11 research outputs found

    Load Balancing Techniques for Lifetime Maximizing in Wireless Sensor Networks

    Get PDF
    International audienceEnergy consumption has been the focus of many studies on Wireless Sensor Networks (WSN). It is well recognized that energy is a strictly limited resource in WSNs. This limitation constrains the operation of the sensor nodes and somehow compromises the long term network performance as well as network activities. Indeed, the purpose of all application scenarios is to have sensor nodes deployed, unattended, for several months or years.This paper presents the lifetime maximization problem in “many-to-one” and “mostly-off” wireless sensor networks. In such network pattern, all sensor nodes generate and send packets to a single sink via multi-hop transmissions. We noticed, in our previous experimental studies, that since the entire sensor data has to be forwarded to a base station via multi-hop routing, the traffic pattern is highly non-uniform, putting a high burden on the sensor nodes close to the base station.In this paper, we propose some strategies that balance the energy consumption of these nodes and ensure maximum network lifetime by balancing the traffic load as equally as possible. First, we formalize the network lifetime maximization problem then we derive an optimal load balancing solution. Subsequently, we propose a heuristic to approximate the optimal solution and we compare both optimal and heuristic solutions with most common strategies such as shortest-path and equiproportional routing. We conclude that through the results of this work, combining load balancing with transmission power control outperforms the traditional routing schemes in terms of network lifetime maximization

    Optimized congestion aware energy efficient traffic load balancing scheme for routing in wireless sensor networks

    Get PDF
    Load imbalance among hot spot nodes causes network congestion and earliest energy depletion of nodes in wireless sensor networks. This increases the probability of disconnecting or partitioning the network and premature death of entire network. The inefficiency in the WSN is more attributed to load imbalance or unbiased traffic. In this paper, an optimized congestion aware (OCAEE-LB) energy efficient traffic load balancing scheme for routing in WSN is proposed. The scheme utilizes the neglected information during route discovery process and considers a composite routing metric to determine congested status of a node and to enforce the traffic load balancing. The proposed scheme is simulated using ns-2 and the results demonstrate that the proposed mechanism performs better than the existing AODV-LB algorithm of various performance metrics such as, packet delivery ratio, throughput, routing overhead, end-to-end delay, load distribution and energy consumption

    Tests Scenario on DTN for IOT III Urbanet collaboration

    Get PDF
    This document presents the first part of the DTN (Delay Tolerant Network) study within IOT (Internet Of Things) context. The motivation for using generic protocols able to handle the constraints due to the IOT is highlighted with the choice of Bundle Protocol. A study of existing implementations of this protocol is realised within a sensor context. We justify the choices made for our implementation, then we define the mechanisms which we will test with the IOT-Lab platform by following the protocol of tests we have developed. The performance analysis are also presented

    Expériences et résultats pour les DTN pour l’IOT Collaboration III Urbanet

    Get PDF
    This document presents the full study of the DTN (Delay Tolerant Network) within IOT (Internet Of Things) context. The motivation for using generic protocols able to handle the constraints due to the IOT is highlighted with the choice of the Bundle Protocol. A study of existing implementations of this protocol is realised within a sensor context. We justify the choices made for our implementation, then we define the mechanisms which we test with the Cooja platform by following the protocol of tests we have developed. The results of the experiments are analysed.Ce document présente l’étude complète des DTN (Delay Tolerant Network) dans un contexte d’IOT (Internet Of Things). La motivation de l’utilisation de protocoles génériques capables de supporter les contraintes inhérentes au contexte IOT est mise en avant avec le choix du Bundle Protocol. Une étude des implantations existantes de ce protocole est faite dans un contexte capteur. Nous proposons notre implantation en justifiant les choix réalisés, puis nous définissons des mécanismes que nous testons avec la plate-forme Cooja en suivant le protocole de tests que nous avons élaboré. Les resultats de ces expérimentations sont analysées

    Lifetime and Energy Hole Evolution Analysis in Data-Gathering Wireless Sensor Networks

    Get PDF
    Abstract-Network lifetime is a crucial performance metric to evaluate data-gathering wireless sensor networks (WSNs) where battery-powered sensor nodes periodically sense the environment and forward collected samples to a sink node. In this paper, we propose an analytic model to estimate the entire network lifetime from network initialization until it is completely disabled, and determine the boundary of energy hole in a data-gathering WSN. Specifically, we theoretically estimate the traffic load, energy consumption, and lifetime of sensor nodes during the entire network lifetime. Furthermore, we investigate the temporal and spatial evolution of energy hole, and apply our analytical results to WSN routing in order to balance the energy consumption and improve the network lifetime. Extensive simulation results are provided to demonstrate the validity of the proposed analytic model in estimating the network lifetime and energy hole evolution process. Index Terms-wireless sensor network, network lifetime, energy hole, energy efficiency, routing

    Mathematical Models and Algorithms for Network Flow Problems Arising in Wireless Sensor Network Applications

    Get PDF
    We examine multiple variations on two classical network flow problems, the maximum flow and minimum-cost flow problems. These two problems are well-studied within the optimization community, and many models and algorithms have been presented for their solution. Due to the unique characteristics of the problems we consider, existing approaches cannot be directly applied. The problem variations we examine commonly arise in wireless sensor network (WSN) applications. A WSN consists of a set of sensors and collection sinks that gather and analyze environmental conditions. In addition to providing a taxonomy of relevant literature, we present mathematical programming models and algorithms for solving such problems. First, we consider a variation of the maximum flow problem having node-capacity restrictions. As an alternative to solving a single linear programming (LP) model, we present two alternative solution techniques. The first iteratively solves two smaller auxiliary LP models, and the second is a heuristic approach that avoids solving any LP. We also examine a variation of the maximum flow problem having semicontinuous restrictions that requires the flow, if positive, on any path to be greater than or equal to a minimum threshold. To avoid solving a mixed-integer programming (MIP) model, we present a branch-and-price algorithm that significantly improves the computational time required to solve the problem. Finally, we study two dynamic network flow problems that arise in wireless sensor networks under non-simultaneous flow assumptions. We first consider a dynamic maximum flow problem that requires an arc to transmit a minimum amount of flow each time it begins transmission. We present an MIP for solving this problem along with a heuristic algorithm for its solution. Additionally, we study a dynamic minimum-cost flow problem, in which an additional cost is incurred each time an arc begins transmission. In addition to an MIP, we present an exact algorithm that iteratively solves a relaxed version of the MIP until an optimal solution is found

    Satellites d'observation et réseaux de capteurs autonomes au service de l'environnement

    Get PDF
    La collecte d’informations et leur transmission au travers d’un réseau de communications peut être effectuée par des réseaux de capteurs autonomes ainsi que par des satellites d’observation. L’utilisation conjointe de ces réseaux fournirait des données complémentaires et permettrait à l’Humanité de pérenniser son avenir en comprenant les mécanismes du monde qui l’entoure. Ces dernières années, le secteur spatial a montré une volonté d’unifier et de faciliter la réutilisation des développements réalisés avec la création de filières de plateformes multi-missions ainsi que la définition de protocoles applicables à différents contextes. L’objectif de cette thèse est d’étudier les caractéristiques des différentes technologies d’observation afin d’en exploiter les points communs. À ces fins, nous nous intéressons aux technologies et aux architectures utilisées dans de tels contextes. Nous proposons alors une architecture de réseau répondant aux contraintes des systèmes les plus communément utilisés dans un tel cadre. Les principales contraintes des scénarios d’observation sont liées à la forte intermittence des liens et donc au manque de connexité du réseau. Nous nous orientons donc vers une solution ayant recours au concept de réseaux tolérants au délai. Dans un tel contexte, l’existence d’une route entre la source et la destination n’est pas garantie. C’est pourquoi les protocoles de communication utilisés propagent généralement plusieurs exemplaires d’un même message vers plusieurs entités afin d’augmenter le taux de délivrance. Nous avons souhaité diminuer l’utilisation des ressources du réseau tout en conservant des performances similaires afin d’augmenter l’efficacité du réseau. Après avoir proposé une architecture commune, nous nous sommes focalisés sur les spécificités des différents segments de notre réseau afin de répondre localement à ces problèmes. Pour le segment satellite, nous nous sommes plus spécialement concentrés sur les techniques de gestion de mémoire. Nous considérons un satellite défilant avec une mémoire embarquée limitée, collectant des données en provenance de passerelles. Il s’agit alors de sélectionner les messages les plus urgents quitte à déposer sur une autre passerelle les messages moins contraints. Sur le réseau de capteurs terrestre, nous nous sommes focalisés sur la diminution de l’utilisation des ressources du réseau. Pour cela nous avons utilisé l’historique des rencontres entre les nœuds et analysé l’influence de la quantité de mémoire allouée aux accusés de réception sur les performances du réseau. Nous sommes parvenus à atteindre des performances supérieures aux solutions existantes à moindre frais. Les solutions proposées peuvent être mises en œuvre et appliquées dans différents contextes applicatifs. ABSTRACT : Data gathering and transmission through a communicating network can be obtained thanks to wireless sensor networks and observation satellites. Using both these technologies will allow mankind to build a sustainable future by understanding the world around. In recent years, space actors have demonstrated a will to reuse the developed technologies by creating multiple programs platforms and defining context-agnostic protocols. The goal of this thesis is to study the characteristics of several observation technologies to exploit their similarities. We analyse the existing technologies and architectures in several contexts. Then, we propose a networking architecture handling constraints of most commonly used systems in such a context. The main constraints of observation scenarios are due to the links intermittence and lack of network connectivity. We focus on a solution using the delay tolerant networking concept. In such a context, a path between source and destination might not exist at all time. That is why most proposed protocols send multiple copies of a message to increase the delivery ratio. We wanted to decrease network resource use while keeping a similar performance to increase network efficiency. After having proposed a common architecture, we focused on particularities of each network segment to solve problems locally. Concerning the satellite part, we focused specifically on memory management techniques. We considered a low earth orbit satellite with a limited on-board buffer, gathering data from gateways. The goal is then to select the most urgent messages even though the least urgent ones are sent back to the ground. On the terrestrial sensor network part, we focused on the decrease of network resource use. We used the history of encounters between nodes and analysed the influence of the proportion of memory allocated to acknowledgements on network performance. We achieved better performance than existing solutions and at lower cost. The proposed solutions can be deployed and applied in several applications

    An Energy-Efficient Multi-Cloud Service Broker for Green Cloud Computing Environment

    Get PDF
    The heavy demands on cloud computing resources have led to a substantial growth in energy consumption of the data transferred between cloud computing parties (i.e., providers, datacentres, users, and services) and in datacentre’s services due to the increasing loads on these services. From one hand, routing and transferring large amounts of data into a datacentre located far from the user’s geographical location consume more energy than just processing and storing the same data on the cloud datacentre. On the other hand, when a cloud user submits a job (in the form of a set of functional and non-functional requirements) to a cloud service provider (aka, datacentre) via a cloud services broker; the broker becomes responsible to find the best-fit service to the user request based mainly on the user’s requirements and Quality of Service (QoS) (i.e., response time, latency). Hence, it becomes a high necessity to locate the lowest energy consumption route between the user and the designated datacentre; and the minimum possible number of most energy efficient services that satisfy the user request. In fact, finding the most energy-efficient route to the datacentre, and most energy efficient service(s) to the user are the biggest challenges of multi-cloud broker’s environment. This thesis presents and evaluates a novel multi-cloud broker solution that contains three innovative models and their associated algorithms. The first one is aimed at finding the most energy efficient route, among multiple possible routes, between the user and cloud datacentre. The second model is to find and provide the lowest possible number of most energy efficient services in order to minimise data exchange based on a bin-packing approach. The third model creates an energy-aware composition plan by integrating the most energy efficient services, in order to fulfil user requirements. The results demonstrated a favourable performance of these models in terms of selecting the most energy efficient route and reaching the least possible number of services for an optimum and energy efficient composition
    corecore