shows the graphs for OfficeD and SurfaceClean.
The second row shows the curves for LivingLab and LivingRoom sequence, while the third
row shows the graphs for StudentLab and OfficeW.

The proposed method shows better results for all the scenes except for the sequence Of-
ficeD. For this particular sequence reference method achieves much better performance when
number of homogeneous regions is low. This is mainly due to less amount of trajectory data
available for this scene. Inaccurate height map is generated due to less trajectory information.
As a result height information can not improve homogeneous regions and image segmentation
process. Reference method (Hedau et al., 2009) also showed better performance when size of
homogeneous regions was too large. This fact can been seen in curves for OfficeD, OfficeW
and SurfaceClean. For too large homogeneous regions the reference method performed bet-
ter due to better similarity in their training data. As we use neighborhood relationships for
homogeneous regions in our segmentation approach, thus we get better results when number
of homogeneous regions is higher and they are smaller in size. Similarly feature values are
uniform when we have smaller size of homogeneous regions.

4.5.2 Scene Context Model Using RGB-D Sensors

The scene layout estimations by the proposed method can be further improved if we use RGB-
D sensors. Depth information from the sensor not only improves the homogeneous regions but
depth also produces better orientation maps. These improved features are then used in the CRF-
based segmentation process to produce better scene layouts. Commonly used RGB-D sensors
like Kinect do not deliver a complete depth map. Kinect particularly face problems in the dark
and shining areas in the scene. Similarly depth for the areas farther than 4 meter might not
be accurate. Figure 4.12(b) shows that we are unable to get any depth information in different
areas in StudentLab scene. In order to correct the depth information we used two mechanisms
in all scenes. Kinect delivers slightly varying depth at different times. We performed temporal
averaging to improve depth information from multiple images. Then we performed an inter-
polation or in-painting step using cross bilateral filter (Silberman et al., 2012) to fill the rest of
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(a) OfficeD (b) SurfaceClean

(c) LivingLab (d) LivingRoom

(e) StudentLab (f) OfficeW

Figure 4.11: Pixelwise accuracy for different indoor scenes using proposed and reference method
(Hedau et al., 2009) by changing number of homogeneous regions. First row shows the graphs
for OfficeD and SurfaceClean. The second row shows the graphs for LivingLab and LivingRoom
sequence, while the third row shows the graphs for StudentLab and OfficeW.
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(a) StudentLab (b) StudentLab depth (c) Inpainted or corrected depth

Figure 4.12: Original and corrected depth for StudentLab scene.

(a) OfficeD depth (b) Orientation map using depth

Figure 4.13: Depth and orientation map for OfficeD scene. Red represents vertical orientations Z
while green and blue represent two horizontal orientations X and Y.

missing depth information from neighboring pixels. Figure 4.13(c) shows the inpainted depth
for OfficeD (office from door) scene. The missing depth have been filled while maintaining the
boundaries between different objects. In some severe cases depth inpainting mechanism fails
to recover missing depth at object boundaries correctly (see Figure 4.12(c)). This may happen
when major part of an object is missing in the original depth map.

We used depth information from RGB-D sensor to improve the quality of homogeneous
regions. Homogeneous regions are used as initial input in our CRF-based segmentation algo-
rithm. Errors in homogeneous regions propagate throughout segmentation process and result
in inaccurate scene layout. Figure 4.14 shows homogeneous regions for OfficeD scene im-
age. Color information is not always enough to generate good homogeneous regions. Using
only color information results in homogeneous regions that contain multiple regions wrongly
combined together due to color similarity. This can be observed in chairs areas in the scene
shown in Figure 4.14(b). Part of one chair is wrongly combined with the floor, while in case
of other chair a part is combined with the background. Figure 4.14(c) shows that using depth
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(a) OfficeD (b) Homogeneous regions using
RGB data

(c) Homogeneous regions using
RGB and depth

Figure 4.14: Homogeneous regions for OfficeD scene image. Using color information only results
in homogeneous regions that contain multiple regions wrongly combined together due to color
similarity.

information we can solve these problems as chair and their nearby floor or background area are
at different depths and lye at different distance from the camera. We also used depth and depth-
based orientation map in our CRF based scene layout estimation mechanism. Figure 4.13(b)
shows the orientation map generated using RGB-D information from Kinect sensor for OfficeD
scene. Orientation map is based on the surface normals and defines the surface orientation for
each point using its neighboring points (Rusu, 2009) in the point cloud. The surface normal
is defined by the eigenvectors(Principal Component analysis) of the covariance matrix created
from the nearest neighbors of a point. Orientation map being generated from inpainted depth
might contain the areas where no single orientation is dominant. We refined the orientation
map using homogeneous regions generated on the basis of color and depth information. We
selected the dominant orientation for each homogeneous area.

In CRF based segmentation mechanism depth information can not be used as a unary fea-
ture. Depth information is not a discriminatory feature for different scene classes. Different
classes might have same depth in different areas of a scene. Floor near to camera might have
similar depth as a chair near to the camera. Though depth is not a discriminatory feature in
the whole image but it is an discriminatory feature in a local neighborhood in the scene. A
chair should have different depth from its nearby floor and background. Keeping this point in
view we integrated depth only as a binary or pairwise potential. We restricted the areas to have
higher binary potential value only if they have similar depth. Depth based orientation map is
used as replacement for the lines based orientation in unary potentials.

Figure 4.16 shows the scene Layout estimation results for different indoor scenes with
RGB and RGB-D based features using proposed method. Depth information clearly improves
the boundaries between different scene classes. Sitting areas are well separated from the back-
ground and floor. First row shows the scene layout results for OfficeD scene. Without depth
parts of chair are segmented as floor due to strong color similarity with the nearby floor, sim-
ilarly a number of background areas are merged with the sitting places to the similar height
and color. These problems have been removed or minimized using depth information. The
second and fourth row shows the scene layout results for OfficeW (office from window) and
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(a) OfficeD (b) LivingRoom

(c) StudentLab (d) OfficeW

Figure 4.15: Pixelwise accuracy for different indoor scenes using proposed method with and with-
out depth information by changing number of homogeneous regions. First row shows the graphs
for OfficeD and LivingRoom sequence, while the second row shows the graphs for StudentLab and
OfficeW.
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(a) OfficeD ground truth (b) Scene layout using RGB data (c) Scene layout using RGB-D

(d) OfficeW ground truth (e) Scene layout using RGB data (f) Scene layout using RGB-D

(g) StudentLab ground truth (h) Scene layout using RGB data (i) Scene layout using RGBD

(j) LivingRoom ground truth (k) Scene layout using RGB data (l) Scene layout using RGB-D

Figure 4.16: Scene Layout estimation results for different indoor scenes with RGB and RGB-D
based features using proposed method. First row shows the scene layout results for OfficeD scene,
the second row shows the scene layout results for OfficeW scene, third row shows scene layout
results for StudentLab scene, while last row shows results for LivingRoom.
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LivingRoom scenes, a part of floor and background have been wrongly detected as sitting area
in RGB only results. This problem has been reduced using the depth based features. Third row
shows scene layout results for StudentLab scene. Depth based features do not show any im-
provement in estimation results. This is mainly due to the missing or wrong depth information
from the Kinect sensor. Figure 4.12(c) shows that even interpolation cannot recover the missing
depth information in some scene areas completely. We are unable to get any depth information
in the chair area while it has some darker part. Boundaries in the chair are mixed with both
floor and table in the unpainted depth image. Figure 4.15 shows pixel-wise accuracy for differ-
ent indoor scenes by changing number of homogeneous regions using proposed method with
and without depth information. Note different number of homogeneous regions were output
with and without depth information. We plotted the graphs where similar homogeneous regions
were available. First row shows the graphs for OfficeD and LivingRoom sequence. While the
second row shows the graphs for StudentLab and OfficeW. It can be observed that introducing
depth resulted in better pixel-wise accuracy. Specially depth improved performance when we
have low number of homogeneous regions. Different objects or areas merge when less number
of homogeneous regions are output. Errors in homogeneous regions is propagated in scene
segmentation process. we can avoid or minimize this problem by using height and by main-
taining the number of homogeneous regions high when no depth information is available. This
fact is also evident from the graphs. Curves for higher of number of homogeneous regions are
comparative. We can achieve approximate scene layout estimate with out depth, but for better
accuracy we can also include depth information. Depth improves pixel-wise accuracy from 1
to 10%. Note in case of StudentLab sequence depth do not bring any advantage, while input
depth image is highly erroneous. It shows that segmentation results are very much dependent
on quality of depth information. Missing or wrongly interpolated depth information may not
result in improvement rather it might lower the segmentation quality.

4.6 Conclusion

In this work, we presented an algorithm using the trajectories and image features to estimate the
layout of indoor scenes captured with a static and uncalibrated 2-D surveillance camera. We
develop a relationship between the moving person to the scene layout. By incorporating trajec-
tory information along line segments into the same scene segmentation framework we showed
that we can obtain a more accurate estimate of scene layout. The proposed method yields very
accurate segmentation results on challenging real world scenes. We focus on videos with peo-
ple walking in the scene and show the effectiveness of our approach through quantitative and
qualitative results. We are able to correctly segment 90% of background, 89% of sitting areas
and 75% of the floor. The ground floor shows lower true positive. This is mainly due to un-
availability of information in some floor regions. Publicly available software from Hedau et al.
(2009) was able to segment 83% of background, 75% of sitting areas and 75% of the floor. The
publicly available software from Lee et al. (2010) finds the room structure well but is unable
to detect the majority of the sitting areas because they do not obey a volumetric constraint due
to the absence of straight lines. The scene layout information will be extremely helpful for
activity analysis, navigation and other applications.
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Chapter 5

Joint Object Segmentation and Depth
Upsampling

With the advent of powerful ranging and visual sensors, nowadays, it is convenient to collect
sparse 3D point clouds and aligned high-resolution images. Benefited from such convenience,
in this chapter, we propose a joint method to perform both depth assisted object-level image
segmentation and image guided depth upsampling. To this end, we formulate these two tasks
together as a bi-task labeling problem, defined in a Markov random field. An alternating direc-
tion method (ADM) is adopted for the joint inference, solving each sub-problem alternatively.
More specifically, the sub-problem of image segmentation is solved by Graph Cuts, which
attains discrete object labels efficiently. Depth upsampling is addressed via solving a linear
system that recovers continuous depth values. By this joint scheme, robust object segmenta-
tion results and high-quality dense depth maps are achieved. The proposed method is applied
to the challenging KITTI vision benchmark suite, as well as the Leuven dataset for validation.
Comparative experiments show that our method outperforms stand-alone approaches. This
research appears in IEEE Signal Processing Letters (SPL) (Huang et al., 2015).

5.1 Introduction

In recent years, the conjunctive use of ranging sensors and cameras has become more and more
popular, which benefits many computer vision applications. For instance, on the one hand,
high-quality range data produced by ranging sensors are often used complementary to visual in-
formation for better accomplishing tasks such as object-level image segmentation, scene pars-
ing, and autonomous driving. On the other hand, the data generated by state-of-the-art ranging
sensors, such as Velodyne HDL Lidars, are still low in resolution. High-resolution images are
therefore employed as guidance to upsample depth information, making high-resolution and
high-quality depth maps available.

This work focuses on two above-mentioned problems, which are depth assisted object-level
image segmentation and image guided depth upsampling. The former takes advantage of depth
information to segment an image into regions that correspond to objects. Previous works on this
problem mainly rely upon depth maps inferred from dense stereo vision (Ladickỳ et al., 2012;

69



5. JOINT OBJECT SEGMENTATION AND DEPTH UPSAMPLING

Sengupta et al., 2013). Recently, sparse 3D point clouds and the reconstructed correspond-
ing dense depth maps are exploited as well in semantic segmentation for road scenarios (Chen
et al., 2014; Huang et al., 2014). In these works, depth information is integrated either as
geometric priors or as hard constraints within a Markov random field (MRF) framework to im-
prove segmentation performance. The latter problem, aiming to generate high-resolution depth
maps from sparse measurements, takes high-resolution visual images as guidance. Existing
researches mainly use techniques such as bilateral filtering (Yang et al., 2007), sparse repre-
sentation (Gong et al., 2014), or MRF (Diebel & Thrun, 2005; Park et al., 2011; Zhu et al.,
2010). Visual information is incorporated as first or higher order constraints to guide the up-
sampling procedure. Particularly, higher order constraints, which are formulated according to
image segmentation results, provide superior performance (Park et al., 2011; Zhu et al., 2010).

In contrast to conventional image segmentation or depth upsampling problems (Kang et al.,
2014; Liu et al., 2012) that are conducted on single modality, the above two problems depend
on bimodal data, and also the preprocessing results on their guidance modality. Their perfor-
mance is hence improved. However, a common weakness shared by both is that they suffer
from errors existing in their guidance. More specifically, the performance of image segmenta-
tion will be degenerated if the used depth map is noisy or overly smoothed on edges. Likewise,
a segment that crosses over object boundaries may lead to wrong depth upsampling results. In
order to prevent from such error propagation, we propose to solve these two problems jointly.

Therefore, we present a method to simultaneously deal with image segmentation and depth
upsampling. The proposed method formulates both together as a bi-task labeling problem de-
fined in a Markov random field. Although such a joint scheme has been exploited in some prob-
lems like joint image segmentation and stereo reconstruction (Bleyer et al., 2011; Guillemaut
& Hilton, 2011; Ladickỳ et al., 2012; Tallón et al., 2012), as well as joint object detection and
semantic segmentation (Yao et al., 2012), none of them works on depth upsampling. Moreover,
most existing techniques for joint inference in MRFs obtain discrete labels. But in our case,
segmentation takes discrete labels while upsampled depth is continuous. Therefore, we adopt
an alternating direction method (ADM) to solve our joint problem, which alternatively uses
Graph Cuts and a quadratic optimization algorithm to address each sub-problem. Experiments
conducted on both the KITTI vision benchmark suite and the Leuven dataset demonstrate the
superiority of our algorithm.

5.2 Problem Formulation

The objective of our work is to achieve reliable results for both image segmentation and depth
upsampling when a sparse 3D point cloud and an aligned high-resolution image are given. To
this end, we formulate both problems together as a multi-task labeling problem based on the
MRF framework. Two types of random variables, which are respectively an object label and a
depth label, are associated with each pixel. A graph G =< V,E > is hence constructed over
the random variables, where the vertex set V = {O,D} contains the object labeling set O and
the depth labeling D. The set E refers to the edges between the vertices. With such a graphical
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model, we can get an optimal result by minimizing the following energy function:

E(O,D) = λ1

N∑
i=1

ψO(oi) + λ2

N∑
i=1

ψD(di) + λ3

N∑
i=1

ψOD(oi, di)

+ λ4

N∑
i=1

∑
j∈N(i)

ψO(oi, oj) + λ5

N∑
i=1

∑
j∈N(i)

ψD(di, dj)

+ λ6

N∑
i=1

∑
j∈N(i)

ψOD(oi, oj , di, dj).

(5.1)

The function consists of six potential terms, which will be detailed below. λ1, · · · , λ6 are the
scalars balancing the importance of each term. N is the total number of pixels in the high-
resolution image, and N(i) denotes the neighbors of pixel i. Besides, oi denotes the i-th pixel’s
object label, taking a state from the label space L = {l1, l2, · · · , ln}, in which each state
corresponds to an object instance. di is a continuous depth value within a perception range
D = [dmin, dmax].

5.2.1 Unary Potentials

Object Unary Potential The object unary potential ψO(oi) evaluates the confidence for a
pixel to be labeled as a particular object. Assume that the sparse 3D point cloud has been
initially clustered into different object instances, as in Huang et al. (2014). Then, the pixels
registered to these points, which are also referred to as seeds, are used to learn prior models of
the objects. Let us denote the entire set of the seeds by S and the seeds belonging to the oi-th
object by Soi . Also, we denote fi as a feature extracted from pixel i, which might be the color
and location (R,G,B,X, Y, Z) as in Huang et al. (2014) or some other more complicated
features, and Θoi as the model learned from Soi . The potential is then designed to maximize
the likelihood p(fi|Θoi), but also place a high confidence on the pre-labeled seeds. It is of the
form:

ψO(oi) =


α i ∈ Soi
β i ∈ S/Soi
− ln p(fi|Θoi) otherwise,

(5.2)

where α and β are, respectively, a small and a large constant that are experimentally set to
enforce the high confidence constraints. S/Soi stands for the seeds except Soi .

Depth Unary Potential The depth unary potential ψD(di) is designed to evaluate the differ-
ence between the recovered depth value and the measured one. As mentioned above, only the
seeds in the image have depth measurements. Therefore, this term is defined as

ψD(di) =

{
||di − d̄i||22 i ∈ S

0 otherwise,
(5.3)

where d̄i denotes the measured depth of pixel i.
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Joint Unary Potential The joint unary potential ψOD(oi, di) penalizes the inconsistency be-
tween an object label and a depth value. This terms is commonly used when objects pro-
vide substantial information about the 3D location (Guillemaut & Hilton, 2011; Ladickỳ et al.,
2012). For instance, if an object is labeled as the sky, then it is of high confidence that the depth
value is infinite. Such a constraint is employed in our work to prevent from recovering wrong
depth values in the sky region. Thus, it is designed as:

ψOD(oi, di) =

{
γ oi = sky ∩ di 6= dmax
0 otherwise,

(5.4)

where γ is a large constant value.

5.2.2 Pairwise Potentials

Object Pairwise Potential The object pairwise term ψO(oi, oj) encourages adjacent pixels
to take the same object label if their features are similar to each other. It is defined in terms of
a weighted Potts model (Boykov et al., 2001):

ψO(oi, oj) = wijT (oi 6= oj), (5.5)

where T () is an indicator, whose value is 1 when its parameter is true and 0 otherwise. The
weight measures the similarity of two features and is defined by

wij = exp
(
−||fi − fj ||22/σ2

)
. (5.6)

Depth Pairwise Potential Likewise, the depth pairwise potential ψD(di, dj) encourages two
neighbors to have close depth values if their features are similar. However, rather than using the
weighted Potts model as defined above, we formulate this potential in the same form as (Diebel
& Thrun, 2005) in order to achieve continuous values. It is thus defined by

ψD
ij(di, dj) = wij ||di − dj ||22. (5.7)

Joint Pairwise Potential The last term, that is the joint pairwise potential, enforces the local
consistency of object labels and depth values between adjacent pixels. Based upon an ob-
servation that object boundaries and depth discontinuities are often co-occurrent, this term is
designed as

ψOD
ij (oi, oj , di, dj) = wij ||di − dj ||22T (oi 6= oj). (5.8)

It penalizes the case that two objects having similar features hold large depth difference.
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5.3 Inference

The formulated problem involves two sets of variables: one takes discrete labels and the other
is continuous. Therefore, inferring both together is extremely challenging. In this work, we
employ an alternating direction method (ADM) (Boyd et al., 2011) to iteratively solve the en-
tire problem. In each iteration, a set of variables is solved alternatively by keeping the other
set fixed. More specifically, under the assumption that depth values are known, the image seg-
mentation sub-problem is addressed by Graph Cuts (Boykov et al., 2001). When segmentation
is determined, depth upsampling is performed via solving a linear system. More details of the
inference are presented below. More details of the inference are presented below.

5.3.1 Inference for Object Segmentation

When depth values are fixed, the energy function defined in Eq. (5.1) degenerates to the fol-
lowing one:

E(O) = λ1

N∑
i=1

ψO(oi) + λ3

N∑
i=1

ψOD(oi, di)

+

N∑
i=1

∑
j∈N(i)

wij
(
λ4 + λ6||di − dj ||22

)
T (oi 6= oj).

(5.9)

We can validate that this energy function satisfies the submodularity restriction. Therefore,
expansion moves of Graph Cuts (Boykov et al., 2001) are applied to efficiently optimize this
problem.

5.3.2 Inference for Depth Upsampling

Under the assumption that segmentation is determined, Eq. (5.1) is reduced to the form:

E(D) = λ2

N∑
i=1

ψD(di) + λ3

N∑
i=1

ψOD(oi, di)

+

N∑
i=1

∑
j∈N(i)

ωij (λ5 + λ6T (oi 6= oj)) ||di − dj ||22.
(5.10)

It is a quadratic function defined with respect to the depth values. Therefore, efficient
optimization techniques, such as a conjugate gradient algorithm (Diebel & Thrun, 2005) or
even a closed-form solution, can be applied. In this work, we infer depth values via solving the
linear system obtained from the closed-form solution.
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5.4 Experiments

We have conducted two series of experiments, respectively, on the KITTI vision benchmark
suite (Geiger et al., 2012) and the Leuven dataset (Ladickỳ et al., 2012). Throughout all the
experiments, the involved parameters are empirically set as follows: λ1 = λ2 = λ3 = 0.5,
λ4 = λ5 = λ6 = 10; in Eq. (5.2), the constants used for enforcing hard constraints are α = 1
and β = 500; in Eq. (5.4), γ = 500; and in Eq. (5.6), σ2 = 3× 2552. Note that both the color
and the depth values are scaled to [0, 255] and in depth value 255 stands for the infinity for the
sky. Therefore, 2552 in σ2 is used to normalize the features and 3 is a manually tuned scalar.
Moreover, the iteration number of ADM is set to 4, at which most cases can get converged.
Our algorithm is implemented in Matlab and has not been optimized for efficiency. Thus, each
iteration takes about 25s for the KITTI and 5s for the Leuven dataset when running on our
desktop with an Intel Core i5 2300 and 4 GB memory.

5.4.1 Experiments on KITTI

We first conduct our experiments on the ‘City’ category in KITTI (Geiger et al., 2012). It has
28 different urban road scenarios and over 8,000 frames. Each frame contains color images
in the resolution of 1242 × 375 and an aligned 360o 3D point cloud. Preprocessing, which
includes data registration and object hypothesis generation, is initially performed following the
way in Huang et al. (2014). Then, the proposed algorithm is carried on to achieve the results
of object segmentation and depth upsampling.

To validate the performance of our joint scheme, we compare the proposed method with a
stand-alone version. More precisely, the stand-alone depth upsampling is obtained by optimiz-
ing the energy function containing only the potentials defined in Eq. (5.3) and Eq. (5.7). Also,
the stand-alone object-level segmentation is achieved by minimizing the energy composed of
Eq. (5.2) and Eq. (5.5), meanwhile taking the upsampled depth as a part of the feature fi. Fig-
ure 5.1 presents some typical results. It shows that, for depth upsampling, the joint approach
prevents from over-smoothing object boundaries, especially on the boundaries between objects
and the sky. Our approach also obtains better performance on segmentation. For example, in
the stand-alone result in Column 1, segmentation errors exist on the top of the kiosk, which are
resulted in due to incorrect depth values. Wrong depth information also leads to segmentation
errors in the sky in Column 3 and 4, and on the top of car in Column 2, 4 and 5. Fortunately,
such errors are all fixed by the joint approach.

In addition, we also conduct quantitative evaluation for the segmentation results. We ran-
domly select 200 frames from all sequences and manually label them. The results are evaluated
in terms of the global consistency error (GCE) and the local consistency error (LCE) (Martin
et al., 2001), both of which are ranged in [0, 1] and 0 stands for the best performance. In our
work, since the object hypothesis generation method produces multiple object instances, to-
gether with the sky and the ground, for each frame. Therefore, the pixel accuracy of the sky
and the road is also calculated. All comparative evaluations are listed in Table 5.1, demonstrat-
ing the superiority of our joint method.

However, since no ground truth of dense depth maps is available in KITTI, we are not able
to quantitatively evaluate depth upsampling results. This is also the reason that we perform the
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Figure 5.1: Object-level image segmentation and depth upsampling results on the KITTI dataset.
(A) Original Image. (B) Object seeds. (C) Object-level image segmentation ground truth. (D) Joint
segmentation result. (E) Stand-alone segmentation result. (F) Sparse depth map. (G) Joint depth
upsampling result. (H) Stand-alone depth upsampling result.

Table 5.1: Quantitative evaluation results of object-level segmentation.

Label Object Sky Road
Criterion GCE LCE Accuracy(%) Accuracy(%)

Stand-alone 0.12 0.11 86.84 91.03

Joint 0.09 0.09 97.41 99.06

next experiments.

5.4.2 Experiments on Leuven Dataset

The major objective of this experiment is to perform quantitative evaluation for depth upsam-
pling. Therefore, we design a set of experiments based on the Leuven dataset (Ladickỳ et al.,
2012), which provides ground truth for both segmentation and dense disparity maps. In or-
der to synthetically generate sparse depth maps, we randomly sample 10% points for each
object class. This sampling rate is chosen to be consistent with the rate of sparse points in
KITTI. In the experiment, we test our joint approach and compare it to the stand-alone meth-
ods. Moreover, two state-of-the-art color guided depth upsampling methods, one is based on
the MRF with second order constraints (Harrison & Newman, 2010) and the other incorporates
a L0 sparse constraint into the MRF framework (Gong et al., 2014), are also compared with.
Meanwhile, the results of Ladickỳ et al. (2012) are also provided for reference.

Figure 5.2 presents two typical results. It demonstrates that our joint method corrects some
object segmentation errors existing in the stand-alone approach, for instance, those on the
pavement in Column D. For depth upsampling, our method avoids the over-smoothness on
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B C D E F G H I

Sky Road Car Building Person Bike Pavement Void 0 Disparity 100 Void

A J K

Figure 5.2: Object class segmentation and upsampled disparity results on the Leuven dataset. (A)
Original Image. (B) Object class segmentation ground truth. (C) Joint segmentation result. (D)
Stand-alone segmentation result. (E) The segmentation result in Ladickỳ et al. (2012). (F) Dense
disparity ground truth. (G) Joint disparity upsampling result. (H) Stand-alone disparity upsampling
result. (I) The disparity upsampling result of method in Gong et al. (2014). (J) The disparity
upsampling result of method in Harrison & Newman (2010). (K) The reconstructed disparity map
in Ladickỳ et al. (2012).

0 2 4 6 8 10 12 14 16 18 20
0.2

0.4

0.6

0.8

1

Delta

C
or

re
ct

 P
ix

el
 R

at
io

 

 

Cosparse [7]
MRF 2nd Order [22]
the Method in [3]
Stand−Alone
Joint

Figure 5.3: Quantitative comparison of the performance of dense disparity generation. The correct
pixel ratio is the proportion of pixels which satisfy |di − d̄i| ≤ δ, where di is the disparity label of
ith pixel, d̄i is corresponding ground truth label and δ is the allowed error.

object boundaries on the disparity map when comparing to the stand-alone approach, as shown
in Column G and H. Table 5.2 lists the quantitative evaluation of segmentation results and
Figure 5.3 illustrates the evaluation of depth upsampling. Both show that the proposed method
outperforms almost all the others.

5.5 Conclusion

This work has presented a joint method for both object-level image segmentation and depth
upsampling. It is constructed over a MRF and inferred alternatively with Graph Cuts and a
quadratic optimization algorithm, so that discrete segmentation labels and continuous depth
values are effectively obtained. The effectiveness of our approach has been validated on the
KITTI vision benchmark suite and the Leuven dataset. Experiments show that it outperforms
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Table 5.2: The pixel accuracy (%) of different object classes obtained by the joint and stand-alone
approaches on the Leuven dataset. The results of Ladickỳ et al. (2012), although it is for joint
segmentation and stereo reconstruction, are also provided for reference.

Label Sky Road Car Building Person Bike Sidewalk Global
Ladickỳ et al. 99.7 99.1 88.7 96.9 −− 59.0 54.2 95.4

Stand-alone 87.3 96.9 95.9 96.3 22.4 54.3 54.6 93.1

Joint 89.9 99.1 98.9 98.5 65.5 90.3 96.2 97.1

the stand-alone approaches on both segmentation and upsampling. In the future, we will ex-
plore the parameter learning scheme to obtain better performance and the promising results can
further applied to achieve better performance on holistic scene understanding or other computer
vision applications.
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Chapter 6

A Generic Probabilistic Graphical
Model for Region-based Scene
Interpretation

The task of semantic scene interpretation is to label the regions of an image and their relations
into meaningful classes. Such task is a key ingredient to many computer vision applications, in-
cluding object recognition, 3D reconstruction and robotic perception. The images of man-made
scenes exhibit strong contextual dependencies in the form of the spatial and hierarchical struc-
tures. Modeling these structures is central for such interpretation task. Graphical models pro-
vide a consistent framework for the statistical modeling. Bayesian networks and random fields
are two popular types of the graphical models, which are frequently used for capturing such
contextual information. Our key contribution is the development of a generic statistical graph-
ical model for scene interpretation, which seamlessly integrates different types of the image
features, and the spatial structural information and the hierarchical structural information de-
fined over the multi-scale image segmentation. It unifies the ideas of existing approaches, e. g.
conditional random field and Bayesian network, which has a clear statistical interpretation as
the MAP estimate of a multi-class labeling problem. We demonstrate experimentally the ap-
plication of the proposed graphical model on the task of multi-class classification of building
facade image regions. This research appears at the International Conference on Computer Vi-
sion Theory and Applications (VISAPP) (Yang, 2015).

6.1 Introduction

The task of semantic scene interpretation is to label the regions of an image and their relations
into semantically meaningful classes. Such task is a key ingredient to many computer vision
applications, including object recognition, 3D reconstruction and robotic perception. The prob-
lem of scene interpretation in terms of classifying various image components in the images is a
challenging task partially due to the ambiguities in the appearance of the image data (Tsotsos,
1988). These ambiguities may arise either due to the physical conditions such as the illumina-
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tion and the pose of the scene components with respect to the camera, or due to the intrinsic
nature of the data itself. Images of man-made scenes, e. g. building facade images, exhibit
strong contextual dependencies in the form of spatial and hierarchical interactions among the
components. Neighboring pixels tend to have similar class labels, and different regions appear
in restricted spatial configurations. Modeling these spatial and hierarchical structures is crucial
to achieve good classification accuracy, and help alleviate the ambiguities.

Graphical models, either directed models or undirected models, provide consistent frame-
works for the statistical modeling. Two types of graphical models are frequently used for
capturing such contextual information, i. e. Bayesian networks (BNs) (Sarkar & Boyer, 1993)
and random fields (RFs) (Besag, 1974), corresponding to directed and undirected graphs. RFs
mainly capture the mutually dependent relationships such as the spatial correlation. Attempts
were made to exploit the spatial structure for semantic image interpretation by using RFs. Early
since nineties, Markov random fields (MRFs) have been used for image interpretation (Mod-
estino & Zhang, 1992); the limiting factor that MRFs only allow for local features has been
overcome by conditional random fields (CRFs) (Kumar & Hebert, 2003a; Lafferty et al., 2001),
where arbitrary features can be used for classification, at the expense of a purely discrimina-
tive approach. On the other side, BNs usually model the causal relationships among random
variables. Early in nineties, Sarkar & Boyer (1993) have proposed the perceptual inference
network with the formalism based on Bayesian networks for geometric knowledge-base rep-
resentation. Both have been used to solve computer vision problems, yet they have their own
limitations in representing the relationships between random variables. BNs are not suitable
to represent symmetric relationships that mutually relate random variables. RFs are natural
methods to model symmetric relationships, but they are not suitable to model causal or part-of
relationships.

Spatial and hierarchical relationships are two valuable cues for image interpretation of
man-made scenes. In this work we will develop a consistent graphical model representation
for image interpretation that includes both information about the spatial structure and the hi-
erarchical structure. We assume some preprocessing leads to regions, either as a partitioning
of the image area or as a set of overlapping or non-overlapping segments. The key idea for
integrating the spatial and the hierarchical structural information into the interpretation process
is to combine them with the low-level region class probabilities in a classification process by
constructing the graphical model on the multi-scale image regions.

The following sections are organized as follows. The related works are discussed in Sec-
tion 6.2. In Section 6.3, the statistical model for the interpretation problem is formulated. Then,
the relations to previous models is discussed in Section 6.4. In Section 6.5, experimental results
are presented. Finally, this work is concluded in Section 6.6.

6.2 Related Work

There are many recent works on contextual models that exploit the spatial structures in the
image. Meanwhile, the use of multiple different over-segmented images as a preprocessing step
is not new to computer vision. For example, multiple over-segmentations for finding objects in
the images is used in Russell et al. (2006). In the context of multi-class image classification, the
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work of Plath et al. (2009) comprises two aspects for coupling local and global evidences both
by constructing a tree-structured CRF on image regions on multiple scales and using global
image classification information. Thereby, Plath et al. (2009) neglect direct local neighborhood
dependencies. The work of Schnitzspan et al. (2008) extends classical one-layer CRF to a
multi-layer CRF by restricting the pairwise potentials to a regular 4-neighborhood model and
introducing higher-order potentials between different layers.

Although not as popular as CRFs, BNs have also been used to solve computer vision prob-
lems (Mortensen & Jia, 2006; Sarkar & Boyer, 1993). BNs provide a systematic way to model
the causal relationships among the entities. By explicitly exploiting the conditional indepen-
dence relationships (known as prior knowledge) encoded in the structure, BNs could simplify
the modelling of joint probability distributions. Based on the BN structure, the joint probability
is decomposed into the product of a set of local conditional probabilities, which is much easier
to specify because of their semantic meanings (Zhang & Ji, 2010).

Graphical models have reached a state where both hierarchical and spatial neighborhood
structures can be efficiently handled. RFs and BNs are suitable for representing different types
of statistical relationships among the random variables. Yet only a few previous works focus
on integrating RFs with BNs. In Kumar & Hebert (2003b), the authors present a generative
model based approach to man-made structure detection in 2D natural images. They use a
causal multiscale random field as a prior model on the class labels. Labels over an image are
generated using Markov chains defined over coarse to fine scales. However, the spatial neigh-
borhood relationships are only considered at the bottom scale. So, essentially, this model is
a tree-structured belief network plus a flat Markov random field. In Liu et al. (2006), the au-
thors propose an integration of a BN with an MRF for image segmentation. A naive Bayes
model is used to transform the image features into a probability map in the image domain. The
MRF enforces the spatial relationships of the labels. The use of a naive Bayes model greatly
limits the capability of this method. Recently, a unified graphical model that can represent
both the causal and noncausal relationships among the random variables is proposed in Zhang
& Ji (2010). They first employ a CRF to model the spatial relationships among the image
regions and their measurements. Then, they introduce a multilayer BN to model the causal
dependencies. The CRF model and the BN model are then combined through the theories of
the factor graphs to form a unified probabilistic graphical model. Their graphical model is too
complex in general. Although their model improves state of the art results on the Weizmann
horse dataset and the MSRC dataset, they need a lot of domain expert knowledge to design the
local constraints. Also, they use a combination of supervised parameter learning and manual
parameter setting for the model parameterization. Simultaneously learn the BN and CRF pa-
rameters automatically from the training data is not a trivial task. Compared to the graphical
models in Kumar & Hebert (2003b) and Liu et al. (2006), which are too simple, the graphical
models in Zhang & Ji (2010) are too complex in general. Our graphical model lies in between,
cf. Figure 6.1. We try to construct our graphical model that is not too simple in order to model
the rich relationships among the neighborhood of pixels and image regions in the scene, yet not
too complex in order to make parameter learning and probabilistic inference efficiently. Fur-
thermore, our model underlies a clear semantic meaning. If the undirected edges are ignored,
meaning no spatial relationships are considered, the graph is a tree representing the hierarchy
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(a) Multi-scale segmentation

(b) The graphical model

Figure 6.1: Illustration of the graphical model architecture. The blue edges between the nodes
represent the neighborhoods at one scale (undirected edges), and the red dashed edges represent
the hierarchical relation between regions (undirected or directed edges).

of the partonomy among the scales. Within each scale, the spatial regions are connected by the
pairwise edges.

6.3 Model

6.3.1 The Graphical Model Construction

By constructing the graphical model, we can flexibly choose either directed edges or undirected
edges to model the relationships between the random variables based on the semantic meaning
of these relationships.

We use an example image to explain this model construction process. Given a test image,
Figure 6.1 shows the corresponding multi-scale segmentation of the image, and the correspond-
ing graphical model for image interpretation. Three layers are connected via a region hierarchy
(Drauschke & Förstner, 2011). The development of the regions over several scales is used to
model the region hierarchy. Furthermore, the relation is defined over the maximal overlap of
the regions. Nodes connection and numbers correspond to the multi-scale segmentation. The
pairwise interactions between the spatial neighboring regions can be modeled by the undirected
edges. The pairwise potential functions can be defined to capture the similarity between the
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neighboring regions. The hierarchical relation between regions of the scene partonomy repre-
senting parent-child relations or part-of relations can be modeled by either the undirected edges
or the directed edges.

6.3.2 Multi-class Labeling Representation

We present the scene interpretation problem as a multi-class labeling problem. Given the ob-
served data d, the distribution P over a set of the variables x can be expressed as a product of
the factors

P (x | d) =
1

Z

∏
i∈V
f i(xi | d)

∏
{i,j}∈E

f ij(xi,xj | d)

∏
〈i,k〉∈S

f ik(xi,xk | d) (6.1)

where the factors f i,f ij ,f ik are the functions of the corresponding sets of the nodes, and Z
is the normalization factor. The set V is the set of the nodes in the complete graph, and the set
E is the set of pairs collecting the neighboring nodes within each scale. S is the set of pairs
collecting the parent-child relations between regions with the neighboring scales, where 〈i, k〉
denotes nodes i and k are connected by either a undirected edge or a directed edge. Note that
this model only exploits up to second-order cliques, which makes learning and inference much
faster than the model involving high-order cliques.

By simple algebra calculation, the probability distribution given in Eq. (6.1) can be written
in the form of a Gibbs distribution

P (x | d) =
1

Z
exp (−E(x | d)) (6.2)

with the energy function E(x | d) as

E(x | d) =
∑
i∈V

E1(xi | d) + α
∑
{i,j}∈E

E2(xi,xj | d)

+ β
∑
〈i,k〉∈S

E3(xi,xk | d) (6.3)

where α and β are the weighting coefficients in the model. E1 is the unary potential, E2 is
the pairwise potential, and E3 is either the hierarchical pairwise potential or the conditional
probability energy. This graphical model is illustrated in Figure 6.1. The most probable or
maximum a posteriori (MAP) labeling x∗ is defined as

x∗ = arg max
x∈Ln

P (x | d) (6.4)

and can be found by minimizing the energy function E(x | d).
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6.4 Relation to Previous Models

In this section, we draw comparisons with the previous models for image interpretation (Drauschke
& Förstner, 2011; Fulkerson et al., 2009; Plath et al., 2009; Yang et al., 2010) and show that at
certain choices of the parameters of our framework, these methods fall out as the special cases.
We will now show that our model is not only a generalization of the standard flat CRF over the
image regions, but also of the hierarchical CRF and the conditional Bayesian network.

6.4.1 Equivalence to Flat CRFs over Regions

Let us consider the case with only one layer segmentation of the image (the bottom layer of
the graphical model in Figure 6.1). In this case, the weight β is set to be zero, the set V1 is the
set of nodes in the graph of the bottom layer, and the set E1 is the set of pairs collecting the
neighboring nodes in the bottom layer. This allows us to rewrite Eq. (6.3) as

E(x | d) =
∑
i∈V1

E1(xi | d) + α
∑
{i,j}∈E1

E2(xi,xj | d) (6.5)

which is exactly the same as the energy function associated with the flat CRF defined over the
image regions with E1 as the unary potential and E2 as the pairwise potential. In this case, our
model becomes equivalent to the flat CRF models defined over the image regions (Fulkerson
et al., 2009; Gould et al., 2008).

6.4.2 Equivalence to Hierarchical CRFs

Let us now consider the case with the multi-scale segmentation of the image. If we choose E3

as a pairwise potential in Eq. (6.3), the energy function reads

E(x | d) =
∑
i∈V

E1(xi | d) + α
∑
{i,j}∈E

E2(xi,xj | d)

+ β
∑
{i,k}∈S

E3(xi,xk | d) (6.6)

which is exactly the same as the energy function associated with the hierarchical CRF defined
over the multi-scale of the image regions with E1 as the unary potential, E2 as the pairwise
potential within each scale, and E3 as the hierarchical pairwise potential with the neighboring
scales. In this case, our model becomes equivalent to the hierarchical CRF models defined over
multi-scale of image regions (He et al., 2004; Yang et al., 2010).

If we set α to be zero, and chooseE3 as a pairwise potential in Eq. (6.3), the energy function
reads

E(x | d) =
∑
i∈V

E1(xi | d) + β
∑
{i,k}∈S

E3(xi,xk | d) (6.7)

which is the same as the energy function associated with the tree-structured CRF by neglecting
the direct local neighborhood dependencies on the image regions on multiple scales. In this
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case, our model becomes equivalent to the tree-structured CRF models defined over multi-
scale of the image regions (Plath et al., 2009; Reynolds & Murphy, 2007).

6.4.3 Equivalence to Conditional Bayesian Networks

If we set α to be zero, and choose E3 as the conditional probability energy in Eq. (6.3), the
energy function reads

E(x | d) =
∑
i∈V

E1(xi | d) + β
∑
〈i,k〉∈S

E3(xi,xk | d) (6.8)

which is the same as the energy function associated with the tree-structured conditional Bayesian
network defined over the multi-scale of the image regions. In the tree-structured conditional
Bayesian network, the classification of a region is based on the unary features derived from
the region and the binary features derived from the relations of the region hierarchy graph. In
this case, our model becomes equivalent to the tree-structured conditional Bayesian network
defined over multi-scale of the image regions (Drauschke & Förstner, 2011).

6.5 Experiments

We conduct the experiments to evaluate the performance of the proposed model on eTRIMS
dataset (Korč & Förstner, 2009). The dataset consists of 60 building facade images, labeled
with 8 classes: building, car, door, pavement, road, sky, vegetation, window. We randomly
divide the images into a training set with 40 images and a testing set with 20 images. In all
experiments, we take the ground truth label of a region to be the majority vote of the ground
truth pixel labels. At the test stage we compute our accuracy at the pixel level.

The hierarchical mixed graphical model is defined over the multi-scale of the image regions
when we choose E3 as the conditional probability energy in Eq. (6.3). We present the exper-
imental results for the hierarchical mixed graphical model with multi-scale mean shift seg-
mentation (Comaniciu & Meer, 2002) and watershed segmentation (Vincent & Soille, 1991),
and the comparison with the baseline region classifier, the flat CRF, and the hierarchical CRF
classification results.

6.5.1 Results with Multi-scale Mean Shift and the Hierarchical Mixed Graphical
Model

The overall classification accuracy is 68.9%. The weighting parameters are α = 0.8, β = 1.
For comparison, the RDF region classifier gives an overall accuracy of 58.8%, the flat CRF
gives an overall accuracy of 65.8%, and the hierarchical CRF gives an overall accuracy of
69.0%.

Qualitative results of the hierarchical mixed graphical model with the multi-scale mean
shift on the eTRIMS dataset (Korč & Förstner, 2009) are presented in Figure 6.2. The qual-
itative inspection of the results in these images shows that the hierarchical mixed graphical
model yields significant improvement. The hierarchical mixed graphical model yields more
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Figure 6.2: Qualitative classification results of the hierarchical mixed graphical model with the
multi-scale mean shift segmentation on the testing images from the eTRIMS dataset (Korč & Först-
ner, 2009).
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accurate and cleaner results than the flat CRF and the RDF region classifier, and comparable
to the hierarchical CRF model. The greatest accuracies are for classes which have low visual
variability and many training examples (such as window, vegetation, building, and sky) whilst
the lowest accuracies are for classes with high visual variability or few training examples (for
example door, car, and pavement). We expect more training data and the use of features with
better invariance properties will improve the classification accuracy. Objects such as car, door,
pavement, and window are sometimes incorrectly classified as building, due to the dominant
presence of the building in the image. Detecting windows, cars, and doors should resolve some
of such ambiguities.

6.5.2 Results with Multi-scale Watershed and the Hierarchical Mixed Graphical
Model

The overall classification accuracy is 68.0%. The weighting parameters are α = 1.08, β = 1.
For comparison, the RDF region classifier gives an overall accuracy of 55.4%, the flat CRF
gives an overall accuracy of 61.8%, and the hierarchical CRF gives an overall accuracy of
65.3%. Qualitative results of the hierarchical mixed graphical model on the eTRIMS dataset
are presented in Figure 6.3.

6.6 Conclusion

In this work, we have addressed the problem of incorporating two different types of the contex-
tual information, namely the spatial structure and the hierarchical structure for image interpre-
tation of man-made scenes. We propose a statistically motivated, generic probabilistic graph-
ical model framework for scene interpretation, which seamlessly integrates different types of
the image features, and the spatial structural information and the hierarchical structural infor-
mation defined over the multi-scale image segmentation. We demonstrate the application of
the proposed model on the building facade image classification task.
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Figure 6.3: Qualitative classification results of the hierarchical mixed graphical model with the
multi-scale watershed segmentation on the testing images from the eTRIMS dataset (Korč & Först-
ner, 2009).
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Chapter 7

Video Segmentation with Joint Object
and Trajectory Labeling

Unsupervised video object segmentation is a challenging problem because it involves a large
amount of data and object appearance may significantly change over time. In this chapter, we
propose a bottom-up approach for the combination of object segmentation and motion segmen-
tation using a novel graphical model, which is formulated as inference in a conditional random
field (CRF) model. This model combines object labeling and trajectory clustering in a uni-
fied probabilistic framework. The CRF contains binary variables representing the class labels
of image pixels as well as binary variables indicating the correctness of trajectory clustering,
which integrates dense local interaction and sparse global constraint. An optimization scheme
based on a coordinate ascent style procedure is proposed to solve the inference problem. We
evaluate our proposed framework by comparing it to other video and motion segmentation al-
gorithms. Our method achieves improved performance on state-of-the-art benchmark datasets.
An earlier version of this chapter appeared at the IEEE Winter Conference on Applications of
Computer Vision (WACV) (Yang & Rosenhahn, 2014).

7.1 Introduction

One of the great challenges in computer vision is automatic segmentation of complex dynamic
content in videos, so called object segmentation, which is to produce a binary segmentation,
separating foreground objects from their background in an unannotated video. This is a chal-
lenging task, as local image measurements often provide only a weak cue. Object appearance
may significantly change over the frames of the video due to changes in the camera viewpoint,
scene illumination or object deformation. In general, segmentation must capture both short
range correlations (within a frame and between successive frames) and long range correla-
tions (across many frames) in the video. Object segmentation is the basis for many potential
applications including object tracking, object recognition, 3D reconstruction, activity recog-
nition, and video retrieval. Due to its potential applications, there is increasing number of
works (Grundmann et al., 2010; Lee et al., 2011) addressing the problem of video object seg-
mentation in recent years. Many approaches extend single image segmentation techniques to
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multiple frames, exploiting the fact that there is redundancy along the time axis and that the
motion field is smooth. The problems associated with these methods include drift, occlusion,
and appearance adaption. Integrating long-term cues in the segmentation process might help
solve these problems. In fact, video provides rich additional cues beyond a single image. These
cues include object motion, temporal continuity, and long-range temporal object interactions,
etc. Motion segmentation exploits these cues, which formulates clustering objectives to group
pixels from all frames. However, motion segmentation results are only in discrete and sparse
positions available (Brox & Malik, 2010).

We overcome aforementioned problems by merging image segmentation and motion seg-
mentation. We propose a method to obtain a spatio-temporal foreground segmentation of a
video that respects object boundaries, as shown in Figure 7.1, and at the same time perform
trajectory labeling. Different from previous approaches, we address the foreground segmen-

Figure 7.1: Video object segmentation. Input: unannotated video. Output: Foreground object in
each frame.

tation by partitioning frames using a novel graphical model on pixel level, which is dense in
spatial domain, yet sparse in temporal domain. We formulate the problem as inference in a
conditional random field (CRF). We make use of point trajectories, which have rich grouping
information in their motion differences. The CRF contains binary variables representing the
class labels of image pixels as well as binary variables indicating the correctness of trajectory
clustering. Joint object and trajectory segmentation is formulated as a pixel and trajectory la-
beling problem of assigning each pixel and trajectory with either foreground or background.
An overview of our proposed method is given in Figure 7.2.

Contributions Our main contribution is a fully automatic and unsupervised bottom-up ap-
proach for the combination of object segmentation and motion segmentation, which is for-
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Figure 7.2: Video segmentation overview. Input: unannotated video. Output: Foreground ob-
ject segments for all frames (the green boundary overlays with each frame for visualization), and
trajectory labeling results. We optimize over pixels and trajectories in the joint space via a space-
time CRF: both foreground estimation and trajectory clustering are modeled as energy potentials
in the model. Here, the black trajectories are classified as background while the green ones are
foreground.

mulated as inference in a unified CRF model. The CRF contains pixel labeling and trajectory
clustering in a single energy function, which integrates dense local interaction and sparse global
constraints. We optimize over pixels and trajectories in the joint space via a space-time CRF:
both foreground estimation and trajectory clustering are modeled as energy potentials. An
optimization scheme based on a coordinate ascent style procedure is proposed to solve the in-
ference problem. To the best of our knowledge, this work is the first one to combine object
labeling and trajectory clustering in a unified probabilistic framework.

The following sections are organized as follows. The related works are discussed in Sec-
tion 7.2. Section 7.3 introduces the CRF model for video segmentation and the trajectory
clustering. Our proposed approach is described in detail in Section 7.4. In Section 7.5, exper-
imental results are presented. Finally, this work is concluded and future work is discussed in
Section 7.6.

7.2 Related Work

Video object segmentation is often performed in an interactive or supervised manner. Interac-
tive methods require a user to perform object boundary annotation in some key frames, which
are then propagated to other frames (Price et al., 2009; Vijayanarasimhan & Grauman, 2012;
Yuen et al., 2009). Tracking-based methods attempt to reduce the supervision to a manual seg-
mentation on only the first frame (Chockalingam et al., 2009; Ren & Malik, 2007; Tsai et al.,
2012). However, all such methods demand user input of drawing regions of interest, therefore
not fully automatic, and may suffer from sensitivity to a user’s annotation experience.

On the other hand, bottom-up approaches can segment videos in a fully automatic man-
ner, based on cues like motion and appearance. Motion segmentation methods cluster pixels
in video using bottom-up motion cues. Recent methods perform pixel-level segmentation in
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a spatio-temporal video volume from scratch (Grundmann et al., 2010), begin with an image
segmentation per frame and then match segments across nearby frames (Reina et al., 2010).
Without any top-down notion of objects, however, such methods tend to over-segment, yield-
ing regions that may lack semantic meaning. Brendel & Todorovic (2009) attempt to segment
objects in video by tracking and splitting/merging image regions. Reina et al. (2010) extract
multiple segmentation hypotheses in each frame, and then search for a segmentation consistent
over multiple frames. Spatio-temporal segmentation of video sequences into segments with co-
herent local properties has been also addressed by graph-based approaches (Grundmann et al.,
2010). However, these methods are limited by the analysis performed at a local level. Lee
et al. (2011) first discover key-segments and group them to predict the foreground objects in
a video. Ma & Latecki (2012) introduce maximum weight cliques with mutex constraints in
the region graph to obtain reliable segmentations of foreground object. In this work, we also
conduct graph-based segmentation. But additionally, we incorporate long-range motion cues
into the segmentation.

Similar to video segmentation, grouping point trajectories in video sequences based on
independent motions, so called motion segmentation, has received significant attention. Re-
cently, impressive results in grouping point trajectories were shown by Brox & Malik (2010)
who carefully analyze motion differences between pairs of tracks and cluster the resulting affin-
ity matrix using normalized cuts (Shi & Malik, 2000). These sparse trajectory clusters are used
in Ochs & Brox (2011) to obtain dense object segmentation. Strong shape priors are derived
from a multi-level super-pixel segmentation (Arbelaez et al., 2011), which preserve the main
borders between objects. Super-pixels are labeled and merged using the motion segmentation
tracks and a multi-level variational approach. A tracking framework for segmenting objects
in crowded scenes is proposed in Fragkiadaki et al. (2012a), which mediates grouping cues
from two levels of tracking granularities, detection tracklets and point trajectories. Fragkiadaki
et al. (2012b) propose detecting discontinuities of embedding density between spatially neigh-
boring trajectories. Then Gabriel graph is used for converting trajectory clustering to dense
image segmentation. Dragon et al. (2012) present an approach for motion segmentation us-
ing multi-scale clustering of frame-to-frame keypoint correspondences instead of trajectories.
Another class of spatio-temporal techniques take advantage of all the frames in a video. They
treat the video as a 3D space-time volume (Klein et al., 2002; Rubio et al., 2012). Such large
amount of data usually results in expensive computational time. Instead of processing all the
frames simultaneously, we make use of point trajectories to segment the successive frames,
which all together is dense in space, yet sparse in time. As will be shown in this work, video
segmentation benefits from motion segmentation, and vice versa.

7.3 Preliminaries

We begin by describing the CRF model for video segmentation. We then introduce the cluster-
ing technique for point trajectories.
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7.3.1 Video Object Segmentation

Given a video sequence I = {It}, we formulate video segmentation as a pixel labeling problem
of assigning each pixel in frame It with either foreground or background. Consider a set of
the random variables {Xi, i ∈ V} defined over an undirected graph H = (V,E), where Xi is
associated with a node i ∈ V = {1, . . . , n}. The CRF is defined over H, so that each node
i corresponds to a pixel pi and an edge between two nodes corresponds to the cost of a cut
between two pixels. Let x = {xi} denote the labeling of the CRF which refers to any possible
assignment of labels to the random variables, and takes values from the setL = {0, 1}n, where
0 corresponds to background and 1 corresponds to foreground. Its energy function E(x) can
be written as

E(x) =
∑
i∈V

φi(xi) + α
∑
{i,j}∈E

φij(xi, xj) (7.1)

where φi and φij are the unary and pairwise potentials respectively, which both depend on the
observed data I . α is the weighting coefficient in the model. The edge set E is commonly
chosen to define a 6 neighborhood (Lee et al., 2011; Reina et al., 2010), which consists of
4 spatially neighboring pixels in the same frame, and two temporally neighboring pixels in
adjacent frames. We assign a pixel’s temporal neighbor in the next frame by its optical flow
vector displacement (Brox & Malik, 2011). This energy function, Eq. (7.1), encourages spatial
homogeneity of contrast within each frame and temporal consistency between frames.

The most probable or MAP labeling x∗ of the random field can be found by minimizing
the energy function x∗ = arg minx∈LE(x). While the exact minimization is generally in-
tractable on general CRF, a good approximation can be found efficiently using graph cut based
methods (Boykov et al., 2001) or belief propagation (Murphy et al., 1999).

7.3.2 Trajectory Clustering

Long-term motion can provide strong low-level cues for many vision tasks. For example,
two static objects can be separated based on their past or future independent motion if this
motion evidence is propagated over time. Video segmentation approaches segment objects
following the Gestalt principle of common fate, often enhanced by large temporal context of
point trajectories. We define a trajectory trr to be a sequence of space-time points: trr ={

(lxtr, ly
t
r), t ∈ Tr

}
, where Tr is the frame span of trr, and (lx, ly) is the pixel location. We

obtain point trajectory by tracking pixels across frames using the optical flow (Brox & Malik,
2011). Point trajectories are dense in space and can have various lengths.

Trajectories have rich grouping information in their motion differences. We define pairwise
affinities between all trajectories that share at least one frame, yielding the affinity matrix W
for the whole sequence. We set affinities W (trr, trs) between trajectories trr and trs according
to the maximum velocity difference vrs computed during their time overlap

W (trr, trs) = exp[−dstrs(dsp
v2
rs

σ2
v

)] (7.2)

where dstrs denotes the maximum Euclidean distance between trr and trs, and σv is the normal-
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ization factor. Penalizing maximum velocity difference takes advantage of the most informative
frames in the time overlap between trr and trs (Brox & Malik, 2010). dsp denotes the average
spatial Euclidean distance of trr and trs in the common time window. Multiplying with the
spatial distance ensures that only proximate points can generate high affinities. We then clas-
sify trajectories as foreground or background by performing spectral clustering on the affinity
matrix W (Brox & Malik, 2010). An example is shown in Figure 7.3.

Figure 7.3: Left: an example video sequence. Right: corresponding affinity matrix W .

7.4 Joint object and trajectory segmentation

In this section, we describe our approach to video segmentation. We formulate the problem as
inference in a CRF. The random field contains binary variables representing the class labels of
image pixels as well as binary variables indicating the correctness of trajectory clustering. The
illustration in Figure 7.2 gives an overview of our model.

7.4.1 Formulation

Joint object and trajectory segmentation is formulated as a pixel and trajectory labeling problem
of assigning each pixel and trajectory with either foreground or background. Formally, let
xi ∈ {0, 1} be a random variable representing the class label of the i-th pixel, while yr ∈ {0, 1}
is a random variable associated with the class label of the r-th trajectory. Similar to Eq. (7.1),
the total energy function E(x,y) for joint segmentation can be written as

E(x,y) =
∑
i∈V

φi(xi) + α
∑
{i,j}∈E

φij(xi, xj)

+ β
∑
{i,r}∈η

φir(xi, yr) + γ
∑
{r,s}∈δ

φrs(yr, ys) (7.3)
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where V and E are the sets of nodes and edges in the video frames respectively. η contains
all pixel and trajectory pairs that are in correspondence, while the set δ contains all the pairs
of trajectories. α, β, γ are the weighting coefficients in the model. φi is the unary potential
encoding the likelihood of pixels belonging to foreground or background. φij is the pairwise
potential, which enforces spatial and temporal consistency between pixels. φir is the pixel-
trajectory compatibility potential, which ensures the corresponding pixel and trajectory take
the same label. φrs is the trajectory clustering potential, which encourages foreground and
background separation between trajectories. The formulation of these terms will be presented
in the remainder of this section.

7.4.2 Potentials

Unary potentials The unary potential φi(xi) independently predicts the label xi based on the
frame It. The label distribution φi(xi) is usually calculated by using a classifier. In this work,
we use the Gaussian mixture model (GMM) (i.e. Boykov-Jolly model (Boykov & Jolly, 2001;
Rother et al., 2004)). GMM is a popular appearance model in object segmentation (Batra et al.,
2011; Greenspan et al., 2004). The GMM distributions are constructed with a set of simple
features, which is a set of pixel colors. Assume a Gaussian mixture with C components, the

parameters θ =
{
πfc , µ

f
c , σ

f
c , πbc, µ

b
c, σ

b
c

}C
c=1

are the prior probability, mean, and covariance of
the model. Foreground and background trajectories are used for learning these parameters. We
set φi(xi) to be the pixel likelihoods computed from the learned GMM. A pixel that has similar
color to the foreground object will have high cost if labeled as background.

Pairwise potentials In segmentation algorithms, spatial and temporal consistencies are usu-
ally enforced using pairwise terms based on color difference (Lee et al., 2011; Rother et al.,
2004). φij is modeled by a standard contrast-dependent function defined in Boykov & Jolly
(2001); Rother et al. (2004), which favors assigning the same label to neighboring pixels with
similar color. The edge set E consists of 4 spatially neighboring pixels in the same frame, and
two temporally neighboring pixels in adjacent frames.

Pixel-trajectory compatibility potentials We introduce this pixel-trajectory compatibility
term, which imposes a penalty on corresponding pixel and trajectory with different labels. It
can be written as

φir = 1− δ(xi, yr) (7.4)

The corresponding pixel and trajectory pair is determined by whether pixel pi belongs to trr,
which defines the set η.

Trajectory clustering potentials We define the trajectory clustering potentials φrs between
two trajectories trr, trs as

φrs(yr, ys) = yrysLrs (7.5)

where L is the Laplacian matrix L = H−1/2WH−1/2 (Shi & Malik, 2000). W is the affinity
matrix for trajectories defined in Section 7.3.2. H is the diagonal matrix composed of the
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row sums of W . This term encourages coherent labeling of trajectories. This is equivalent to
spectral clustering for all the trajectories in the sequence. Spectral clustering captures essential
cluster structure of a graph using the spectrum of the graph Laplacian matrix (Shi & Malik,
2000).

7.4.3 Optimization

The video segmentation problem can be solved by finding the least energy configuration of the
CRF defined in Eq. (7.3). In general, exact minimization of the energy function E is NP-hard.
It is instead solved using approximate algorithms. In our case, minimizing the complex energy
function given in Eq. (7.3), which involves two sets of random variables, is also difficult to
approximate. In this work, we present an optimization scheme based on a coordinate ascent
style procedure, alternating between minimizing E(x,y) with respect to x for fixed y (1-step)
and with respect to y for fixed x (2-step). Convergence to a strong local optimum is usually
achieved in 3-4 cycles of iterations. The algorithm is initialized by GMM for pixel labeling
and trajectory clustering for trajectory labeling.

Figure 7.4: Shape-location prior likelihood. Left: sparse label from trajectory clustering (Brox &
Malik, 2010), Middle: foreground confidence map, Right: background confidence map.

1-step For a given binary trajectory labeling ŷ, minimizing the total energy function E(x,y)
in terms of x leads to

min
x

E(x, ŷ) = (7.6)∑
i∈V

φi(xi) + α
∑
{i,j}∈E

φij(xi, xj) + β
∑
{i,r}∈η

φir(xi, ŷr)

When a trajectory labeling is given, the trajectory clustering potentials become constant, and
therefore do not affect energy minimization. Furthermore, pixel-trajectory compatibility po-
tentials can effectively be merged to unary potentials. As the pairwise potentials of the energy
function in Eq. (7.6) is a Potts model, it can be minimized using graph cuts (Boykov & Kol-
mogorov, 2004; Boykov et al., 2001).

In order to be robust to outliers that may occur due to trajectory clustering errors, we
map sparse trajectory points to dense shape-location priors in the pixel-trajectory compatibility
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potentials. An estimate of the shape, location and scale of the foreground is computed in
every frame using a kernel density estimation (KDE) (Hwang et al., 1994) based on the sparse
foreground points output by the binary trajectory labeling (Ellis & Zografos, 2012). The 2D
spatial distribution is estimated from the sparse points labeled as foreground (background). The
KDE for the object is defined as

f̂h(l) =
1

Ω

∑
k∈Ω

Kh(l− lk) (7.7)

where lk is the pixel location, Ω is the set of points belonging to the object in that frame,
and h is the bandwidth parameter. We use a Gaussian kernel with an automatically adapted
bandwidth parameter (Botev et al., 2010). This KDE is estimated on sparse points and can be
sampled densely to obtain a dense confidence map ϕ as shown in Figure 7.4. This model is
highly computationally efficient, similar to the shape priors in Lee et al. (2011). Integrating the
confidence map into the energy function in Eq. (7.6) leads to

min
x

E(x, ŷ) =
∑
i∈V

(φi(xi) + βϕi(xi)) + α
∑
{i,j}∈E

φij(xi, xj) (7.8)

2-step For a given pixel labeling x̂, minimizing the total energy function E(x,y) in terms of
y leads to

min
y

E(x̂,y) = β
∑
{i,r}∈η

φir(x̂i, yr) + γ
∑
{r,s}∈δ

φrs(yr, ys)

= β
∑
r∈R

φr(yr) + γ
∑
{r,s}∈δ

φrs(yr, ys) (7.9)

where R is the set of nodes for the point trajectories. When a pixel labeling is given, the unary
and pairwise potentials (first 2 terms in Eq. (7.3)) become constant. Note that it sometimes
happens that the pixel labels xk along the trajectory trr are not consistent. For example, a
trajectory consisting of 8 pixel points, which the first 6 are labeled as foreground (1) and the
last 2 as background (0). The simple Potts model in Eq. (7.4) is not a good representative model
anymore. We propose the following potentials instead

φr(yr) =


Nxk=1
|xk| , when yr = 1

1− Nxk=1
|xk| , otherwise

where Nxk=1 is the number of times that the element of xk is labeled as 1, and |xk| is the
number of elements in xk. As the trajectory clustering potentials φrs are in the forms of
Eq. (7.5), Eq. (7.9) can also be minimized using graph cuts (Boykov & Kolmogorov, 2004;
Boykov et al., 2001).
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7.5 Experimental Results

7.5.1 Datasets and Implementation Details

We present experiments on a number of benchmark sequences, from SegTrack dataset (Tsai
et al., 2012) and Berkeley Motion Segmentation Dataset (Brox & Malik, 2010), with focus on
the parachute and marple3 sequences. The parachute sequence from Tsai et al. (2012) has a
spatial resolution of 414 × 352, consists of 51 frames, and per frame pixel-level ground-truth
for the primary foreground object. The marple3 sequence from Brox & Malik (2010) has a
spatial resolution of 350× 288, consists of 323 frames, and sparse pixel-level ground-truth for
the foreground object. The videos span a wide degree of difficulty with challenges such as
illumination changes, fg/bg color overlap, large shape deformation, and large camera motion.

Implementation Details We use Lab color space histograms with 23 bins per channel, and
C = 5 component GMMs. To describe motion, we use optical flow histograms with 61 bins
per x and y direction, using Brox & Malik (2011). For all sequences, point trajectories are
obtained by Brox & Malik (2010), for which there is binary code available. Brox & Malik
(2010) also yields trajectory clusters that look very appealing but are sparse (see Figure 7.8
bottom row), for which we use for learning the GMM parameters. For the optimization, we
set α = 5 for pairwise potentials, β = 0.5 for pixel-trajectory compatibility potentials, and
γ = 5 for the trajectory clustering potentials. These parameters are fixed for the inference of
all sequences. The optimization typically converges in 3 to 4 iterations.

7.5.2 Results

To quantify segmentation accuracy, we use the average per-frame pixel error rate (Tsai et al.,
2012), ε(S) = XOR(S,GT )

F , where S is each method’s foreground labeling, GT is the ground-
truth foreground segmentation, and F is the total number of frames. This score penalizes both
over- and under-segmentation. We compare against three state-of-the-art methods: (1) the mo-
tion coherence segmentation method (Tsai et al., 2012), (2) the level-set based tracker (Chock-
alingam et al., 2009), and (3) the multi-level variational method (Ochs & Brox, 2011). First
two methods require human labeling of the object boundary in the first frame. Last method
requires multi-level superpixel extraction. In contrast, our method requires no hand drawn
supervision and no superpixel to guide the segmentation. Table 7.1 shows the results. Note
that segmentation error for the marple3 sequence is evaluated on the first 50 frames and cal-
culated using the frames where pixel-level ground-truths are available. Our method achieves
state-of-the-art results on these sequences. Per-10th-frame pixel label error rate is shown for
the marple3 sequence in Figure 7.5. When the parameters (α, β, γ) are set as (5, 0.7, 5), the
segmentation error is 1962 for the marple3 sequence. We also test other parameter combina-
tion for the parachute sequence, e.g. the segmentation errors are 308 (1, 0.7, 5), 247 (5, 0.7, 5),
270 (5, 0.6, 5), 263 (5, 0.3, 5) respectively, where (α, β, γ) are the different parameter setting.
As we use iterative optimization, parameter selection is not critical for the final segmentation
results.
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Table 7.1: Segmentation error as measured by the average number of incorrect pixels per frame.
Lower values are better. We compare our method with three state-of-the-art methods (Chock-
alingam et al., 2009; Ochs & Brox, 2011; Tsai et al., 2012).

Our method Tsai et al. Chockalingam et al. Ochs & Brox
parachute 238 235 502 463
marple3 1610 - - 2092
Manual seg no yes yes no

Figure 7.5: Per-10th-frame pixel label error rate of our approach and Ochs & Brox (2011) for the
marple3 sequence.

Figure 7.6 and Figure 7.7 show qualitative segmentation examples. Our method produces
high quality segmentations of the foreground object. Fine details and object boundaries are
comparable to Ochs & Brox (2011). Furthermore, the stability of the joint object and trajectory
segmentation is demonstrated by the improved segmentation over Ochs & Brox (2011). Ochs
& Brox (2011) produce only part of the parachute segment from frames 45 to 50 in Figure 7.6.
While Ochs & Brox (2011) sometimes results in an over-segmentation of an object, our method
produces a foreground segmentation at the object-level.

As our method jointly optimizes over object pixels and trajectories, we also present the
comparison of our trajectory labeling and the trajectory clustering approach (Brox & Malik,
2010) in Table 7.2 in terms of overall clustering error (Brox & Malik, 2010). The overall
clustering error is the number of bad labels over the total number of labels on a per-pixel basis.
The tool provided by Brox & Malik (2010) optimally assigns clusters to ground truth regions.
The results of our method are consistently better. Motion segmentation on sample frames of the
parachute sequence is illustrated in Figure 7.8. Note that skater was assigned as foreground
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Figure 7.6: Comparison of our approach and the variational approach (Ochs & Brox, 2011) on
frames 1, 15, 30, 45 and 50 of the parachute sequence from the SegTrack dataset (Tsai et al., 2012)
(The green boundary overlays with the original image for visualization.). Top row: our results,
Bottom row: Ochs & Brox (2011).

Figure 7.7: Comparison of our approach and the variational approach (Ochs & Brox, 2011) on
frames 1, 10, 20, 30, 40 and 50 of the marple3 sequence from the Berkeley Motion Segmentation
Dataset (Brox & Malik, 2010) (The green boundary overlays with the original image for visualiza-
tion.). Top row: our results, Middle row: Ochs & Brox (2011), Bottom row: motion segmentation
results (Brox & Malik, 2010).
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Table 7.2: Overall clustering error. We compare our method with Brox & Malik (2010). Note that
we randomly sample ground truth frames of the parachute sequence.

#GT frames Our method Brox & Malik
marple3 6 1.14 1.18

parachute

6 0.70 0.86
12 0.70 0.88
18 0.67 0.85
24 0.67 0.86

in trajectory clustering results from Brox & Malik (2010) (see skater in Figure 7.8 2nd and
3rd columns). For our method, during optimization iteration, point trajectories which do not
belong to the foreground object has been reassigned as background.

Figure 7.8: Comparison of our trajectory labeling and the trajectory clustering approach (Brox &
Malik, 2010) on sample frames of the parachute sequence from the SegTrack dataset (Tsai et al.,
2012) (see the differences in red circles). Top row: our trajectory labeling results, Bottom row:
trajectory labeling results from Brox & Malik (2010).

Figure 7.9 shows some additional examples that illustrate the final segmentation results of
our method on video sequences. The typical failure cases are shown in Figure 7.9 bottom row.
The failure is usually caused by very bad sparse labeling for GMM initialization. The limitation
of our current method is that it relies on good point trajectory clustering results from Brox &
Malik (2010). This could be alleviated by using objectness measure (Alexe et al., 2012) or
key-segments (Lee et al., 2011) for GMM initialization.
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Figure 7.9: Additional segmentation results.

7.6 Conclusion

We presented a bottom-up approach for the combination of object segmentation and motion
segmentation using a novel CRF model. The CRF contains binary variables representing the
class labels of image pixels as well as binary variables indicating the correctness of trajectory
clustering, which integrates dense local interaction and sparse global constraints. Hereby, we
overcome the limitations of previous bottom-up unsupervised methods that often over-segment
an object, and is, to the best of our knowledge, the first approach to combine object labeling
and trajectory clustering in a unified probabilistic framework. Our method is fully automatic
and unsupervised. The experiments demonstrate the high performance of our approach on
benchmark datasets. In our ongoing work, we aim to integrate the proposed model into a
system for multi-modal video cosegmentation.
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Chapter 8

Slice Sampling Particle Belief
Propagation

Inference in continuous label Markov random fields is a challenging task. We use particle belief
propagation (PBP) for solving the inference problem in continuous label space. Sampling par-
ticles from the belief distribution is typically done by using Metropolis-Hastings (MH) Markov
chain Monte Carlo (MCMC) methods which involves sampling from a proposal distribution.
This proposal distribution has to be carefully designed depending on the particular model and
input data to achieve fast convergence. In this chapter, we propose to avoid dependence on
a proposal distribution by introducing a slice sampling based PBP algorithm. The proposed
approach shows superior convergence performance on an image denoising toy example. Our
findings are validated on a challenging relational 2D feature tracking application. An earlier
version of this chapter appeared at the IEEE International Conference on Computer Vision
(ICCV) (Müller et al., 2013).

8.1 Introduction

Markov Random Fields (MRFs) are a powerful tool for modeling relational dependencies among
observations. Inference in such models is an inherent problem which has been widely addressed
in the past. MRFs, and hence its inference methods, can be classified in two categories: dis-
cretely and continuously labeled problems. Numerous optimization approaches for discrete
labels have been proposed, from binary labeled Graph Cuts (Boykov et al., 2001), to multi-
label tree reweighted message passing (Kolmogorov, 2006; Wainwright et al., 2005). In this
work, we deal with continuous labeled MRFs where we use a particle belief propagation (PBP)
approach (Ihler & McAllester, 2009). The efficiency of such particle based approaches highly
depends on the sampling scheme used to explore the label space. Previous approaches use
Metropolis-Hastings (MH) Markov chain Monte Carlo (MCMC) methods for particle sampling.
The performance of these methods depends on a carefully designed proposal distribution.

Contributions. We propose a novel sampling technique for PBP based on slice sampling
(Neal, 2003). This method exploits the structure of the PBP message passing equations for
direct sampling from the target distribution and does not depend on a proposal distribution
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#1

· · ·

#377

· · ·

#467

· · ·

Figure 8.1: Relational 2D feature tracking example.

which is difficult to tune. We show the superiority of our method theoretically on a simplified
toy application on image denoising. Our findings are then verified on a complex 2D relational
feature tracking application as shown in Figure 8.1. We furthermore provide a publicly avail-
able database of image sequences for feature tracking applications including manually labeled
groundtruth data (Müller et al., 2013).

The rest of the work is organized as follows. Section 8.2 provides an overview of re-
lated work. Section 8.3 introduces notations and definitions used throughout this chapter and
gives a short introduction to slice sampling. Our proposed approach is described in detail in
Section 8.4. The proposed approach shows superior convergence performance on an image de-
noising example in Section 8.5. In Section 8.6 we present a thorough evaluation of our method
compared to the state-of-the-art and propose a 2D relational feature tracking application. We
conclude our findings in Section 8.7.

8.2 Related Work

Most works on MRF optimization specialize on a discrete label space (Boykov et al., 2001;
Kolmogorov, 2006; Wainwright et al., 2005). Often such approaches are hard to apply on tasks
where a continuous label space would be a more natural choice, such as feature tracking with
relational constraints (Lin & Liu, 2006; Salzmann & Urtasun, 2012).

Loopy belief propagation is a prominent method using a local message passing mechanism
for coordinating the optimal labeling of neighboring nodes. These methods work on discrete
label spaces. The computational complexity is O(n2) over the number of discrete labels n,
making computations with many labels for approximating near-continuous models intractable
(Sudderth et al., 2010).

Recently, message passing approaches working in continuous rather than discrete label
space were proposed (Ihler & McAllester, 2009; Kothapa et al., 2011; Peng et al., 2011; Sud-
derth et al., 2010). These approaches use MCMC methods to approximate the message distribu-
tions. To the best of our knowledge, all previously proposed MCMC based belief propagation
methods use Metropolis-Hastings (MH) sampling. This sampling strategy consists of two steps:
(a) sampling a candidate particle from an easy to sample proposal distribution, and (b) accept
or reject the candidate depending on a transition probability (Walsh, 2004). Applying this sam-
pling technique involves a careful design of the proposal distribution, which is a compromise
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between exploring the label space (using a broad proposal distribution) and maximizing the
transition acceptance ratio (minimize sample moves) at the same time.

Throughout this work we show that considering alternative sampling techniques can be ad-
vantageous. We propose to use slice sampling (Neal, 2003) instead of MH, rendering proposal
distribution selection obsolete in the context of PBP.

To demonstrate superior performance of our method on a real world problem we propose
a relational feature tracking application inspired by (Lin & Liu, 2006; Salzmann & Urtasun,
2012) in the experiment section in this chapter. Some related works such as Duan et al. (2012);
Shitrit et al. (2011) propose to formulate feature tracking as a discrete labeling problem and
use global optimization algorithms (i.e. linear programming or dynamic programming). Such
approaches need some sort of label pruning in order to keep computational complexity low.
Closely related methods use belief propagation combined with particle filtering (Lin & Liu,
2006; Salzmann & Urtasun, 2012; Xue et al., 2008), but still use proposal distributions for
particle perturbation which introduces sensible optimization parameter tuning.

8.3 Definitions and Notation

8.3.1 Markov Random Field

Let V be a set of nodes and Ns ⊂ V the set of neighboring nodes to s ∈ V. For every node
s there is a label xs from the label space Ls. The product L =

∏
s∈VLs is the space of

configurations x = {xs}s∈V. A Markov random field potential energy is given by:

E(x) =
∑
s∈V

ψs(xs) +
∑
s∈V

∑
t∈Ns

ψs,t(xs, xt) (8.1)

with a unary potential function ψs(xs) and a binary potential function ψs,t(xs, xt). Then
p(x) ∝ exp [−E(x)] defines a Markov random field (MRF).

We consider the problem of computing the maximum marginals: µ(xs) = max
x′|x′s=xs

p(x′)1.

8.3.2 Max-Product Particle Belief Propagation

In the following we summarize the max-product particle belief propagation algorithm (Besse
et al., 2012; Kothapa et al., 2011). The energy term E(x) is approximated by particles such
that the label space Ls of each node s in the MRF is represented by a set of particles Ps =

{x(1)
s , . . . , x

(p)
s }, where p is the number of particles per node. Then the estimated belief

bns (x
(i)
s ) or log disbelief Bn

s (x
(i)
s ) = − log(bns (x

(i)
s )) of node s at iteration n is calculated

as follows (Besse et al., 2012):

Bn
s (x

(i)
s ) = ψs(x

(i)
s ) +

∑
t∈NsM

n
t→s(x

(i)
s ), (8.2)

1Backtracking can be used to compute the MAP-configuration x∗ = argmax
x

p(x) from the max-marginals
(Kothapa et al., 2011).
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st
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Ms→t(xt)
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b(xs)
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)
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s
(xs

)

Graphical Model (exemplary)

Figure 8.2: Particle Belief Propagation framework. Left: Message passing mechanism. Right:
MCMC particle sampling of the belief b(xs) with an exemplary MCMC sampling chain of one par-
ticle (blue) and its corresponding histogram (red).

where the messages Mn
t→s(xs) for xs ∈ Ps from node t to node s are:

Mn
t→s(xs) = min

xt∈Pt
[ψs,t(xs, xt) +Bn−1

t (xt)−Mn−1
s→t (xt)]. (8.3)

Note that the log disbelief Bn
s (xs) and the messages Mn

t→s(xs) can be calculated for all
continuous values xs ∈ Ls rather than only on the particle set Ps. On the other hand, the
messages from node s to node t are approximated only using the particles xt from the particle
set Pt = {x(1)

t , . . . , x
(p)
t } of node t.

Messages and log disbeliefs are calculated iteratively for n = 1, . . . , N iterations. An
estimate of the most likely configuration can be obtained with

x̂s = arg min
xs

BN
s (xs). (8.4)

The main issue in PBP lies in how to sample new particles xns ∼ Bn
s (xs). Typically, the

Metropolis-Hastings (MH) MCMC method is used. This method requires a proposal distribution
q where new particles can be easily sampled from. Typically a Gaussian function q = pσ with
a predefined standard deviation σ is used.

Figure 8.2 shows a schematic overview of the PBP framework. Figure 8.3 summarizes the
Metropolis-Hastings based max-product particle belief propagation algorithm (MH-PBP).

Typically, q needs to be carefully adjusted to the true belief distribution. This introduces
a dependency on prior knowledge about how the labels are distributed in the label space. In
the following we propose to replace the MH sampling step by a slice sampling approach which
does not depend on proposal distribution selection.

8.3.3 MCMC Slice Sampling

In this section we briefly summarize the concept of slice sampling (Andrieu et al., 2003; Neal,
2003) which is defined in a general MCMC sampling framework. Suppose we are given a
distribution q(x) and want to sample from this distribution, i.e. MCMC sampling ofM samples
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Input: Initial set of particles: {x(i)
s }i=1,...,p, proposal distribution pσ

1: Initialize the messages M0
t→s(xs) and log disbelief B0

s (x
(i)
s ) with zero ∀s, t

2: for BP iteration n = 1 to N do
3: for each node s and each particle i = 1, . . . , p do
4: Initialize sampling chain x(i)〈0〉

s ← x
(i)
s

5: for MCMC iteration m = 1, . . . ,M do
6: Sample x̄(i)〈m〉

s ∼ pσ(x | x(i)〈m−1〉
s )

from proposal distribution pσ
7: Calc. belief Bn

s (x̄
(i)〈m〉
s ) from Eqs. (8.2), (8.3)

8: Sample u ∼ U[0,1](u)

9: if Bn
s (x̄

(i)〈m〉
s ) < Bn

s (x
(i)〈m〉
s )− log(u) then

10: Accept: x(i)〈m〉
s ← x̄

(i)〈m〉
s

11: end if
12: end for
13: x

(i)
s ← x

(i)〈M〉
s

14: end for
15: Normalize messages and beliefs
16: end for

Figure 8.3: MH-PBP (Besse et al., 2012; Kothapa et al., 2011)

x〈1〉, x〈2〉, . . . , x〈M〉:
x〈m〉 ∼ q(x | x〈m−1〉), (8.5)

given an initial sample x〈0〉.

Note that in the PBP framework, there is a MCMC sampling chain {x(i)〈m〉
s }m=1,...,M for

each particle x(i)
s . MCMC sampling could be done using several sampling techniques such

as Metropolis-Hastings (MH) or Gibbs sampling (provided the conditional distributions are
easy to sample from). Metropolis-Hastings sampling has the drawback of requiring a proposal
distribution. Choosing the proposal distribution is very often a difficult task and introduces a
compromise between reducing the rejection rate and obtaining large random moves (Andrieu
et al., 2003).

In slice sampling, an auxiliary variable u ∈ R is introduced and the target distribution q(x)
is extended to

q∗(x, u) =

{
1 if u ∈ [0, q(x)]
0 otherwise

(8.6)

Sampling is then done by uniformly drawing the auxiliary variable u (defining the slice)
and given this, uniformly drawing the new sample from an intervalA defined over u as follows:

u〈m〉 ∼ q(u | x〈m−1〉) = U[0,q(x〈m−1〉)](u) (8.7)

x〈m〉 ∼ q(x | u〈m〉) = UA(x), (8.8)
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p(x)

xx〈m−1〉 x〈m〉

A
u〈m〉

Figure 8.4: Slice Sampling (Andrieu et al., 2003; Neal, 2003)

where UI is the uniform distribution over an interval I and A = {x; q(x) ≥ u〈m〉}. Figure 8.4
shows an exemplary slice sampling step.

Assume that q(x) can be decomposed in L functions fl(x) such that q(x) ∝ ∏L
l=1 fl(x).

Then we can sample over q(x) by introducing L auxiliary variables u1, . . . , uL:

u
〈m〉
1 ∼ q(u1 | x〈m−1〉) = U[0,f1(x〈m−1〉)](u1) (8.9)

...

u
〈m〉
L ∼ q(uL | x〈m−1〉) = U[0,fL(x〈m−1〉)](uL) (8.10)

x〈m〉 ∼ q(x | u〈m〉1 , . . . , u
〈m〉
L ) = UA〈m〉(x), (8.11)

where A〈m〉 = {x ; fl(x) ≥ u〈m〉l , l = 1, . . . , L} (Andrieu et al., 2003).
The main difficulty lies in determining the interval A. Fortunately it turns out, that in the

max-product particle belief propagation framework the sampling interval A can be determined
efficiently as shown in the following section.

8.4 Slice Sampling Particle Belief Propagation

Our main contribution is presented in this section. We propose to sample particles from the
belief b(xs) using slice sampling rather than Metropolis-Hastings sampling. For applying the
slice sampler, the sampling interval A(i)〈m〉 needs to be determined for the ith particle of node
s and for the mth MCMC iteration which we can uniformly sample the particle x(i)〈m〉

s from.
The superscripts (i)〈m〉 are omitted in the following for better readability.

The goal is to determine the sampling interval A. Given the potential functions ψs(xs) and
ψs,t(xs, xt), it is assumed that the intervals

Aψs(ū) = {xs ; ψs(xs) ≤ ū} and (8.12)

Axtψs,t(ū) = {xs ; ψs,t(xs, xt) ≤ ū} (8.13)

can be computed analytically. Note that computations are done in negative log space, thus a
slice interval {x ; f(x) ≥ u} is transformed to {x ; − log(f(x)) ≤ ū}, where ū is the negative
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logarithm of a uniformly sampled value.
The final sampling interval A can be computed from these intervals as shown below. If

the intervals cannot be computed analytically then an approximated interval Ã may be still
computed and rejection sampling can be applied (Andrieu et al., 2003).

The log disbelief can be decomposed as follows:

B(xs) =
∑|Ns|

l=0 Fl(xs) (8.14)

with F0(xs) = ψs(xs) and Fj(xs) = Mt(j)→s(xs) where t(j) is the j-th neighbor of s. From
this follows the decomposition of the sampling interval

A =

|Ns|⋂
l=0

Al, with Al = {x ; Fl(x) ≤ ūl}. (8.15)

Using the definitions of Eqs. (8.2, 8.3), we obtain for Al:

A0 = Aψs(ū1) (8.16)

Aj = {xs ; Mt(j)→s(xs) ≤ ūj}
= {xs ; min

xt∈Pt
Gxtj (xs) ≤ ūj}

=
⋃
xt∈Pt

{xs ; Gxtj (xs) ≤ ūj}

=
⋃
xt∈Pt

Axtψs,t(ūj −Bt(xt) +Ms→t(xt)), (8.17)

whereGxtj (xs) = ψs,t(xs, xt)+Bn−1
t (xt)−Mn−1

s→t (xt). This result shows thatA only depends
on the given intervalsAψs(ū) andAxtψs,t(ū) which are defined by the unary and binary potential
functions ψs and ψs,t. Figure 8.5 summarizes the proposed method.

We further refer to the proposed technique as S-PBP (slice sampling particle belief propa-
gation).

Example. Consider a quadratic unary potential function φs(xs) = (xs − ds)2. Then Aφs(ū)
has the closed form solutionAφs(ū) = {xs : (xs−ds)2 ≤ ū} = [ds−

√
ū, ds+

√
ū]. Similarly,

the closed form solution for φs,t(xs, xt) = (xs − xt)2 is Axtφs,t(ū) = [xt −
√
ū, xt +

√
ū].

Multidimensional Bounds. In order to deal with multidimensional label spaces, i.e. Ls ∈ Rd
for d > 1, we propose to randomly sample one dimension in each MCMC step and slice sample
on this dimension while the other dimensions are held fixed.

Analytic Bounds Calculation. Assume the unary and/ or binary potential functions ψs and
ψst are given as an analytic function. Then one can use standard computer algebra solvers for
defining Aψs(u) and/or Axtψs,t(u). We have implemented our S-PBP framework in MATLAB®
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Input: Initial set of particles: {x(i)
s }i=1,...,p

1: Initialize the messages M0
t→s(xs) and log disbelief B0

s (x
(i)
s ) with zero ∀s, t

2: for BP iteration n = 1 to N do
3: for each node s and each particle i = 1, . . . , p do
4: Initialize sampling chain x(i)〈0〉

s ← x
(i)
s

5: for MCMC iteration m = 1, . . . ,M do
6: Sample ūl = Fl(x

(i)〈m−1〉
s )− log(ul) where

ul ∼ U[0,1](u) for l = 0, . . . , |Ns|
7: Compute A(i)〈m〉 from Eqs. (8.15), (8.16), (8.17)
8: Sample x̄(i)〈m〉

s ∼ UA(i)〈m〉(x)

9: Calc. belief Bn
s (x̄

(i)〈m〉
s ) from Eqs. (8.2), (8.3)

10: if Fl(x̄
(i)〈m〉
s ) ≤ ūl for l = 0, . . . , |Ns| then

11: Accept: x(i)〈m〉
s ← x̄

(i)〈m〉
s

12: end if
13: end for
14: x

(i)
s ← x

(i)〈M〉
s

15: end for
16: Normalize messages and beliefs
17: end for

Figure 8.5: S-PBP

with MEX and use the MATLAB®-MUPAD® interface to solve the inequalities automatically.
This way no manual work has to be done.

8.5 Image Denoising

8.5.1 Denoising Model

For analyzing the random walk behaviour of our method we have chosen the application of
image denoising due to its relatively simple model structure. The basic image denoising model
is as follows:

ψs(xs) = θ1(xs − ds)2,

ψs,t(xs, xt) = θ2 min{θ3, (xs − xt)2}. (8.18)

For minimizing particle noise in the final estimation result an annealing scheme is used
where the target belief distribution is modified to bns (x

(i)
s )1/Tn , where Tn = T0 · (TN/T0)n/N

is the temperature at PBP iteration n, T0 is the start temperature, and TN the end temperature.
Given this annealing scheme the temperature is successively reduced for each new iteration n.

The evaluation was done on an example image as shown in Figure 8.6. The training and
testing sets each include 10 noisy image instances with Gaussian noise standard deviation σ =
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Figure 8.6: Denoising example: Groundtruth (top left), noisy input example (top right), recon-
struction with MH-PBP (bottom left), reconstruction with our proposed S-PBP method (bottom
right).

0.05 (where image intensity ∈ [0, 1]). Training of the parameter vector θ = {θ1, θ2, θ3} is
done by minimizing the empirical risk R(θ) = 1

K

∑K
i=1 L(x

(i)
θ ,y

(i)) given the loss function
L(x,y) = ‖x−y‖22 where {y(i),d(i)} is the training data pair with groundtruth y(i) and noisy
observation d(i). x(i)

θ is the MAP estimate given d(i) and the parameter θ. Learned parameters
are θ1 = 0.756, θ2 = 1.170, θ3 = 0.0059.

8.5.2 Comparing S-PBP with MH-PBP

We further compared the efficiency of the slice sampling method to the Metropolis-Hastings
sampling applied on the image denoising problem. For the experimental setup we useN = 100
PBP iterations, p = 5 particles, and a temperature schedule of T0 = 1 to TN = 10−4. An
MCMC chain of M = 500 samples is generated for each particle and in each PBP iteration.
The iteration numbers are chosen to be more than sufficiently large in order to guarantee con-
vergence and to collect statistical information in the MCMC chains in steady-state situations.
For the MH-PBP proposal distribution the family of Gaussian distributions pσ(x | x〈m−1〉) =
(2πσ2)−0.5 · exp[−0.5(x− x〈m−1〉)2 · σ−2] is used. In order to provide a fair comparison the
proposal distribution is adapted to the current temperature by using pσ(x | x〈m−1〉)1/Tn instead.

Figure 8.7 shows a comparison of the empirical risk for different MH-PBP proposal distri-
butions. For σ > 0.7 the empirical risk stays nearly at the same level and thus we selected
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Figure 8.7: Comparison of the empirical risk for S-PBP and MH-PBP with different proposal dis-
tributions.

σ = 0.7 for further experiments. Another observation is that S-PBP outperforms MH-PBP in
terms of minimal empirical risk. This is because the reconstructed images with MH-PBP have
always much higher noise than images reconstructed with S-PBP. This effect can be signifi-
cantly reduced by averaging over particles instead of only selecting the best one as stated in
Eq. (8.4).

For comparing the random walk behavior of the MCMC sampling chains from S-PBP and
MH-PBP, the normalized autocorrelation function

ρk =

∑M−k
m=1 (x〈m〉 − x̄)(x〈m−k〉 − x̄)∑M−k

m=1 (x〈m〉 − x̄)2
, (8.19)

where x̄ = 1
M

∑
x〈m〉, is used (Walsh, 2004). Only the last 50% of the MCMC chain is consid-

ered to skip any burn-in phase. Figure 8.8 shows a comparison of the first 20 kth order autocor-
relation of S-PBP and MH-PBP at different PBP iterations n (and thus at different temperatures
Tn). It can be observed that the MH-PBP method produces a much higher autocorrelation than
the S-PBP method, thus the MCMC chain mixing behaviour of S-PBP outperforms MH-PBP.

8.6 Relational Feature Tracking

We propose to apply our S-PBP algorithm on a 2D relational feature tracking system inspired
by Lin & Liu (2006); Salzmann & Urtasun (2012) as a more complex application.

8.6.1 Tracker Model

The proposed feature tracker uses a pairwise MRF model. The model is separated into two parts:
(a) the unary potentials are derived from a feature patch matching model, and (b) the binary
potentials encode the relative positioning of the features to each other. The label space of the
MRF is the space of feature poses including the local central patch position, patch rotation, and
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Figure 8.8: Comparison of S-PBP and MH-PBP at different PBP iterations (dotted n = 30, dashed
n = 50, and solid n = 70) using an annealing schedule.

scale. The proposed MRF model is as follows:

E(x) =
∑
s∈V

ψs(xs) +
∑
s∈V

∑
t∈Ns

α · ψs,t(xs, xt), (8.20)

where the unary potential function

ψs(xs) = χ2(HOGIn(ps,os)−HOGI ref(pref
s ,o

ref
s )) (8.21)

is the Chi-square distance of HOG features (Ludwig et al., 2009) of a patch at position ps ∈
R2 of the current image In and orientation os ∈ R2, where xs = {ps,os} and a reference
image I ref at reference position pref

s and orientation oref
s . The orientation vector os encodes

two aspects: the feature patch rotation (rotation of os, i.e. atan2(os)) and feature patch scale
(length of os, i.e. ‖os‖2).

The binary potential ψs,t(xs, xt) is as follows:

ψs,t( · ) =
‖pt − ps −Rsdst‖22 + ‖ps − pt −Rtdts‖22

2 · ‖dst‖22
(8.22)

where dst(ts) = pref
t(s) − pref

s(t) and Rs(t) = [ox,s(t),−oy,s(t); oy,s(t), ox,s(t)] is a 2 × 2 rotation
and scale matrix. The proposed binary potential function models the surrounding of each
feature point as a weak-perspective model and transforms its neighbor points (with respect to
the reference frame) according to a similarity transformation (consisting of translation, rotation,
and scaling).

The scalar parameter α > 0 is a weighting factor determining the “stiffness” of the feature
mesh balancing between feature point independence (α→ 0; i.e. multi-target tracker) and rigid
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single object tracking.

8.6.2 Tracker Pipeline

A practical application requires some common modifications of the basic tracker pipeline in
Section 8.6.1. The modifications include an additional particle resampling step, where for
each frame the initial set of particles are sampled with replacement from the set of particles
{x(i)

s }i=1,...,p from the previous frame with probability bNs (x
(i)
s ). For the tracker to be able to

deal with fast moving objects, a resolution pyramid approach is applied. The resolution pyra-
mid is only applied to the unary potential function, i.e. the feature descriptor is a concatenation
of HOG descriptors of patches with the same center position but differing spatial resolution.
For each resolution pyramid level (scale) the image is downsampled by a factor of 0.5 using
bicubic interpolation.

Slice sampling. For the slice sampling approach we need to define the boundary functions
Aψs(u) and Axtψs,t(u). Since ψs,t is given as an analytic function we can use our automatic
inequality solver as described in Section 8.4. An analytic description of the unary potential is
not available thus we have to define the boundary manually. We choose to set Aψs(u) to the
whole image space for ps, i.e. ps ∈ [1,W ]× [1, H], where W and H are the image width and
height respectively, and to restrict os to os ∈ [−10, 10] × [−10, 10]. This way it is ensured
that the sampling space is large enough. On the other hand, particles sampled outside the true
(sub-)bounds are automatically rejected by the algorithm.

Metropolis-Hastings sampling. In order to provide a fair comparison of our slice sam-
pling approach to the state-of-the-art MH-PBP approach, the design of the proposal distribution
has to be done very carefully. We propose to use a 4D Gaussian distribution with a covari-
ance matrix Σ combined with a suitable coordinate transformation to ensure a well-mixing
random walk behavior. The label space can be divided into two parts, the feature position
ps ∈ R2 and orthogonal feature transformation os ∈ R2. The proposal distribution for ps is
p(p
〈m〉
s | p〈m−1〉

s ) = N(p
〈m−1〉
s , I2×2 ·σxy), where N(µ,Σ) is a Gaussian pdf with mean µ and

covariance Σ. I2×2 is the 2 × 2 identity matrix. The vector os is sampled analogously, but
in the polar coordinate system with covariance matrix Σpolar = [σ2

r , 0; 0, σ2
φ], where σ2

r is the
variance for the radius and σ2

φ the variance for the angle. Finally we have to carefully tune the
three parameters σxy, σr, and σφ.

8.6.3 Tracker Evaluation

Test sequences. We use four challenging test sequences (PAPER1, PAPER2, FACEOCC1, and
FACEOCC2) to evaluate our proposed method. The self-made PAPER1 and PAPER2 sequences
were chosen to challenge the methods on a fast moving deformable object under major scale
changes. The sequences have a spatial resolution of 960 × 540 and consist of 563 and 726
frames respectively. The captured object (paper) is textured with patches of similar appearance
and shape. The similar appearing features were chosen to stress the relational structure of our
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Figure 8.9: Datasets and tracking results for our proposed method: PAPER1, PAPER2, FACEOCC1,
FACEOCC2 (from left to right). First two rows: successful tracking; third row: tracking failure
cases.

tracker model. Thus the only way to distinguish the features is by considering the relative
position of the feature patches to each other. The PAPER1 sequence consists of five feature
patches with a carefully chosen position pattern which allows unique identification of the fea-
tures by only having knowledge about the relative distances of the features to each other. The
PAPER2 sequence is more challenging since the number of features is increased to 70 and the
features are arranged in a grid structure allowing local relational ambiguities. The FACEOCC1
and FACEOCC2 sequences from Babenko et al. (2011); Duan et al. (2012) are designed for
evaluating object trackers under major occlusions. The sequences have a spatial resolution of
352×288 (FACEOCC1) and 320×240 (FACEOCC2) and both consist of 888 frames each. While
the FACEOCC1 sequence has only slow object movements, but showing substantial occlusions,
the FACEOCC2 sequence challenges with fast movements, illumination changes, object rotation
and substantial occlusions. The sequences and tracking results are shown in Figure 8.9.

Parameter selection. Parameter selection can be split into two parts. The first part consists
in MRF model parameter selection. Since the proposed model is relatively robust to changes
in α, we set α in an ad-hoc fashion for each sequence as follows: α = 20 for PAPER1 and
PAPER2 and α = 50 for FACEOCC1 and FACEOCC2. For the HOG features we set the smallest
scale pyramid resolution to 50× 50. This leads to 3 scales for FACEOCC1 and FACEOCC2 and
4 scales for PAPER1 and PAPER2.

The second part is parameter selection for the PBP framework. We use N = 20 PBP

iterations and p = 10 particles for each node. With this setting both algorithms (MH-PBP

and S-PBP) converge well. Since we compare the overall sampling behaviour of the proposed
method rather than the belief propagation convergence behaviour selecting these parameters
should be uncritical.
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Figure 8.10: Relational feature tracker evaluation results showing the overal RMSD (for MCMC
iterations from 2 to 5) and box plots over the error distance to groundtruth for selected MCMC
iterations.
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Figure 8.11: Optimal parameter evaluation for MH-PBP method (with M = 5). The vertical axis
shows the error distance to groundtruth in px. Note that the vertical axis is stretched for error values
lower than 15px in order to better visualize performance differences.
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Evaluation metrics. We consider the distance εtrack between the estimated feature position
and the groundtruth (manually labeled) position as a quality measure. From this measure we
derive two metrics: The rooted mean of squared distances (RMSD) and a quantile box-plot
(10%, 25%, 50%, 75%, and 90% quantiles). While the first metric is very sensitive to outliers,
the second metric provides more information about the overall error distribution.

Discussion. The evaluation results comparing S-PBP with MH-PBP using different MCMC

iterations are shown in Figure 8.10. For MH-PBP, the MH sampling parameters {σxy, σr, σφ}
are chosen (from the set {0.1, 0.2, 0.5, 1.0, 2.0, 5.0} × {0.01, 0.02, 0.05, 0.10, 0.20, 0.50} ×
{0.01, 0.02, 0.05, 0.10, 0.20, 0.50}) such that the RMSD is minimized. Note that for S-PBP such
parameter tuning is not necessary. We have evaluated the tracking performance for different
MCMC iterations M = 2 to 5. The box plots in Figure 8.10 show that S-PBP outperforms
or performs equally well as MH-PBP for all tested sequences except for sequence PAPER2
with only 2 (and 3) MCMC iterations where both methods fail. This is mainly due to a much
higher overall sampling noise of the MH-PBP method compared to S-PBP. We observed that
the sampling noise of S-PBP is much less than with MH-PBP at feature positions with high
confidence (i.e. high belief). On the other hand the sampling noise of S-PBP increases for
uncertain feature positions. The RMSD in sequence PAPER2 and FACEOCC1 is higher for S-
PBP than for MH-PBP due to temporal tracking failures. These tracking failures are caused by
strong local deformations or by occlusions of many feature points. Typical tracking failures are
depicted in the bottom row of Figure 8.9. It can be observed in such cases that S-PBP leads to
much higher tracking error than MH-PBP due to broader particle sampling in uncertain feature
positions.

Figure 8.11 shows an evaluation of MH-PBP under differing (non-optimal) sampling param-
eters. To this end, we vary each of the three sampling parameters individually and let the other
two parameters stay fixed at their optimal values. Note that the estimation error varies highly,
where very high values (usually > 15) indicate a tracking failure. In order to visualize both
the performance differences for near-optimal parameters and tracking failures, the error values
below and above the 15 mark are shown with a differing vertical axis scaling. In Figure 8.11,
comparison for PAPER1, PAPER2, FACEOCC1, and FACEOCC2 is shown. It can be observed
that the tracking performance of MH-PBP strongly depends on careful parameter selection. The
parameter σxy has the highest impact on the tracking performance and the optimal parameter
value varies strongly between sequences (σxy = 5 for PAPER1 and σxy = 0.5 for FACEOCC1).
Selecting σxy is a compromise between allowing fast object motions and reducing overall lo-
calization noise. Selecting σr and σφ has analogous effects on changes in object scaling and
rotation. This way one has to incorporate prior knowledge about the object motion in order to
obtain good tracking results using MH-PBP. Tracked sequences and further comparisons are
provided in the supplemental material.

The computational complexity for MH-PBP is O(NSpM (1 + V p)) and for S-PBP is
O(NSpM(3 + 2V p)) given the number of PBP iterations N , nodes S, particles p, MCMC

iterations M and the average number of neighbors per node V . This indicates a doubling of
computation time of S-PBP compared to MH-PBP which is due to the overhead introduced for
computing the interval bounds A. A look at the CPU times using fixed parameters for both al-

118



8.7 Conclusion

gorithms (M = 5, p = 10, N = 20) verifies this finding: FACEOCC: 0.69 s/frame (S-PBP) vs.
0.33 s/frame (MH-PBP) ; PAPER2: 7.43 s/frame vs. 3.66 s/frame. Nevertheless we have shown
that S-PBP needs significant less MCMC iterations than MH-PBP such that the computational
overhead can be typically well compensated.

8.7 Conclusion

We presented a novel particle belief propagation algorithm using slice sampling (S-PBP) instead
of Metropolis-Hastings. We exploit the message passing equations to compute the slice sam-
pling bounds, provided the unary and binary potentials are defined by analytic functions or can
be bounded by one. We showed on a toy example that S-PBP outperforms MH-PBP in terms of
MCMC chain mixing performance. Furthermore we showed that our approach performs equally
well or better than MH-PBP on challenging relational feature tracking sequences.
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Chapter 9

Multi-Region Labeling and
Segmentation Using a Graph Topology
Prior and Atlas Information in Brain
Images

Medical image segmentation and anatomical structure labeling according to the types of the
tissues is important for accurate diagnosis and therapy. In this chapter, we propose a novel
approach for multi-region labeling and segmentation, which is based on a topological graph
prior, registration of the labels, and the topological information of an atlas, using a multi-level
set energy minimization method. We consider topological graph prior and atlas information
to evolve the contour based on a topological relationship presented via a graph relation. This
novel method is capable of segmenting adjacent objects with very close gray level that would be
difficult to segment correctly using standard methods. The topological graph is registered from
the low resolution and noisy source image to the topological information of an atlas to obtain
region labeling. We explain our algorithm and show the graph prior and label registration tech-
niques to explain how it gives precise multi-region segmentation and labeling. The proposed
algorithm is capable of segmenting and labeling different regions in noisy or low resolution
brain MRI images of different modalities. We compare our approach with other state-of-the-
art approaches for multi-region labeling and segmentation. An earlier version of this chapter
appeared in Computerized Medical Imaging and Graphics Journal (CMIG) (Al-Shaikhli et al.,
2014c).

9.1 Introduction

Multi-region image segmentation is a major task in medical imaging and it is important in di-
agnosis and therapy (Shattuck et al., 2001). Due to poor resolution and weak contrast, image
segmentation is difficult in the presence of noise and artifacts (Andrews et al., 2011). Many
existing methods for segmentation are based on image intensity information, shape proper-
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ties or shape priors (Andrews et al., 2011; Chan & Vese, 2001; Li et al., 2011; Mishra et al.,
2009). Many researches addressed that the medical imaging systems like MRI, although it rel-
atively provides high-resolution anatomical details but the identification of tissue information
is limited by several factors like noise and image non-uniformity due to magnetic field inho-
mogeneities (Shattuck et al., 2001). This gives difficulties of the brain tissue labeling (Kapur
et al., 1996; Shattuck et al., 2001). Manual labeling of brain structures is achieved using a lot
of information including image intensities, anatomical landmarks, position relative to neigh-
boring brain structures and global position within the brain (Nocera & Gee, 1997), which need
long processing time. Therefore, the automatic labeling is necessary and to maintain it for brain
tissue we consider a prior topological information and tissue labeling for the segmentation that
give a precise knowledge about position, size and type of the brain tissue. The topological
graph prior gives an abstract information about the organs in the medical images and the atlas
gives useful information about the label of the organs. The labels transfer from the atlas to the
target image after warping the atlas with the target image.

Okada et al. (2012) proposed multi-organ segmentation of the upper abdomen by finding
the interrelations between the organs based on canonical correlation analysis. Suzuki et al.
(2012) proposed an atlas based multi-organ segmentation and detection of missing organ in ab-
dominal CT images. Shimizu et al. (2007) proposed simultaneous extraction of multiple organs
from abdominal CT using abdominal cavity standardization process with feature database and
atlas guided segmentation incorporating parameter estimation for organ segmentation. Lingu-
raru et al. (2012) proposed multi-region segmentation using graph cut method for four abdom-
inal organ segmentation. Kohlberger et al. (2011) proposed multi-organ segmentation from CT
medical images using learning-based segmentation and shape representation. Bazin & Pham
(2008) proposed multi-region segmentation algorithm of brain image using topological and
statistical atlases of brain as prior to the segmentation framework. Nocera & Gee (1997) pro-
posed tissue classification of cerebral magnetic resonance images using Bayesian estimation
method. Fischl et al. (2002) proposed an automatic labeling of Neuroanatomical structures in
the human brain by estimating the probability information from manual labeled training data.
Soni (2007) proposed brain tissue classification of only three types of tissue (gray matter, white
matter and CSF) using conditional random field for magnetic resonance images. Cocosco et al.
(2003) proposed a full automatic brain tissue classification method for three types of brain tis-
sue in magnetic resonance images by measuring a tissue probability map. Liu et al. (2011)
proposed a method for image segmentation using multi-context label tree structure. Sabuncu
et al. (2010) proposed a nonparametric image segmentation and label fusion approach using
image registration. Aljabar et al. (2009) proposed a framework for brain tissues multi-atlas
segmentation. The accuracy of this approach degrades in the presence of strong noise and
by using single atlas information. Mansouri et al. (2006) proposed multi-region competition
algorithm for intensity-based image segmentation. Vazquez et al. (2004) proposed image seg-
mentation algorithm from the viewpoint of image data regularized clustering. Previous work
of multi-region segmentation and labeling focused on either image region intensity or shape
priors or multi-atlas information for segmentation, however the shape of brain tissues may vary
from person to person and the intensity differs according to the image modality. Furthermore,
the performance of these works degrade in the presence of high level of noise.
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In contrast to these works, our contribution of this work is multi-region segmentation and
labeling using a multi-level set formulation which includes a topological graph prior and atlas
information in an abstract fashion, in another words, topological information in the atlas like
area, position and label that were mapped on a topological graph prior of the image. Therefore,
we determine the location and the area of each region as well as the topological correlation
and discrimination between different regions in the image. The graph prior is embedded in
the multi-level set energy equation and acts as an additional prior term to identify both the
overlapped regions and weak boundaries between adjacent regions in the image, as shown in
Figure 9.1. The graph priors allow us to handle the huge variability of medical image data in a
more abstract fashion. Consequently, our algorithm is less sensitive to noise and gives accurate
segmentation of ambiguous regions depending on the atlas information and the topological
correlation of different regions in the brain MRI image. For brain segmentation and labeling,
we propose seven labels of brain tissue as shown in Figure 9.3 and Table 9.3. The outcome
of our algorithm is conjoint of multi-class image segmentation and labeling. In all of our
experiments, we concentrate on brain segmentation, however, it is worth noting that the method
is general and can be applied to other scenarios, for example abdominal organ segmentation
by computing the topological relationship of the abdominal organs using abdominal atlas. The
organization of this work is as follows: Section 9.2 explains the proposed approach. The
discussion of the experimental results is presented in Section 9.3. Finally, the conclusion is
presented in Section 9.4.

9.2 Method

In this section we will explain our proposed method for multi-region segmentation and labeling
based on a multi-level set formulation with an atlas information and a topological graph prior.

9.2.1 Graph Prior

Human body organs have specific topological correlations between them and according to these
correlations, the exact location and boundary of these organs can be determined. If we consider
the image B as sets of clusters (segments) B = Oi, Oi+1, ..., ON depending on the dissimi-
larity between them and χOi is the membership function of each cluster. These clusters are
connected with each other by a specific topological relationship then the topological graph of
these clusters can give information like the area, the location and the topological relationship of
each cluster in the image. The topological graph is constructed from test image to provide the
prior knowledge to the segmentation process. The clusters in the topological graph of the image
B are determined using Otsu’s method (Otsu, 1979) and these clusters are labeled according to
their topological relationship. We consider three types of topological relations (disjoint, con-
tact, inside). Egenhofer & Herring (1990) have defined and computed O◦ as an interior of the
cluster, Oc as a complement (exterior) of the cluster and ∂O as a boundary of the cluster. The
topological region relationship (TRL) between the clusters is calculated in terms of proba-
bility of intersections of these clusters in a 9-intersection model in 3×3 matrix (Egenhofer &
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Figure 9.1: Block diagram explain proposed algorithm for multi-region labeling and segmentation.

Herring, 1990), as follows:

TRL(Oi, Oi+1) =

 a11

(
O◦i
⋂
O◦i+1

)
a12 (O◦i

⋂
∂Oi+1) a13

(
O◦i
⋂
Oci+1

)
a21

(
∂Oi

⋂
O◦i+1

)
a22 (∂Oi

⋂
∂Oi+1) a23

(
∂Oi

⋂
Oci+1

)
a31

(
Oci
⋂
O◦i+1

)
a32 (Oci

⋂
∂Oi+1) a33

(
Oci
⋂
Oci+1

)

(9.1)

Each element in Eq. (9.1) represents specific topological relationship. For example, to
achieve the disjoint relation, we need to a11 = 0, a12 = 0, a21 = 0 and a22 = 0, which means
that all pixels in cluster Oi are not in Oi+1. To achieve the inside relation between Oi and
Oi+1, we need to a21 = 1, which means that the pixels in ∂Oi are in O◦i+1. To achieve the
contact relation, we need to a11 = 0, a22 = 1, a12 = 0, and a21 = 0 which mean that the
pixels in ∂Oi are in ∂Oi+1. The overlapped region is achieved by a11 = 1, a12 = 1, a21 = 1,
and a22 = 1. This is summarized as follows:
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Figure 9.2: Example of image representation as topological graph.


a11 = 0, a12 = 0, a21 = 0, a22 = 0 if RLdis(Oi, Oi+1) > 0
a11 = 0, a12 = 0, a21 = 0, a22 = 1 if RLcon(Oi, Oi+1) > 0
a11 = 0, a12 = 0, a21 = 1, a22 = 0 if RLin(Oi, Oi+1) > 0
a11 = 1, a12 = 1, a21 = 1, a22 = 1 if RLov(Oi, Oi+1) > 0

(9.2)

where RLdis, RLcon, RLin, and RLov are disjoint, contact, inside, and overlap region rela-
tionship respectively, as follows:

RLdis(Oi, Oi+1) = 1−max
b
{|χOi(b) + χOi+1(b)− 1|} (9.3)

RLcon(Oi, Oi+1) = min{(1−maxb(|χO◦i (b) + χO◦i+1
(b)− 1|)),

maxb(min(χ∂Oi(b), χ∂Oi+1
(b)))} (9.4)

RLin(Oi, Oi+1) = min(1,min
b

(1 + χO◦i+1
(b)− χOi(b))) (9.5)

RLov(Oi, Oi+1) = min{maxb(min(χO◦i+1
(b), χO◦i (b))),

maxb(min(χO◦i (b), χ∂Oi+1
(b))),

maxb(min(χO◦i+1
(b), χ∂Oi(b))),

maxb(min(χ∂Oi(b), χ∂Oi+1
(b)))} (9.6)

Table 9.1 summarizes how each element of the matrix in Eq. (9.1) determines the relationship
between the clusters by checking the primary conditions and the secondary conditions. The
primary conditions are the main conditions to determine the topological relationship between
the regions. The secondary conditions are proposed to be ’ones’ in the matrix. We propose
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the primary and secondary conditions because the topological properties between two region
is achieved by how these regions are intersect with each other and this intersection achieved
by the primary condition. The secondary conditions represent the intersection of each region
with the complement of the other region which . For example, Oi and Oi+1 are two regions
in the image. To calculate the topological relationship of these regions, we need the primary
conditions because they represents the intersection between them. Regarding to the secondary
condition, if we choose a13 this condition represents the intersection ofOi with the complement
of Oci+1 and since Oi is part of Oci+1, therefore the intersection is always achieved in the
secondary conditions and therefore we set them to ’ones’ in the matrix. Figure 9.2 explains the
representation of the anatomical structures in the image as topological graph. The red rectangle
in Figure 9.2 shows that the labels that are considered in our calculation depend on the atlas
labels illustrated in Figure 9.2 (as we will explain in the next subsection), in another words,
the labels may consist of any combination depending on the slice level of the brain image.
Table 9.2 shows TRL of each region in the image of Figure 9.2. The connected components
represent the total relationship of each region. The number of cavities in each region indicates
how many regions are inside it or held by it. For example, in case of region white matter (WM)
in Figure 9.2, it has two relationships (two connected components), 1) TRL1(WM,GM) and
2) TRL2(WM,ventricles) as in Eq. (9.7). TRL1(WM,GM) shows that WM is inside GM,
while TRL2(WM,ventricles) shows that WM covers ventricles according to Eq. (9.1):

TRL1(WM,GM) =

 0 0 1
1 0 1
1 1 1

 , TRL2(WM, ventricles) =

 0 1 1
0 0 1
1 1 1

 (9.7)

TRLtotal(WM,RWM ) = TRL1(WM,GM) + TRL2(WM, ventricles) =

 0 1 2
1 0 2
2 2 2


(9.8)

where TRLtotal is the total topological relationship,RWM are the regions that have topological
relationship with (WM). In Eq. (9.8), a12 = 1 indicates that the region WM covers ventricles
while a21 = 1 indicates that WM is inside GM . In our calculation, we consider the primary
conditions, which are explained in Table 9.1, to compute the topological relation of the regions.
The secondary conditions set as ones.

The topological similarity Ts between each cluster in the topological graph and the cor-
responding region in the image during evolution are for updating the labels of pixels of each
region in the image at each t during evolution process, i.e. it is applied iteratively during
curve evolution to update the label of each pixel in an image. Ts is determined by subtraction
TRLtotal(Oi), R

Oi from TRLtotal(R−→γi ), R
R−→γi ) during evolution process given by:

Ts(Oi, R−→γi ) =

{
0 for TRLtotal(Oi, R

Oi) = TRLtotal(R−→γi , R
R−→γi )

1 otherwise
(9.9)

where (R−→γi ) are the regions inside their contours during evolution process. ROi and RR−→γi are

128



9.2 Method

Table 9.1: Topological properties of different regions of the image according to Eqs. (9.1)
and (9.2).

TRL(Oi, Oi+1) Primary conditions Secondary conditions

Contact regions a22 = 1, a11 = 0, a12 = 0, a21 = 0
a13 = 1, a23 = 1, a31 =
1, a32 = 1, a33 = 1

Inside regions a21 = 1, a11 = 0, a12 = 0, a22 = 0
a13 = 1, a23 = 1, a31 =
1, a32 = 1, a33 = 1

Disjoint regions a11 = 0, a12 = 0, a21 = 0, a22 = 0
a13 = 1, a23 = 1, a31 =
1, a32 = 1, a33 = 1

Table 9.2: Topological properties of different regions of the image in Figure 9.2.

Region label Region name #of connected components /
(region name) Internal cavity/Handles

1 Skull 2 / (bg), (sulcal CSF) 1/ (Sulcal CSF)
2 Sulcal CSF 2 / (skull), (WM) 1 / (GM)
3 GM 2 / (sulcal CSF), (WM) 1 / (WM)
4 WM 2 / (GM), (Ventricles) 1/ (Ventricles)
5 Ventricles 2 / (sulcal CSF), (WM) 0

the regions that have topological relationship with Oi and R−→γi respectively. The area and the
centroid of each contour are calculated at each t during evolution process and compared with
the area and the centroid of corresponding cluster in the topological graph:

Ai =

∫
A
dA, Cxi =

1

A

∫
A
xe dA, Cyi =

1

A

∫
A
ye dA (9.10)

where Ai are the areas, Cxi and Cyi are the coordinates of centroid, xe and ye are coordinates
of the centroid of the differential element of area dA. The prior information is added to the
functional energy as topological graph prior term:

Eg[(
−→γi )N−1

i=1 ] = α

(∫
R−→γi

(|AOi −ARi |) dx+ (|COi − CRi |) + Ts

)
︸ ︷︷ ︸

Topological graph prior term

(9.11)

Eg is the energy of the topological graph. α is constant (α = 1 or 0) to run the algorithm
with or without topological graph prior. AOi , COi are the area and centroid of the clusters in
topological graph and ARi ,CRi are the area and the centroid of the regions in the image B
during the evolution process respectively.

As mentioned above, the accuracy of the segmentation depends on the accuracy of the
extraction of the topological graph information which may be affected in the presence of strong
noise. Therefore we propose to use an atlas information registration as an additional prior
information to solve this problem, as we will explain in the next sections.
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9.2.2 Construction of Atlas Template and its Topological Properties

The segmentation accuracy depends on the accuracy of the topological graph prior extraction.
In the presence of strong noise, the extraction of the topological graph will be affected. There-
fore, we propose to use an atlas information to increase the accuracy of the topological graph
in presence of strong noise.

The atlas template T is constructed using the average of 30 brain dataset from brain-
web (Cocosco et al., 1997). The average atlas template is calculated using average brain
model (Guimond et al., 2000). The topological properties of the atlas are summarized in Fig-
ure 9.3 and Table 9.3. Figure 9.3 shows the topological graph of the atlas template with the
label of each region and Table 9.3 explains the topological properties of the atlas template, the
first column represents how many regions are connected to the region of interest. The second
column represents how many cavities available in the region of interest or held by it. For exam-
ple, the white matter (label 3), there are three regions are connected to it (cortical gray matter
(label 2), subcortical gray matter (label 4) and ventricles (label 5)) and it has two cavities so it
holds two regions (subcortical gray matter and ventricles).

Figure 9.3: Topological graph of the atlas template with its labels.

9.2.3 Selection of Appropriate Atlas Template

We consider the graph similarity (object similarity and topological relationship similarity) be-
tween the test image and the atlas template. The topological graph in T are constructed by
measuring the objects or regions in each image in atlas template using Otsu’s method (Otsu,
1979) and then determine the topological relationship between these regions:

T = O1, O2, · · · , ON (9.12)

where O are the objects in T , N = 7 is the total number of the objects in the atlas template.
Assuming that the topological properties of the atlas template are summarized in Figure 9.3 and
Table 9.3, while the topological properties of B are calculated as explained in Section 9.2.1.
After constructing the topological graph for both the atlas template (atlas training data) and
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Table 9.3: Topological properties of the atlas template.

Tissue label tissue type
#of

connected
components

Internal
Cavity/
Handles

1 Sulcal CSF 3 1/ (GM)
2 Cortical gray matter (GM) 2 1/ (WM)

3 White matter (WM) 3
2/ (Ventricles),
(Subcortical GM)

4 Subcortical gray matter 2 0
5 Ventricles 3 0
6 Cerebellum 2 0
7 Brain stem 1 0

the input image, the similarity between T and B with associated graphs G1(OB, EB) and
G2(OT , ET ) is measured. OB are the objects in B, OT are the objects in T . EB and ET are
the edges between the objects in bothB an T respectively. As explained earlier, in the presence
of strong noise the edges in B are not define quite enough. Therefore, the object similarity and
the topological similarity are considered to determine the overall similarity between B and T
as follows:

Os(On, Oi) =

∑
On∈T , Oi∈B

(wOnwOiOe(On, Oi))∑
On∈T

wOn
∑
Oi∈B

wOi
(9.13)

Oe(On, Oi) = 1−max
u
{|χOn(u(x, y))− χOi(u(x, y))|} (9.14)

where Os is the object similarity, n = 1, 2, ..., N , wOn and wOi indicate the importance given
to On and Oi while computing the similarity. Oe is the object equality. u(x, y) ∈ On and Oi.

The topological similarity between B and T is determined by measuring the similarity of
TRLtotal(On, R

On) and TRLtotal(Oi, ROn). The similarity function SIM of the topological
graph of B and the atlas template T is:

S(On, Oi) = Os(On, Oi) + TRLtotal(On, Oi) (9.15)

9.2.4 Registration of the Atlas Information and Label Transformation

The human organs are non-rigid organs and normally there is a relative shape difference from
person to person. Sometimes due to high level of noise or low image resolution the topological
graph gives limited information about the regions in the image. Therefore a multi-modality
non-rigid demon algorithm is proposed to use for image registration and label transformation
from the atlas to the target image (Kroon & Slump, 2009). The registration model consists of
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a similarity function, a transformation error function and a smoothing regularization:

Er =
1

2
‖T −B ◦ (S + U)‖2 +

σ2
i

σ2
x

‖U‖2 (9.16)

∇Er = (T ◦ S −B)

( ∇T
|∇T |2 + β2(T ◦ S −B)2

)
(9.17)

where Er is the registration error, T is the labeled atlas transformed image, B is the target im-
age, S is the transformation field, U is the update of the transformation field. β is the normal-
ization factor, σi and σx are constants of intensity uncertainty (image noise) and transformation
uncertainty, for more details see (Kroon & Slump, 2009). A scale space approach is used to
avoid local minimum and to speed up the registration. The image is resized to 8× 8 pixels and
these small size images are registered, then the original image and the found transformation
fields are resized to 16× 16, until reaching the original size of the image.

The mutual information (MI) is used as a similarity measurement of the intensity and tex-
ture in both T and the topological graph ofB. MI represents the degree of dependency ofB and
T and it measures the degree of alignment between B and T . Then the labels are transformed
from T to B.

MI(B, T ) =
∑
B,T

p(b, t)log

(
p(b, t)

p(b)p(t)

)
(9.18)

where p(b) and p(t) are the probability of the gray values in B and T respectively. p(b, t) is
the joint probability of the images gray values which is derived from the joint histogram.

The labels transformation from the atlas template T to the topological graph of the image
B is based on joint histogram peaks:

H(bB(x, y)NBc, bT (x, y)NBc) = H(bB(x, y)NBc, T (x, y)NBc) + 1 (9.19)

where H(B, T ) is the joint histogram of B and T , NB is the number of bits (NB=255), B
and T ∈ [0,1]. (x, y) is the pixel location. In Eq. (9.19), H(B, T ) will pass through all pixel
locations. The labels are transformed from the atlas template to the topological graph by finding
the gray value for every pixel in the image B which overlaps with pixel value in the image T :

Bl(x, y) = argmaxt (bH(b(x, y)NBc, btNBc)) (9.20)

After label transformation from the atlas to the topological graph of the target image,
Eq. 9.11 should be rewritten in a form of labeled topological graph prior:

Egl [(
−→γi )Ni=1] = α

(∫
R−→γi

(
|AOil −ARi |

)
dx+

(
|COil − CRi |

)
+ Ts

)
︸ ︷︷ ︸

Labeled topological graph prior term

(9.21)

where l is the label of the region as explained in Figure 9.3 and Table 9.3.
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9.2.5 Multi-level Set Formulation and Curve Evolution

This section describes the multi-level set method with labeled topological graph prior. Let
B = (

⋃N
i=1Ri) is the input image with N regions, i ∈ [1, 2, ..., N ]. We assume that for each

Ri there is its complement Rci :

R−→γi (t) = {u ∈ R|−→γi (u, t) > 0}, i = 1, ..., N (9.22)

{R−→γ1(t), R−→γ1(t)c ∩R−→γ2(t), R−→γ1(t)c ∩R−→γ2(t)c ∩R−→γ3(t), ..., (

N⋃
i=1

R−→γi (t))
c} (9.23)

The total Euler-Lagrange energy functional can be written as follows:

Etotal[(
−→γi )Ni=1] =

∫
R−→γi

ωi(b)db+

∫
Rc−→γi

ψi(b)db+ λ

∮
−→γi

ds+ Egl (9.24)

where the first two terms are the data terms of the region. The third term is the regularization
term and the fourth term is our proposed prior term. λ is positive real constant to weigh the
relative contribution of the energy equation. ωi are the data in Ri and ψi are the data in Rci .

The data term is modified to be constrained by Ts: ωi(b) = [− lnPµi(B(b)) = (B(b) −
µi)

2] and ψi(b) = [− lnPµj (B(b)) = (B(b) − µj)2]Ts where µi are the mean over R−→γi and
µj are the mean over Rc−→γi . According to Eq. 9.9 and Eq. 9.24, Ts represents the topological
function of the label state of the set Rci .

To minimize Eq. (9.11) by curve evolution we compute:

d−→γi
dt

= − ∂E
∂−→γi

(9.25)

∂E
∂−→γi

are the derivative of functional energy with respect to −→γi and they are computed as for
the standard region computation functional in Zhu & Yuille (1996). Following Zhu & Yuille
(1996), we get the evolution equation of the curves −→γi :

∂−→γi
∂t

= −

ωi(b)− ψi(b) + α[
(
|AOil −ARi |

)
+
(
|COil − CRi |

)
+ Ts]︸ ︷︷ ︸

Labeled topological graph prior

+λki

−→ni (9.26)

where ki are the curvature of zero level set of −→γi , −→ni are the external unit normal of the curve,
i ∈ [1, ..., N ], j ∈ [1, ..., N ] and i 6= j.

During curve evolution, the curves are constrained by the labeled topological graph prior
term and the curvature term. For N -region segmentation, let b(x, y) be pixels in the image B
(b(x, y) ∈ B) and let −→γi (0) be an initial curve and −→γi (t) is a curve in an iteration t:

1. A−→γ Ri and C−→γ Ri are updated for each time step during evolution process and compared
with the area and the centroid of the topological graph prior after registration and label
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transformation from the atlas. The errors between AOi and A−→γ Ri and between COi and
C−→γ Ri

should be minimized.

2. The topological similarity Ts defines the label state of the pixel b(x, y) in each region in
the image B at time t + 1 with respect to the label of the same pixel at time t. Using
Eq. (9.9), if Ts = 0 at −→γ i(t) and −→γ i(t + 1) then b ∈ −→γ i and this depends on the label
state of the corresponding pixel in the labeled topological graph prior. If Ts = 0 at−→γ i(t)
and Ts = 1 at −→γ i(t+ 1) then b ∈ −→γ j , i 6= j, i ∈ [1, ..., N ] and j ∈ [1, ..., N ].

3. If b is a point of contact between two curves (−→γi ,−→γj ), then the curve will be constrained
by the curvature term as follows: If the curvatures are positive (ki(b) ≥ 0, kj(b) ≥ 0)
this indicates that these curves are retract and not intersect. If (ki(b) ≤ 0, kj(b) ≥ 0) this
indicates that these two curves will be in the same direction but because |ki(b) ≤ kj(b)|,
the curve −→γj retracts faster than −→γi and the curves will not intersect. The graph con-
straint makes the partitioning more precise during evolution process by adding addition
constrain information (Ts, area, centroid).

9.3 Experiments

To highlight the advantages of the proposed algorithm, the algorithm is tested in the presence
of strong noise and with low resolution images for more than 300 images using the Med-
Pix (Khalatbari, 1999), Wesky E Snyder (Snyder, 2002), the brain web for simulated brain
database (Cocosco et al., 1997) and other medical images from the Internet. Our algorithm is
compared to state-of-the-art methods. The medical images in all databases are 2D MRI images
and CT images. The sizes of the images are 181×217 and 512×512 for brain sections of MRI
images and CT images. The experiments run in MATLAB using a 2.0 GHz Intel core I3 CPU.
First, we will show the qualitative results of topological graph prior without atlas registration.
Then we will show the qualitative results of topological graph prior with atlas registration.
Finally we will show the quantitative evaluation of our algorithm.

9.3.1 Qualitative Results of Topological Graph Prior without Atlas Registration

The results of the first part of our algorithm show the improvement in the segmentation by us-
ing the topological prior information. This information help the contour, during the evolution
process, to detect the ambiguous regions in the image. Figure 9.4 shows multi-region seg-
mentation for abdominal and brain MRI images with and without topological graph prior. The
ground truth is obtained by manual segmentation. Figure 9.4 also shows the improvements of
our algorithm to capture the overlapped and close gray level regions according to its topologi-
cal location in the image. The abdominal image in Figure 9.4 shows the improvements of our
algorithm mainly in the segmentation of aorta, liver and diaphragm. The brain images show
the segmentation of the cerebellum, brainstem, white matter and gray matters. In Figure 9.4,
the segmented regions in the proposed algorithm are labeled by colors according to their topo-
logical relationship. The result of the algorithms proposed by Mansouri et al. (2006); Vazquez
et al. (2004) are labeled manually to visualize the differences. The accuracy of this part of our
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algorithm depends on the accuracy of the precise extraction of each cluster in the topological
graph, i.e. Ts, A and C should be computed precisely for each cluster in the topological graph.

Figure 9.4: Multi-region segmentation results. (a) input images (b) ground truth, (c, d) proposed
algorithm with graph prior and (e, f) without graph prior. λ = 0.2, iteration = 70. An example
images from database (Cocosco et al., 1997; Khalatbari, 1999; Snyder, 2002).

9.3.2 Qualitative Results of Topological Graph Prior with Atlas Registration

In this section, we will show the result of using the atlas information as an additional prior
information with the topological graph prior. As mentioned previously, the topological graph
prior may affected in the presence of high level of noise. This part of the proposed algorithm
solves this limitation. We propose to use an atlas template to label the graph of the input image
and eliminate the effect of noise. Figure 9.5 shows the results of using the atlas information
with the topological graph compared with the results explained in Section 9.3.1 for multi-region
segmentation as well as with the approaches proposed in Aljabar et al. (2009); Mansouri et al.
(2006); Vazquez et al. (2004). In Figure 9.5 we observe the improvement of the segmentation in
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the presence of noise. The atlas information provides an accurate extraction of the topological
graph information which improves the multi-region segmentation and labeling in noisy and
low resolution images with less computational time compared to the state-of-the-art methods
as illustrated in Tables 9.4, 9.5 and 9.6. Figure 9.5 demonstrates the segmentation results in the
presence of high level of noise; the black rectangle (a) shows the input noisy images and the
ground truth segmentation, the red rectangle (b) shows the segmentation with topological graph
prior and atlas information with accurate region segmentation and labeling. The green rectangle
(c) shows the segmentation with topological graph prior. The blue rectangle (d) shows the result
of atlas registration based segmentation, and the yellow rectangle (e) shows the segmentation
without any prior information. The improvement of the segmentation of different brain tissues
like white and gray matter, ventricles, and cerebellum can be seen. In Figure 9.5, the skull is not
signed in the proposed labels and it is segmented and labeled randomly according topological
relationship with the other regions in the image.

9.3.3 Quantitative Evaluation

To validate the accuracy of our algorithm, we compare our algorithm with other state-of-the-
art methods (Aljabar et al., 2009; Chan & Vese, 2001; Li et al., 2011; Mansouri et al., 2006;
Vazquez et al., 2004) using dice similarity coefficients (DSC) (Zou et al., 2004). DSC is mea-
sured by computing the similarity between the ground truth segmentation and our algorithm as
well as the methods proposed in Aljabar et al. (2009); Chan & Vese (2001); Li et al. (2011);
Mansouri et al. (2006); Vazquez et al. (2004). A large DSC indicates higher accuracy:

DSC(Igt − It) =
2O(Igt − Itest)
O(Igt) +O(Itest)

(9.27)

where O(Igt − Itest) is the number of overlapping pixels, O(Igt) +O(Itest) is the summation
of the number of pixel in each image.

We also employ the symmetric mean absolute distance (MAD) and Hausdorff distance
(HD) (Wang et al., 2009) between the resulting segmentation and the corresponding reference
segmentation as additional metrics to evaluate the segmentation results. MAD is calculated by
measuring the average distance from all points on the border of the automatically segmented
brain tissue to the border of the reference segmentation. On the other hand, to assess the
maximal local discrepancy between an automatic segmentation and reference segmentation,
the symmetric Hausdorff distance between the border of the automatically segmented brain
tissue and that of the reference segmentation is calculated. The smaller the MAD or Hausdorff
distance, the better aligned the points on the two border and thus the better the agreement with
the reference segmentation.

Figure 9.5 shows the improvement of our algorithm with and without noise using two
databases (Khalatbari, 1999) and (Cocosco et al., 1997) with respect to the state-of-the-art
methods (Aljabar et al., 2009; Chan & Vese, 2001; Li et al., 2011; Mansouri et al., 2006;
Vazquez et al., 2004). Our algorithm is robust with respect to the level of noise and the number
of the segmented region. Figure 9.6 shows the stability of our algorithm as the number of the
segmented region increases comparing with the other methods (Aljabar et al., 2009; Chan &
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Figure 9.5: Examples of a multi-region labeling and segmentation using database (Cocosco et al.,
1997; Khalatbari, 1999), (a) are the input images and the ground truth, (b) are the segmentation with
topological graph and atlas information, (c) are the segmentation with topological graph without
atlas information, (d) are the segmentation with atlas information without topological graph, (e) are
the segmentation without any prior (Mansouri et al., 2006; Vazquez et al., 2004), λ = 0.2, iteration
= 70, noise (SD = 0.16).
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Vese, 2001; Li et al., 2011; Mansouri et al., 2006; Vazquez et al., 2004). The proposed algo-
rithm is based on a single topological atlas with the graph prior and it outperforms the other
multi-atlas based segmentation (Aljabar et al., 2009) which needs more training data and more
computational time because if every atlas is registered with the target image, the computational
time of segmentation increases linearly with the size of the training data. In Figure 9.6(a).
we can see the performance of the proposed algorithm and the algorithm proposed in Aljabar
et al. (2009) is quite similar for 3-region segmentation but with increase of the level of noise
the performance of the proposed algorithm more robust than in Aljabar et al. (2009). Also as
the number of the segmented region increases the performance of the algorithm (Aljabar et al.,
2009) decreases comparing with our algorithm as explained in Figure 9.6(b). Table 9.4 shows
the accuracy (DSC) of our algorithm compared to the other methods for each database (Co-
cosco et al., 1997; Khalatbari, 1999; Snyder, 2002). Table 9.5 and Table 9.6 show the overall
accuracy (DSC, MAD, and HD) of our algorithm and other algorithms with and without pres-
ence of noise using the images in the databases (Cocosco et al., 1997; Khalatbari, 1999; Snyder,
2002). For all these investigated scenarios, our algorithm outperforms other methods.

Table 9.4: Segmentation accuracy for each database without the effect of noise.

Algorithm DSC Khalatbari DSC Snyder DSC Cocosco et al.
Topological graph prior with atlas inform. 94% 91.9% 95.5%
Topological graph prior without atlas inform. 93.56% 90.57% 94.88%
With atlas inform. without topological graph 88.5% 89.5% 92%
Atlas based segmentation (Aljabar et al., 2009) 90% 87% 93%
Without graph prior (Mansouri et al., 2006),
(Vazquez et al., 2004) 80.64% 79.89% 82.49%

Chan & Vese (2001) 61.82% 61.6% 62.78%
Level set fuzzy based (Li et al., 2011) 40.87% 40.1% 42.63%

Table 9.5: Overall segmentation accuracy without the effect of noise of all images in database
(Cocosco et al., 1997; Khalatbari, 1999; Snyder, 2002) and the average computation time for each
frame.

Algorithm DSC MAD HD # iteration Time
Topological graph prior with atlas inform. 93.8% 0.66 mm 2.9 mm 70 2.45 min
Topological graph prior without atlas inform. 93% 0.68 mm 3.2 mm 70 2.24 min
Atlas inform. and without topological graph 90% 0.90 mm 3.9 mm 70 3.1 min
Atlas based segmentation (Aljabar et al., 2009) 90% 0.93 mm 4.5 mm 70 2.9 min
Segmentation without graph prior (Mansouri
et al., 2006; Vazquez et al., 2004) 81% 1.9 mm 5.5 mm 70 2.87 min

Chan & Vese (2001) 62% 3.2 mm 7.2 mm 400 5.15 min
Fuzzy based level set segmentation (Li et al.,
2011)

41.2% 5.3 mm 9.7 mm 300 3.2 min
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(a) DSC versus noise for 3 regions segmentation

(b) DSC versus noise for 6 regions segmentation

Figure 9.6: Effect of Gaussian noise on segmentation performance of database (Cocosco et al.,
1997; Khalatbari, 1999; Snyder, 2002).

139



9. MULTI-REGION LABELING AND SEGMENTATION USING A GRAPH
TOPOLOGY PRIOR AND ATLAS INFORMATION IN BRAIN IMAGES

Table 9.6: Overall segmentation accuracy with the effect of noise (standard deviation 0.16) of
all images in database (Cocosco et al., 1997; Khalatbari, 1999; Snyder, 2002) and the average
computation time for each frame.

Algorithm DSC MAD HD # iteration Time
Topological graph prior with atlas inform. 83% 1.0 mm 4.3 mm 70 2.45 min
Topological graph prior without atlas inform. 70% 1.6 mm 5.0 mm 70 2.24 min
Atlas inform. and without topological graph 73% 2.5 mm 5.2 mm 70 3.1 min
Atlas based segmentation (Aljabar et al., 2009) 77% 2.3 mm 5.1 mm 70 2.9 min
Segmentation without prior information (Man-
souri et al., 2006; Vazquez et al., 2004) 49% 5.1 mm 6.8 mm 70 2.87 min

Chan & Vese (2001) 20% 7.3 mm 9.9 mm 400 5.15 min
Fuzzy based level set segmentation (Li et al.,
2011)

17.7% 7.5 mm 9.8 300 3.2 min

9.4 Conclusion

We propose to use a topological graph prior with atlas information in a multi-level set formu-
lation for multi-region segmentation and partitioning. As a high-level prior, it gives accurate
region partitioning with respect to their topological location and relationship as well as with
the atlas information. The accuracy of the proposed approach depends on the accuracy of the
extraction of the topological graph prior information which is achieved using the atlas informa-
tion. The proposed algorithm has a less run time than other methods with high accuracy which
beneficial to the field of brain image segmentation.
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Chapter 10

Brain Tumor Classification Using
Sparse Coding and Dictionary
Learning

Brain tumor classification is considered as one of the most challenging tasks in medical imag-
ing. In this chapter, a novel approach for multi-class brain tumor classification based on sparse
coding and dictionary learning is proposed. We propose an individual (per-class) dictionary
learning and sparse coding classification using K-SVD algorithm. This approach combines
topological and texture features to build and learn a dictionary. Experimental results demon-
strate that the sparse coding based classification outperforms other state-of-the-art methods.
An earlier version of this chapter appeared at the IEEE International Conference on Image
Processing (ICIP) (Al-Shaikhli et al., 2014a).

10.1 Introduction

Early identification of brain tumors is important to treat the tumors effectively. Multi-class
brain tumor classification is considered as one of the most important and challenging tasks
in medical imaging due to the difficulty to extract the relevant information that can help to
discriminate the tumor from the normal brain tissue (Sachdeva et al., 2013). Brain tumor
classification involves two steps, feature extraction and classification. Feature extraction is an
essential step in the classification since the relevant information from the original image needs
to be chosen in order to achieve high brain tumor classification accuracy (Gladis Pushpa Rathi
& Palani, 2012). In general, brain tumors have different shapes and intensities from patient
to patient (Sachdeva et al., 2013), and sometimes, they also have different gray scales yet the
same intensities as brain tissues (Sachdeva et al., 2013). Therefore, features related to the shape
or intensity create ambiguities during tumor classification (Sachdeva et al., 2013).

Thiagarajan et al. (2013) proposed a sparse coding for brain tumor segmentation using in-
tensity and location features. Bauer et al. (2011) developed a fully automatic algorithm for
brain tumor segmentation and classification using a support vector machine (SVM) with a hi-
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erarchical conditional random field. Han et al. (2011) proposed an algorithm for gliobastoma
multiforme classification in the histological images based on dictionary learning and sparse
coding. The sparse coding based classification was compared with the traditional kernel meth-
ods of classification. They concluded that the accuracy of kernel methods are better than sparse
coding for histological images. Selvaraj et al. (2007) proposed an automatic classification tech-
nique based on Least Squares SVM to identify normal and abnormal slices of brain MRI im-
ages. Moon et al. (2002) proposed an automatic brain tumor segmentation based on statistical
classification with a geometrical prior. Cocosco et al. (2003) proposed a fully automatic gener-
ation of correct training samples for MRI tissue classification. Weiss et al. (2013) proposed an
approach for multiple sclerosis lesion segmentation using dictionary learning and sparse coding
using intensity features. In the previous works, these approaches used either intensity-based or
texture-based feature extraction for brain tumor classification, however a brain tumor may have
the same intensity as normal brain tissue (Wu et al., 2004). Furthermore, sparse representation
has been shown to be an effective method for brain tumor classification by representing the
images as dictionaries consist of linear combination of a few columns (atoms) of some redun-
dant basis (Duarte-Carvajalino & Sapiro, 2009). While in the Linear-SVM, the data may not
be linearly separable in the original feature space and needs higher dimensional space mapping
to increase the classification accuracy which is computationally expensive (Han et al., 2011).

In contrast to previous works, our contribution is a modified sparse coding and dictionary
learning based multi-class classification. We proposed to use the K-SVD method to update both
of the dictionary and sparse coding steps. Furthermore, due to the high degree of similarity in
pixel intensities between normal brain tissue and tumor, and the variability of the tumor shape,
location, and size, this variability justifies the use of topological and texture features to learn the
dictionary. The topological feature gives information whether the case is normal or abnormal
based on the assumption that the topology of normal brain is fixed. Therefore, the presence
of tumor in the brain will change the normal brain topology. In addition, the texture features
provide a good discrimination of the brain tumor types. The main novelty in our algorithm is
the use of topology and texture features for learning, instead of applying learning directly on
pixel values.

The rest of this work is organized as follows: Section 10.2 explains the proposed method.
Section 10.3 discusses the results and Section 10.4 summarizes the work.

10.2 Method

10.2.1 Feature Extraction

In this subsection, the feature extraction step is explained by proposing a set of topological and
texture features that give relevant information about the tumor.

Topological Matrix (TM) The proposed topological matrix is represented by a topological
graph relationship and it considers the main feature to classify the normal and abnormal brain
images by assuming that the topology of the normal brain is fixed. The topological graph is
constructed from the input data to provide the feature knowledge to the classifier. To compute
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TM , we consider an image I as sets of clusters depending on the dissimilarity between them
I = Oi, Oi+1, ..., ON . These clusters are connected with each other by a specific topological
relationship. The clusters in the topological graph of the image I are computed using Otsu’s
method (Otsu, 1979) and the topological relationship of these clusters are computed using the
method in Chapter 9 (Al-Shaikhli et al., 2014c). LetO◦ be the interior of the cluster, ∂O be the
boundary of the cluster, and χOi is the membership function of each cluster. The topological
relationship between the clusters is calculated in terms of probability of intersections of these
clusters (Al-Shaikhli et al., 2014c):

VTM (Oi, Oi+1) = (m11,m12,m13, . . . ,m33)T (10.1)

VTM in Eq. (10.1) is a vector of zeros and ones and it is the sum of all individual VTM that are
computed for each region (VTM =

∑N
i=1 VTMi). The elements (that have ones values) repre-

sent the topological relationship of each region in the image. In our calculation, we consider
only four elements (m11,m12,m21, and m22) and the rest are set as ones:

m11 = 0,m12 = 0,m21 = 0,m22 = 0 if RLdis(Oi, Oi+1) > 0
m11 = 0,m12 = 0,m21 = 0,m22 = 1 if RLcon(Oi, Oi+1) > 0
m11 = 0,m12 = 0,m21 = 1,m22 = 0 if RLin(Oi, Oi+1) > 0
m11 = 1,m12 = 1,m21 = 1,m22 = 1 if RLov(Oi, Oi+1) > 0

(10.2)

where RLdis, RLcon, RLin, and RLov are disjoint, contact, inside and overlap region relation-
ship respectively as follows:

RLdis(Oi, Oi+1) = 1−max
b
{|χOi(b) + χOi+1(b)− 1|} (10.3)

RLin(Oi, Oi+1) = min(1,min
b

(1 + χO◦i+1
(b)− χOi(b))) (10.4)

RLcon(Oi, Oi+1) =

min{(1−max
b

(|χO◦i (b) + χO◦i+1
(b)− 1|)),

max
b

(min(χ∂Oi(b), χ∂Oi+1
(b)))} (10.5)

RLov(Oi, Oi+1) =

min{max
b

(min(χO◦i+1
(b), χO◦i (b))),

max
b

(min(χO◦i (b), χ∂Oi+1
(b))),

max
b

(min(χO◦i+1
(b), χ∂Oi(b))),

max
b

(min(χ∂Oi(b), χ∂Oi+1
(b)))} (10.6)
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Figure 10.1: Example of normal and abnormal brain MRI images with their topological graph and
basis vectors of the topological feature. The elementm21 = 5 in the normal case whilem21 = 6 in
the abnormal case, this indicates that there is a tumor in the brain. The violet rectangle represents
the overall topological graph of the normal case, the black rectangle represents the topological
graph of the example images, and the green rectangle represents the abnormal connectivity of
WM.

where b is a pixel in I . Table 10.1 and Figure 10.1 illustrate the proposed topological properties
for both normal and abnormal cases of the brain. In Table 10.1, the connected components rep-
resent the total relationship of each region. The number of cavities in each region indicates the
number of regions inside it. In Figure 10.1, the label (8) represents the abnormal connectivity
of the white matter (presence of a tumor). Therefore the topological relationship of the white
matter is changed. According to Eq. (10.1) and Eq. (10.2) this change is illustrated in element
m21 in TM because the tumor is inside WM, for more details see Chapter 9 (Al-Shaikhli et al.,
2014c). This could be also seen in the basis vector of the topological feature of normal and
abnormal brain MRI images.

Gray Level Co-occurance Matrix (GLM) GLM is an important method for textural feature
extraction proposed by Haralick et al. (1973). Four texture features (contrast, correlation,
energy, and inverse difference moment) are considered for brain tumor classification. These
features have been calculated for four different offsets (0◦, 45◦, 90◦, and 135◦).

10.2.2 Dictionary Learning

In this subsection, the dictionary learning step in our algorithm using a K-SVD method will
be presented to learn and update the dictionary. Let c = 1, ..., 4 is the number of the class,
Nc are the training images of each class. Dc are the dictionaries of the corresponding training
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Table 10.1: Topological properties for the normal (abnormal) cases.

Tissue
label

Tissue type #connected
Internal
cavity Handles

1 Sulcal CSF 3 (3) 1 (1) 1 (1)
2 Cortical gray matter (GM) 2 (>2) 1 (>1) 1 (>1)
3 White matter (WM) 3 (>3) 2 (>2) 2 (>2)
4 Subcortical gray matter 2 (>2) 0 (>0) 0 (>0)
5 Ventricles 3 (>3) 0 (0) 0 (0)
6 Cerebellum 2 (>2) 0 (>0) 0 (>0)
7 Brain stem 1 (>1) 0 (>0) 0 (>0)

images of each class, and N is the sum of the training images of all four classes as explained
in Figure 10.2 which illustrates the proposed algorithm.

Let Dc be a dictionary n×Kc matrix Dc = (d1, d2, ..., dKc), which consists of Kc atoms
(columns), {di ∈ Rn : i = 1, 2, ...,Kc} and each atom represents the key features extracted
from Yc, where (Kc � Nc) Yc = (y1, y2, ..., yNc) is a n×Nc matrix which consists of feature
vectors {yi ∈ Rn : i = 1, 2, ..., Nc} of Nc data samples (feature vectors) with dimension n.
To compute the sparse representation Ac = (a1, a2, ..., aNc) ∈ RKc×Nc , s.t. yi = Dcai and
‖ai‖0 << Kc, i = 1, ..., Nc, the dictionary Dc by feature samples Yc needs to be trained. In
such a way that each feature vector in Yc is represented by linear combination of a few atoms in
the dictionary according to the non-zero elements in Ac as illustrated in the generative learning
step in Figure 10.2.

Our goal is to update the dictionary and the sparse representation Ac by minimizing the
following equation using the K-SVD method (Aharon et al., 2006):

arg min
Dc,Ac

‖Yc −DcAc‖2F ,

s.t. ∀1 ≤ i ≤ Nc, ‖ai‖0 � Kc (10.7)

To get an update of the dictionary Dc and the sparse representation Ac, we assume that the
condition in Eq. (10.7) is aKc×Nc matrix multiplied byAc as a dot product of multiplication:

Pc =

{
Pc(i, j) = 1 for Ac(i, j) = 0
Pc(i, j) = 0 otherwise

(10.8)

Now, we can rewrite Eq. (10.7) as follows:

{D̂c, Âc} = arg min
Dc,Ac

‖Yc −DcAc‖2F s.t. Pc ◦Ac = 0 (10.9)

The dot product (Pc ◦ Ac = 0) achieves all zeros in Ac without change. Equation (10.9)
represents the update stage of the dictionary and we solve it by considering DcAc as a sum of
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rank-1 outer products:

{D̂c, Âc} = arg min
Dc,Ac

‖Yc −
K∑
i=1

dia
T
i ‖2F

s.t. ∀1 ≤ i ≤ Kc, pi ◦ ai = 0 (10.10)

To optimize the above equation, we use a block coordinate descent method. By multiplying the
(n×Nc) rank-1 matrix (1n · pTj ) with Eq. (10.10), we compute the error matrices. Therefore,
all columns of the samples that do not use jth atom are removed.

Ei = (Y −
∑
i 6=j

dia
T
i ) ◦ (1n · pTj ) (10.11)

where Ei are the overall representation error matrix. In Eq. (10.11), the rank-1 matrix repre-
sents the n times replication of the row pTj which forces the zeros in the right location in ai. For
each category c we have a learned dictionary Dc that contains atoms and each atom represents
the key features of the samples in each category {Yc ∈ Rn×Nc : c = 1, . . . , 4} and the total
number of feature samples is represented by (Y = (Y1, Y2, . . . , Y4)) in the dictionary:

D = (D1, D2, . . . , D4) ∈ Rn×N , N =
∑
c

Nc (10.12)

Figure 10.2: Schematic illustration of the proposed algorithm. In the training part, (c1) normal,
(c2) glioma, (c3) glioplastoma, (c4) carcinoma and the feature vector represents the topological
and texture features of each case. Generative learning illustrates the dictionary learning step. The
testing part illustrates the computing of the sparse representation of the test images.
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10.2.3 Classification

The classification step of the proposed algorithm is based on sparse representation. In Sec-
tion 10.2.2, the dictionary learning step of each category was explained. To classify the testing
data, the algorithm tries to find a match between the testing data Y and the dictionary of specific
categoryDc. This can be achieved by computing the similarity of the testing data with contents
(key features) of the dictionary Dc. Therefore, the sparse representation of the testing data is
computed using the individual dictionaries of the all categories (as illustrated in the testing part
of Figure 10.2) and then Y is classified as a cth category when appear that Y is more sparse
with Dcth :

‖Y −DcAc‖2F ≤ ε , ‖Ac‖0 = min{‖Ab‖0 : b = 1, . . . , 4} (10.13)

10.3 Experimental Results and Discussion

To explore the advantages of the proposed algorithm compared to the other methods, several ex-
periments have been conducted on diverse medical images. In this work three medical datasets
are used, namely, brain web for simulated brain database (Cocosco et al., 1997), brain tumor
segmentation database (Kaus et al., 2001; Warfield et al., 2000), and whole brain atlas (John-
son & Becker, 1995), and other medical images with brain tumor from the internet. From all
databases, 4 classes of images have been collected; 50 normal brain cases (class 1), 50 cases
with brain glioma (class 2), 50 cases with brain glioplastoma (class 3), and 50 cases with brain
metastatic carcinoma (class 4). Each case has a set of 10 images which make the total number
of images for the training set of 4 classes 2000 images (50 cases × 4 classes × 10 images
of each class = 2000 images). For testing, a 10-fold cross validation is used to evaluate the
performance of the classification. Figure (2) shows examples of images from these databases.

Each patch in the dictionary is represented using a feature vector, including topological and
textural information. The images are classified as normal case or abnormal case according to
their topological properties as explained in Table 10.1. Then the images are classified further-
more according to the texture features of the abnormality if they exist. In the classification step,
two types of classifiers are used (sparse coding classifier and Linear-SVM classifier). Sparse
coding classifier performs higher classification accuracy than Linear-SVM classifier (93.7 %
versus 88.75 %). Furthermore, the proposed algorithm (using sparse coding classifier) is com-
pared with other classification methods (Han et al., 2011; Weiss et al., 2013) after adapting
these methods for multi-class classification. In the proposed algorithm, the classification step
is obtained by finding the match between the sparse representation of the testing data with the
specific dictionary. The performance for multi-class classification (Recall, Precision, Average
Accuracy (AA)) are computed by computing the True Positive (TP), True Negative (TN), False
Positive (FP), False Negative (FN) using the algorithm (Sokolova & Lapalme, 2009):

Precision =

∑C
c=1

TPc
TPc+FNc

C
,Recall =

∑C
c=1

FPc
TPc+FNc

C
,AA =

∑C
c=1

TPc+TNc
TPc+TNc+FPc+FNc

C

Table 10.2 illustrates the classification performance of the proposed algorithm using sparse
coding classifier better than other classification methods proposed in the literature (Han et al.,
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Figure 10.3: Confusion matrix for all datasets. The average accuracy is 93.75%. Most confusions
occur in brain carcinoma. (c1) Normal, (c2) Glioma, (c3) Glioplastoma, (c4) carcinoma.

Table 10.2: Classification Evaluation.

Classifier Type Recall Precision AA
Sparse Coding (Proposed) 92.5% 94.87% 93.75%

Han et al. (2011) 92.5% 90.24% 91.25%
Weiss et al. (2013) 90.0% 92.31% 90.0%

2011; Weiss et al., 2013). From the confusion matrix in Figure 10.3, it can be observed that
the class 1 (normal) is classified correctly with minimum because the topological feature gives
accurate information of the normal and abnormal cases. The errors occurred mainly with the
class 4 (carcinoma) with error 0.14 which is classified as class 2 (glioma) and class 3 (glio-
plastoma) due the textural similarity in T2 MRI images of these cases. Class 3 (glioplastoma)
is classified as class 2 (glioma) with error 0.0565 and class 2 (glioma) is classified as class 3
(glioplastoma) with error 0.0435. Totally, 6.25 % of the four classes are classified incorrectly.

10.4 Conclusion

In this work dictionary learning and sparse coding are proposed for multi-class brain tumor
classification. The dictionary is constructed and learned from the topological and texture fea-
tures of the trained data. Then the learned dictionary is used to classify the testing data. Two
types of classifiers are used for classification namely sparse coding and linear-SVM. The sparse
coding classifier computes the matching between the sparse representation of the testing data
and the corresponding dictionary. The results showed that the sparse representation based clas-
sification achieves higher classification accuracy than Linear-SVM based classification tech-
nique (93.75 % versus 88.75 %). The proposed algorithm has also been compared to other
classification methods, demonstrating the advantages of the method proposed in this work.
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Chapter 11

Coupled Dictionary Learning for
Automatic Multi-Label Brain Tumor
Segmentation in Flair MRI images

Brain tumor tissue segmentation and labeling is a challenging task in medical imaging. In
this chapter, a novel patch based dictionary learning algorithm for automatic multi-label brain
tumor segmentation is proposed. Based on image reconstruction, we present coupled dictionar-
ies, one dictionary of grayscale brain tumor image patches and one dictionary of tumor labels,
which can then be used for automatic multi-label brain tumor segmentation of a test image data.
The dictionaries are learned from training images of BraTS-MICCAI and the SPL/NSG brain
tumor databases. The label dictionary is proposed to select foreground and background labels
for automatic graph-cut segmentation. For quantitative evaluation, five different metric scores
are computed using the online evaluation tool provided by the BraTS organizers. Experimental
results demonstrate that the proposed approach achieves accurate results and outperforms most
of the state-of-the-art methods cited in BraTS-MICCAI challenge. An earlier version of this
chapter appeared at the International Symposium on Visual Computing (ISVC) (Al-Shaikhli
et al., 2014b).

11.1 Introduction

Early identification and accurate boundary detection of brain tumor are important for effective
diagnosis and treatment. Multi-label brain tumor segmentation is considered as one of the most
challenging tasks in medical imaging due to the difficulty to extract the relevant information
that can help to discriminate the tumor (Sachdeva et al., 2013). Several obstacles like inter-
patient heterogeneity and geometric variation in shape and size lead to difficulties of tumor
detection using shape or intensity prior for brain tumor segmentation (Jiang et al., 2013).

Many previous approaches use neural networks, interactive tools or morphology (Moon
et al., 2002) or atlas (Gooya et al., 2012) for brain tumor segmentation. For multi-label brain
tumor segmentation, several researchers used either random forest based on feature extrac-
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Figure 11.1: Example of the BraTS training data (Menze et al., 2014). (a-d) are four brain MRI
modalities with glioma, (e, f) 2D and 3D ground truth respectively, (g, h) 2D and 3D segmentation
of our algorithm respectively using only Flair MRI modality. Each image modality gives specific
information of the glioma sub-regions. Edema clearly appear in T2 and Flair modalities (a, b),
necrosis appears in T2 (with high intensity) and in T1 (with low intensity) (b, c) while enhanced
tumor clearly appears in T1-contrast modality (d).

tion (Festa et al., 2013; Reza & Iftekharuddin, 2013; Tustison et al., 2013) or Markov Random
Field (MRF) (Zhao et al., 2013a,b). Some other approaches used atlas template for single la-
bel (Warfield et al., 2000) or multi-label brain tumor segmentation (Cao et al., 2013; Gooya
et al., 2011, 2012). All the above methods require multi-channel input (multi-modality MRI
data). In recent years, some approaches used image patch dictionary learning for single-label
tumor segmentation (Thiagarajan et al., 2013; Weiss et al., 2013) or multi-modal coupled
dictionary learning for microscopical image registration (Cao et al., 2013). These methods
used one dictionary for each class and the residual error to discriminate the tumor/non-tumor
classes. Cordier et al. (2013) proposed a patch based brain tumor segmentation. The method
is based on the patch similarity to detect the tumor region in different image modalities (Flair,
T2, T1, and T1-contrast). The method requires an initial bounding box localization to detect
the tumor region and four dictionaries for the four image modalities. Brain glioma of BraTS
database (Menze et al., 2014) is represented by four labels (necrosis, enhanced tumor, non-
enhanced tumor, and surrounding edema). The appearance of these labels differs in each MRI
image modality (T1, T2, T1-contrast, and Flair). In T2, edema pixels tend to have higher in-
tensity rather than in T1. Necrosis pixels tend to have high intensity in T2 while low intensity
in T1. Enhanced tumor pixels tend to have high intensity in T1 while low intensity in T2 as il-
lustrated in Figure 11.1. This makes it difficult to identify the multi-label glioma from just one
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Figure 11.2: Schematic illustration of our algorithm. The training part represents the training
images with associated label images and their dictionaries. The testing part represents selection
of foreground and background labels, 2D tumor segmentation, and 3D tumor reconstruction of the
test image (patient # 308).

MRI modality and therefore, several multi-label glioma segmentation methods require more
than one modality as explained in aforementioned approaches. Figure 11.1 shows an example
of brain glioma of BraTS training database (Menze et al., 2014). In Figure 11.1, (a-d) show the
appearance of glioma and the surrounding edema in four MRI modalities, (e, f) show the 2D
and 3D ground truth segmentation respectively, and (g, h) show the 2D and 3D segmentation
of the proposed algorithm using only one modality (Flair MRI modality).

In contrast to aforementioned methods and in order to solve the limitation of using multi-
channel input, which may result in more computational complexity (time and memory), in
this work, we propose a novel coupled dictionary learning approach (one dictionary of the
original image data and one of the associated label image data) of automatic multi-label brain
tumor segmentation, as illustrated in Figure 11.2. Our contribution is a novel fully automatic
algorithm for multi-label segmentation using coupled dictionaries learned from single modal-
ity (Flair MRI modality) image training data with associated label image data (ground truth
segmentation). Patches are extracted from the training image data and concatenated to a ma-
trix in a dictionary. Each patch has its corresponding patch in a label dictionary. The label
dictionary represents four foreground labels (necrosis, enhanced tumor, non-enhanced tumor,
and edema) and one background label. For testing, the proposed method requires single MRI
modality input of the testing data. After extracting the patches from the test image data, the
patch similarity is retrieved between the patches of the testing data and these in the dictionary
of the training image data, then the corresponding atoms in the label dictionary are selected.
The label dictionary is used to provide the foreground and background labels for graph-cut
segmentation.

The following sections are organized as follows. Our novel approach is described in detail
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Figure 11.3: Schematic illustration of the matrix dimension. Patches are extracted from each
image data and concatenated in a 3D matrix. The 3D matrices of training set are concatenated in a
big 3D matrix YI to learn DI and AI .

in Section 11.2. In Section 11.3, experimental results and discussion are presented. Finally,
this work is concluded in Section 11.4.

11.2 Method

The proposed method consists of two steps: image patch dictionary learning step and segmen-
tation step.

11.2.1 Dictionary Learning

In this subsection, we explain the dictionary learning step of both the original image data and
tumor label image data. The size of all images is set to 256 × 256 × 80. Sixteen patches are
extracted from each image data with size 16× 16× 80 and these patches are concatenated in a
3D matrix as illustrated in Figure 11.3.

Let DI be a dictionary n × K × z matrix DI = (d1, d2, ..., dK), which consists of K
atoms (columns), {di ∈ Rn×16×z : i = 1, ...,K}. Therefore, each atom represents grayscale
image patches concatenated to a matrix with size n× 16× z and z is the depth of the training
image volume YI . YI is a n × N × z matrix YI = (y1, y2, ..., yN ), which consists of sample
matrices {yi ∈ Rn×16×z : i = 1, ..., N} of N data samples and (K � N), as illustrated
in Figure 11.3. To compute the sparse representation AI = (a1, a2, ..., aN ) ∈ RK×N×z , s.t.
yi = DIai and ‖ai‖0 << K, i = 1, ..., N , where DI needs to be trained by YI . In such a
way that each sample in the training image data is represented by a linear combination of a few
atoms in the corresponding dictionary according to the non-zero elements in AI .
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The dictionary DI is coupled with a corresponding dictionary matrix of tumor label Dl ∈
Rn×K×z . Dl is built and learned from the ground truth segmentation of the training data. Dl

atoms have the same spatial extension as DI as explained in Figure 11.3, so labels in Dl can be
inferred on each pixel of the original image data. Each atom dI in DI has an associated atom
dl in Dl. To achieve this coupling, the dictionary learning procedure is done simultaneously
for both DI and Dl to approximate the solution of error matrix in Eq. (11.5) below. Below,
we will explain the dictionary learning procedure of DI and this procedure is also done for Dl.
The dictionary DI and the sparse representation AI are learned by minimizing the following
equation using the K-SVD method (Aharon et al., 2006):

arg min
DI ,AI

‖YI −DIAI‖2F s.t. ∀1 ≤ i ≤ N, ‖ai‖0 � K (11.1)

To minimize Eq. (11.1), we assume that it is constrained by a dot product, (P · AI = 0), of a
K ×N × z matrix (AI) with a K ×N × z matrix (P ) defined below:

P =

{
P (i, j) = 1 for AI(i, j) = 0
P (i, j) = 0 otherwise

(11.2)

Now, we can rewrite Eq. (11.1) as follows:

{D̂I , ÂI} = arg min
DI ,AI

‖YI −DIAI‖2F s.t. P ·AI = 0 (11.3)

The dot product (P · AI = 0) achieves all zeros in AI remain unchanged. Equation (11.3)
represents the update stage of the dictionary and we solve it by considering DIAI as a sum of
rank-1 outer products:

{D̂I , ÂI} = arg min
DI ,AI

‖YI −
K∑
i=1

dia
T
i ‖2F s.t. ∀1 ≤ i ≤ K, pi · ai = 0 (11.4)

where di is the ith atoms in DI and aTi is the ith row in AI . To optimize the above equation,
we use an SVD operation. The error matrices are computed by multiplying the (n × N × z)
rank-1 matrix (1n · pTi ) with (YI −

∑
i 6=j dja

T
j ):

Ei = (YI −
∑
i 6=j

dja
T
j ) · (1n · pTi ) (11.5)

where Ei are the overall representation error matrices, pTi is the ith row in the matrix P . In
Eq. (11.5), the rank-1 matrix represents the n times replication of the row pTi . Therefore, all
columns of the samples that do not use ith atom are removed.

The tumor in the label image data is represented by four labels li (clusters) with a gray level
range {0, 0.25, 0.5, 0.75, 1} (necrosis=1, edema=0.75, non-enhanced tumor=0.5, enhanced tu-
mor=0.25, and background=0). Let c be a set of voxels in the label atom. In the perfect rep-
resentation of tumor labels in label dictionary Dl, each atom in Dl represents by voxels which
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Figure 11.4: Example of brain tumor image with associated tumor label image with their dictionary
representation.

have maximum probability for one label and minimum probability for other three labels:

D̂l(c) =


1 if l1 = maxl1 dl1(c)
0.75 if l2 = maxl2 dl2(c)
0.5 if l3 = maxl3 dl3(c)
0.25 if l4 = maxl4 dl4(c)
0 if otherwise

(11.6)

To optimize this requirement of containing one label information in each voxel, the label dic-
tionary Dl is computed by minimizing the following equation:

arg min
Dl,Al

‖D̂l −DlAl‖2F s.t. ∀1 ≤ i ≤ N, ‖ai‖0 � K (11.7)

For all atoms in DI and Dl, if minKi=1(1 −∑4
l=1 ‖yil − D̂l‖) ≥ 0, then the atom dIi is

associated with the atom dli . Figure 11.4 illustrates the representation of the original image in
the dictionary and its corresponding representation in the label dictionary. The dictionary DI

(Eq. 11.1) and Dl (Eq. 11.7) and their sparse representation AI and Al are learned using the
same learning procedure explained in Section 11.2.1 (Eqs. 11.1 - 11.5).

11.2.2 Label Selection for Graph-Cut Segmentation

To segment the tumor region with surrounding edema, four labels for foreground ad one for
background are used as explained in Section 11.2.1. Firstly the patches are extracted from
the testing image data (Flair MRI modality) and the maximum match of these patched with
dictionary DI is found. Then the corresponding label patches from the label dictionary Dl are
selected. This can be achieved by computing the similarity of the testing image data with the
contents of the dictionary DI . Then the labels are selected from the corresponding atom in the
label dictionary Dl:

‖YI −DIAI‖2F ≤ ε , min
A
‖A‖0 (11.8)

where ε is very small value1. In this step, only the patches of the tumor (i.e. the patches of the
tumor region of original image data and label patches of the ground truth segmentation) are

1In this work, ε is set to 10−4.
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selected for graph-cut segmentation.
For segmentation, we use multi-label graph-cut toolbox (Delong et al., 2012). The seg-

mented slices of the test image data are rendered for the 3D reconstruction of the brain tumor.
The energy function consists of three terms: data cost, smooth cost, and label cost:

E(f) =
∑
c∈C

ϕc(fc)︸ ︷︷ ︸
data cost

+
∑
cq∈G

Vcq(fc, fq)︸ ︷︷ ︸
smooth cost

+
∑
l⊆L

hl · δl(f)︸ ︷︷ ︸
label cost

(11.9)

where E(f) is the energy to be minimized, C is a set of all voxels in the image data and for
each c ∈ C there is a label fc ∈ L, (fc = l ∈ {1, 2, 3, 4} as explained in Eq. 11.6). G is a set
of all edges between voxels. ϕp is the data of the label c. Each Vcq represents the edge between
two voxels c and q and penalizes fc 6= fq. The label cost term consists of the (1) non-negative
label subset cost of each label hl and it is represented by the patches in the dictionary of the
original image data DI , (2) the indicator function δl which is represented by label patches in
Dl (Eq. 11.6).

11.3 Experimental Results and Discussion

To explore the advantages of the proposed algorithm compared to the other methods, sev-
eral experiments have been conducted on diverse medical images. In this work two medi-
cal datasets are used, namely, brain tumor (glioma) database (SPL/NSG) (Johnson & Becker,
1995; Warfield et al., 2000) (10-patients image data) and brain tumor segmentation database
(BraTS) (Menze et al., 2014) (Images of 20 patients as training and images of 10 patients as
testing image data with different MRI modalities (T1, T2, T1-contrast, and Flair)). The BraTS
database is publicly available through the MICCAI 2013 Brain Tumor Segmentation chal-
lenge (Menze et al., 2014), where these databases provide the ground truth of the brain tumor
segmentation (manual expert annotations). In this work, we use only the Flair MRI modality to
build and train the dictionary of the original image and the ground truth segmentation as tumor
label image data to build the label dictionary. The size of all images is set to 256 × 256 × 80.
All experiments are conducted in MATLAB using a 2.0 GHz RAM.

Sixteen patches are extracted from the original image data and image label with size 16×
16 × 80 and each patch in the dictionary is concatenated in a 3D matrix 256 × 16 × 80 as
illustrated in Figure 11.3. Each patch in the dictionary of the original data has its corresponding
patch in the label dictionary with same size. The selection of labels is based on finding a match
between the target image data and the dictionary DI as explained in Section 11.2.2. Then
the labels are selected from the corresponding atom in the label dictionary Dl. Figure 11.5
shows one-label glioma segmentation of two examples of the SPL/NSG database (Johnson &
Becker, 1995; Warfield et al., 2000). In each example, the first column is the original image
data (coronal, sagittal, and axial sections). The second column is the 2D tumor segmentation.
The 3D tumor reconstruction is represented in the last row. Figures 11.6 and 11.7 show the
results of the multi-label brain tumor segmentation of the testing data and the training data
of BraTS database (Menze et al., 2014) respectively. In Figure 11.6, the first, third, and fifth
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Figure 11.5: Two examples of one label glioma segmentation of SPL/NSG database (Johnson &
Becker, 1995; Warfield et al., 2000), in each example, the first column is the original image data.
The second column is our tumor segmentation. The third column is ground truth. The last row is
the 3D tumor reconstruction with 3D ground truth.

Figure 11.6: Three examples (left→ to right: patients # 310, 309, 302) of 3D Multi-label glioma
segmentation of BraTS testing data, in each example, the first column is the input image data (axial,
coronal, and sagittal planes), the second column is the 2D tumor segmentation, the fourth row is
3D tumor reconstruction.
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Figure 11.7: Two examples of 3D Multi-label glioma segmentation of BraTS training data, in each
example, the first column is the input image data (axial, coronal, and sagittal planes), the second
column is our results (2D), the third column is the 2D ground truth, the fourth row is 3D tumor
reconstruction (our results) and 3D ground truth respectively.

columns are the input image data in three different planes (coronal, sagittal, and axial). The
second, fourth, and sixth columns are the segmentation results of the proposed algorithm and
the fourth row represents the 3D tumor reconstruction. Figure 11.7 shows our segmentation
results comparing with the ground truth. The best segmentation are achieved for the edema
and necrosis more than the enhanced tumor and the thin layer of non-enhanced tumor.

The performance of the our algorithm was evaluated with the four BraTS 2013 labels: label
1: necrosis, label 2: edema, label 3: non-Enhancing tumor, and label 4: enhancing Tumor. The
results were uploaded to the BraTS 2013 Virtual Skeleton web site and the evaluation of the
testing image data is obtained for 3 different tumor sub-regions according to BraTS challenge
conditions:

• Region 1 (R1): Complete tumor (labels 1+2+3+4 for patient image data)

• Region 2 (R2): Tumor core (labels 1+3+4 for patient image data)

• Region 3 (R3): Enhancing tumor (label 4 for patient image data)

Table 11.1 shows the results per region reported by the Virtual Skeleton web site for the 10 real-
case high grade BraTS 2013 testing image data (Menze et al., 2014). Tabel 11.1 illustrates five
different metrics (Dice, Positive Predictive Value (PPV), Sensitivity, Jaccard, and Kappa) with
the average value (Avg) and standard deviation (Std). Patient #305 is the best segmentation
result. We compare our results with the best reported 3D brain tumor segmentation meth-
ods (Cordier et al., 2013; Festa et al., 2013; Meier et al., 2013; Reza & Iftekharuddin, 2013;
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Table 11.1: Evaluation Results of different tumor labels for 10 high grade real-patient of BRATS
Testing Data.

P. # Dice PPV Sensitivity Jaccard Kappa
R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3

301 0.86 0.90 0.80 0.90 0.90 0.82 0.82 0.90 0.78 0.75 0.81 0.66 0.99 1.0 1.0
302 0.84 0.76 0.87 0.74 0.94 0.85 0.97 0.63 0.90 0.73 0.61 0.78 0.99 0.99 1.0
303 0.90 0.82 0.57 0.87 0.997 0.67 0.92 0.70 0.50 0.81 0.70 0.40 0.99 0.99 0.99
304 0.85 0.74 0.38 0.87 0.68 0.76 0.84 0.82 0.25 0.74 0.60 0.23 0.99 0.99 0.99
305 0.91 0.91 0.81 0.91 0.91 0.79 0.93 0.90 0.84 0.85 0.83 0.68 1.0 1.0 1.0
306 0.86 0.81 0.68 0.96 0.95 0.82 0.78 0.70 0.58 0.76 0.68 0.52 0.99 1.0 1.0
307 0.91 0.27 0.60 0.93 0.16 0.60 0.90 0.71 0.61 0.84 0.15 0.43 1.0 0.99 1.0
308 0.91 0.89 0.67 0.86 0.87 0.53 0.96 0.91 0.91 0.83 0.80 0.50 0.99 1.0 0.99
309 0.85 0.85 0.84 0.95 0.93 0.87 0.76 0.78 0.82 0.73 0.73 0.73 0.99 1.0 1.0
310 0.82 0.85 0.82 0.95 0.93 0.85 0.72 0.80 0.80 0.70 0.74 0.70 1.0 1.0 1.0
Avg. 0.87 0.78 0.70 0.89 0.83 0.75 0.86 0.78 0.70 0.77 0.66 0.56 0.99 1.0 1.0
Std 0.03 0.18 0.15 0.06 0.24 0.11 0.08 0.09 0.20 0.05 0.19 0.17 0.0 0.0 0.0

Tustison et al., 2013; Zhao et al., 2013a) of the BraTS 2013 challenge. Among these methods,
the proposed method gives high score results as illustrated in Table 11.2. In Table 11.2 we
report the same validation measures of the testing data (Dice, Positive Predictive Value, Sen-
sitivity, Kappa, and Jaccard) as used in the challenge. Those results have also been published
online 1. On this challenge database, we get comparable results to best scored methods as
illustrated in Table 11.2. From Table 11.2 we note that our algorithm gives the highest PPV
score among the other methods. For dice and sensitivity coefficients, the proposed algorithm
gives the highest score of R1 but not for R2 (tumor core) and R3 (enhanced tumor) because
pixels in R2 and R3 tend to have low intensity in the Flair MRI modality but they still achieve
the clinical requirements. Kappa coefficient indicates the agreement between the labels of the
segmented tumor in the testing data with those in the ground truth. Our method also presents
the advantage of being robust and requiring only one image modality input (single-channel
input) comparing to other methods (Cordier et al., 2013; Festa et al., 2013; Meier et al., 2013;
Reza & Iftekharuddin, 2013; Tustison et al., 2013; Zhao et al., 2013a) which all require multi-
channel input (four MRI modalities). Moreover, we evaluate the robustness of our algorithm
using a k-fold cross validation of the training data (Johnson & Becker, 1995; Menze et al.,
2014; Warfield et al., 2000), where k=30 (20 patient image data with different image modality
T1, T2, T1-contrast, and Flair) for training image BraTS database (Menze et al., 2014) and (10
patient image data MRI-T1) for SPL/NSG database (Johnson & Becker, 1995; Warfield et al.,
2000) as illustrated in Table 11.3.

1http://martinos.org/qtim/miccai2013/results.html
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Table 11.2: Evaluation results for BraTS testing data.

Method Dice PPV Sensitivity Kappa
R1 R2 R3 R1 R2 R3 R1 R2 R3

Proposed 0.87 0.78 0.70 0.89 0.83 0.75 0.86 0.78 0.70 0.99
Tustison et al. 0.87 0.78 0.74 0.85 0.74 0.69 0.89 0.88 0.83 0.99
Meier et al. 0.82 0.73 0.69 0.76 0.78 0.71 0.92 0.72 0.73 0.99
Reza & Iftekharuddin 0.83 0.72 0.72 0.82 0.81 0.70 0.86 0.69 0.76 0.99
Zhao et al. 0.84 0.70 0.65 0.80 0.67 0.65 0.89 0.79 0.70 0.99
Cordier et al. 0.84 0.68 0.65 0.88 0.63 0.68 0.81 0.82 0.66 0.99
Festa et al. 0.72 0.66 0.67 0.77 0.77 0.70 0.72 0.60 0.70 0.98

Table 11.3: Evaluation for SPL/NSG (Johnson & Becker, 1995) and BraTS Training (Menze et al.,
2014) databases. R1 represents the average score of both of databases (Johnson & Becker, 1995;
Menze et al., 2014), R2 and R3 represent the average score of BraTS database (Menze et al., 2014)

Method Dice PPV Sensitivity Kappa
R1 R2 R3 R1 R2 R3 R1 R2 R3

Proposed 0.96 0.94 0.80 0.96 0.95 0.78 0.90 0.90 0.74 0.99

11.4 Conclusion

In this work, a fully automatic multi-label brain tumor segmentation based on coupled dic-
tionary learning and sparse coding algorithm is proposed. We design two types of associated
dictionaries, one is the dictionary of the original image data and the other is the dictionary of
tumor label image data (ground truth segmentation of the tumor). The evaluation of the results
of the BraTS test image data has been obtained by the online evaluation tool provided by the
BraTS-MICCAI challenge organizers. The experimental results show that the proposed algo-
rithm achieves higher segmentation accuracy of R1 than R2 and R3. Because R2 and R3 tend
to have low intensity in Flair MRI modality, therefore, the segmentation accuracy of R2 and
R3 is slightly less than R1 but still achieve the clinical requirements.

Our approach requires only one modality comparing to the other methods which require
multi-modalities which may result in less computational complexity (time and memory). The
proposed algorithm has been compared to the best reported 3D brain tumor segmentation meth-
ods of the BraTS 2013 challenge, demonstrating the advantages of the method proposed in this
work.
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Chapter 12

Combine Markov Random Fields and
Marked Point Processes to Extract
Building from Remotely Sensed
Images

Automatic building extraction from remotely sensed images is a research topic much more
significant than ever. One of the key issues is object and image representation. Markov random
fields usually referring to the pixel level can not represent high-level knowledge well. On the
contrary, marked point processes can not represent low-level information well even though
they are a powerful model at object level. In this chapter, we propose to combine Markov
random fields and marked point processes to represent both low-level information and high-
level knowledge, and present a combined framework of modeling and estimation for building
extraction from single remotely sensed image. At high level, rectangles are used to represent
buildings, and a marked point process is constructed to represent the buildings on ground scene.
Interactions between buildings are introduced into the the model to represent their relationships.
At the low level, a MRF is used to represent the statistics of the image appearance. Histograms
of colors are adopted to represent the building’s appearance. The high-level model and the low-
level model are combined by establishing correspondences between marked points and nodes
of the MRF. We adopt reversible jump Markov Chain Monte Carlo (rjMCMC) techniques to
explore the configuration space at the high level, and adopt a Graph Cut algorithm to optimize
configuration at the low level. We propose a top-down schema to use results from high level
to guide the optimization at low level, and propose a bottom-up schema to use results from
low level to drive the sampling at high level. Experimental results demonstrate that better
results can be achieved by adopting such hybrid representation. An earlier version of this
chapter appeared at the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, ISPRS Congress (Chai et al., 2012).
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12.1 Introduction

With the progresses in image capture techniques, more and more remotely sensed images with
high spatial, spectral, temporal and radiometric resolutions are available. With the popularity of
tools such as Google Map, more and more up-to-date geoinformation are demanded by people.
As a traditional research topic in photogrammetry and remote sensing, building extraction from
remotely sensed images is a topic much more significant than ever.

In spite of the research efforts of the past decades fully automatic extraction is still a chal-
lenging task. The key issue is representation of objects and images (Baltsavias, 2004; Mayer,
1999; Sowmya & Trinder, 2000). Statistical approaches provide a strong framework of mod-
eling and estimation. Markov random fields and marked point processes represent context-
dependent entities well (Baddeley & van Lieshout, 1993; Li, 2009; Winkler, 2003). Based
on Markov random fields (MRF), low-level information referring to the single image pixels
and interaction between neighboring pixels are represented concisely. However, high-level
knowledge, such as free semantic structures and variable topology, can not be represented by
MRFs conveniently. Based on spatial point process, high-level knowledge can be introduced
via marks attached to the points and the relationships between neighboring points. While spe-
cific shapes can be represented by geometric marks, general shape can not be determined based
on image content. This problem results from the weakness of representing low-level informa-
tion.

Motivated by the complementary characteristics of Markov random fields and marked point
processes, we combine them to represent both low-level information and high-level knowledge.
Based on this representation, we propose an automatic approach for extracting buildings from
single remotely sensed image.

12.2 Previous Works

12.2.1 Markov Random Fields based Representation

Markov random fields provide a natural representation of context-dependent entities (Besag,
1974; Geman & Geman, 1984). A set of sites are used to represent pixels or primitives, and a
set of labels attached to each site are used to denote events that may happen at the site. Fur-
thermore, a neighborhood system is used to describe the interrelationships between sites. Ben-
efiting from the equivalence between MRF’s and Gibbs distribution (Hammersley & Clifford,
1971), MRF can be described by local characteristics. Moreover, MRF-MAP estimation can
be rigorously achieved in case of binary classification by Graph Cut algorithm (Boykov et al.,
2001) and approximately e.g. by belief propagation (Felzenszwalb & Huttenlocher, 2004a).

Although there are some high-level MRF models (Li, 1994), their structures are fixed in
modeling and estimation. They are not flexible enough to represent random structures. Suc-
cesses are demonstrated in low level, especially for regular lattices corresponding to image
grids. For example, image restoration (Felzenszwalb & Huttenlocher, 2004a), stereo match-
ing (Tappen & Freeman, 2003), image segmentation (Rother et al., 2004) or clustering (Zabih
& Kolmogorov, 2004) are formulated as pixel labeling problems with labels denoting pixel
intensity, disparity or object category respectively.
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Researchers introduced strong priori information into MRFs to improve its performance of
representation. Kumar et al. (2010) combined pictorial structures and MRFs and proposed an
object category specific MRFs model for detecting and segmenting instances of a particular
object category. The object-specific shape prior is represented using pictorial structures, and it
relies on a large library of exemplars. Winn & Shotton (2006) adopted a part labeling which
densely covers the object and proposed a Layout Consistent Random Field (LayoutCRF) model
to impose asymmetric local spatial constraints on these labels to ensure the consistent layout
of parts. It can detect and segment partially occluded objects of a known category. They
introduced shape priori for objects and layout of object parts. Therefore, single object or a
small number of objects can be segmented cleanly.

Since the number of objects presented in remotely sensed image simultaneously is large,
object shapes and scene topology are too complex to be modeled using above mentioned ap-
proaches. On the other hand, it is important to utilize such information to segment object
precisely.

12.2.2 Marked Point Processes based Representation

Marked point processes provide a useful representation of spatially distributed objects. A set
of points randomly distributed are used to represent objects. The number of points, their po-
sitions, and their interactions are random. Furthermore, marks are attached to each point to
represent high-level knowledge such as category or geometric shape. Marked point processes
are flexible enough to model the scene at the object level. Given a proposed model, reversible
jump Markov Chain Monte-Carlo (Green, 1995) can be adopted to explore the configuration
space and annealing schema can be adopted to simulate the objective distribution to find the
optimal solution.

The Ariana Research Group CNRS/INRIA/UNSA introduced marked point process into
remotely sensed image analysis. They demonstrated that marked point processes have a great
potential in object extraction from remotely sensed image. Ortner et al. (2007, 2008) adopted
rectangle to represent building footprint, and proposed an approach for building footprint ex-
traction from DSM. Lafarge et al. (2008) adopted a 3D model to represented buildings, and
proposed an approach for building reconstruction from DSM based on a library of 3D models.
Tournaire et al. (2010) adopted above framework and formulated the energy in an efficient way,
easy to parameterization and fast to compute.

The devised marks, however, can only represent specific shapes. Due to computational
limitation, it is impossible to adopt a huge number of marks to represent general shapes. And,
general shapes can not be determined based on image content adaptively. Moreover, images
are linked with the model via a data term computed using hypothesis testing schema, which
can not make full use of low-level information.

12.3 Bayesian Framework for Building Extraction

As a whole, we represent buildings as foreground X and the rest as background X , and formu-
late building extraction as foreground/background segmentation in a Bayesian manner. Given
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the observed image I , the buildings X can be estimated by maximizing the posterior:

X = arg max
X

P (X,X|I; Θ) (12.1)

= arg max
X

P (I|X,X; Θ)P (X,X|Θ) (12.2)

where, Θ is a set of models and parameters, P (X,X|Θ) is the priori probability of a specific
configuration X,X conditioned on Θ, and P (I|X,X; Θ) is the likelihood of observing an
image I given the configuration X,X conditioned on Θ.

We will address issues of modeling and estimation in Section 12.4 and Section 12.5 respec-
tively.

12.4 Modeling

12.4.1 Hybrid Representation

We combine marked point processes and Markov random fields and propose a hybrid represen-
tation for building extraction. As illustrated in Figure 12.1, marked point process is adopted
to represent the high-level knowledge, i.e. the buildings and their distribution; Markov random
field is adopted to represent the low-level information, i.e. the properties of all pixels.

Figure 12.1: Hybrid representation.

12.4.2 High-level Model

At high level, only buildings are represented explicitly, the rests are represented implicitly. The
buildings are modeled as a marked point process.

Marked Point Process A rigorous definition of spatial point process involves measure theory
which is difficult for the readers who have not studied the subject. Instead, we present only
a simple description in this section. Let S ⊂ R2 be a compact set, and Ωn be the set of
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configurationsX = {x1, ..., xn} that consist of n unordered points of S, the probability density
of a specific configuration X is defined as follows:

h(X) = αβn(X)
∏
xi∈X

φ(1)(xi) · · ·
∏

(xi1 ,...,xik )∈X

φ(k)(xi1 , ..., xik) (12.3)

where, α is the normalizing constant, n(X) is the number of points, β is a positive constant,
and φ(k)(xi1 , ..., xik) reflects the interactions among k-tuplets neighboring points.

By attaching a geometric mark mi = (li, wi, diri) to each point xi ∈ X , we can augment
a spatial point process to be a marked point process, where, the triplet denotes the length,
width and main direction of a rectangle. The marked point is denoted as x̂i. All buildings are
represented by a rectangle-marked point process.

Return to Bayesian formulation in Section 12.3, h(X) is computed from a prior term and a
data term:

h(X) ∝ hp(X)hd(X) (12.4)

where, the prior term hp(X) measures the priori probability of different scenes, the data term
hd(X) measures the coherence between the scene and the image, which is identified with the
likelihood term. hp(X) and hd(X) correspond to P (X,X|Θ) and P (X,X|Θ) in Eq. 12.2
respectively.

Priori Most existing approaches rely on very specific priori (Lafarge & Descombes, 2010;
Ortner et al., 2007). Benedek et al. (2010); Lafarge & Descombes (2010) adopted the relation
overlap as a general interaction and developed a concise priori model.

In this work, we argue that buildings can not overlap with each other and use this condition
as a hard constraint. It is realized by defining the following density:

hp(X) ∝ exp(θ0o(X)) (12.5)

where θ0 = −∞ prevents overlapped rectangles to appear in configuration, o(X) is the number
of pairs of overlapped rectangles:

o(X) =
∑

xi,xj∈X
overlap(x̂i, x̂j) (12.6)

where,

overlap(x̂i, x̂j) = { 1, x̂i overlaps with x̂j
0, x̂i does not overlap with x̂j

(12.7)

To reflect the sparse distribution of buildings, small distances between neighboring build-
ings are penalized. We augment above model by defining the density of valid configuration as
unconditional Strauss process (Strauss, 1975):

hp(X) ∝ exp(θ1n(X)) + θ2p(X, r)) (12.8)

where θ1 and θ2 are two parameters of this model, n(X) is the number of points in X , p(X, r)
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is the number of pairs of points that are nearer than r:

p(X, r) =
∑

xi,xj∈X
d(xi, xj) ≤ r (12.9)

where, d(xi, xj) is the distance between xi and xj .
To reflect parallel of buildings, large difference of directions between neighbouring build-

ings are penalized. We augment above model by adding a direction term:

hp(X) ∝ exp(θ3q(X, r)) (12.10)

where, q(X, r) is sum of square of direction differences between neighboring buildings no far
than r:

q(X, r) =
∑

xi,xj∈X,d(xi,xj)≤r

α2(x̂i, x̂j) (12.11)

where, α(x̂i, x̂j) is the difference of the directions of xi and xj :

α(x̂i, x̂j) = dir(x̂i)− dir(x̂j) (12.12)

where, dir(x̂i) is the main direction of the rectangle attaching to xi. Furthermore, α(x̂i, x̂j) is
compared with 0, π/2, ..., 2π and the minimal difference is adopted as the result. This measure
can reflect both parallel and orthogonal of buildings.

Finally, we combine above models and get a full distribution as follows:

hp(X) ∝ exp(θ0o(X)) + θ2p(X, r) + θ3q(X, r)) (12.13)

where the first term assures that neighboring buildings do not overlap with each other, the
second and third terms assure that all building distribute sparsely, the last term assures that
neighboring buildings align with each other. θ0 ∈ Θ, θ1 ∈ Θ, θ2 ∈ Θ, θ3 ∈ Θ, r ∈ Θ are all
parameters of the model.

Data Term The data term measures the coherence between the scene and the image, i.e. the
likelihood of presenting an image given the scene:

hd(X) = P (I|X, X̂; Θ) (12.14)

Since the low-level model links both high-level model and image, it serves as an intermediate
model between marked point process and image, the data term is calculated based on low-level
model. Details will be presented in section 12.4.4.

12.4.3 Low-level Model

At the low level, both foreground and background are modeled explicitly and together as a
Markov Random Field.

168



12.4 Modeling

Markov Random Field Since foreground and background can be denoted by two labels, we
model them as an Ising model (Li, 2009). The probability of presenting a specific configuration
f is computed as follows:

P (f) =
1

Z
exp(−U(f)) ∝ exp(−(Up(f) + Ud(f))) (12.15)

where, Z is a normalizing constant called the partition function, which is common to all con-
figurations and can be ignored in computation. Up(f) and Ud(f) correspond to P (X,X|Θ)
and P (I|X,X|Θ) in Eq. (12.2) respectively.

Priori The priori energy Up(f) for Ising model is calculated as follows:

Up(f) =
∑
i,j

|fi − fj | (12.16)

where, i and j are horizontally or vertically neighboring pixels, all neighboring pixels with
different labels contribute to the total energy.

Above priori term is based on the assumption that the random field varies smoothly every-
where. Every pair of pixels with different labels will increase the priori energy and decrease
the probability. In fact, neighboring pixels in foreground or background regions should have
the same labels. Neighboring pixels across the region boundaries should have different labels.
In other words, label field should be allowed to change at region boundaries without increasing
the priori energy.

To reflect such priori knowledge, neighboring pixels across regions should contribute noth-
ing to the priori energy, while as neighboring pixels within regions should contribute to the
priori energy as traditional way. We augment above priori term to be:

Up(f) =
∑
i,j

βi,j |fi − fj | (12.17)

where, if i and j across foreground and background regions, βi,j should be 0; otherwise, it
should be 1.

Such discontinuity preserving constraint is more reasonable than the simplest constraint
making configuration varies smoothly everywhere. However, It is difficult to express the
discontinuity preserving constraints because nothing is known in advance about the regions
and their boundaries. In the proposed hybrid representation, the high-level model provides
a guess of such knowledge, it can be utilized to calculate βi,j . Details will be presented in
Section 12.4.4.

Data Term The data term Ud(f) corresponds to the likelihood is defined as follows:

Ud(f) = Ud(I|f) =
∑
i

U(Ii|f) (12.18)
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where, the energy U(Ii|f) is calculated as follows:

Ud(Ii|f) = { − log(P (Ii|Hb)), fi = 0
− log(P (Ii|Hf )), fi = 1

(12.19)

where, Hn ∈ Θ and Hf ∈ Θ, are two normalized histograms for background and foreground
respectively. P (Ii|Hb) and P (Ii|Hf ) measures the likelihood of the pixel with color Ii belong-
ing to background and foreground respectively.

12.4.4 Linking High-level and Low-level Models

Each marked point at the high level denotes one building, and it corresponds to one rectangular
region in the Markov random field at the low level. The high-level model and the low-level
model are combined together by establishing correspondences of marked points at the high
level and regions (each one consists of a set of pixels) at the low level. High-level knowledge is
introduced as a priori term in the MRF and low-level information is introduced into data term
in the marked point process. In this way, a flexible and robust representation is achieved.

Priori As pointed out in Section 12.4.3, high-level knowledge can be utilized to construct a
discontinuity preserving a priori term for the low-level model.

Suppose that there are a set of marked points at the high level, we can get a set of rectangular
regions at low level by projecting the marked points on to the grid of Markov random field.
Each pixel i has one label fi which denotes its class, i. e. foreground or background. Without
loss of generality, suppose that i and j are neighboring pixels. The discontinuity preserving
priori term is constructed by defining βi,j as follows:

βi,j = { 0, fi 6= fj
1, fi 6= fj ,

(12.20)

i.e. the label configurations of the Markov random field are not evaluated at the borders induced
by the marked point process.

Data Term Suppose that there is a set of marked points at the high level. We can obtain a
set of rectangular regions at the low level by projecting the marked points on to the grid of
Markov random field. Each pixel i has one label fi which denotes its class, i.e. foreground or
background. Using Eq. (12.18), we can calculate the data term for the high level model.

More specifically, summing the data terms over one rectangular region, we get the data
term corresponding to one marked point at the high level.

12.5 Optimization

We adopt simulated annealing to simulate the posterior distribution so that an optimal config-
uration can be achieved as the temperature gradually approaches zero. It iteratively simulates
the distribution h

1
T (X) with T gradually decreasing to 0.
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Furthermore, we use reversible jump Markov random Monte Carlo (rjMCMC) techniques
to explore the configuration space at the high level, an uniform birth and death kernel and a
translation kernel are developed to generate new states according the current state. The former
randomly generates a point together with a rectangle (length, width and direction) in the im-
age region, while the latter randomly selects an existing rectangle and adjusts its parameters
randomly. The new state is adopted with an accept rate to keep the detailed balance.

What distinguishes our approach from existing ones is that a top-down schema and a
bottom-up schema are proposed for random sampling. In each sample, it first generates a new
state at high level, then uses it to guide the optimization at low level, then uses the optimization
results to adjust state at high level.

12.5.1 Top-down Schema

Since there are a large number of buildings presented in remotely sensed image simultaneously,
previous MRF based approaches need seed pixels provided manually. Otherwise, neighboring
buildings can not be distinguished well without knowledge about their spatial distribution. We,
however, use the results at the high level to provide the information about the spatial distribution
and approximate shapes of buildings.

Low-level optimization is conducted only when a new marked point is birthed. Given a
new states, i.e. a new rectangle-marked point. we use it to guide the optimization at low level:

1. Project the rectangle into image to get projected regions;

2. Construct discontinuity preserving priori term for low-level model;

3. Adopt Graph Cut algorithm (Boykov et al., 2001; Greig et al., 1989) to optimize the
proposed object function with discontinuity preserving priori term, the optimization is
conducted in the projected regions and it results in some building regions.

12.5.2 Bottom-up Schema

Motivated by the data driven MCMC (Tu & Zhu, 2002), we use results at low level to drive the
sampling, i.e. compute new state according results of optimization at low level. In their data
driven MCMC, the low-level results are computed by edge detection or segmentation and are
fixed in the process of MCMC sampling. In our approach, the low-level results are computed
from low level optimization and vary in the process of MCMC sampling.

Given the optimization results achieved at low level, i.e. some building regions at low level,
we use them to adjust the new state at high level:

1. Select the largest one and find a minimal rectangle enclosing the selected region;

2. Adjust the new marked point to be the rectangular region found above;

3. Calculate the data term based on the optimization result;

4. Calculate the accept rate using the data term calculated above;
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5. Move the current state to the (adjusted) new state with the accept rate.

Benefited from optimization at low level, more precise building region can be found in each
random sampling, this may improve the definition of both shape and data term. As a result,
this schema may drive rjMCMC sampling to achieve better results. Theoretical foundation is
guaranteed by simulated annealing and rjMCMC technique.

12.6 Experiments

12.6.1 Results and Comparison

We apply our approach to extract buildings from three satellite images of developed urban or
suburban areas. For comparison, we also apply marked point processes based approach and
Markov random fields based approach to extract buildings.

In this experiment, the histograms Hb and Hf (i.e. three dimensional arrays) are learned
from real images by manually annotating images. The rest parameters are set as follows: θ0 =
−∞, θ1 = 1, θ2 = −0.01, θ3 = −0.01, r = 10 pixels.

The original images, manually annotated reference images, and extraction results are pre-
sented in Figure 12.2. As illustrated, there are some clear errors in the third row achieved by
marked point processes based approach. Since the data term for a rectangle is calculated as a
whole but not pixelwise, some regions that contain buildings may be recognized as a building
region by mistake. Theoretically, infinite sampling can remove such cases, however, it can not
be achieved in practice.

As illustrated, there are many buildings missed in the fourth row achieved by Markov
random fields based approach. Since the priori term (smooth term) drive the results as smooth
as possible, some regions with low density of being buildings are segmented as background
by mistake. On the contrary, some regions between neighboring buildings are segmented as
foreground. As illustrated, the last row achieved by our hybrid representation is better than
above rows. Benefited from the hybrid representation, both high-level knowledge and low-level
information are well-represented and utilized in the process of building extraction. The point
distribution at high level provides a topology structure of the scene. Based on the topology,
the optimization at the low level is expected to achieve robust results. The detailed data terms
computed at low level improve foreground and background distinguishing at high level.

We also recorded the number of building pixels extracted as building pixels, building pixels
extracted as non-building pixels, and non-building pixels extracted as building pixels. They are
divided by the total number of building pixels and presented in Table 12.1, Table 12.2 and

Table 12.1: Quantitative evaluation on first image.

TrueFalse PositiveFalse Negative
MPP-based 0.53 0.47 0.14
MRF-based 0.41 0.59 0.04

Hybrid-based 0.52 0.48 0.09
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Figure 12.2: Extraction results: the first row illustrates the original images, the second row il-
lustrates the reference extraction results, which are annotated manually, the rest rows illustrate
extraction results based on Marked point processes, Markov random fields, and hybrid representa-
tion.
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Table 12.3 respectively. As illustrated, the results achieved by hybrid representation are much
better than those of Markov random fields based approach, they are also better than those of
marked point processes based approach, especially indicated by False Negative, which means
the number of non-building pixels extracted as building pixels.

Table 12.2: Quantitative evaluation on second image.

TrueFalse PositiveFalse Negative
MPP-based 0.56 0.44 0.15
MRF-based 0.44 0.56 0.04

Hybrid-based 0.57 0.43 0.08

Table 12.3: Quantitative evaluation on third image.

TrueFalse PositiveFalse Negative
MPP-based 0.74 0.26 0.34
MRF-based 0.69 0.31 0.07

Hybrid-based 0.78 0.22 0.13

12.7 Conclusion

This work presents a hybrid representation for buildings in remotely sensed image and an ap-
proach for building extraction from single remotely sensed image. First, it formulates building
extraction in a Bayesian framework. Then, it addresses modeling issue and optimization issue
respectively. Buildings are modeled at two levels. At the high level, marked point processes
are used to represent such high-level knowledge as topology structure of a scene. At the low
level, a Markov random field is used to represent pixel color and interaction. After establishing
a link between high-level model and low-level model, it proposes a top-down schema and a
bottom-up schema optimizing an objective function. Benefited from the hybrid representation
and optimization schema, good extraction results are achieved as demonstrated by experiments
presented in this work.

To our knowledge, it is the first work on the combination of marked point process and
Markov random fields. Therefore, there are many issues to be investigated in the near future.
First, the optimization schema can be improved greatly since the interactions between high-
level model and low-level model are not fully utilized. Second, much more information from
the image data need to be explored to improve the extraction quality since histograms of colors
do not fully represent information contained in the images, this can be seen in the density
images calculated using histograms.
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Chapter 13

Multi-Source Multi-Scale Hierarchical
Conditional Random Field Model for
Remote Sensing Image Classification

Fusion of remote sensing images and LiDAR data provides complimentary information for
the remote sensing applications, such as object classification and recognition. In this chapter,
we propose a novel multi-source multi-scale hierarchical conditional random field (MSMSH-
CRF) model to integrate features extracted from remote sensing images and LiDAR point cloud
data for image classification. MSMSH-CRF model is then constructed to exploit the features,
category compatibility of multi-scale images and the category consistency of multi-source data
based on the regions. The output of the model represents the optimal results of the image
classification. We have evaluated the precision and robustness of the proposed method on
airborne data, which shows that the proposed method outperforms standard CRF method. This
research appears at the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, Photogrammetric Image Analysis (PIA) (Zhang et al., 2015).

13.1 Introduction

In the fields of photogrammetry and remote sensing, there exist many sources of earth ob-
servation data with the different characteristics of targets on the ground. For a long period,
integration of the multi-source data reasonably and effectively has been an active topic. Fusion
of remote sensing images and LiDAR data provides complimentary information for the remote
sensing applications, such as object classification and recognition.

Many methods have been developed for the fusion of remote sensing images and Li-
DAR data. In general those methods are classified into three categories, namely image fusion
(Parmehr et al., 2012), feature fusion (Dalponte et al., 2012; Deng et al., 2012), and decision
fusion (Huang et al., 2011; Shimoni et al., 2011). The methods for image fusion include dif-
ferent resolution data sampling and registration, so the processing is time-consuming, and the
accuracy is affected by the accuracy of registration, which reduces the performance of the sub-
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sequent image classification. In the feature fusion methods, the features are usually extracted
independently from different data source, and the fusion lacks consideration of correspondence
of location and contextual information, by which the classification could be improved.

In order to overcome the limitations of the aforementioned methods, we present a novel
multi-source multi-scale hierarchical conditional random field (MSMSH-CRF) model to fuse
features extracted from remote sensing images and LiDAR point cloud data for image classi-
fication. In this work, the major contribution is that both the category compatibility of the
multi-scale image in a hierarchical structure and the category consistency of multi-source data
are considered in the MSMSH-CRF model. The following sections are organized as follows.
The related work is discussed in Section 13.2. In Section 13.3, the MSMSH-CRF model is pre-
sented in detail. In Section 13.4, experimental results are presented. Finally, this contribution
of this work is concluded and the future work is discussed in Section 13.5.

13.2 Related Work

In order to make full use of multi-source data for image classification and object recognition,
many feature-based fusion methods have been proposed. One of the classic tools are graphical
models (Bishop, 2006), i.e. probabilistic models defined on a graph describing the conditional
dependence structure between random variables. As the one branch of the graphical model,
Markov Random Fields (MRFs) have been used for image interpretation since 1986 (Besag,
1986), and their limiting factor only allowing for local image features has been overcome by
Conditional Random Fields (CRFs) (Lafferty et al., 2001), where arbitrary features can be used
for classification. CRFs have the ability to discriminatively model contextual dependencies,
conditioned on observations, for capturing global as well as local image context, which makes
them suitable for accurate labeling (Perez et al., 2012). Therefore, they have been receiving
more and more attention in recent years (Niemeyer et al., 2014; Yang & Förstner, 2011b; Zhang
et al., 2012).

Schindler (2012) gives a systematic overview of image classification methods, which im-
pose a smoothness prior on the labels. Both local filtering-type approaches and global random
field models developed in other fields of image processing are reviewed. He shows a de-
tailed experimental comparison and analysis of the methods, using two different aerial data
sets from urban areas with known ground-truth. Based on the standard CRF model (Shotton
et al., 2009), Yang & Förstner (2011a) introduce a hierarchical conditional random field to
deal with the problem of image classification by modeling spatial and hierarchical structures.
Perez et al. (2012) formulate a multi-scale CRF model to deal with the problem of region la-
beling in multi-spectral remote sensing images. Zhang et al. (2013) propose the multi-source
hierarchical conditional random field (MSHCRF) model to fuse features extracted from remote
sensing images and LiDAR point cloud data for image classification. Hierarchical pairwise po-
tentials are introduced to consider category consistency of multi-source data based on regions.
Niemeyer et al. (2014) integrate a random forest classifier into a CRF framework, which is
a flexible method for obtaining a reliable 3D classification in complex urban scenes. These
methods exploit both spatial and hierarchical structures of objects in images. Considering
the limitation of visual feature information from the images, the classification results could
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be potentially improved by incorporating information from different source data, such as the
elevation information in LiDAR data and the spectral information in the hyperspectral images.

13.3 MSMSH-CRF Model for Automatic Classification

In this section, we start by presenting the graphical model to integrate an image and LiDAR
data, so-called MSMSH-CRF model, with corresponding energy function. Then, we describe
the model construction process. Afterward, we will derive the features from each region ob-
tained from the unsupervised segmentation algorithm. Then, we will give particular formu-
lations for each of the unary, pairwise, hierarchical potentials respectively. Finally, we will
discuss the learning and inference of this graphical model.

13.3.1 MSMSH-CRF Model

In the field of image analysis, the regions of interest are usually detected independently, but
considering the relative position between regions in single source data and the correspon-
dence between regions from multi-source data, the labeling of every region should not be
independent. The CRF model is an effective way to solve the problem of prediction of the
non-independent labeling for multiple outputs, and in this model, all the features can be nor-
malized globally to obtain the global optimal solution.

Based on the standard CRF model, we propose the MSMSH-CRF model to learn the con-
ditional distributions over the class labeling given an image and corresponding LiDAR data,
and the model allows us to incorporate different features and correspondence information in
a single unified model, as illustrated in Figure 13.3. The conditional probability of the class
labels c given an image X and LiDAR data L, which has a distribution of the Gibbs form, is
defined as follows

P (c|X,L, θ) =
1

Z(θ,X,L)
exp(−E(c|X,L, θ)) (13.1)

And the energy function

E(c|X,L, θ) =
∑
i∈S

E1(ci, xi, θ1) +
∑

(i,j)∈N
E2(ci, cj , xi, xj , θ2)

+
∑

(i,k)∈M
E3(ci, ck, xi, xk, θ3) +

∑
(i,t)∈H

E4(ci, ct, xi, lt, θ4)
(13.2)

where θ = {θ1, θ2, θ3, θ4} is the vector of model parameters, Z(θ,X,L) is the partition function, i, j
and k respectively index regions xi, xj and xk in the image, which correspond to nodes in the graph,
and t index regions lt in the LiDAR data, which also correspond to nodes in the graph. S is the set of
all the nodes in image level of the graph, N is the set of corresponding pairs collecting neighborhood
in both images and LiDAR data, M is the set of pairs collecting parent-child relations between regions
with neighboring scales, andH is the set of corresponding pairs collecting neighborhood in both images
and LiDAR data. E1 is the unary potentials, which represent relationships between class labels and the
observed data, E2 is the pairwise potentials, representing relationships between class labels of neigh-
boring regions within each scale. E3 is the multi-scale hierarchical pairwise potential, which represents
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corresponding relationships between regions in neighboring scales of images. E4 is the multi-source
hierarchical pairwise potential, representing corresponding relationships between images and LiDAR
data.

13.3.2 Model Construction

In order to integrate features extracted from multi-source data for image classification, the MSMSH-
CRF graphical model is consist of two levels: Image level and LiDAR level. In Image level, Texton is
utilized to distinguish between different regions effectively and obtain the different segmented regions,
which form all the nodes in Image level of the graph. Meanwhile, we can change the amount of channels
of the Texton filter (Shotton et al., 2009) to get different results which are similar to the multi-scale
segmentation, and Figure 13.1 shows the example results of our algorithm. The neighborhood in Image
level is defined as the relationship of two regions which have the common edge. In LiDAR level, the
mean shift algorithm is used to get the flat regions corresponding to continuous planes of different targets
in LiDAR data, which form all the nodes in LiDAR level of the graph.

Figure 13.1: The example region images of Texton segmentation results at scale 1, 2, 3 respec-
tively. The color of each region is assigned randomly that neighboring regions are likely to have
different colors. Top row left: Original image, Top row right: segmentation result at scale 3. Bottom
row left: segmentation result at scale 1, Bottom row right: segmentation result at scale 2.

For describing the consistency of multi-source data, we firstly choose the optimal scale of images
to match with the LiDAR data. Assuming that there is a registration of multi-source data acquired on
the same airborne platform, such as the algorithm introduced in literature (Mastin et al., 2009), and we
calculate the center of each region (or line)RLi in the depth image converted from LiDAR data, and
the center should be inside the region (or line) and at the symmetric axis. Then based on the relative
position of the centers, the corresponding regions (or lines) RLia in multi-scale images can be selected.
The procedure of choosing optical scale images is illustrated in Figure 13.2. Therefore, for each pixel s
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Figure 13.2: The example image of illustrating the procedure of choosing the optimal scale image
to match the LiDAR data.

in the region (or line) RLi, we obtain the optimal scale of images by

a∗ = arg min
a

∑
s∈{RIi∪RIia}

| RIi(s)−RIia(s) | (13.3)

and

RLi(s) = { 1, s ∈ RLi,
0, s /∈ RLi

, RLia(S) = { 1, s ∈ RLia,
0, s /∈ RLia

(13.4)

where i index the sequence number of all regions (or lines) in the depth image converted from the Mean
Shift Feature (MSF) or Alpha Shape Feature (ASF) of LiDAR data.

Therefore, the MSMSH-CRF graphical model is constructed as follows, illustrated in Figure 13.3.
Firstly, typical features are derived from the interest regions in multi-source data, where the regions are
generated by an unsupervised segmentation algorithm. In the graphical model, the nodes correspond to
regions. The blue edges represent the dependencies between neighboring regions, and the orange edges
indicate the hierarchical relations between regions at different scales in a multi-scale segmentation. Pur-
ple edges indicate the hierarchical relations between regions from multi-source data, where the optimal
scale of images is selected to match the LiDAR data. The MSMSH-CRF model is constructed to exploit
the features and category compatibility of multi-scale images as well as the category consistency of
multi-source data based on regions. The output of the model represents the optimal results of the image
classification.

13.3.3 Features
Four types of features are extracted, namely the line features (LF), the texture features (TF), the mean
shift features (MSF), and alpha shape features (ASF). The line features (LF) and the texture features
(TF) are extracted from remote sensing images, whereas the mean shift features (MSF) and alpha shape
features (ASF) are from LiDAR data.

Line Features (LF) Shape features, in particular line features, not only describe the structures of
targets directly, but also are stable to light change, color change, etc. As a new and effective one of line
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Figure 13.3: Illustration of the MSMSH-CRF model architecture. In Image level, red nodes (#
1) correspond to image regions, blue edges (# 2) represent the dependency between neighboring
regions, and orange edges (# 3) indicate the hierarchical relation between regions at different scales.
In LiDAR level, green nodes represent the extracted regions. Purple edges (# 4) linking red and
green nodes indicate the hierarchical relation between regions from multi-source data, where the
optimal scale of images is selected to match the LiDAR data.

features, the LSD (Line Segment Detector) (Grompone et al., 2010) can be used to give accurate results
extracted, a controlled number of false detections, and requires no parameter tuning. In the method, the
level-line orientation is defined and calculated by gradient magnitude, and then the pixels with the same
level-line orientation are merged to cover the so-called line support regions, in which all the pixels are
regarded as a long continuous segment. In accordance with the method introduced in Grompone et al.
(2010), we can calculate the response value of LSD at each pixel, denoted by LF (s).

Texture Features (TF) Texture is one of the basic properties of objects, as well as the most direct
and reliable way of characterization. The basic unit of texture is often referred to as Texton, and we can
represent the texture most directly by describing the distribution of the components, namely Texton. In
the process of textonization, images are convolved with a 17-dimensional filter-bank. The 17D responses
for all training pixels are then whitened (to give zero mean and unit covariance), and an unsupervised
clustering is performed by the Euclidean-distance K-means clustering algorithm. Finally, each pixel in
each image is assigned to the nearest cluster center, producing the Texton map. Similar to the method
in Shotton et al. (2009), we can obtain the value of Texton classifier of each pixel in the image, denoted
by TF (s).

180



13.3 MSMSH-CRF Model for Automatic Classification

Mean Shift Features (MSF) The mean shift method (Comaniciu & Meer, 2002) is a robust cluster-
ing technique which does not require prior knowledge of the number of clusters, and does not constrain
the shape of the clusters. The number of clusters is obtained automatically by finding the centers of
the densest regions in the space, so this method is widely used for clustering of discrete points. In our
model, the specific process of achieving the MSF is introduced in Georgescu et al. (2003), all the Li-
DAR points are clustered in different regions, and the elevation of all points in one region are assigned
as the same value which is the mean of all the ones.

Alpha Shape Features (ASF) There are many methods for extracting the boundary of LiDAR
data. Compared with other algorithms (Berger, 2012; Kong et al., 2012), Alpha Shapes algorithm
works effectively in inner and outer boundaries extraction from LiDAR data with convex and concave
polygon shape. Moreover, it can keep fine features of buildings adaptively and filter the footprints of
non-building. Based on the MSF regions obtained, the alpha shape algorithm is used to extract the
boundary contour of each region, and then the Delaunay triangulation is used to get the line feature. The
extraction of the ASF refers to Shen et al. (2011), similar to the MSF, all the points in one lines have the
same elevation which is the mean of all the ones.

13.3.4 Unary Potentials

The unary potentials consist of two element, LF and TF potentials, predict the label ci of the region xi
based on the image X

E1(ci, xi, θ1) = LF (ci, xi, θLF ) + TF (ci, xi, θTF ) (13.5)

whereLF (ci, xi, θLF ) is the LF potential and TF (ci, xi, θTF ) is the TF potential, and θ1 = {θLF , θTF }
is the vector of model parameters.

LF Potentials The LF potentials capture the (relatively weak) dependence of the class label and the
boundaries of targets on the response value of LSD and absolute location of the pixel in the image. We
can get the line segment image LFI(s) by calculating the response value of LSD LFs of each pixel s
in the region xi. The LF potentials take the form of a look-up table with an entry for each class ci and
value of LSD LFs and pixel location s

LF (ci, xi; θLF ) = − log
∑
s∈xi

θLF (ci, LFs, s) (13.6)

where the parameter θLF represents the relationship among the value of each pixelLFs, namelyLFI(s),
the pixel location s and the label ci.

TF Potentials Based on the Joint Boost algorithm, an adapted version of boosting learning algo-
rithm, we can obtain the classifier of Texton, to which the responses are used directly as a potential in
the MSMSH-CRF model, so that

TF (ci, xi; θTF ) = − log
∑
s∈xi

P (ci|TFs) (13.7)

where TFs corresponds to the response of classifier at each pixel s, and P (ci|TFs) is the normalized
distribution given by the classifier using the learned parameters θTF .
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13.3.5 Pairwise Potentials

The pairwise potentials describe category compatibility between neighboring regions xi and xj obtained
from the line segment image LFI(s), and the responses of Texton classifier on the image X.

E2(ci, cj , xi, xj , θ2) = PLF (ci, cj , xi, xj , θPLF ) + PTF (ci, cj , xi, xj , θPTF ) (13.8)

where PLF (ci, cj , xi, xj , θPLF ) is the pairwise potentials of LF and PTF (ci, cj , xi, xj , θPTF ) is the
pairwise potentials of TF, θ2 = {θPLF , θPTF } is the vector of model parameters.

Pairwise Potentials of LF Based on the line segment image LFI(s), we can calculate the pairwise
potentials of LF as the form of the contrast-sensitive Potts model (Boykov & Jolly, 2001)

PLF (ci, cj , xi, xj , θPLF ) = θPLF
1 + 6 exp(−2l(xi, xj))

Ni +Nj
σ(ci 6= cj) (13.9)

where θPLF is the weight factor, l(xi, xj) is the Euclidean metric of the pixel value between regions
xi and xj in the LF images, Ni is the number of regions neighbored to region i, Nj is the number
of regions neighbored to j, and σ(·) is a 0-1 indicator function, and the number 6 in Eq. (13.9) is set
empirically. The pairwise potentials PLF (ci, cj , xi, xj , θPLF ) are scaled by Ni and Nj to compensate
for the irregularity of the graph.

Pairwise Potentials of TF Similar to the pairwise potentials of LF, the pairwise potentials of TF
take the form of the contrast-sensitive Potts model:

PTF (ci, cj , xi, xj , θPTF ) = θPTF
1 + 4 exp(−2l(xi, xj))

Ni +Nj
σ(ci 6= cj) (13.10)

where θPTF is the weight factor, t(xi, xj) is the Euclidean metric of the value of Texton classifier at
each pixel between regions xi and xj in the results of marked images, and the number 4 in Eq. (13.10) is
set empirically. The pairwise potentials PTF are scaled byNi andNj to compensate for the irregularity
of the graph.

13.3.6 Multi-scale Hierarchical Pairwise Potentials

From the pairwise potentials in Section 13.3.5, there is a lack of longer range contextual relationship in
the graphical modeling. To overcome those local restrictions, we analyze the image at multiple scales
to enhance the model by evidence aggregation on a local to global level. Furthermore, we integrate
multi-scale pairwise potentials to regard the hierarchical structure of the regions.

Based on results of multi-scale segmentation, the multi-scale hierarchical pairwise potentials de-
scribe category compatibility between hierarchically neighboring labels ci and ck given the image X,
which take the form of the contrast-sensitive Potts model:

E3(ci, ck, xi, xk, θ3) = θ3 · [1 + 4 exp(−2m(xi, xj))]σ(ci 6= ck) (13.11)

where θ3 is the weight factor,m(xi, xj) is the Euclidean metric of the value of Texton classifier between
regions xi and xj in the results of marked images, and the number 4 in Eq. (13.11) is set empirically.
Multi-scale hierarchical pairwise potentials act as a link across scale, facilitating propagation of infor-
mation in the model.
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13.3.7 Multi-source Hierarchical Pairwise Potentials
Compared to the remote sensing images, LiDAR data is sparse. The features extracted from multi-
source data are different. In order to enhance the fusion performance, we introduce the hierarchical
pairwise potentials, which represent correspondences between the data from different source in our
MSMSH-CRF model. The hierarchical pairwise potentials describe category consistency between the
corresponding regions in multi-source data, from which we can obtain the TF and MSF, which are named
as planar features, and the LF and ASF, which are named as linear features. In order to enhance the
fusion performance, we refer to the category consistency with the planar and linear features separately,
denoted as HPP (ci, ct, xi, lt, θp) and HPL(ci, ct, xi, lt, θl) respectively. So there is

E4(ci, ct, xi, lt, θ4) = HPP (ci, ct, xi, lt, θp) +HPL(ci, ct, xi, lt, θl) (13.12)

where θ4 = {θp, θl} is the vector of model parameters.

Hierarchical Pairwise Potentials of Planar Features Based on the TF results of the optimal
scale image, we firstly normalize the value TFs(xi) of Texton classifier of each pixel s in the region xi
to get NTFs(xi):

NTFs(xi) = TFs(xi)/TFmax (13.13)

where TFmax is the maximum value of Texton classifier of each pixel in the image.
In the MSF results of LiDAR data, elevations of different regions are obtained, and the normalized

elevation NMSF (lt) of all points in the regions lt extracted is calculated:

NMSF (lt) = MSF (lt)/MSFmax (13.14)

where MSF (lt) is the elevation of all points in the region lt, and MSFmax is the maximum elevation
of all flat regions in the LiDAR data.

So based on the normalized value NTFs(xi) and NMSF (lt), the hierarchical pairwise potentials
of planar features is defined by

HPP (ci, ct, xi, lt, θp) = θp
∑
s∈xi

exp(−εp|NTFs(xi)−NMSF (lt)|2)σ(ci 6= ct) (13.15)

where εp = (2 < |NTFs(xi) − NMSF (lt)|2 >)−1 is the comparative item, < · > is the averaging
operator, and θp is the weight.

Hierarchical Pairwise Potentials of Linear Features The hierarchical pairwise potentials of
linear features take the form as

HPL(ci, ct, xi, lt, θt) = θt
∑
s∈xi

exp(−εt|NLFs(xi)−NASF (lt)|2)σ(ci 6= ct) (13.16)

where εt = (< 2|NLFs(xi) − NASF (lt)|2 >)−1 is the comparative item, and θl is the weight.
NLFs(xi) is the normalized value from the LF results of the optimal scale image, and NASF (lt) is
the normalized value from the ASF of LiDAR data.

13.3.8 Parameter Learning
In this work, piecewise training method (Sutton & McCallum, 2005) is adopted for the learning of
the parameters of MSMSH-CRF model. This method divides the MSMSH-CRF model into pieces

183



13. MULTI-SOURCE MULTI-SCALE HIERARCHICAL CONDITIONAL RANDOM
FIELD MODEL FOR REMOTE SENSING IMAGE CLASSIFICATION

corresponding to the different terms in Eq. (13.2). Each of these pieces is then trained independently, as
if it were the only term in the model.

Parameters of LF Potentials The formula for calculating the parameters of LF Potentials respec-
tively for each image is defined as

θLF (ci, LFs, s) = 1− | (| σ(ci)−
∑
s∈xi

σ(LFs)/
∑
s∈xi

1 |)− wLF | (13.17)

where the small positive integer wLF is set to 0.1 in practice.

Parameters of TF Potentials The learning of parameters of TF Potentials is based on Joint Boost
algorithm, and an excellent detailed treatment of the learning process is given in literature (Shotton
et al., 2009), but we briefly describe it here for completeness. Each training example s (a pixel in a
training image) is paired with a target value Zc

s ∈ {−1,+1} (+1 if the example s has ground truth
class c, −1 otherwise) and assigned a weight ωc

s specifying its classification accuracy for class c after
iteration of boosting. Each round of iteration chooses a new weak learner by minimizing an error
function incorporating the weights. The training examples are then re-weighted ωc

s to reflect the new
classification accuracy. This procedure emphasizes poorly classified examples in subsequent rounds of
iteration, and ensures that over many rounds, the classification for each training example approaches the
target value and the parameters are optimal.

Parameters of Other Potentials The parameters of other potentials of MSMSH-CRF model,θPLF ,
θPTF , θ3, θp and θl, are selected manually such that the classification error is minimized on the training
set.

13.3.9 Model Inference

Given a set of parameters learned for the MSMSH-CRF model, the optimal labeling c∗, which mini-
mizes the energy function in Eq. (13.2), is found by applying the alpha-expansion graph-cut algorithm
(Boykov & Jolly, 2001; Boykov et al., 2001).

13.4 Experiments

In this section, experiments are performed on the Beijing Airborne Data (Zhang et al., 2013), to evaluate
the performance of the proposed method.

13.4.1 Dataset

We conduct experiments to evaluate the performance of the MSMSH-CRF model on the Beijing Air-
borne Data (Zhang et al., 2013), which include remote sensing images with a resolution of 0.12m and
LiDAR data with a point density of 4 points/m2, as illustrated in Figure 13.4. The objects in all images
correspond to one of three classes: Building, Road and Vegetation. These classes are typical objects
appearing in airborne images. In the experiments, we take the ground-truth label of a region to be the
majority vote of the ground-truth pixel labels, and randomly divide the images into a training set with
50 images and a testing set with 50 images.
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Figure 13.4: The example images of the Beijing Airborne Data (Zhang et al., 2013). Left: LiDAR
data, Right: remote sensing images of the surveying area.

Figure 13.5: The classification result from the MSMSH-CRF model on the Beijing Airborne
Data (Zhang et al., 2013). Left: remote sensing image, Middle: LiDAR point cloud, Right: classi-
fication result (red - building, blue - road, green - vegetation).

Table 13.1: Average pixelwise accuracy of three methods on the Beijing Airborne Data.

Method Accuracy (%)
(Shotton et al., 2009) 64.2
(Zhang et al., 2013) 73.6

Ours 83.7
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Table 13.2: Pixelwise accuracy of the MSMSH-CRF classification on the Beijing Airborne Data.
The confusion matrix shows classification accuracy for each class (rows) and is row-normalized to
sum to 100%. Row labels indicate the true class, and column labels indicate the predicted class.

buildingroadvegetation
building 78.3 11.9 9.8

road 9.5 85.9 4.6
vegetation 9.7 8.7 81.6

Table 13.3: The confusion matrix: pixelwise accuracy of the standard CRF classification (Shotton
et al., 2009) on the Beijing Airborne Data.

buildingroadvegetation
building 63.7 19.2 17.1

road 22.4 67.0 10.6
vegetation 11.3 15.2 73.5

13.4.2 Results
Figure 13.5 shows the example results of MSMSH-CRF classification method. The average pixelwise
accuracy on the testing set is given in Table 13.1. The average classification accuracy of our method
is 83.7%, which has 10.1% gain w.r.t. the accuracy of the MSHCRF model (Zhang et al., 2013) and
19.5% gain w.r.t. the accuracy of the standard CRF model (Shotton et al., 2009). The parameter,
learned by cross validation on the training set, are θPLF = 0.22, θPTF = 0.18, θ3 = 0.15, θp = 0.2,
and θl = 0.25. For the fairness of comparison, both the training set and the testing set are same for
MSMSH-CRF, MSHCRF and standard CRF respectively.

Table 13.2 shows the confusion matrix obtained by applying standard MSMSH-CRF model to the
whole test dataset. Accuracy values in the table are computed as the percentage of image pixels assigned
to the correct class label, ignoring pixels labeled as void in the ground truth. Compared to the confusion
matrices of standard CRF model and MSHCRF model in Table 13.3 and Table 13.4 respectively, the
MSMSH-CRF model yields significant improvement on all three classes for integrating multi-scale
hierarchical information of the regions in the images. Table 13.5 shows the performance comparison
when dropping one types of potentials in the MSMSH-CRF model.

13.5 Conclusion
In conclusion, this work presents a novel multi-source multi-scale hierarchical conditional random field
model for automatic classification of remote sensing images. The main contributions of this work are

Table 13.4: The confusion matrix: pixelwise accuracy of the MSHCRF classification (Zhang et al.,
2013) on the Beijing Airborne Data.

buildingroadvegetation
building 70.1 15.8 14.1

road 14.4 77.3 8.3
vegetation 12.3 13.8 73.9
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Table 13.5: The performance comparison when dropping one types of potentials in the MSMSH-
CRF model.

Potentials Accuracy (%)
With all potentials 83.7
Set E2 = 0 in Eq. (13.2) 63.9
Set E3 = 0 in Eq. (13.2) 73.6
Set E4 = 0 in Eq. (13.2) 70.1

summarized as follows: a novel CRF-based modeling scheme exploiting the complementarity of multi-
source data such as the texture in remote sensing images and the elevation in LiDAR data. To exploit
different levels of contextual information in images, the multi-scale hierarchical potentials are proposed
in our model, which is then enhanced by evidence aggregation from a local to global level. Considering
the interrelation of the same objects in remote sensing images and LiDAR data, multi-source hierarchical
potentials are proposed in our model to make full use of the category consistency of multi-source data.
We have evaluated the precision and robustness of the proposed approach on airborne data, which shows
that the proposed method outperforms standard CRF method. However, feature extraction is crucial to
the final classification accuracy. Feature selection is done in an ad-hoc fashion in the current stage. In our
future work, we are interested in automatic feature selection that may further improve the classification
performance.
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Chapter 14

Integration of Gaussian Process and
Markov Random Field for
Hyperspectral Image Classification

In this chapter, we propose a framework GP-MRF, which combines Gaussian processes (GPs) and
Markov random field (MRF) for accurate classification of hyperspectral remote sensing image (HSI)
data. This method exploits the relationship between adjacent pixels and integrates it into spectral in-
formation to obtain spectral-spatial classification. This framework consists of two steps. Firstly, a GP
classifier (GPC) yields pixelwise predictive probability for each class. Secondly, an MRF is applied
to extract spatial contextual information in the label map achieved in the first step. Then the classifi-
cation results are inferred from the spectral-spatial information. By means of MRF regularization an
enhanced classification result has been obtained. The experiments are performed on three hyperspectral
benchmark datasets. The results from the GPC are compared with those obtained by state-of-the-art
classification approaches and demonstrate that, GP model is a competitive tool for classification of HSI
in terms of accuracy. Furthermore, the experimental results indicate that our proposed method GP-
MRF improves the classification accuracy of conventional GPC. This research appears at the IEEE Joint
Urban Remote Sensing Event (JURSE) (Liao et al., 2015).

14.1 Introduction
The abundant spectral information contained in hyperpsectral data enable the characterization, identifi-
cation, and classification of the land-covers with improved accuracy and robustness. However, several
critical problems are unavoidable in classification of HSI, among which: 1) a great number of spectral
bands and relatively a small number of labeled training samples, which poses the well-known Hughes
phenomenon (Hughes, 1968); 2) the spatial variability of the spectral signature; 3) noisy environment;
4) The scene of different objects made by the same or similar material (e.g. the roofs of some build-
ings and the roads can be made by the same material, asphalt) makes it hard to distinguish different
land-covers. Therefore, the contextual information is necessary for classification task of HSI.

In recent years, some state-of-the-art methods have been successfully applied in the remote sensing
community to classification task, such as support vector machines (SVMs) (Melgani & Lorenzo, 2004)
and random forests (RFs) (Ham et al., 2005). In particular, the kernel-based methods represented by
SVMs have been proved as an excellent classification approach for HSI in terms of accuracy and robust-
ness (Camps-Valls & Bruzzone, 2005; Melgani & Lorenzo, 2004). The kernel-based methods have the
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inherent virtues: 1) handling high dimensional input spaces efficiently; 2) dealing with noisy samples
in a robust way; 3) work with a relatively low number of labeled training samples. These properties
make them well-suited to tackle the classification problems of HSI. GPs are another representative of
potentially promising kernel-based methods. They have been successfully applied to HSI classifica-
tion and yielded comparable or even better performance than SVM in terms of accuracy (Zhao et al.,
2008). Moreover, they provide truly probabilistic outputs with an explicit degree of prediction uncer-
tainty. In contrast to non-probabilistic approaches, the probabilistic techniques have various advantages
in practical recognition circumstances (Kumar, 2005). Furthermore, there exist algorithms for GP hy-
perparameter learning which are lacking in the SVM framework. Therefore, GP is more likely to yield
better classification results. However, Bayesian GP methods have not received much attention in remote
sensing community.

In order to alleviate the aforementioned spatial problems, it is necessary to exploit spatial contextual
information to enhance the classification accuracy that is only based on spectral information. Markov
random fields (MRFs) are effective probabilistic models to integrate spatial correlation of neighbors in
a label image into a decision rule (Li, 2009). The maximum a posterior (MAP) decision rule is typically
used in this framework (Solberg et al., 1996). In the MRF model, we assume that the class distribution
of each pixel depends on a certain degree on its adjacent pixels. This assumption is reasonable because
of two practical reasons: 1) adjacent pixels have mixed spectral response on the center pixel, especially
the pixels near the borders (spatial boundaries); 2) in a HSI over an urban or suburban region, each
land-cover type mostly arises in form of a patch, lump or local region. In mostly pixelwise classification
results of HSI we observe that, many scattered pixels are assigned different labels from its adjacent
pixels, or a small plot among a big region is classified as another land-cover type. Such classification re-
sults are normally susceptible. By means of combination of spectral information with spatial contextual
information to construct a new decision rule the classification results can be modify and the accuracy
will be clearly enhanced.

In this work, we present a GP- and MRF-based (GP-MRF) method for spectral-spatial classification
of HSI. Firstly, a GP model is applied to obtain the label image of HSI and yield predictive probability
of each pixel for each class. Secondly, spatial contextual information is extracted by MRF model based
on the label map. Finally, the spectral information is integrated into spatial contextual information to
construct a new decision rule and each pixel will be reclassified. The second and third steps will be
repeated until the the results satisfy a predefined criterion.

This work is outlined as follows. Section 14.2 briefly reviews the formulation of GPC and MRF,
then discusses how to combine this two methods. Section 14.3 presents and discusses the experimental
results. We conclude the work in Section 14.4.

14.2 GP-MRF Model

14.2.1 GP Model for Classification
Given a training set (X,Y) = {Xn, Yn}Nn=1, where N is the number of labeled samples and Yn is
the corresponding class label that indicates the land-cover type. Each vector Xn ∈ Rd represents the
spectral d bands of a pixel in a HSI. Our task is labeling a new test sample set x = {xm}Mm=1, where
M is the number of test samples, by computing the probability P (y|X,Y,x) belonging to a class. For
simple illustrating the binary classification with target yi ∈ {−1,+1} is considered here. The binary
classification is easily extended to multiple classification by using the one-against-all or one-against-one
strategy.

GP models generate a discrete label yi for a data point xi via a continuous latent variable fi (Ras-
mussen & Williams, 2006). A likelihood model p(y|f) characterizes the monotonic relationship be-
tween latent variable f and the probably observed annotation y. Several forms of squashing functions
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are available for such likelihood model. In particular the logistic and probit function are the most popu-
lar. In this work, the probit function is considered.

p(yi = +1|fi) = ϕ(yifi) (14.1)

where ϕ is the Gaussian cumulative distribution function with the form:

ϕ(z) =

∫ z

−∞

1√
2π
exp(−x

2

2
)dx (14.2)

To make a probability prediction for x an integrating over the latent variable f is executed as follows:

p(yi = +1|X,Y,xi) =

∫
p(yi|fi)p(fi|X,Y,xi)dfi (14.3)

where p(fi|X,Y,xi) is the distribution of latent variable fi corresponding to xi. It can be obtained by
integrating over F = (F1, . . . , Fn), which is the latent variable corresponding to training set (X,Y):

p(fi|X,Y,xi) =

∫
p(fi|X,Y,xi,F)p(F|X,Y)dF (14.4)

where p(F|X,Y) = p(F|Y)p(F|X) / p(Y|X) is the posterior over the latent variables. p(Y|X) is the
marginal likelihood (evidence), p(F|X) is the GP prior over the latent function, which in GP model is a
jointly zero mean Gaussian distribution and with the covariance given by the kernel K.

The non-Gaussian likelihood in Eq. (14.4) makes the integral analytically intractable. We have to
resort to either analytical approximation of integrals or Monte Carlo methods. Two well known analyt-
ical approximation methods are suitable for this task, namely Laplace (Williams & David, 1998) and
Expectation Propagation (EP) (Minka, 2001). They both approximate the non-Gaussian joint posterior
with a Gaussian one. In this work we adopt the Laplace method since its relative lower computation
cost than EP with comparable accuracy. As introduced in (Rasmussen & Williams, 2006) the posterior
mean and variance for fi are obtained as follow:

µi = k(xi)
TK−F̃ (14.5)

σ2
i = k(xi,xi)− k(xi)

T (K + W−)k(xi) (14.6)

where W
4
= −∇∇logp(Y|F̃) is diagonal. K denotes a N − by − N covariance matrix between N

training points. k(xi) is a covariance vector between N training points X and a test points xi and
k(xi,xi) is covariance matrix for test point xi and F̃ = arg maxF p(F|X,Y). Given the mean and
variance of fi, we compute the prediction probability in Eq. (14.3).

The covariance function is the crucial ingredient in GP predictor and its hyperparameters Θ crucially
affects its performance. The Gaussian radial basis function (RBF) is one of the most widely used kernels
since its robustness for different types of data and given as follow:

KRBF (xi,xj) = σ2exp(− ‖xi − xj ‖2
22

) (14.7)

Θ = [σ, l] is the hyperparameter set for RBF, of which l in the function is the characteristic lengthscale,
which informally can be roughly considered as the distance you have to move in input space for the
function value to become uncorrelated. The smaller l we choose, the more rapidly the function varies.
In this case, all of the training points are more correctly classified. Moreover, if l varies with input di-
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Input: PL(xi|yi): the the likelihood function for pixel i belonging to a class yi;
Im: the label map from GPC;

Output: optimal y∗→ new label map
1: initial the minimal global energy Emin;
2: compute spectral energy Espectral;
3: find the neighbourhoods N for each site;
4: repeat
5: compute spatial energy Espatial based on Im;
6: compute local energy E(yi) for each site;
7: assign the new label y∗i corresponding to minE(yi) to the site i and update label map
Im;

8: compute the global energy E(y) and compare with Emin;
9: if E(y) ≤ Emin then

10: Emin ← E(y)
11: end if
12: until Emin convergence

Figure 14.1: GP-MRF

mensions (i.e. input bands), e.g. l = [l1, . . . , ld], there is another kernel called the Automatic Relevance
Determination (ARD) which is derived form RBF:

KARD(xi,xj) = σ2exp(−
∑

b=1...d

‖xbi − xbj ‖2
22b

) (14.8)

xbi indicates the bth band of the ith input point. The ARD has been proved to be an effective kernel
successfully removing irrelevant information (Rasmussen & Williams, 2006; Williams & David, 1998).
It provides a parametrization scheme for automatic feature reduction especially for the high-dimensional
challenge such as HSI with more than one hundred bands.

14.2.2 MRF-based Regularization

In the aforementioned pixelwise classification, only the spectral information is considered. However the
spectral response can be affected by other spectrum from adjacent pixels. Therefore, it is necessary to
regularize the pixelwise classification results with MAP-MRF framework (Geman & Geman, 1984).

Markov Random Fields are a probabilistic framework that incorporate the spatial information from
a set of cliques in images, whose basic principle is that each pixel interacts only with its neighboring
pixels (Li, 2009). In other words, a pixel more possibly has the same label as its neighborhoods. Be-
cause of formulating MRF models within Bayesian framework, the optimal solution is the Maximum a
Posteriori (MAP) and is obtained by maximizing the posterior probability Pr(y|x):

y∗ = arg max
y∈Y

Pr(y|x) (14.9)

where x is the observation and y is the possible labeling.
Based on the Hammersley-Clifford theorem (Hammersley & Clifford, 1971), we consider the MAP
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solution as the minimization of an energy cost function (Yang & Förstner, 2011a):

E = Espectral + Espatial (14.10)

Espectral is the spectral energy defined by the likelihood function as:

Espectral = −ln{PL(xi|yi)} (14.11)

where xi is the site of the ith pixel in the label map, yi is one of the possible label for site xi, and
the likelihood function PL(xi|yi) have been already yielded by GPC (i.e. P (yi|xi)), which means the
predictive probability of xi belonging to the class yi. The second term of Eq. (14.10) is spatial energy
and its standard expression is:

Espatial =
∑
j∈N

β(1− δ(yi, yj)), j ∈ N (14.12)

where δ(., .) is the Kronecker delta function (δ(a, b) = 1 if a = b, else δ(a, b) = 0) and β is a non-
negative parameter controlling the weight of spatial energy. N is the neighborhood system, which in
this work is 8-connected. yi is the label of the center pixel xi and yj is the label of its jth neighboring
pixel.

We adopt the Iterative Conditional Modes (ICM) (Prince, 2012) to solve the optimization problem.
We compute the local energy E(xi) of each pixel belonging to each label. A pixel is assigned to the
label with smallest energy and it gets the local optimization. The local energies were summed up as
global energy. Based on the updated label map the above procedure will be repeated. The optimization
can be achieved until the global energy is convergence. The procedure is detailed in Figure 14.1.

14.3 Experimental Results

In the experiments, three hyperspectral datasets-INDIAN PINES, UNIVERSITY OF PAVIA, and CEN-
TER OF PAVIA will be used in this work. These datasets have been widely used as benchmark (Melgani
& Lorenzo, 2004; Zhao et al., 2008) in the study of HSI classification. The INDIAN PINES data set
was acquired by the AVIRIS in 1992 and taken over a predominately agricultural region in NW Indi-
ana, USA. The data set has 145 × 145 pixels and 200 channels. Seven of the 16 different land-cover
classes in the original ground-truth were removed, which can offer only a few training samples (this
makes the experimental analysis more significant from the statistical viewpoint) (Melgani & Lorenzo,
2004). The CENTER OF PAVIA image remains 102 channels after removing some noisy bands and lies
around the center of Pavia with 1096 × 492 pixels. The ground-truth consists of 9 land-cover classes.
The UNIVERSITY OF PAVIA data set has 103 channels with 610 × 340 pixels and also 9 land-cover
classes.

In the experiments, both the RBF and ARD kernel were adopted in the GP model for comparison
purpose and the hyperperameters were optimized by Conjugate Gradient method (Nocedal & Wright,
2006) based on the Laplace method. In order to simplify the classification and balanced samples prob-
lems, the one-against-one strategy was applied. The algorithm (Wu et al., 2004) was used to estimate
the predictive probability of the test samples belonging to each class from the results of one-against-one
strategy.

The original image and ground truth of Indian Pines dataset are shown in Figure 14.2(a) and Fig-
ure 14.2(b) respectively. The classification results of GPC are shown in Figure 14.2(c). Many scattered
pixels or small patches are labeled as different classes from their adjacent pixels by GPC. These labels
are unconvinced as we have discussed in Section I. Figure 14.2(d) shows the improved classification
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Table 14.1: Individual class percentage accuracies of the Indian Pines data set with different clas-
sifiers.

Class SVM RF GPRBF GPARD GP-MRF
C1 Corn-notill 85.67 80.33 88.38 90.61 93.81
C2 Corn-mintill 87.47 69.74 83.85 90.26 99.05
C3 Grass-pasture 92.92 92.95 97.36 96.48 97.53
C4 Grass-Trees 98.88 98.25 99.13 98.83 99.81
C5 Hay-windrowed 99.60 100 100 100 100
C6 Soybean-notill 85.59 84.87 86.84 89.25 97.80
C7 Soybean-mintill 89.04 72.66 88.21 92.54 90.47
C8 Soybean-clean till 83.82 91.24 92.81 94.60 98.47
C9 Woods 99.37 99.15 99.50 99.16 99.91

Table 14.2: OA and AA in percentage of GP (RBF), GP (ARD) and GP-MRF (ARD) for different
datasets.

Algorithm
INDIAN UNIVERSITY CENTER
OA AA OA AA OA AA

GP (RBF) 84.50 89.39 90.09 92.35 98.33 96.53
GP (ARD) 87.26 91.41 89.82 92.11 98.41 96.60

GP-MRF (ARD) 95.60 97.42 96.9 97.53 97.48 99.13

results by MRF based on the results of GPC. The label image is refined by MRF. In this experiment, the
RBF kernel was used in GP model. 200 points for each class from these datasets were randomly selected
as training samples used for learning the classifiers and the residual were test samples for assessing their
performance. Figure 14.3 shows the classification results of the University of Pavia dataset.

Table 14.1 shows the individual class accuracy of SVM, RF, GP (RBF), GP (ARD) and GP-MRF
(ARD) from the Indian Pines data set. In order to objectively compare the performances between dif-
ferent classifiers, we used the same size of training and test samples as (Camps-Valls & Bruzzone,
2005) and quoted the experimental results of SVM (RBF). The results show that the GPC performs
competitively or even better than the state-of-the-art methods SVM and RF in terms of accuracy. The
comparison between the GPC (RBF) and GPC (ARD) proves the previous discussion in Section 14.2:
the ARD kernel outperforms RBF kernel for classification of HSI. However, in order to optimize more
parameters for ARD kernel, more input dimensions increase the training time rapidly. Finally, the results
of GP-MRF (ARD) demonstrate that our proposed approach can significantly increase the classification
accuracy of the individual class.

Table 14.2 compares the results in terms of overall accuracy (OA) and average accuracy (AA)
between GP (RBF), GP (ARD) and GP-MRF (ARD) in three different datasets. The results further
prove that, our proposed approach can effectively improve the accuracies of classification for HSI over
urban/suburban regions. 200 points for each class from these datasets were randomly selected as training
samples and the residual were regarded as test samples.

Finally, Figure 14.4 investigates the performances of GP-MRF (ARD) in terms of global clas-
sification accuracy with different weight parameter β = [0.5, 1, 2, 3, 4, 5] for spatial information in
Eq. (14.12). We draw the conclusion that the OA is not significantly different over the given values. Our
method is robust to the choice of β.
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Figure 14.2: Hyperspectral image classification results of Indian Pines dataset. From Left to
Right, from Top to Bottom: (a) Data of Indian Pines, (b) ground truth, (c) classification result of
GPC (ARD) and (d) classification result of GP-MRF (ARD).

Figure 14.3: Hyperspectral image classification results of the University of Pavia dataset. From
Left to Right, from Top to Bottom: (a) Data of the University of Pavia, (b) ground truth, (c)
classification result of GPC (ARD) and (d) classification result of GP-MRF (ARD).
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14. INTEGRATION OF GAUSSIAN PROCESS AND MARKOV RANDOM FIELD
FOR HYPERSPECTRAL IMAGE CLASSIFICATION

Figure 14.4: Overall accuracy in percentage for different values of β for different datasets.

14.4 Conclusion
In this work we proposed a novel framework GP-MRF, which combines the GPC and MRF to enhance
the classification accuracies. The GP-MRF framework integrates the spectral information into spatial
information and effectively classifies the HSI over urban/suburban regions without selection or reduction
of data dimensionality.

We evaluated the performance of GP-MRF in three hyperspectral datasets and the results demon-
strated that MRFs utilize the relationship between the adjacent pixels to improve the classification accu-
racy of HSI on the basis of GPC classification. We used GPC to preliminarily classify original data and
obtain label image and predictive probability of each pixel belonging to each class which will be applied
in the step of MRF. The experiment shows that our approach yields accurate classification results and is
robust for classifying different kinds of HSI.
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