1,686 research outputs found

    Load forecasting on the user‐side by means of computational intelligence algorithms

    Get PDF
    Nowadays, it would be very difficult to deny the need to prioritize sustainable development through energy efficiency at all consumption levels. In this context, an energy management system (EMS) is a suitable option for continuously improving energy efficiency, particularly on the user side. An EMS is a set of technological tools that manages energy consumption information and allows its analysis. EMS, in combination with information technologies, has given rise to intelligent EMS (iEMS), which, aside from lending support to monitoring and reporting functions as an EMS does, it has the ability to model, forecast, control and diagnose energy consumption in a predictive way. The main objective of an iEMS is to continuously improve energy efficiency (on-line) as automatically as possible. The core of an iEMS is its load modeling forecasting system (LMFS). It takes advantage of historical information on energy consumption and energy-related variables in order to model and forecast load profiles and, if available, generator profiles. These models and forecasts are the main information used for iEMS applications for control and diagnosis. That is why in this thesis we have focused on the study, analysis and development of LMFS on the user side. The fact that the LMFS is applied on the user side to support an iEMS means that specific characteristics are required that in other areas of load forecasting they are not. First of all, the user-side load profiles (LPs) have a higher random behavior than others, as for example, in power system distribution or generation. This makes the modeling and forecasting process more difficult. Second, on the user side --for example an industrial user-- there is a high number and variety of places that can be monitored, modeled and forecasted, as well as their precedence or nature. Thus, on the one hand, an LMFS requires a high degree of autonomy to automatically or autonomously generate the demanded models. And on the other hand, it needs a high level of adaptability in order to be able to model and forecast different types of loads and different types of energies. Therefore, the addressed LMFS are those that do not look only for accuracy, but also adaptability and autonomy. Seeking to achieve these objectives, in this thesis work we have proposed three novel LMFS schemes based on hybrid algorithms from computational intelligence, signal processing and statistical theory. The first of them looked to improve adaptability, keeping in mind the importance of accuracy and autonomy. It was called an evolutionary training algorithm (ETA) and is based on adaptivenetwork-based-fuzzy-inference system (ANFIS) that is trained by a multi-objective genetic algorithm instead of its traditional training algorithm. As a result of this hybrid, the generalization capacity was improved (avoiding overfitting) and an easily adaptable training algorithm for new adaptive networks based on traditional ANFIS was obtained. The second scheme deals with LMF autonomy in order to build models from multiple loads automatically. Similar to the previous proposal, an ANFIS and a MOGA were used. In this case, the MOGA was used to find a near-optimal configuration for the ANFIS instead of training it. The LMFS relies on this configuration to work properly, as well as to maintain accuracy and generalization capabilities. Real data from an industrial scenario were used to test the proposed scheme and the multi-site modeling and self-configuration results were satisfactory. Furthermore, other algorithms were satisfactorily designed and tested for processing raw data in outlier detection and gap padding. The last of the proposed approaches sought to improve accuracy while keeping autonomy and adaptability. It took advantage of dominant patterns (DPs) that have lower time resolution than the target LP, so they are easier to model and forecast. The Hilbert-Huang transform and Hilbert-spectral analysis were used for detecting and selecting the DPs. Those selected were used in a proposed scheme of partial models (PM) based on parallel ANFIS or artificial neural networks (ANN) to extract the information and give it to the main PM. Therefore, LMFS accuracy improved and the user-side LP noising problem was reduced. Additionally, in order to compensate for the added complexity, versions of self-configured sub-LMFS for each PM were used. This point was fundamental since, the better the configuration, the better the accuracy of the model; and subsequently the information provided to the main partial model was that much better. Finally, and to close this thesis, an outlook of trends regarding iEMS and an outline of several hybrid algorithms that are pending study and testing are presented.En el contexto energético actual y particularmente en el lado del usuario, el concepto de sistema de gestión energética (EMS) se presenta como una alternativa apropiada para mejorar continuamente la eficiencia energética. Los EMSs en combinación con las tecnologías informáticas dan origen al concepto de iEMS, que además de soportar las funciones de los EMS, tienen la capacidad de modelar, pronosticar, controlar y supervisar los consumos energéticos. Su principal objetivo es el de realizar una mejora continua, lo más autónoma posible y predictiva de la eficiencia energética. Este tipo de sistemas tienen como núcleo fundamental el sistema de modelado y pronóstico de consumos (Load Modeling and Forecasting System, LMFS). El LMFS está habilitado para pronosticar el comportamiento futuro de cargas y, si es necesario, de generadores. Es sobre estos pronósticos sobre los cuales el iEMS puede realizar sus tareas automáticas y predictivas de optimización y supervisión. Los LMFS en el lado del usuario son el foco de esta tesis. Un LMFS en el lado del usuario, diseñado para soportar un iEMS requiere o demanda ciertas características que en otros contextos no serían tan necesarias. En primera estancia, los perfiles de los usuarios tienen un alto grado de aleatoriedad que los hace más difíciles de pronosticar. Segundo, en el lado del usuario, por ejemplo en la industria, el gran número de puntos a modelar requiere que el LMFS tenga por un lado, un nivel elevado de autonomía para generar de la manera más desatendida posible los modelos. Por otro lado, necesita un nivel elevado de adaptabilidad para que, usando la misma estructura o metodología, pueda modelar diferentes tipos de cargas cuya procedencia pude variar significativamente. Por lo tanto, los sistemas de modelado abordados en esta tesis son aquellos que no solo buscan mejorar la precisión, sino también la adaptabilidad y autonomía. En busca de estos objetivos y soportados principalmente por algoritmos de inteligencia computacional, procesamiento de señales y estadística, hemos propuesto tres algoritmos novedosos para el desarrollo de un LMFS en el lado del usuario. El primero de ellos busca mejorar la adaptabilidad del LMFS manteniendo una buena precisión y capacidad de autonomía. Denominado ETA, consiste del uso de una estructura ANFIS que es entrenada por un algoritmo genético multi objetivo (MOGA). Como resultado de este híbrido, obtenemos un algoritmo con excelentes capacidades de generalización y fácil de adaptar para el entrenamiento y evaluación de nuevas estructuras adaptativas basadas en ANFIS. El segundo de los algoritmos desarrollados aborda la autonomía del LMFS para así poder generar modelos de múltiples cargas. Al igual que en la anterior propuesta usamos un ANFIS y un MOGA, pero esta vez el MOGA en vez de entrenar el ANFIS, se utiliza para encontrar la configuración cuasi-óptima del ANFIS. Encontrar la configuración apropiada de un ANFIS es muy importante para obtener un buen funcionamiento del LMFS en lo que a precisión y generalización respecta. El LMFS propuesto, además de configurar automáticamente el ANFIS, incluyó diversos algoritmos para procesar los datos puros que casi siempre estuvieron contaminados de datos espurios y gaps de información, operando satisfactoriamente en las condiciones de prueba en un escenario real. El tercero y último de los algoritmos buscó mejorar la precisión manteniendo la autonomía y adaptabilidad, aprovechando para ello la existencia de patrones dominantes de más baja resolución temporal que el consumo objetivo, y que son más fáciles de modelar y pronosticar. La metodología desarrollada se basa en la transformada de Hilbert-Huang para detectar y seleccionar tales patrones dominantes. Además, esta metodología define el uso de modelos parciales de los patrones dominantes seleccionados, para mejorar la precisión del LMFS y mitigar el problema de aleatoriedad que afecta a los consumos en el lado del usuario. Adicionalmente, se incorporó el algoritmo de auto configuración que se presentó en la propuesta anterior para hallar la configuración cuasi-óptima de los modelos parciales. Este punto fue crucial puesto que a mejor configuración de los modelos parciales mayor es la mejora en precisión del pronóstico final. Finalmente y para cerrar este trabajo de tesis, se realizó una prospección de las tendencias en cuanto al uso de iEMS y se esbozaron varias propuestas de algoritmos híbridos, cuyo estudio y comprobación se plantea en futuros estudios

    Home Energy Management System and Internet of Things: Current Trends and Way Forward

    Get PDF
    Managing energy in the residential areas has becoming essential with the aim of cost saving, to realize a practical approach of home energy management system (HEMS) in the area of heterogeneous Internet-of-Thing (IoT) devices. The devices are currently developed in different standards and protocols. Integration of these devices in the same HEMS is an issue, and many systems were proposed to integrate them efficiently. However, implementing new systems will incur high capital cost. This work aims to conduct a review on recent HEMS studies towards achieving the same objectives: energy efficiency, energy saving, reduce energy cost, reduce peak to average ratio, and maximizing user's comfort. Potential research directions and discussion on current issues and challenges in HEMS implementation are also provided

    Model Predictive Control for Building Active Demand Response Systems

    Get PDF
    The Active Demand Response (ADR), integrated with the distributed energy generation and storage systems, is the most common strategy for the optimization of energy consumption and indoor comfort in buildings, considering the energy availability and the balancing of the energy production from renewable sources. In the paper an overview of basic requirements and applications of ADR management is presented. Specifically, the model predictive control (MPC) adopted in several applications as optimal control strategy in the ADR buildings context is analysed. Finally the research experience of the authors in this context is described

    iURBAN

    Get PDF
    iURBAN: Intelligent Urban Energy Tool introduces an urban energy tool integrating different ICT energy management systems (both hardware and software) in two European cities, providing useful data to a novel decision support system that makes available the necessary parameters for the generation and further operation of associated business models. The business models contribute at a global level to efficiently manage and distribute the energy produced and consumed at a local level (city or neighbourhood), incorporating behavioural aspects of the users into the software platform and in general prosumers. iURBAN integrates a smart Decision Support System (smartDSS) that collects real-time or near real-time data, aggregates, analyses and suggest actions of energy consumption and production from different buildings, renewable energy production resources, combined heat and power plants, electric vehicles (EV) charge stations, storage systems, sensors and actuators. The consumption and production data is collected via a heterogeneous data communication protocols and networks. The iURBAN smartDSS through a Local Decision Support System allows the citizens to analyse the consumptions and productions that they are generating, receive information about CO2 savings, advises in demand response and the possibility to participate actively in the energy market. Whilst, through a Centralised Decision Support System allow to utilities, ESCOs, municipalities or other authorised third parties to: Get a continuous snapshot of city energy consumption and productionManage energy consumption and productionForecasting of energy consumptionPlanning of new energy "producers" for the future needs of the cityVisualise, analyse and take decisions of all the end points that are consuming or producing energy in a city level, permitting them to forecast and planning renewable power generation available in the city

    A novel soft computing approach based on FIR to model and predict energy dynamic systems

    Get PDF
    Tesi en modalitat compendi de publicacionsWe are facing a global climate crisis that is demanding a change in the status quo of how we produce, distribute and consume energy. In the last decades, this is being redefined through Smart Grids(SG), an intelligent electrical network more observable, controllable, automated, fully integrated with energy services and the end-users. Most of the features and proposed SG scenarios are based on reliable, robust and fast energy predictions. For instance, for proper planning activities, such as generation, purchasing, maintenance and investment; for demand side management, like demand response programs; for energy trading, especially at local level, where productions and consumptions are more stochastics and dynamic; better forecasts also increase grid stability and thus supply security. A large variety of Artificial Intelligence(AI) techniques have been applied in the field of Short-term electricity Load Forecasting(SLF) at consumer level in low-voltage system, showing a better performance than classical techniques. Inaccuracy or failure in the SLF process may be translated not just in a non-optimal (low prediction accuracy) solution but also in frustration of end-users, especially in new services and functionalities that empower citizens. In this regard, some limitations have been observed in energy forecasting models based on AI such as robustness, reliability, accuracy and computation in the edge. This research proposes and develops a new version of Fuzzy Inductive Reasoning(FIR), called Flexible FIR, to model and predict the electricity consumption of an entity in the low-voltage grid with high uncertainties, and information missing, as well as the capacity to be deployed either in the cloud or locally in a new version of Smart Meters(SMs) based on Edge Computing(EC). FIR has been proved to be a powerful approach for model identification and system ’s prediction over dynamic and complex processes in different real world domains but not yet in the energy domain. Thus, the main goal of this thesis is to demonstrate that a new version of FIR, more robust, reliable and accurate can be a referent Soft Computing(SC) methodology to model and predict dynamic systems in the energy domain and that it is scalable to an EC integration. The core developments of Flexible FIR have been an algorithm that can cope with missing information in the input values, as well as learn from instances with Missing Values(MVs) in the knowledge-based, without compromising significantly the accuracy of the predictions. Moreover, Flexible FIR comes with new forecasting strategies that can cope better with loss of causality of a variable and dispersion of output classes than classical k nearest neighbours, making the FIR forecasting process more reliable and robust. Furthermore, Flexible FIR addresses another major challenge modelling with SC techniques, which is to select best model parameters. One of the most important parameters in FIR is the number k of nearest neighbours to be used in the forecast process. The challenge to select the optimal k, dynamically, is addressed through an algorithm, called KOS(K nearest neighbour Optimal Selection), which has been developed and tested also with real world data. It computes a membership aggregation function of all the neighbours with respect their belonging to the output classes.While with KOS the optimal parameter k is found online, with other approaches such as genetic algorithms or reinforcement learning is not, which increases the computational time.Ens trobem davant una crisis climàtica global que exigeix un canvi al status quo de la manera que produïm, distribuïm i consumim energia. En les darreres dècades, està sent redefinit gràcies a les xarxa elèctriques intel·ligents(SG: Smart Grid) amb millor observabilitat, control, automatització, integrades amb nous serveis energètics i usuaris finals. La majoria de les funcionalitats i escenaris de les SG es basen en prediccions de la càrrega elèctrica confiables, robustes i ràpides. Per les prediccions de càrregues elèctriques a curt termini(SLF: Short-term electricity Load Forecasting), a nivell de consumidors al baix voltatge, s’han aplicat una gran varietat de tècniques intel·ligència Artificial(IA) mostrant millor rendiment que tècniques estadístiques tradicionals. Un baix rendiment en SLF, pot traduir-se no només en una solució no-òptima (baixa precisió de predicció) sinó també en la frustració dels usuaris finals, especialment en nous serveis i funcionalitats que empoderarien als ciutadans. En el marc d’aquesta investigació es proposa i desenvolupa una nova versió de la metodologia del Raonament Inductiu Difús(FIR: Fuzzy Inductive Reasoning), anomenat Flexible FIR, capaç de modelar i predir el consum d’electricitat d’una entitat amb un grau d’incertesa molt elevat, inclús amb importants carències d’informació (missing values). A més, Flexible FIR té la capacitat de desplegar-se al núvol, així como localment, en el que podria ser una nova versió de Smart Meters (SM) basada en tecnologia d’Edge Computing (EC). FIR ja ha demostrat ser una metodologia molt potent per la generació de models i prediccions en processos dinàmics en diferents àmbits, però encara no en el de l’energia. Per tant, l’objectiu principal d’aquesta tesis és demostrar que una versió millorada de FIR, més robusta, fiable i precisa pot consolidar-se com una metodologia Soft Computing SC) de referencia per modelar i predir sistemes dinàmics en aplicacions per al sector de l’energia i que és escalable a una integració d’EC. Les principals millores de Flexible FIR han estat, en primer lloc, el desenvolupament i test d’un algorisme capaç de processar els valors d’entrada d’un model FIR tot i que continguin Missing Values (MV). Addicionalment, aquest algorisme també permet aprendre d’instàncies amb MV en la matriu de coneixement d’un model FIR, sense comprometre de manera significativa la precisió de les prediccions. En segon lloc, s’han desenvolupat i testat noves estratègies per a la fase de predicció, comportant-se millor que els clàssics k veïns més propers quan ens trobem amb pèrdua de causalitat d’una variable i dispersió en les classes de sortida, aconseguint un procés d’aprenentatge i predicció més confiable i robust. En tercer lloc, Flexible FIR aborda un repte molt comú en tècniques de SC: l’òptima parametrització del model. En FIR, un dels paràmetres més determinants és el número k de veïns més propers que s’utilitzaran durant la fase de predicció. La selecció del millor valor de k es planteja de manera dinàmica a través de l’algorisme KOS (K nearest neighbour Optimal Selection) que s’ha desenvolupat i testat també amb dades reals. Mentre que amb KOS el paràmetre òptim de k es calcula online, altres enfocaments mitjançant algoritmes genètics o aprenentatge per reforç el càlcul és offline, incrementant significativament el temps de resposta, sent a més a més difícil la implantació en escenaris d’EC. Aquestes millores fan que Flexible FIR es pugui adaptar molt bé en aplicacions d’EC. En aquest sentit es proposa el concepte d’un SM de segona generació basat en EC, que integra Flexible FIR com mòdul de predicció d’electricitat executant-se en el propi dispositiu i un agent EC amb capacitat per el trading d'energia produïda localment. Aquest agent executa un innovador mecanisme basat en incentius, anomenat NRG-X-Change que utilitza una nova moneda digital descentralitzada per l’intercanvi d’energia, que s’anomena NRGcoin.Estamos ante una crisis climática global que exige un cambio del status quo de la manera que producimos, distribuimos y consumimos energía. En las últimas décadas, este status quo está siendo redefinido debido a: la penetración de las energías renovables y la generación distribuida; nuevas tecnologías como baterías y paneles solares con altos rendimientos; y la forma en que se consume la energía, por ejemplo, a través de vehículos eléctricos o con la electrificación de los hogares. Estas palancas requieren una red eléctrica inteligente (SG: Smart Grid) con mayor observabilidad, control, automatización y que esté totalmente integrada con nuevos servicios energéticos, así como con sus usuarios finales. La mayoría de las funcionalidades y escenarios de las redes eléctricas inteligentes se basan en predicciones de la energía confiables, robustas y rápidas. Por ejemplo, para actividades de planificación como la generación, compra, mantenimiento e inversión; para la gestión de la demanda, como los programas de demand response; en el trading de electricidad, especialmente a nivel local, donde las producciones y los consumos son más estocásticos y dinámicos; una mejor predicción eléctrica también aumenta la estabilidad de la red y, por lo tanto, mejora la seguridad. Para las predicciones eléctricas a corto plazo (SLF: Short-term electricity Load Forecasting), a nivel de consumidores en el bajo voltaje, se han aplicado una gran variedad de técnicas de Inteligencia Artificial (IA) mostrando mejor rendimiento que técnicas estadísticas convencionales. Un bajo rendimiento en los modelos predictivos, puede traducirse no solamente en una solución no-óptima (baja precisión de predicción) sino también en frustración de los usuarios finales, especialmente en nuevos servicios y funcionalidades que empoderan a los ciudadanos. En este sentido, se han identificado limitaciones en modelos de predicción de energía basados en IA, como la robustez, fiabilidad, precisión i computación en el borde. En el marco de esta investigación se propone y desarrolla una nueva versión de la metodología de Razonamiento Inductivo Difuso (FIR: Fuzzy Inductive Reasoning), que hemos llamado Flexible FIR, capaz de modelar y predecir el consumo de electricidad de una entidad con altos grados de incertidumbre e incluso con importantes carencias de información (missing values). Además, Flexible FIR tiene la capacidad de desplegarse en la nube, así como localmente, en lo que podría ser una nueva versión de Smart Meters (SM) basada en tecnología de Edge Computing (EC). En el pasado, ya se ha demostrado que FIR es una metodología muy potente para la generación de modelos y predicciones en procesos dinámicos, sin embargo, todavía no ha sido demostrado en el campo de la energía. Por tanto, el objetivo principal de esta tesis es demostrar que una versión mejorada de FIR, más robusta, fiable y precisa puede consolidarse como metodología Soft Computing (SC) de referencia para modelar y predecir sistemas dinámicos en aplicaciones para el sector de la energía y que es escalable hacia una integración de EC. Las principales mejoras en Flexible FIR han sido, en primer lugar, el desarrollo y testeo de un algoritmo capaz de procesar los valores de entrada en un modelo FIR a pesar de que contengan Missing Values (MV). Además, dicho algoritmo también permite aprender de instancias con MV en la matriz de conocimiento de un modelo FIR, sin comprometer de manera significativa la precisión de las predicciones. En segundo lugar, se han desarrollado y testeado nuevas estrategias para la fase de predicción de un modelo FIR, comportándose mejor que los clásicos k vecinos más cercanos ante la pérdida de causalidad de una variable y dispersión de clases de salida, consiguiendo un proceso de aprendizaje y predicción más confiable y robusto. En tercer lugar, Flexible FIR aborda un desafío muy común en técnicas de SC: la óptima parametrización del modelo. En FIR, uno de los parámetros más determinantes es el número k de vecinos más cercanos que se utilizarán en la fase de predicción. La selección del mejor valor de k se plantea de manera dinámica a través del algoritmo KOS (K nearest neighbour Optimal Selection) que se ha desarrollado y probado también con datos reales. Dicho algoritmo calcula una función de membresía agregada, de todos los vecinos, con respecto a su pertenencia a las clases de salida. Mientras que con KOS el parámetro óptimo de k se calcula online, otros enfoques mediante algoritmos genéticos o aprendizaje por refuerzo, el cálculo es offline incrementando significativamente el tiempo de respuesta, siendo además difícil su implantación en escenarios de EC. Estas mejoras hacen que Flexible FIR se adapte muy bien en aplicaciones de EC, en las que la analítica de datos en streaming debe ser fiable, robusta y con un modelo suficientemente ligero para ser ejecutado en un IoT Gateway o dispositivos más pequeños. También, en escenarios con poca conectividad donde el uso de la computación en la nube es limitado y los parámetros del modelo se calculan localmente. Con estas premisas, en esta tesis, se propone el concepto de un SM de segunda generación basado en EC, que integra Flexible FIR como módulo de predicción de electricidad ejecutándose en el dispositivo y un agente EC con capacidad para el trading de energía producida localmente. Dicho agente ejecuta un novedoso mecanismo basado en incentivos, llamado NRG-X-Change que utiliza una nueva moneda digital descentralizada para el intercambio de energía, llamada NRGcoin.Postprint (published version

    Short-term electric load forecasting using computational intelligence methods

    Get PDF
    Accurate time series forecasting is a key issue to support individual and organizational decision making. In this paper, we introduce several methods for short-term electric load forecasting. All the presented methods stem from computational intelligence techniques: Random Forest, Nonlinear Autoregressive Neural Networks, Evolutionary Support Vector Machines and Fuzzy Inductive Reasoning. The performance of the suggested methods is experimentally justified with several experiments carried out, using a set of three time series from electricity consumption in the real-world domain, on different forecasting horizons

    Achieving energy efficient districts: contributions through large-scale characterization and demand side management.

    Get PDF
    Buildings are increasingly expected to be more efficient and sustainable since they are essential to energy policies and climate change mitigation efforts. For this reason, it is very important to develop new energy models, with special attention to the residential sector. The present Thesis aims to justify the selection of the district scale as the optimal one to improve the energy performance of the built environment. In this way, renewable energy integration may be increased and innovative approaches such as demand side management may be carried out through the accurate characterization of districts. Several applications are shown to evaluate the solar potentials and the energy demands for entire regions by using 3D city models. The advantages offered by demand side management approaches in buildings and districts are investigated, presenting two applications that benefit from dynamic pricing strategies or the participation in reserve markets. The drawbacks of most current approaches on a large scale are highlighted, and a new tool capable of performing dynamic simulations of whole districts in a user-friendly and accurate way is presented. In addition, a methodology for a proper characterization of districts through monitoring is developed, validated, and used for two applications. The first one characterizes a district consisting of buildings with a limited use of air-conditioning, and the second one evaluates the benefits that could be obtained from the exploitation of the synergies between the buildings of a district. As a last contribution of this Thesis, a new comprehensive methodology for the characterization and optimization of any existing district is proposed.Se espera que los edificios sean cada vez más eficientes y sostenibles, puesto que son esenciales para las políticas energéticas y los esfuerzos hacia la mitigación del cambio climático. Por esta razón, es muy importante desarrollar nuevos modelos energéticos, con especial atención al sector residencial. La presente Tesis parte de que la escala de distrito es la óptima para mejorar el comportamiento de la edificación. Además, permite aumentar la integración de energías renovables y llevar a cabo planteamientos innovadores como la gestión de la demanda a través de una precisa caracterización de los distritos. Se muestran varias aplicaciones para la evaluación de los potenciales solares y las demandas energéticas de regiones enteras, usando modelos 3D de ciudades. Las ventajas ofrecidas por los procedimientos de gestión de la demanda en edificios y distritos también son investigadas, presentando dos aplicaciones que se benefician de estrategias de tarificación dinámica o de la participación en los mercados de reserva. Las desventajas de la mayoría de procedimientos actuales a gran escala también son destacadas, y se presenta una nueva herramienta capaz de llevar a cabo simulaciones dinámicas de distritos completos de forma simple y precisa. Además, se desarrolla una metodología para la caracterización apropiada de distritos a través de monitorización, validada y empleada en dos aplicaciones. La primera trata la caracterización un distrito compuesto por edificios con un uso limitado de la climatización, y la segunda la evaluación de los beneficios que podrían obtenerse de la explotación de las sinergias entre los edificios de un distrito. Como última contribución de la Tesis, se propone una nueva metodología completa para la caracterización y optimización de cualquier distrito existente.Premio Extraordinario de Doctorado U

    iURBAN

    Get PDF
    iURBAN: Intelligent Urban Energy Tool introduces an urban energy tool integrating different ICT energy management systems (both hardware and software) in two European cities, providing useful data to a novel decision support system that makes available the necessary parameters for the generation and further operation of associated business models. The business models contribute at a global level to efficiently manage and distribute the energy produced and consumed at a local level (city or neighbourhood), incorporating behavioural aspects of the users into the software platform and in general prosumers. iURBAN integrates a smart Decision Support System (smartDSS) that collects real-time or near real-time data, aggregates, analyses and suggest actions of energy consumption and production from different buildings, renewable energy production resources, combined heat and power plants, electric vehicles (EV) charge stations, storage systems, sensors and actuators. The consumption and production data is collected via a heterogeneous data communication protocols and networks. The iURBAN smartDSS through a Local Decision Support System allows the citizens to analyse the consumptions and productions that they are generating, receive information about CO2 savings, advises in demand response and the possibility to participate actively in the energy market. Whilst, through a Centralised Decision Support System allow to utilities, ESCOs, municipalities or other authorised third parties to: Get a continuous snapshot of city energy consumption and productionManage energy consumption and productionForecasting of energy consumptionPlanning of new energy "producers" for the future needs of the cityVisualise, analyse and take decisions of all the end points that are consuming or producing energy in a city level, permitting them to forecast and planning renewable power generation available in the city

    μGIM - Microgrid intelligent management system based on a multi-agent approach and the active participation of end-users

    Get PDF
    [ES] Los sistemas de potencia y energía están cambiando su paradigma tradicional, de sistemas centralizados a sistemas descentralizados. La aparición de redes inteligentes permite la integración de recursos energéticos descentralizados y promueve la gestión inclusiva que involucra a los usuarios finales, impulsada por la gestión del lado de la demanda, la energía transactiva y la respuesta a la demanda. Garantizar la escalabilidad y la estabilidad del servicio proporcionado por la red, en este nuevo paradigma de redes inteligentes, es más difícil porque no hay una única sala de operaciones centralizada donde se tomen todas las decisiones. Para implementar con éxito redes inteligentes, es necesario combinar esfuerzos entre la ingeniería eléctrica y la ingeniería informática. La ingeniería eléctrica debe garantizar el correcto funcionamiento físico de las redes inteligentes y de sus componentes, estableciendo las bases para un adecuado monitoreo, control, gestión, y métodos de operación. La ingeniería informática desempeña un papel importante al proporcionar los modelos y herramientas computacionales adecuados para administrar y operar la red inteligente y sus partes constituyentes, representando adecuadamente a todos los diferentes actores involucrados. Estos modelos deben considerar los objetivos individuales y comunes de los actores que proporcionan las bases para garantizar interacciones competitivas y cooperativas capaces de satisfacer a los actores individuales, así como cumplir con los requisitos comunes con respecto a la sostenibilidad técnica, ambiental y económica del Sistema. La naturaleza distribuida de las redes inteligentes permite, incentiva y beneficia enormemente la participación activa de los usuarios finales, desde actores grandes hasta actores más pequeños, como los consumidores residenciales. Uno de los principales problemas en la planificación y operación de redes eléctricas es la variación de la demanda de energía, que a menudo se duplica más que durante las horas pico en comparación con la demanda fuera de pico. Tradicionalmente, esta variación dio como resultado la construcción de plantas de generación de energía y grandes inversiones en líneas de red y subestaciones. El uso masivo de fuentes de energía renovables implica mayor volatilidad en lo relativo a la generación, lo que hace que sea más difícil equilibrar el consumo y la generación. La participación de los actores de la red inteligente, habilitada por la energía transactiva y la respuesta a la demanda, puede proporcionar flexibilidad en desde el punto de vista de la demanda, facilitando la operación del sistema y haciendo frente a la creciente participación de las energías renovables. En el ámbito de las redes inteligentes, es posible construir y operar redes más pequeñas, llamadas microrredes. Esas son redes geográficamente limitadas con gestión y operación local. Pueden verse como áreas geográficas restringidas para las cuales la red eléctrica generalmente opera físicamente conectada a la red principal, pero también puede operar en modo isla, lo que proporciona independencia de la red principal. Esta investigación de doctorado, realizada bajo el Programa de Doctorado en Ingeniería Informática de la Universidad de Salamanca, aborda el estudio y el análisis de la gestión de microrredes, considerando la participación activa de los usuarios finales y la gestión energética de lascarga eléctrica y los recursos energéticos de los usuarios finales. En este trabajo de investigación se ha analizado el uso de conceptos de ingeniería informática, particularmente del campo de la inteligencia artificial, para apoyar la gestión de las microrredes, proponiendo un sistema de gestión inteligente de microrredes (μGIM) basado en un enfoque de múltiples agentes y en la participación activa de usuarios. Esta solución se compone de tres sistemas que combinan hardware y software: el emulador de virtual a realidad (V2R), el enchufe inteligente de conciencia ambiental de Internet de las cosas (EnAPlug), y la computadora de placa única para energía basada en el agente (S4E) para permitir la gestión del lado de la demanda y la energía transactiva. Estos sistemas fueron concebidos, desarrollados y probados para permitir la validación de metodologías de gestión de microrredes, es decir, para la participación de los usuarios finales y para la optimización inteligente de los recursos. Este documento presenta todos los principales modelos y resultados obtenidos durante esta investigación de doctorado, con respecto a análisis de vanguardia, concepción de sistemas, desarrollo de sistemas, resultados de experimentación y descubrimientos principales. Los sistemas se han evaluado en escenarios reales, desde laboratorios hasta sitios piloto. En total, se han publicado veinte artículos científicos, de los cuales nueve se han hecho en revistas especializadas. Esta investigación de doctorado realizó contribuciones a dos proyectos H2020 (DOMINOES y DREAM-GO), dos proyectos ITEA (M2MGrids y SPEAR), tres proyectos portugueses (SIMOCE, NetEffiCity y AVIGAE) y un proyecto con financiación en cascada H2020 (Eco-Rural -IoT)
    corecore