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Abstract

We examine multiple variations on two classical network flow problems, the maximum flow

and minimum-cost flow problems. These two problems are well-studied within the optimization

community, and many models and algorithms have been presented for their solution. Due to the

unique characteristics of the problems we consider, existing approaches cannot be directly applied.

The problem variations we examine commonly arise in wireless sensor network (WSN) applications.

A WSN consists of a set of sensors and collection sinks that gather and analyze environmental

conditions. In addition to providing a taxonomy of relevant literature, we present mathematical

programming models and algorithms for solving such problems.

First, we consider a variation of the maximum flow problem having node-capacity restrictions.

As an alternative to solving a single linear programming (LP) model, we present two alternative

solution techniques. The first iteratively solves two smaller auxiliary LP models, and the second is a

heuristic approach that avoids solving any LP. We also examine a variation of the maximum flow

problem having semicontinuous restrictions that requires the flow, if positive, on any path to be

greater than or equal to a minimum threshold. To avoid solving a mixed-integer programming (MIP)

model, we present a branch-and-price algorithm that significantly improves the computational time

required to solve the problem.

Finally, we study two dynamic network flow problems that arise in wireless sensor networks

under non-simultaneous flow assumptions. We first consider a dynamic maximum flow problem that

requires an arc to transmit a minimum amount of flow each time it begins transmission. We present

an MIP for solving this problem along with a heuristic algorithm for its solution. Additionally, we

study a dynamic minimum-cost flow problem, in which an additional cost is incurred each time an

arc begins transmission. In addition to an MIP, we present an exact algorithm that iteratively solves

a relaxed version of the MIP until an optimal solution is found.
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Chapter 1

Introduction

The mathematical optimization community has long examined network flow problems that

take place on a graph G = (V,A) with a node set V and an arc set A. Set V contains a source node

s and a sink node t. We study variations on two of the most common problems in this area, the

maximum flow problem and the minimum-cost flow problem. Maximum flow problems involve finding

a feasible flow through a single-source, single-sink flow network that is maximum, and minimum-cost

flow problems involve finding a feasible flow that minimizes the cost of transmitting a predetermined

amount of flow from s to t. Classic versions of these problems are well-studied within the optimization

communities, and many models and algorithms have been presented for their solution [Ahuja et al.,

1993]. Problems of this sort commonly arise in wireless sensor network (WSN) optimization. These

networks consist of a set of sensors and collection sinks that gather and analyze environmental

conditions. The emergence of WSN optimization uncovered the need for modeling and solving

adaptations of these classic network flow problems existing in WSNs.

1.1 Background and Contribution

This dissertation presents models and algorithms for solving various classes of network flow

problems having applications in WSN optimization. Wireless sensor network research has recently

gained substantial attention in the engineering, computer science, and mathematics literature because

of the challenges involved in deploying effective networks in energy- and bandwidth-constrained

settings. WSNs incorporate battery-powered sensors that expend energy to collect, analyze, and
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transmit information. Where and how these sensors are placed may depend on environmental

characteristics, the accessibility of the environment, forces that relocate the sensors, and factors that

potentially impede the operation of those sensors. Prior to this work, the optimization literature lacked

a full understanding of the problems in this application area. Thus, we first present a comprehensive

survey of applications, problems, and solution techniques for solving maximum flow-related problems

in WSN settings.

Sensors in WSNs commonly possess budget restrictions in the form of finite-capacity batteries

used to transmit data to other sensors or a grounded network collection location. Replacing these

batteries can be difficult or hazardous because WSNs are often deployed in unreachable or dangerous

environments (e.g., military applications [Abbasi and Younis, 2007] and environmental monitoring

[Xu et al., 2014]). Thus, we first examine the problem of maximizing the total amount of data

gathered in the network without exceeding battery power or bandwidth restrictions. This problem

can be formulated as the maximum flow problem having node-capacity restrictions [Kalpakis et al.,

2003, Curry and Smith, 2016]. Environmental restrictions in large-scale energy systems can also

be modeled as node-capacity constraints. These restrictions include a maximum emission level for

generation stations, where the amount of emissions may depend on the type of fuel used, pollution

limiting devices utilized, and the amount of energy produced [Quelhas et al., 2007]. Congestion

restrictions in large-scale virtual channel infrastructure systems can also be modeled as a variation of

node-capacity constraints [Peltola et al., 1997].

We model this problem as a variation of the maximum flow problem (MFP) having a set of

node-capacity restrictions (NCMFP). Not surprisingly, the maximum flow-minimum cut theorem

[Ahuja et al., 1993] for the MFP does not hold for the NCMFP. Thus, traditional augmenting-flow

algorithms (e.g., Ford-Fulkerson [Ford and Fulkerson, 1956] and push-relabel [Ahuja et al., 1993])

generally will not optimize the NCMFP. One of the key observations is that an analogous criterion —

that every such path either visits a saturated arc or a node whose capacity is exhausted — is not

sufficient to prove optimality. Generally speaking, there may exist a flow circulation that increases

the available capacity on a set of exhausted nodes, thus permitting additional flow to be transmitted

from s to t.

The second problem we study is a variation of the MFP having node and arc capacities,

along with semicontinuous flow restrictions. A semicontinuous variable must either take a value of 0,

or belong in the interval [`, u] for some 0 < ` ≤ u. We assume that the upper bounds are implied by

2



the arc-flow capacities, and thus we only focus on how to handle the lower bound restrictions on

positive flows. In the context of flow problems, semicontinuous restrictions are useful when positive

flows below some lower bound are undesirable.

However, a precise characterization of semicontinuous flows depends on what one considers

to be the flow variables. We examine several such cases in this work. Throughout, flows that satisfy

semicontinuous restrictions with respect to a given set of variables are said to be stable. The simplest

case enforces stability restrictions on arc flows, which can be achieved by defining a binary variable

yij , ∀(i, j) ∈ A, and restricting uyij ≥ xij ≥ `yij [Beale, 1979, 1980, 1985]. The work of de Farias

et al. [2001] proposes an alternative branching strategy to address semicontinuity. By contrast, we

examine problems having stability restrictions on network paths, in which a path refers to a common

amount of flow from any source node to any demand node using a sequence of arcs that visits each

node at most once. Assuming all flows are simultaneously transmitted, we require that flow fp on

each path p, if positive, must be greater than or equal to `.

Finally, we consider network flow problems in dynamic network flow settings, in which flows

are transmitted according to a non-simultaneous schedule. Specifically, we consider a pair of dynamic

network flow problems that consider the existence of arc setup constraints or costs that may exist

whenever an arc begins transmitting flow. An arc may be required to undergo setup each time it

begins transmitting flow. Alternatively, some applications have explicit setup costs, in which a fixed

cost is incurred each time an arc begins transmission. In WSN optimization, operators may need to

pay a fixed cost to begin transmitting information from one sensor to another [Yick et al., 2008].

These fixed costs often correspond to the financial and/or computational effort required to establish

a secure communication link between a pair of sensors [Perrig et al., 2004, Shi and Perrig, 2004].

Whenever a sensor discontinues transmission, this communication link either ceases to exist or is

assumed not to be secure. Thus, each time a sensor begins transmission, a new secure communication

link must be set up to avoid interference.

1.2 Literature Review and Application Areas

The arc-capacitated MFP has many areas of application (e.g., transportation problems,

airline scheduling, project selection [Ahuja et al., 1993]). Ford and Fulkerson [1956] first formulate

the MFP as a linear programming (LP) model and show its equivalence to the minimum-cut problem.
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(See [Schrijver, 2002] for a comprehensive history of the maximum flow problem.) They present a

pseudo-polynomial algorithm that augments flow on a series of paths from s to t having positive

residual capacity. Edmonds and Karp [1972] later propose a polynomial-time path-augmenting

algorithm that implements a shortest-path procedure to find augmenting paths. Ahuja and Orlin

[1989] introduce a capacity-scaling algorithm for solving the MFP in polynomial time that prioritizes

flow augmentations on paths containing only those arcs having residual capacity levels greater than

or equal to some minimum threshold.

Whereas the previous approaches employ path augmentation, others extend alternative

techniques for solving the MFP. Goldfarb and Hao [1990] propose a strongly-polynomial primal

simplex algorithm for the MFP and give implementations that run in O(|V|2|A|) time. Alternatively,

Goldfarb and Chen [1997] and Armstrong et al. [1998] take a dual simplex-based approach to the MFP.

Ahuja and Orlin [1997] show the equivalence of these primal and dual simplex approaches. More

recently, Hochbaum [2008] shows how the MFP can be transformed into a variation of the minimum-

cost flow problem, and presents a pseudo-flow algorithm for its solution. For a comprehensive analysis

of algorithmic advances for the MFP, see [Ahuja et al., 1991] and [Cook et al., 1998].

Wollmer [1968] presents a polynomial-time flow-augmenting algorithm for the NCMFP when

the capacity consumed by sending a unit of flow at a node is assumed to be binary. The author

presents an LP formulation as well as a polynomial-time algorithm for its solution. In WSN settings,

Chang and Tassiulas [1999] model the problem of maximizing the amount of gathered data as the

NCMFP. The authors present an LP along with two heuristic algorithms for its solution. Since

the NCMFP is a variation of the MFP having a set of complicating constraints, Madan and Lall

[2004] employ a Lagrangian relaxation technique having Lagrangian multipliers associated with the

node-capacity constraints. Ordóñez and Krishnamachari [2004] formulate a nonlinear programming

model to maximize the total amount of data gathered by a wireless sensor network (WSN) when

sensors have a maximum transmission capacity. Bodlaender et al. [2008] consider a problem similar

to ours, in that they include node-capacity constraints for the maximum flow problem (but without

semicontinuity restrictions). The authors maximize the total data gathered among all sensors in

the network and restrict flows to be integer-valued, as would be the case when sensors transmit

data packets in their entirety. Chapter 2 provides a detailed analysis of such problems in WSN

optimization.

Semicontinuous restrictions arise in several different application areas. Bienstock [1996] and

4



Perold [1984] use semicontinuous variables to model minimum trading sizes in portfolio optimization.

In inventory management models, Timpe and Kallrath [2000] require order shipments to be between

some minimum and maximum quantities. Kallrath [2000, 2002] considers the presence of semicon-

tinuous variables in petrochemical processes. Angulo et al. [2014] examine a relaxation of general

semicontinuous network flow problems. The authors present a complete description of the convex

hull with linear inequalities and extended formulations for two particular cases of this relaxation.

Static-stable restrictions arise in WSN settings, in which network operators attempt to

gather as much information about an environment as possible. This problem can be modeled as

an instance of the maximum flow problem since the objective may seek to collect and transmit the

maximum possible amount of data. Information gathered by any sensor can be transmitted to any

sink node, which then relays its data to a common source (e.g., a single satellite) for analysis. Tao

et al. [2004] consider a related problem where the flow on each path from s to t is determined at a

central location within the environment. The authors include restrictions that disallow paths having

flow below a minimum threshold, because switching between s–t paths for small improvements in the

objective function value is impractical.

Additionally, stability restrictions arise in scheduling applications. Aggarwal and Orlin

[2002] model a machine scheduling problem as an instance of the maximum flow problem (without

semicontinuity restrictions). A slight generalization of their problem is as follows. Let J be a set of

jobs, M be a set of machines, and W be a set of workers. Let M(j) be the set of machines on which

job j can be processed, and let W(m) be the set of workers that can process any job on machine m.

Each job j ∈ J has a required processing time, pj , and each worker w ∈ W can perform no more

than hw total hours of work. The processing speed for each job does not depend on the worker or the

machine. This problem can be on a graph G′ = (V ′,A′), using the concepts from [Aggarwal and Orlin,

2002]. Set V ′ contains source s, sink t, and nodes corresponding to J , M, and W. Set A′ contains

arcs (s, j), ∀j ∈ J ; arcs (j,m), ∀j ∈ J and m ∈ M(j); arcs (m,w), ∀m ∈ M and w ∈ W(m);

and arcs (w, t), ∀w ∈ W. The flow on any path (s, j,m,w) represents the time worker w spends

processing job j on machine m. The required processing times pj for each j ∈ J provide capacities

on each arc (s, j) ∈ A′, and the worker processing limits hw, w ∈ W , serve as the capacities for each

arc (w, t) ∈ A′. All other arcs are uncapacitated. Solving the MFP thus determines how much of the

total required processing time over all jobs can be scheduled on the machines using the available

resources.

5



For some cases of this problem, a worker may require added effort when switching to a new

job or machine. This additional effort is often undesirable for many reasons, including safety and

quality considerations that arise when workers switch tasks (see, e.g., [Monsell, 2003]), or extra costs

that might be incurred in switching tasks. Practical guidelines would require each worker to spend a

minimum amount of time processing job j on machine m before switching to a new job or machine.

Our static-stable restrictions in Chapter 4 model this policy, since each path corresponds to a unique

combination of job j being processed on machine m by worker w. A slight modification occurs when

jobs that can be performed on a common machine are so similar that the cognitive and physical

effort for a worker to switch from one job to another is negligible, although the effort to switch work

on one machine to another remains significant. A minimum processing time policy in this case can

be modeled by a set of dynamic-stable restrictions placed on each arc (m,w) ∈ A′ to ensure that a

worker spends at least ` units of time processing jobs on machine m.

Finally, problems in dynamic network flow problems commonly arise in time-dependent

network flow settings. For example, the dynamic flow problem having setup costs also models network

flow problems in interdependent infrastructure systems. Cavdaroglu et al. [2013] consider the problem

of restoring public services after a disaster disrupts civil infrastructure systems. In these problems,

the managers pay a fixed financial or labor cost to deploy a set of temporary arcs that provide an

interim infrastructure for deploying services (e.g. transportation, telecommunication, and power).

Since these infrastructures are commonly interdependent, restoration and planning decisions must be

made according to non-simultaneous schedule. Therefore, the dynamic flow problem having setup

costs could be employed to model a variation of this problem, in which temporary arcs expire after

infrastructures stop using them.

1.3 Dissertation Organization

Chapter 2 first includes a comprehensive survey of maximum flow-related problems in WSN

settings. Furthermore, WSN optimization problems also consider alternative metrics (e.g., coverage

area, connectivity, and transmission delay) in addition to maximum flow. Our survey also discusses

these various optimization challenges and describes some of the proposed algorithms currently existing

in the literature. The open topics within the literature found while working on this survey led to the

problems considered and techniques employed in the latter chapters of this work.
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In Chapter 3, we present two augmenting-flow algorithms that avoid solving a large LP for

the NCMFP. Both algorithms modify the augmenting-path algorithm to obtain a feasible NCMFP

solution. The first algorithm implements two smaller auxiliary LPs to solve the NCMFP. These

two LPs augment either prove the optimality of the current NCMFP solution, terminate with a

feasible NCMFP solution, or augment flow first on a circulation to increase some node capacities

and then on an s–t path to maximize additional flow in the network. This first algorithm is an

almost-exact solution technique and tends to encounter small, easily solvable LPs. In a majority of

cases, this technique obtains an optimal NCMFP solution. In other cases, this technique produces

quality solutions to the NCMFP that are close to optimal. However, some situations might call for

the complete avoidance of LP subroutines. Accordingly, our second approach is heuristic only, and

modifies the circulation-generation part of the first approach to obviate the necessity of solving an

LP.

Chapter 4 details models and algorithms for solving the MFP having semicontinuous flow

restrictions on paths in simultaneous flow settings. We first establish the relationship between

the feasible regions of arc-based and path-based stability restrictions. As opposed to solving a

mixed-integer programming (MIP) model, we propose a branch-and-price algorithm for this problem,

including a specialized branching strategy that leverages the existence of cut-sets in a non-feasible

solution. Additionally, we highlight a special type of cut-set that allows for stronger branching

inequalities. We finally detail the efficacy of our algorithm on a randomly-generated set of test

networks.

We finally study a pair of dynamic network flow problems in Chapter 5. The first problem

considers the presence of setup requirements, and the second considers the presence of setup costs. The

former can be modeled by the MFP having dynamic stability restrictions (MFP-D). The motivation

behind dynamic stability is that when an arc is used to send flow, it sends at least ` units of flow in

an uninterrupted interval of time. The latter problem can be modeled by the minimum-cost flow

problem having arc-activation costs (MCF-A), in which an arc (i, j) is said to be activated on path

p when (i, j) has positive flow on the pth scheduled path, but not on the (p− 1)st scheduled path.

We first introduce the notion of dynamic stability as well as an MIP model for the MFP-D. We

present a heuristic algorithm that obtains lower and upper bounds for the MFP-D. We then provide

motivation for the MCF-A and present an MIP model for its solution. As an alternative to this MIP,

we employ a relaxation-based algorithm for obtaining upper and lower bounds that increases the
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number of paths in an MCF-A schedule, as needed.
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Chapter 2

Survey of Maximum Lifetime

Maximization Problems in WSN

Applications

2.1 Introduction

We consider a general WSN having a set of target nodes, sensor nodes, and a single sink node

(Figure 2.1). Targets are physical locations within the environment where the conditions of interest

originate. Information found at these targets must be monitored and retrieved by a sensor. Upon

retrieval, sensors are tasked with sending this data to the sink for collection and processing. The

WSN sink then aggregates and processes environmental information retrieved by sensors. Sensors

can transmit data directly to the sink, as depicted in Figure 2.1a. Alternatively, sensors can transmit

data to the sink via multi-hop communication, where sensors relay data through neighboring sensors

en route to the sink, as shown in Figure 2.1b [Pottie and Kaiser, 2000, Raghavendra et al., 2004].

Note that in WSNs employing multi-hop communication, a significant amount of data flows through

a relatively small set of sensors located near the sink, which may consume their battery prematurely.

This behavior is called the energy-hole problem [Li and Mohapatra, 2005, 2007], and is typical of

WSNs employing multi-hop communication. Whereas the energy required for a sensor to receive data

may only be a function of the amount received, energy required to transmit data to an object (such
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(b) WSN multi-hop communication

Figure 2.1: Wireless sensor network routing

as another sensor or sink) predominantly depends on both the amount of data transmitted and the

distance between the sensor and that object. Each sensor possesses finite battery power to handle

these expenditures. Because WSNs can be used to, e.g., observe adversarial movement, monitor

weapons testing, and detect seismic activity [Dutta et al., 2010, Min et al., 2012, Werner-Allen et al.,

2006], sensors often dwell in hostile or inaccessible areas where battery replacement is impractical or

prohibitively costly. When the battery is fully consumed, a sensor is no longer able to monitor targets,

thus rendering the network inoperative. As a result, many studies address maximizing WSN lifetime,

defined as the first time at which a sensor’s battery is exhausted [Basagni et al., 2009, Behdani et al.,

2012, Chang and Tassiulas, 1999, 2004, Keskin et al., 2011, Gatzianas and Georgiadis, 2008]. Most

WSN studies omit the targets in our problem setting and assume that the sensors are assigned a

priori to targets. We will adopt that assumption in this chapter unless otherwise specified.

Multi-hop communication is often employed to prolong network lifetime by balancing energy

consumption across all sensors. To illustrate this balancing mechanism and its benefits, the small

example in Figure 2.2 depicts a network having two sensors, A and B, and a single sink, C. The goal

is to transmit data from A to C as long as possible, with B serving solely as a relay node where data
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is not retrieved. In this example, each unit of data transmitted a distance of d consumes d units

of energy at the transmitting sensor and one unit of energy at the receiving sensor. The distances

from A to B, A to C, and B to C are 6, 9, and 5 units, respectively (Figure 2.2a). Suppose that

batteries at sensors A and B possess 18 total units of energy each. Using direct communication,

sensor A would only be able to send two units of data directly to C, while B would not consume

any battery power (Figure 2.2b). On the other hand, suppose data is sent from A to B, and then

from B to C, as in Figure 2.2c. Each transmitted unit consumes six units of energy at A, while B

consumes one unit to receive the data and five more to relay it to C. Thus, while only two units can

be transmitted directly from A to C, three units of data can be transmitted on the A-B-C path. The

latter route requires more total energy, but more importantly balances energy consumption to extend

the network lifetime.!
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Figure 2.2: WSN multi-hop communication example

Due to their low cost and practical importance, sensor applications arise in many diverse

areas. Three examples of these areas follow.

• The advent of body area networks (BANs) promises to allow physicians to monitor individual

health on a real-time basis. A BAN is a type of WSN that consists of a networked group of

sensors located in a non-invasive or invasive manner on the body, tracking items such as sleep

habits, blood glucose, blood pressure, and EEG patterns [Chen et al., 2011, Ko et al., 2010].

Of interest in this chapter are sensors that can be implanted in the body, for whom battery

conservation is more critical. Movassaghi et al. [2014] discuss opportunities for implanted BANs

to monitor diabetes, cardiovascular disease, and cancer detection and spread.
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• The ability to monitor or provide surveillance in military applications clearly relies on WSN

deployment and operations. Lee et al. [2009] describe several defense scenarios. Some involve the

deployment of sensors on equipment or personnel in the field in order to coordinate operations

and avoid casualties due to friendly fire. Others place sensors behind enemy lines, forcing

them to self-organize and conserve battery utilization. These sensors can be ground-, sea-, or

air-based in practice.

• Environmental monitoring is a third primary application area for WSN deployment. Lundquist

et al. [2003] describe an application in which sensors are used to monitor meteorological

and hydrologic processes in the Sierra Nevada mountain range. This landscape is difficult

to traverse, and so it becomes advantageous to use sensors to monitor conditions in these

areas. A similar project is discussed in the Swiss Alps, in which the researchers seek to detect

conditions under which avalanches will occur [Barrenetxea et al., 2008], in addition to the same

types of data sought in [Lundquist et al., 2003]. The inaccessibility of these environment and

dangers associated with avalanches justify the need for WSN use and the conservation of sensor

batteries.

WSN Lifetime 
Maximization 

Online 
Algorithms 

(Section 2.3)

Discrete Node 
Positions

Static WSNs 
(Figure 2.4)	

Future Challenges 

Current Research Mobile WSNs 
(Figure 2.5)	

Continuous 
Node Positions 

Rechargeable 
Batteries 

Non-rechargeable 
Batteries 

Offline 
Algorithms 

Figure 2.3: WSN taxonomy

Some WSNs group sensors into clusters to decentralize and simplify network coordination.

Rather than randomly deploying sensors, some WSNs assume a specific topology, such as a uniform
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two-dimensional grid to simplify routing decisions. Other application areas allow sensors to fuse

data gathered from multiple targets before transmission to the sink. By doing so, the size of data

transmission packets are reduced to lessen energy consumption. Additionally, sinks may be able

to move about the sensing area to balance energy consumption. In such cases, sensors may locally

buffer data to delay transmission until the moving sink arrives at a more favorable location. Figures

2.3, 2.4, and 2.5 display a taxonomy of WSN lifetime maximization research to describe various

attributes of and interrelationships between the problems we address.

Single Sinks 
(Sections 2.2-2.3)

Topology

Virtual 
Backbone 

(Section 2.3.4) 

Static 
WSNs

Multiple Sinks 
(Sections 2.4) 

Imperfect 
Information

Grid-based 
(Section 2.3.3) 

Clustering 
(Section 2.3.2) 

Stochastic 
Optimization 

Robust 
Optimization 

Figure 2.4: Static WSN taxonomy

Because of the recent attention to WSNs, other papers have reviewed a portion of the

research literature in this field. Yick et al. [2008] and Rawat et al. [2014] provide a broad overview

of fundamental WSN research, in which they highlight various application areas, in addition to

standard operating systems, communication protocols, and network services. Other review articles

focus on algorithms and mathematical modeling approaches for WSN optimization. Anastasi et al.

[2009] and Rault et al. [2014] review papers that examine WSN design for various application areas.

Another set of articles review WSN routing protocols. Akkaya and Younis [2005] focus on hierarchical

and location-based approaches for routing, while Pantazis et al. [2013] consider communication

models, topology, and reliability when making routing decisions. Additionally, Yu et al. [2014], Tunca

et al. [2014], and Sara and Sridharan [2014] survey routing protocols and deployment techniques

13



Sink Mobility 
(Section 2.4.2) 

Non-negligible 
Sink Travel 
Energy Cost 

Delay-tolerant 
Applications 

(Section 2.4.2.2) 

Mobile 
WSNs

Sensor 
Mobility 

Non-delay-tolerant 
Applications 

(Section 2.4.2.1) 

Figure 2.5: Mobile WSN taxonomy

for mobile-sink WSNs. Whereas these works primarily focus on algorithms for energy consumption

minimization, this chapter concentrates on algorithms and mathematical models for maximizing

WSN lifetime.

Rather than minimizing energy consumption, Younis et al. [2014] and Li et al. [2013] explore

topology design and control techniques for maximizing coverage and connectivity. Other authors

review clustering approaches for improving network scalability ([Abbasi and Younis, 2007], [Afsar

and Tayarani-N., 2014], [Schaffer et al., 2012]). These papers review algorithms that focus on

various objectives independent of WSN lifetime. Alternatively, we also give a broader overview of

topology-based approaches that focus on maximizing WSN lifetime.

The rest of the chapter is organized as follows. In Section 2.2 we present notation and

solution techniques for the fundamental WSN lifetime maximization problem. We discuss online

routing, clustering techniques, and lifetime maximization on special structures in Section 2.3. Section

2.4 then highlights extensions to the fundamental problem that result from having multiple sinks,

which may also be mobile instead of stationary. We review problems and algorithms that consider

alternative optimization metrics to lifetime maximization in Section 2.5. Finally, we examine some of

the ongoing and future challenges facing WSN optimization in Section 2.6. Summary tables appear

in the beginning of each section that provide an overview of the research discussed in that section.
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2.2 Mathematical Optimization Models for the Fundamental

Lifetime Maximization Problem

This section begins by formally describing and stating the fundamental lifetime maximization

problem in Section 2.2.1. Because of its prevalence in the WSN optimization literature, we also

describe a column-generation scheme for the solution of this problem in Section 2.2.2. Table 2.1

summarizes the most pertinent papers discussed in Section 2.2.

Author (Model) Problem specification Technique

General topology single-sink algorithms

Chang and Tassiulas [1999] (FR
and MREP)

Data-routing to balance energy
consumption

LP formulation, two flow-aug-
menting algorithms that redirect
flow

Xue et al. [2005] Tree-based data-routing (1− ε)-approximation polynomial
time algorithm to create a data-
routing tree rooted at the sink

Madan and Lall [2004] Partially-distributed data-rout-
ing

Lagrangian relaxation of an LP,
subgradient algorithm to solve se-
parable subproblems

Table 2.1: Section 2.2 summary

2.2.1 Fundamental Problem Description and Formulation

The fundamental problem we consider determines a data-routing plan consisting of a set of

data flows from all targets to the sink in a manner that maximizes network lifetime. This problem

can be formulated as a linear program (LP) introduced by Chang and Tassiulas [1999], who assume

that each target is assigned a priori to a sensor. As such, data origination rates associated with the

targets can instead be assigned directly to a sensor, allowing us to omit targets from our analysis.

Consider a graph G having a set of nodes N composed of sensors S and a single sink. Let each sensor

i ∈ S possess an initial battery power Pi > 0 and a total data origination rate of bi > 0. The energy

required by sensor i to send a unit of data to node j is eij > 0, ∀i ∈ S, j ∈ N . Chang and Tassiulas

assume that the energy required to receive a unit of data is negligible, but for the sake of generality,

we define chi as the amount of energy required by sensor i to retrieve one unit of data from sensor h.

Let variable z represent the WSN lifetime and variables yij be the data transmitted from node i ∈ S

15



to j ∈ N . The following LP maximizes WSN lifetime [Chang and Tassiulas, 1999].

max z (2.1a)

s.t.
∑
j∈N

yij −
∑
h∈S

yhi − biz = 0 ∀i ∈ S (2.1b)

∑
j∈N

eijyij +
∑
h∈S

chiyhi ≤ Pi ∀i ∈ S (2.1c)

yij ≥ 0 ∀i ∈ S, j ∈ N (2.1d)

The objective function (2.1a) and constraints (2.1b) maximize WSN lifetime while ensuring flow

balance. Constraints (2.1c) enforce energy-capacity constraints on sensor i ∈ S and constraints (2.1d)

guarantee that no flows become negative.

Consider the following single-sink WSN lifetime maximization example in Figure 2.6, where a

WSN contains sensors A, B, C, and D, and one sink, E. The edge labels denote the distance between

each pair of objects. For this example, c- and e-values equal the distance between objects (e.g., a unit

of flow from A to C consumes 10 units of energy at both A and C). We assume that sensors A and B

are unable to transmit data directly to E. Sensors possess Pi = 500 units of energy, ∀i = A,B,C,D.

Additionally, the amount of data originating at each sensor is bA = 8, bB = 10, bC = 0, and bD = 0

units/hour.
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Figure 2.6: Single-sink WSN distances

We define the lifetime, Li, of sensor i to be the number of hours that sensor i retrieves and

transmits data given its battery power. Letting yij be the data flow per hour on arc (i, j), the energy

required per hour by sensor i ∈ S is Ti. The lifetime for sensor i becomes Li = Pi/Ti. We then define

the WSN lifetime to be the minimum lifetime among all sensors. Figure 2.7 presents an optimal set
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of data flows per hour that maximizes WSN lifetime.
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Figure 2.7: Optimal data flows per hour

Given these flows, the lifetime of sensor A is 500/80 ≈ 6.3 hours, sensor B is 500/100 = 5

hours and sensors C and D are LC = LD = 500/217.3 ≈ 2.3 hours. Therefore, the maximum WSN

lifetime is 2.3 hours.

2.2.2 Column Generation Approach

For a fixed value of z, the formulation given by (2.1) contains traditional network flow

constraints (2.1b), which are then complicated by the presence of energy-capacity constraints (2.1c).

The latter set of constraints are accordingly referred to as complicating constraints in the literature.

In general, complicating constraints are those that, when removed, reveal a constraint structure that

is more amenable to solution via mathematical optimization or specialized algorithms, thus reducing

solution time and possibly decentralizing decision-making [Dantzig and Wolfe, 1960]. Two notable

decomposition methods that exploit this special structure are column generation (CG) [Desrosiers

and Lübbecke, 2005] and subgradient optimization of a Lagrangian relaxation (LR) problem [Fisher,

1985].

We focus on describing a CG approach for solving (2.1); see also [Alfieri et al., 2007, Behdani

et al., 2012, Castaño et al., 2015, 2014, Castao et al., 2013, Gentili and Raiconi, 2013, Rossi et al.,

2012b,a, Türkoğullari et al., 2010]. For an example of LR applied to (2.1), see [Madan and Lall,

2004]. Let K be the set of all possible data-routing patterns, where a pattern is given by an acyclic

set of flows on G that satisfies (2.1b) and (2.1d) with z fixed to 1. Define constants ykij as the amount

of flow from sensor i ∈ S to j ∈ N in pattern k ∈ K. The following LP contains variables λk that
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represent the amount of time we send flow on pattern k ∈ K, and is equivalent to model (2.1).

max
∑
k∈K

λk (2.2a)

s.t.
∑
k∈K

∑
j∈N

eijy
k
ij +

∑
h∈S

chiy
k
hi

λk ≤ Pi ∀i ∈ S (αi) (2.2b)

λk ≥ 0 ∀k ∈ K (2.2c)

The objective function (2.2a) maximizes WSN lifetime while constraints (2.2b) enforce energy-capacity

constraints on each sensor and constraints (2.2c) enforce flow nonnegativity.

By enumerating all possible patterns, model (2.2) is equivalent to (2.1) [Desrosiers and

Lübbecke, 2005]. Since a majority of patterns in K will be non-basic at an optimal solution to (2.2),

we formulate a restricted master problem (RMP) that maximizes network lifetime considering only a

subset of all patterns K∗ ⊂ K. Suppose that we optimize this RMP and identify primal and dual

optimal solutions. (The RMP must have a feasible solution since the trivial solution λk = 0, ∀k ∈ K∗

is feasible. The fact that all e-values are positive guarantees that the RMP is bounded. These facts

guarantee the existence of an optimal solution to the RMP.) Let αi be the optimal dual values for

the energy-capacity constraints (2.2b) in the RMP. We formulate an LP subproblem to find a new

data-routing pattern having a positive reduced cost. Letting the continuous variable wij be the flow

from sensor i ∈ S to j ∈ N , we formulate the following subproblem:

min
∑
i∈S

αi

∑
h∈S

chiwhi +
∑
j∈N

eijwij

− 1 (2.3a)

s.t.
∑
j∈N

wij −
∑
h∈S

whi − bi = 0 ∀i ∈ S (2.3b)

wij ≥ 0 ∀i ∈ S, j ∈ N , (2.3c)

where the objective function (2.3a) is the negative of the reduced cost of a data-routing pattern.

This negation is performed to show that the subproblem (also called the pricing problem) reduces to

a min-cost-flow problem with nonnegative costs.

The CG algorithm proceeds as follows. The RMP is solved with some set of initial feasible

patterns in K∗. We obtain the dual values αi to formulate the objective function of (2.3). If the
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optimal objective function value to (2.3) is negative, then the identified pattern has a positive reduced

cost. We add that pattern to K∗ and re-solve the RMP. This process repeats until no positive

reduced-cost patterns are found, which implies that the current solution to the RMP is also optimal

to (2.1).

For large networks, solving (2.1) directly or by a decomposition method may require significant

computational effort. Thus, Chang and Tassiulas [1999] present two flow-augmenting heuristics: the

flow redirection (FR) and minimum residual energy path (MREP) algorithms. Starting with an initial

feasible data-routing plan, both algorithms seek to balance flow among all target-to-sink paths. The

balancing strategy establishes a mechanism for evaluating path length, and the algorithms redirect

a portion of flow from a longest path to a shorter path. The FR algorithm defines path length as

the minimum lifetime of sensors on the path, whereas the MREP defines it as the minimum inverse

residual energy of sensors along the path. The FR algorithm produces solutions whose objectives are

on average 95% of optimality, while the MREP algorithm produces a ratio of 96%.

Xue et al. [2005] create an approximation algorithm to the maximum lifetime problem as

opposed to solving (2.1). Their algorithm constructs a routing solution based on path augmentation,

where arc lengths are a function of the data currently transmitted on them. Based on those lengths,

the authors iteratively employ the Garg and Köneman [1998] to find a shortest path from all

sensors to the sink, push a limited amount of flow on the shortest among these paths, and then

recalculate the arc lengths. The authors demonstrate that their polynomial-time algorithm provides

a (1− ε)-approximation, for any given parameter ε > 0.

The elegant LP (2.1) and associated algorithms mentioned in this section are effective for

many classes of WSN optimization problems, but even minor adjustments to the assumptions on how

these networks function necessitate completely different algorithms for these problems. Moreover,

many other considerations exist beyond data-routing and energy utilization in these networks. The

following sections explore these models and algorithms in more detail.

2.3 Extensions to the Fundamental Lifetime Maximization

Problem

In Section 2.3 we examine several extensions to the fundamental lifetime maximization

problem presented in Section 2.2. First, Section 2.3.1 details online algorithms, which determine data
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transmission paths without knowledge of future data-routing requests. In Section 2.3.2, we examine

the case when sensors are partitioned into multiple clusters to improve scalability. In Section 2.3.3,

we consider the case in which sensors are uniformly deployed to form a grid-like topology. Then,

in Section 2.3.4, we review protocols and algorithms used to form virtual tree backbones among

sensors in the network. Tables 2.2 and 2.3 summarize key papers found in Sections 2.3.1 and 2.3.2,

respectively, and Table 2.4 summarizes those found in Sections 2.3.3 and 2.3.4.

Author (Model) Problem specification Technique

Online algorithms

Aslam et al. [2003] Zone-based data-routing Avoid high total-energy paths,
maximize the smallest residual-
energy fractional edge in a path

Toh et al. [2011] Data-routing Avoid low-remaining-energy sen-
sors, minimize total energy con-
sumed on a path

Park and Sahni [2006] (OML) Distributed data-routing Successive minimum weight path
routing, where weight is a func-
tion of residual energy

Mohanoor et al. [2009] Data-routing Minimum weight routing as a
function of residual energy, tie-
breaking by energy consumption

Wahid et al. [2014] Distributed data-routing on dy-
namic underwater networks

Myopic routing based on distance
to sink and residual energy

Table 2.2: Section 2.3.1 summary

2.3.1 Online Algorithms

Solution techniques to the problem presented in Section 2.2 are said to be offline since

all data-routing requests are known before the routes are planned. Alternatively, online data-

routing algorithms consider the case in which data-routing requests arrive nonsimultaneously. These

algorithms must therefore determine data transmission paths without knowledge of future requests.

As such, the optimal maximum lifetime assuming offline routing is an upper bound on the maximum

lifetime assuming online routing.

Aslam et al. [2003] propose an online heuristic that tends to avoid data transmission through

low-energy sensors while choosing relatively low total-energy paths. Define the residual energy
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Author (Model) Problem specification Technique

Clustering algorithms

Heinzelman et al. [2000]
(LEACH)

Distributed clusterhead selection Localized clusterhead selection ba-
sed on residual energy levels of
neighboring sensors

Heinzelman et al. [2002]
(LEACH-C)

Clusterhead selection Simulated annealing approach to
cluster construction and cluster-
head selection

Kumar et al. [2009] (EEHC) Clusterhead selection Restrict sensors that cover targets,
avoid selecting low-energy sensors
as clusterheads

Muruganathan et al. [2005] Clusterhead selection and data-
routing

Clusters chosen based on residual
energy, minimum spanning tree
for routing and data scheduling

Javaid et al. [2013] Dynamic clusterhead selection Periodic clusterhead selection
based on residual energy levels

Ducrocq et al. [2013] Distributed clusterhead selection Clusterhead selection based on
node degree, density, and resid-
ual energy, tree construction for
routing

Leu et al. [2015] (REAC-IN) Distributed zone-based cluster-
head selection

Based on average residual en-
ergy and distance between sensors
within each zone

Nikolidakis et al. [2013] Clusterhead selection and sche-
duling

LP to minimize clusterhead ener-
gy consumption, scheduling pro-
tocol to avoid data collisions

Latiff et al. [2007] (PSO-C) Clusterhead selection and data-
routing

PSO algorithm based on residual
energy levels, scheduling protocol
to avoid data collisions

Singh and Lobiyal [2012] Clusterhead selection with data
retransmission

PSO algorithm based on intra-
cluster distances

Kuila and Jana [2014] Cluster formation and data-rout-
ing

PSO algorithm to solve optimi-
zation models that balance energy
usage among intra-cluster sensors

Table 2.3: Section 2.3.2 summary

fraction of edge (i, j) as uij = (Pi − eij)/Pi. The heuristic evaluates the quality of a path by the

smallest residual energy fraction edge that lies on the path. The goal is to find the highest quality

path possible, subject to the restriction that the total energy consumed by the path cannot exceed

some maximum threshold value, τ . Their algorithm first employs Dijkstra’s algorithm to find a
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minimum energy path and computes the minimum residual energy fraction umin among all edges

on the path. The algorithm then removes all edges whose residual energy fraction is no more than

umin from the graph, and finds a new minimum energy path. When the energy consumed by a

minimum energy path exceeds τ , or when no path exists, the data-routing request is transmitted

on the minimum energy path from the most recent iteration. This approach requires centralized

coordination, which may be difficult to implement for large networks. Thus, the authors also propose

a hierarchical zone-based approach to implement their algorithm within smaller sensor zones. The

authors conclude that their initial approach achieves over 90% of the optimal offline data-routing

objective for many instances.

Whereas Aslam et al. [2003] place an upper bound on a path’s energy consumption, Toh et al.

[2011] present an algorithm that minimizes the energy consumption of each data transmission path,

in which data may only be transmitted through sensors having remaining energy levels above some

threshold. Their approach trims the network of low-energy sensors and implements a shortest-path

algorithm to determine each path, where edge weights are defined as the energy required to transmit

data between two nodes. If no path exists in the trimmed network, then their algorithm chooses a

path in the original network that maximizes the minimum remaining energy level among all sensors

on the path.

Park and Sahni [2006] also present an online maximum lifetime (OML) heuristic, in which

they define the residual energy of edge (i, j) to be Pi − eij . Their algorithm first trims the network

of all edges requiring more energy than available for transmission, determines a minimum energy

path in the resulting network, computes the minimum residual energy (minRE ) of all edges on this

path, and finally removes all edges whose residual energy is less than minRE. The authors then

assign a weight to each remaining edge as a function of eij and Ei. This weighting function assigns a

relatively high weight to each edge whose use will reduce a sensor’s energy level below some minimum

threshold. The authors then choose a minimum-weight path on which the data-routing request is

transmitted. The authors also present a distributed version of the OML algorithm that divides

sensors into clusters, with each cluster having a designated clusterhead (see Section 2.3.2 for more

research on WSN clustering). The OML algorithm results in higher average lifetime values than

those found in [Aslam et al., 2003] and [Toh et al., 2011].

Mohanoor et al. [2009] extend the previous works to develop a two-phase online algorithm

that maximizes lifetime if multiple shortest paths exist in the trimmed network for each incoming
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data-routing request. In the first phase, a variant of Dijkstra’s algorithm computes a path that

maximizes the minimum residual energy, B, among all sensors on the path, where residual energy is

again defined as in [Park and Sahni, 2006]. If multiple shortest paths are found during phase one,

the second phase removes edges whose residual energy is less than B and selects (from among the

shortest paths in the first phase) a path that minimizes total energy consumption. The authors show

that their algorithm prolongs WSN lifetime compared to algorithms in [Aslam et al., 2003] and [Park

and Sahni, 2006].

Online routing algorithms are especially useful in applications where network information

dynamically changes due to environmental influences. One such application arises in underwater

WSNs, where sensors may be periodically relocated due to ocean currents. Wahid et al. [2014]

formulate an online routing protocol to maximize the number of successful data transmissions for

underwater WSNs. Rather than individually routing each incoming request, their protocol determines

a data-routing plan for a set of requests at each sensor over some time period. To determine this

plan, their protocol first computes edge lengths and quality by transmitting minuscule messages

between neighboring sensors. Each sensor then transmits data on a high-quality edge to a node

closer to the sink having sufficient residual energy. This process iterates at each node until the data

transmission arrives at the sink. Since currents constantly change sensor positions, their protocol

intermittently updates edge length, edge quality, and residual sensor energy levels, and determines a

new data-routing plan for the next set of incoming requests. Their approach outperforms distance-

based routing protocols for underwater WSNs in terms of network lifetime, energy consumption, and

transmission delay.

2.3.2 Clustering Techniques

Sensors can be partitioned into multiple clusters to employ techniques that reduce the size

of the network and simplify data-routing decisions. These techniques divide sensors into clusters,

each having a designated clusterhead that computes local routing decisions among sensors within its

own cluster (Figure 2.8). Creating sensor clusters also minimizes the burden of communication since

only the clusterhead communicates with the sink. Some studies assume that clusters are given (e.g.,

[Latiff et al., 2007]), while others examine the generation of the clusters (e.g., [Kuila and Jana, 2014,

Singh and Lobiyal, 2012]). Other research strategies use sensor clustering to decentralize network

protocols [Javaid et al., 2013, Liu and Cao, 2012, Nikolidakis et al., 2013, Singh and Lobiyal, 2012].
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Figure 2.8: WSN clustering method

In addition to data-routing decisions, clustering algorithms often need to determine which

node will serve as the clusterhead. Heinzelman et al. [2000] present the low-energy adaptive clustering

hierarchy (LEACH) protocol, which uses localized coordination and control for cluster formation and

operation. In this protocol sensors elect themselves to serve as the clusterhead based on residual

energy levels among neighboring sensors. Sensors then transmit data directly to the most favorable

clusterhead to form clusters. The clusterhead creates a schedule of data-flow paths from each

sensor in its cluster to avoid data collisions, which may occur when a clusterhead simultaneously

receives data from multiple sensors, thus resulting in inaccurate data transmissions. To balance

energy consumption, clusterhead locations are rotated according to some probability when the

current clusterhead’s residual energy reaches a minimum threshold. Maximum lifetime values found

using LEACH were significantly larger than those computed by algorithms that primarily focus on

minimizing energy consumption.

Sensors employing the LEACH protocol rely on localized information to elect themselves

as clusterheads independent of energy levels at non-neighboring sensors, which can lead to uneven

distribution of clusterheads within the WSN. To ameliorate this problem, Heinzelman et al. [2002]

formulate the centralized LEACH (LEACH-C) protocol in which each sensor broadcasts its informa-

tion across the network. Considering only sensors having above-average energy levels, LEACH-C

implements a simulated annealing algorithm to find a near-optimal set of k clusters and clusterheads.

The energy efficient heterogeneous clustered scheme (EEHC) by Kumar et al. [2009] provides a

related approach for the case in which some predetermined set of sensors is only allowed to monitor
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targets, while sensors having high initial energy levels can relay, process, and transmit data to the

sink.

Muruganathan et al. [2005] also implement a centralized clustering protocol to balance

energy consumption in which only sensors having above-average residual energy levels serve as the

clusterhead. At each iteration of the algorithm, some central node determines a set of clusterheads

and partitions sensors into clusters to balance the load of each clusterhead. (One cluster of sensors will

have the sink represent the clusterhead.) For inter- and intra-cluster routing decisions, their protocol

creates a minimum spanning tree rooted at the clusterhead to minimize energy consumption and

ensure full connectivity. They additionally provide a scheduling scheme to minimize the number of

data collisions. Their approach ensures that each clusterhead serves approximately the same number

of sensors to avoid early exhaustion and ensure an even distribution of clusterheads throughout

the network. As a result, their approach reduces overall energy consumption and prolongs network

lifetime when compared to LEACH and LEACH-C.

The previous approaches are designed for static sensing environments. For the dynamic case,

the choice of clusterhead should change depending on evolving sensing needs. Accordingly, Javaid

et al. [2013] examine a dynamic approach to the clusterhead selection problem. After a sensor serves

as the clusterhead for some predetermined period of time, their approach updates residual energy

levels and chooses a sensor having the maximum residual energy level to serve as the clusterhead.

This technique enables dynamic adaptation to the environment, allowing data flows to balance energy

consumption across the network. Simulations show that this approach results in longer lifetime values

than static clustering protocols.

For WSNs incapable of centralized sensor coordination, Ducrocq et al. [2013] propose an

energy-aware clustering protocol to create non-overlapping clusters in a distributed fashion. This

protocol considers node degree and density in addition to residual sensor energy levels when selecting

a clusterhead. Each link is initially assigned a weight as a function of the residual energy of the nodes

incident to the link, where a large weight corresponds to an edge connecting high-energy sensors. In

the first step, their protocol trims the WSN graph by removing an edge having the smallest weight in

every triangle of the graph. Once the graph is reduced, some predetermined number of clusterheads

are selected based on residual energy levels, and clusters are formed through a tree construction

algorithm. For a semi-distributed implementation, each sensor broadcasts its residual energy, node

degree, and density level to neighboring sensors. Their algorithm provides longer network lifetime
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values than LEACH for WSNs having relatively few clusterheads, while LEACH performs better in

WSNs having a large number of clusterheads.

Unbalanced cluster formations can also lead to isolated sensors, defined as any sensor that is

located excessively far from the nearest clusterhead, and thus requires substantial energy expenditures

to transmit data to a neighboring sensor. To minimize energy consumed at such a node, Leu et al.

[2015] propose the regional energy aware clustering with isolated nodes (REAC-IN) protocol to select

clusterheads based on the residual energy of each sensor, the average residual energy of sensors

within a cluster, and the distance between each sensor and proposed clusterhead. Their protocol

identifies isolated nodes and decides whether data at such nodes should be transmitted to the nearest

clusterhead or directly to the sink, depending on the average residual energy among neighboring

sensors and the distance between those sensors and the sink.

Rather than taking a heuristic approach, Nikolidakis et al. [2013] propose a centralized

LP model for the cluster formation and clusterhead selection problems to minimize the energy

consumption at each clusterhead. A solution to this problem provides the frequency and duration

of time each sensor serves as a clusterhead. After solving the LP, they implement a scheduling

protocol to avoid data collisions. Furthermore, the authors solve their LP again to determine a new

set of clusterhead locations if there is some change in node position or energy consumption. Results

show that their approach not only minimizes energy consumption but maximizes network lifetime

compared to LEACH [Heinzelman et al., 2000] and the algorithms presented by Muruganathan et al.

[2005].

Another portion of the literature employs particle swarm optimization (PSO) for clustering

decisions related to WSN lifetime maximization. A PSO algorithm consists of a swarm or pool of

candidate solutions called particles that explore some solution space in search of a global optimal

solution [Kennedy, 2011]. Each particle possesses a fitness function to evaluate the quality of the

associated solution. Particles also use velocity and direction vectors to iteratively move through the

search space until either an acceptable solution is found or a fixed number of iterations is reached.

Latiff et al. [2007] implement a centralized energy-aware clustering PSO algorithm (PSO-C)

for the clusterhead selection and data-routing problems. During the setup phase of PSO-C, each

sensor notifies the sink of its position and residual energy level to compute the average residual energy

among all sensors. Clusterheads may only be selected from among sensors having above-average

residual energy levels. To finish the setup phase, the PSO-C selects the k best sensors to serve as
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clusterheads, based on a particle fitness function that rewards minimum intra-cluster distances and

balanced energy consumption. The authors then employ a scheduling protocol to coordinate data

transmissions with the goal of avoiding data collisions. This two-phase algorithm iterates until an

acceptable solution is found. Their algorithm evenly distributes clusterheads throughout the network

to provide higher network lifetime values than those given by LEACH [Heinzelman et al., 2000] and

LEACH-C [Heinzelman et al., 2002] algorithms.

Singh and Lobiyal [2012] also take a PSO approach for generating energy-aware clusters.

Their approach seeks to minimize the average distance between a sensor and its clusterhead, using a

particle fitness function that combines average transmission distance, residual energy levels, node

degree, retransmission levels, and the number of times a sensor serves as the clusterhead. Rather

than preventing data collisions, their approach simply retransmits initially unsuccessful transmissions.

They seek to minimize data retransmissions by avoiding sensors prone to data collisions. The authors

show that their algorithm achieves better energy savings and WSN lifetime values than those produced

by PSO-C [Latiff et al., 2007].

Kuila and Jana [2014] present LP and nonlinear programming (NLP) models for the WSN

data-routing and cluster formation problems, respectively. The routing approach is an LP that jointly

minimizes the maximum data transmission distance and the maximum number of transmission hops.

The objective function for the NLP balances energy consumption by maximizing the ratio of the

minimum clusterhead lifetime to the average distance between sensors and their clusterhead. Due

to the difficulty of solving these two models, the authors propose PSO-based algorithms for their

solution. For routing decisions, the particle fitness function is based on the objective function of

their LP model. In the clustering problem, the fitness function is based on energy balance and

conservation among sensors in each cluster. The authors show that the proposed algorithms result in

better network lifetime and total transmitted data than existing algorithms.

2.3.3 Grid-based Topology

In some WSN application areas, sensors are deployed in a grid-like topology (Figure 2.9)

in which sensors are uniformly deployed [Saad and Tourancheau, 2009]. Such topologies balance

sensor distribution and simplify data-routing decisions. Kacimi et al. [2013] formalize the WSN

lifetime maximization problem for two-dimensional grid-based network topologies to derive an optimal

load-balanced data-routing plan. They formulate an NLP model to minimize the maximum energy
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consumption among all sensors, and solve this NLP via a heuristic scheme. Using this heuristic, a

sensor distributes data among multiple shortest paths according to the residual energy levels at each

forwarding sensor.
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Figure 2.9: Square grid topology

In addition to routing decisions, Li et al. [2014] consider two cases of sensor deployment

to further reduce energy consumption in grid-based WSNs. Assuming the sink is located at the

center of the sensing area, the authors consider partitioning this area into hexagonal cells (Figure

2.10). In the uniform sensor deployment problem, a single sensor may be placed at the center of

each cell, and in the non-uniform version, a variable number of sensors may be be placed in cells

nearest the sink. Due to restrictions on transmission range, sensors are only allowed to transmit data

to sensors in neighboring cells. Given this grid-based topology, the authors seek to determine an

optimal uniform distance between all neighboring sensors that ensures full coverage and balances

energy consumption. The authors formulate an NLP model for each case of sensor deployment and

employ a greedy protocol for all data transmission decisions, in which data is transmitted to the

sensor closest to the sink. The authors employ a generalized reduced gradient method [Gabriele and

Ragsdell, 1977] to solve the NLP for uniform sensor deployment and a genetic algorithm (GA) for

the non-uniform sensor deployment case.

Zhang et al. [2016] propose two grid-based topology control algorithms to minimize the

number of active sensors required to maximize WSN lifetime. The algorithm initially identifies the

midpoint of the sensing area and divides it into equally-sized square cells that may or may not contain

sensors. Additionally, the authors designate a sensor (if one exists) within each cell to serve as the

clusterhead and adds edges between all pairs of clusterheads located in adjacent cells. Their algorithm

then builds a near-minimum connected dominating set (CDS) for this new clusterhead graph, where

a CDS is a subset of clusterheads such that a path exists between every pair of clusterheads in the
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Author (Model) Problem specification Technique

Grid-based topology algorithms

Kacimi et al. [2013] Grid-based data-routing Heuristic solution to NLP that dis-
tributes data among multiple low-
energy paths

Li et al. [2012] Grid-based sensor deployment
and data-routing

Solve NLP to determine hexagon-
based sensor density, provide a
greedy protocol for routing

Zhang et al. [2016] Grid-based sensor deployment
and clusterhead selection

Near-minimum CDS-based algo-
rithm for clusterhead selection

Virtual backbone techniques

He et al. [2013] Virtual backbone formation and
non-backbone allocation

NLP used to determine a load-
balanced backbone, IP used to
assign non-backbone sensors to
backbone

Zhao et al. [2011] Virtual backbone formation and
scheduling

Avoid selecting low-energy sen-
sors for the backbone, graph-
based algorithm for backbone
scheduling

Rizvi et al. [2012] Distributed virtual backbone for-
mation

Depth-first search to minimize
energy consumed when forming
backbone

Luo et al. [2006] Tree-based data fusion and rout-
ing

Minimum cost perfect matching
algorithm to construct fusion and
routing tree

Table 2.4: Section 2.3.3 and 2.3.4 summary

CDS, and all clusterheads not in the CDS are adjacent to a clusterhead in the CDS. Furthermore,

the authors propose an algorithm to determine the minimum number of columns or rows in the grid

needed to cover all network sensors and form a CDS.

2.3.4 Virtual Backbone Techniques

Another line of research considers forming a virtual backbone within a WSN (Figure 2.11)

to ensure full coverage and connectivity regardless of sensor deployment. A virtual backbone is

composed of a subset of sensors tasked with forwarding data retrieved by neighboring sensors. The

backbone nodes, along with the sink, establish a CDS in the network. A routing tree structure is

typically formed over these nodes, rooted at the sink. Routing is performed by transmitting data
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Figure 2.10: Hexagon grid topology

from each non-backbone sensor to the most favorable backbone sensor, which transmits that data

through the backbone tree to the sink.
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Figure 2.11: WSN backbone

He et al. [2013] investigate a three-phase approach to establish a backbone that balances

energy consumption among all sensors. The first phase considers the min-max degree maximal

independent set (MDMIS) problem, which seeks to find a maximal independent set that minimizes

the maximum degree of any sensor in the set. The authors formulate an integer NLP for the MDMIS

problem and use an approximation algorithm that solves the linear programming relaxation and

rounds any fractional values. (See Figure 2.12b for an example solution to the MDMIS problem.)

The solution to this problem yields a subset of the backbone nodes. The second phase solves the

load-balanced virtual backbone (LBVB) problem to identify a backbone that balances the number of
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neighboring non-backbone sensors of each backbone sensor. The authors present a heuristic scheme to

select a minimum set of additional nodes that, when connected to the nodes in the MDMIS solution,

provide a solution to the LBVB problem. Using the LBVB solution, the third phase solves the

min-max valid-degree non-backbone node allocation (MVBA) problem to assign each non-backbone

sensor to a backbone sensor in a way that balances the transmission load of all backbone sensors

(Figure 2.12c). The authors formulate the MVBA problem as an integer program (IP) and present

an approximation algorithm based on a random rounding heuristic. The authors show that their

three-phase approach can prolong WSN lifetime by up to 69% compared to other CDS-based virtual

backbone algorithms [Zhao et al., 2011].

	

Sensor	

(a) Original WSN

	

Sensor	
MDMIS	sensor	

(b) Backbone sensors after solving MDMIS

	

Sensor	

MDMIS	backbone	sensor	
LBVB	sensor	

(c) Backbone after connecting MDMIS and LBVB sensors. Non-backbone sensors are
connected to the backbone by solid lines.

Figure 2.12: Load-balanced virtual backbone

Rather than forming a single WSN backbone, Zhao et al. [2011] examine the formation of

multiple backbones in dense WSNs. Their protocol alternates the sequence in which these backbones

are used in order to balance energy consumption. The authors formulate the maximum lifetime
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backbone scheduling (MLBS) problem to determine the schedule in which each backbone is used

to retrieve and transmit data. They propose two approximation algorithms for the MLBS problem,

which are based on a schedule transition graph (STG) and virtual scheduling graph (VSG). The

STG-based algorithm constructs and schedules a polynomial set of n virtual backbones bb1, . . . , bbn.

Their algorithm maps this set of backbones to a transition graph (Figure 2.13), where the series of

transition levels T1, . . . , Ti corresponds to the backbone schedule sequence, in which each backbone

transmits data for some predetermined period of time. The authors define the energy level of the

network after transmitting data on backbone bbj at transition level Tk to be a tuple of the residual

energy values of all sensors. The STG-based algorithm is as follows. After the network transmits

data on some backbone at Tk, the authors determine the set of n energy levels associated with the

case when each backbone bb1, . . . , bbn is implemented at Tk+1. From among this set, they select the

backbone resulting in an energy level with the maximal minimum residual energy value to be utilized

at Tk+1. After the network transmits data on this backbone, their algorithm iterates until a sensor

exhausts its energy to determine a backbone schedule.
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Figure 2.13: Schedule transition graph

For the VSG-based algorithm, each sensor i in the original WSN is transformed into a clique

of Ei virtual nodes, where Ei is a positive integer that corresponds to the remaining energy at sensor

i. The virtual nodes are indexed from 0, . . . , Ei− 1. An edge connects the uth virtual node for sensor

i with the vth virtual node for sensor j if and only if (a) an edge connects sensors i and j in the

original WSN, and (b) max{u, v} ≤ min{Ei, Ej} − 1. Figure 2.14 illustrates this transformation. In

particular, note that EA = 3 and EB = 2, and so there exist edges between virtual node u associated

with sensor A and both virtual nodes associated with sensor B, for u = 0 and 1. However, virtual

node 2 associated with sensor A is not connected to virtual nodes associated with sensors B or C

because EB and EC are both less than 3.
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By forming the virtual graph in this way, sensors having high energy tend to be a part of

the backbone. The authors then obtain a minimum CDS in the virtual graph that does not contain

multiple virtual nodes of the same sensor. Finally, the authors remove all duplicate virtual nodes to

reveal a backbone in the original graph. They also present a distributed algorithm for the MLBS

problem, in which each backbone sensor finds a replacement node among neighboring sensors to form

a new backbone.
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Figure 2.14: Virtual scheduling graph, in which EA = 3, EB = 2, EC = 1, and ED = 1

Rizvi et al. [2012] seek to find a set of sensors that form a CDS corresponding to a virtual

backbone to reduce the size of the network and simplify routing decisions. The authors define active

sensors as those sensors able to relay data through the network, and non-active sensors as those that

only retrieve data. The authors present a tree-based distributed algorithm that starts by forming a

virtual graph containing all sensors using a depth-first search from some initial sensor. Each leaf

node of this graph is designated as non-active sensor with the other sensors being active. The authors

conclude that their algorithm consumes less energy when forming a virtual backbone compared to

other CDS-based algorithms.

Network trees are useful in WSNs with data fusion capabilities. Data fusion is the process of

locally aggregating information retrieved from multiple sensors before being transmitted to another

node [Chen et al., 2004, Luo et al., 2006]. Luo et al. [2006] implement a routing algorithm to

determine an energy efficient data-routing plan in WSNs implementing data fusion. The authors

first propose an IP to solve this problem, in which integer variables determine if data is fused at a

sensor. Due to the difficulty of solving this model, they present an approximation algorithm that

first employs a shortest-path algorithm to find a minimum-cost path between every pair of non-sink

nodes (u, v), where edge costs are a function of the energy required for transmission from u to v and

the energy required for fusion at v. Their algorithm then finds a minimum-cost perfect matching
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between all non-sink nodes to construct a data routing and fusion tree that minimizes the total

energy consumed. Their algorithm achieves a tree with a 5
4 log(n+ 1) approximation to the optimal

objective, where n is the number of sensors in the network.

2.4 Extensions Based on Sink Characteristics

We now describe various extensions to the lifetime maximization problem based on sink

properties. In Section 2.4.1 we explore lifetime maximization algorithms for WSNs having multiple

sinks. We then present in Section 2.4.2 extensions to model (2.1) that consider the presence of a

mobile sink. Finally, we examine the lifetime maximization problem for WSNs having multiple

mobile sinks in Section 2.4.3. Tables 2.5 and 2.6 summarize key papers in Sections 2.4.1 and 2.4.2,

respectively, and Table 2.7 summarizes those in Section 2.4.3.

Author (Model) Problem specification Technique

Multi-sink models

Xue et al. [2005] Tree-based data-routing (1− ε)-approximation polynomial
time algorithm to create a set of
trees, each rooted at a sink

Castao et al. [2013] Data-routing and scheduling CG scheme to maximize lifetime,
greedy randomized algorithm to
solve subproblem

Kim et al. [2005] Constrained sensor and sink de-
ployment and data-routing

MIP to determine sink locations
and data-flows

Türkoğullari et al. [2010] Sensor and sink deployment and
data-routing

Require a sufficiently large num-
ber of sinks be within a minimum
distance to sink, CG scheme for
routing

Table 2.5: Section 2.4.1 summary

2.4.1 Multiple-Sink WSNs

Introducing multiple sinks can extend WSN lifetime by improving energy consumption

balance across the network [Mansouri et al., 2008]. Model (2.1) can be extended to address the multi-

sink WSN lifetime maximization problem, assuming either that collected data can be transmitted to

any sink, or that each data-routing request has a specific sink to which it is transmitted. In this
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Author (Model) Problem specification Technique

Non-delay tolerant single mobile-sink models

Papadimitriou and Georgiadis
[2006] (MSM)

Sink traversal and data-routing LP for sink movement and dwell-
ing times and routing

Wang et al. [2005] Sink traversal on a uniform two-
dimensional grid

LP for sink traversal, shortest-
path algorithm for routing

Huang et al. [2015] Reactive sink relocation on a
hexagonal grid

Sink moves to nearby area with
higher average residual energy,
shortest-path algorithm for rout-
ing

Gatzianas and Georgiadis [2008] Distributed sink traversal and
routing

Subgradient algorithm for Lagra-
ngian relaxation of LP, minimum-
cost flow algorithm for routing

Liang and Luo [2011] Distance-constrained sink tour
and hop-constrained routing

Heuristic that determines sink tra-
jectory first, then dwelling times
at each location

Delay-tolerant single mobile-sink models

Yun and Xia [2010] (DT-MSM) Sink traversal and routing vary-
ing delay restrictions

LP to determine sink traversal
and dwelling times

Yun et al. [2010a] Distributed sink traversal and
routing

Lagrangian relaxation of an LP,
fractional knapsack algorithm for
subproblem at each sensor

Behdani et al. [2012] Partially-distributed sink traver-
sal and routing

CG scheme with separable short-
est-path subproblems at each sen-
sor

Keskin et al. [2011] Sink traversal and routing with
non-negligible sink travel time

Heuristic for an MIP with an up-
per bound on the number of trans-
mission hops

Behdani et al. [2013] Sink traversal and routing with
non-negligible sink travel time

Branch-and-cut approach to solv-
ing an MIP with subtour elimina-
tion constraints

Table 2.6: Section 2.4.2 summary, where sink travel times are negligible unless otherwise specified

chapter, we employ the former assumption.

We extend the prior single-sink WSN example to demonstrate how the presence of a second

sink prolongs network lifetime. Figure 2.15 presents a two-sink example similar to the WSN example

in Figure 2.6.

A new sink E1 is added to the network while sink E2 remains at the same location as E in

the single-sink example. The energy required to send a unit of data from sensors C and D to E1 is
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Figure 2.15: Two-sink WSN example

eCE1 = 10 and eDE1 = 20 units. All other information regarding battery power, data origination

amounts, and energy expenditures are the same as those used in the single-sink WSN example.

Figure 2.16 presents an optimal set of data flows per hour for the two-sink WSN.
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Figure 2.16: Optimal data flows per hour

Instead of relaying data through sensor D, sensor C now transmits all data from sensor A

directly to the new sink E1. Sensor D now relays a portion of data from B through C to E1. The

updated total energy usages per hour at sensors C and D are TC = TD = 186, while TA = 80 and

TB = 100. The maximum WSN lifetime becomes LC = LD = 500/186 ≈ 2.7 hours. An additional

sink thus extends network lifetime from 2.3 to 2.7 hours.

Xue et al. [2005] extend their single-sink algorithm to determine optimal data flows in a

WSN having multiple sinks. The algorithm first finds a shortest path from each sensor to a sink and

determines the amount of flow on this path, based on data origination rates. The authors iteratively

combine these paths to create a set of trees, each rooted at a sink. The running time of this algorithm

thus remains the same as with the single-sink case, and the multi-sink adaptation of their algorithm

achieves a (1− ε)-approximation in polynomial time.

Castao et al. [2013] propose a hybrid CG scheme to determine a schedule of data flows that
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maximizes lifetime for multi-sink WSNs. In this problem, there exist a set of targets that are covered

by a subset of sensors. Each column in the CG formulation corresponds to a subset of sensors that

collectively cover the entire set of targets. As such, the column can be viewed as an in-flow tree

rooted at a supersink node (to which all sinks can send flow), and each target location corresponds to

a leaf node. To solve the CG subproblem, the authors propose a greedy randomized algorithm that

uses a variation of depth-first search. If this algorithm fails to generate an attractive set of data flows,

the authors solve an IP to generate such a set, or show that no positive reduced-cost column exists.

The authors conclude that mixing their heuristic algorithm with the IP reduces computational time

compared to a standard CG-based approach, and computes an optimal solution within the given

time limit for most instances.

Whereas the previous works assume sink locations are established a priori, Kim et al. [2005]

address how to optimally position multiple sinks from among the set of discrete sensor locations,

in addition to finding an optimal set of data flows. The authors formulate mathematical models to

address these two problems. They first consider an LP to compute optimal data flows from all sensors

to a sink, in which sink locations are predetermined. The authors then formulate a mixed-integer

program (MIP) to find an optimal set of sink locations and data flows, where an upper bound exists

on the number of sinks. Similarly, Türkoğullari et al. [2010] formulate an MIP model to combine

sensor and sink deployment and data-flow decisions. They provide a heuristic technique that first

deploys sinks so that a sufficiently large number of sensors are within a minimum distance to a sink.

Using these sink locations, the authors reformulate and solve the LP relaxation of the MIP using a

CG scheme, where each column corresponds to a set of deployed sensors and data flows. Finally,

they obtain a feasible solution to the MIP using an optimal set of columns from the relaxation.

2.4.2 Mobile-Sink WSNs

As an alternative to deploying multiple stationary sinks, sink mobilization extends network

lifetime by balancing energy consumption among a larger set of sensors. In such cases the sink is

permitted to move among a set of stationary locations at a predetermined speed. Mobile sinks are

also useful in dynamic sensing environments that change over time as new targets emerge in the

network [Khan et al., 2014].
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2.4.2.1 Mobile-sink models with no transmission delay

Papadimitriou and Georgiadis [2006] introduce the following LP to address the mobile-sink

lifetime maximization problem (MSM) in which L is the set of possible sink locations, and where the

time required for the sink to move from one location to another is assumed to be negligible. The

variables and parameters for this problem are the same as in model (2.1), except that the dwelling

times per sink location and data flows are now indexed by the sink location ` ∈ L.

max
∑
`∈L

z` (2.4a)

s.t.
∑
j∈N

y`ij −
∑
h∈S

y`hi − biz` = 0 ∀i ∈ S, ` ∈ L (2.4b)

∑
`∈L

∑
j∈N

eijy
`
ij +

∑
h∈S

chiy
`
hi

 ≤ Pi ∀i ∈ S (2.4c)

y`ij ≥ 0 ∀i ∈ S, j ∈ N , ` ∈ L (2.4d)

The objective function (2.4a) maximizes WSN lifetime defined as the sum of the sink dwelling times

at all possible locations, and all other constraints are analogous to those in (2.1). An optimal solution

to (2.4) provides the set of sink dwelling times and data flows to those sink locations.

While (2.4) determines both sink dwelling times and data flows, Wang et al. [2005] formulate

an LP solely to determine sink movements and dwelling times in which sinks must be located at

a corner point of a cell within a two-dimensional grid. Instead of determining data flow between

nodes as in (2.4), they implement a shortest-path algorithm for data originating at each sensor.

The authors observe that the network lifetime of mobile-sink WSNs increases by almost five times

compared to a WSN having a single static sink.

Rather than assuming that the sink moves along a set predetermined locations, Huang et al.

[2015] propose a reactive sink relocation method for hexagonal-grid WSNs. When the average residual

energy within each cell reaches a minimum threshold, the sink moves to a neighboring cell having

the highest average residual energy. Once the sink relocates to a new position, their method employs

a shortest-path algorithm to determine data flows, in which edge weights are based on residual

energy levels and data transmission size. Results show that relocating sinks according to a hexagonal

grid-like topology can double the network lifetime in most cases compared to a static-sink WSN.

Whereas Papadimitriou and Georgiadis [2006] implements a centralized solution technique
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by solving model (2.4), Gatzianas and Georgiadis [2008] assume decentralized coordination by using

dual decomposition. The authors introduce locally-stored Lagrangian multipliers for energy-capacity

and peak transmission constraints to formulate the Lagrangian dual problem. Taking advantage

of the dual’s special structure, they split this problem into a set of smaller subproblems and use a

minimum-cost flow algorithm to solve the subproblem at each sensor to obtain a set of data flows.

The authors show that their algorithm runs in polynomial time and results in maximum lifetime

values within 3% of solutions using centralized approaches [Papadimitriou and Georgiadis, 2006].

In some cases, sink movement forces sensors to use excessively many hops to transmit data

to a sink. To mitigate this problem, Liang and Luo [2011] jointly determine the sink trajectory and

dwelling times with upper bounds limiting the distance traveled by each sink and the number of

allowable hops for data transmission. They prove this problem to be NP-hard and consequently

present a heuristic to identify a near-optimal solution. The algorithm first calculates the maximum

potential dwelling time at each sink location. Next, the algorithm searches for a high-quality sink

trajectory and determines the actual dwelling times at each location based on this trajectory.

2.4.2.2 Delay-tolerant models

Algorithms in the previous subsection assume that the time required for the sink to move

from one location to another is negligible, and that sensors cannot delay transmission of their flows

to a sink. In some cases, though, sensors may also be able to locally store data to delay transmission

until the sink arrives at a more favorable location. We discuss these delay-tolerant models in this

subsection, along with situations in which the travel time between sinks is non-negligible.

When data transmission can be delayed indefinitely, single mobile-sink and multiple stationary-

sink WSNs yield identical optimal solutions, regardless of the sink’s travel time. Similarly, this

equivalence also holds when the sink can move infinitely fast and data can be delayed for any positive

period of time (assuming negligible data transmission speeds). In more general cases, such as when

data transmission cannot be delayed indefinitely, multiple stationary-sink WSNs yield lifetimes that

are no less than those given by single mobile-sink WSNs.

For sinks having a fixed finite travel speed, maximum WSN lifetime is a nondecreasing

function of maximum tolerable delay D, and reaches the maximum lifetime for its multiple stationary-

sink WSN counterpart when D becomes sufficiently large. When the travel time between two sink

locations is greater than D, the sink cannot move between these locations. The reason for this
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restriction is that while the sink traverses from one location to the other, data is being collected

and stored for delivery to the latter sink location. If the distance between these locations is too

large, then the sink cannot arrive to the destination location within the delay limit. Thus, when D

is less than the travel time between any two sink locations, the sink must remain stationary, and

the problem reduces to choosing the best solution among several single-sink problems, one for each

possible sink location.

Yun and Xia [2010] consider single mobile-sink WSNs with a finite positive maximum

tolerable delay but negligible sink travel time. The authors extend (2.4) to propose a pair of LP

models for the delay-tolerant mobile sink lifetime maximization (DT-MSM) problem, each with

a unique variation of delay restriction. In the first variation, the sub-flow-based model, sensors

are only allowed to store data gathered locally. For the second variation, the queue-based model,

sensors may store data gathered by any sensor. The sub-flow-based formulation is similar to a

standard multicommodity flow problem, which is solvable by fast, specialized algorithms [Assad,

1978, Kennington, 1978]. The queue-based model is more difficult to solve, but its increased flexibility

leads to longer lifetimes than the sub-flow-based model.

Similar to the approach in [Gatzianas and Georgiadis, 2008], Yun et al. [2010a] implement

a distributed algorithm for the DT-MSM problem, in which they examine the dual decomposition

of the LP in [Yun and Xia, 2010] with Lagrangian multipliers on the flow-balance constraints. The

authors split this problem into smaller problems at each sensor using information local to the sensor

and its neighbors. They employ a fractional knapsack algorithm to separately solve each subproblem

for the sub-flow-based and queue-based models. Based on analyzing a Lyapunov drift, the authors

prove that this algorithm converges to an optimal solution.

Behdani et al. [2012] also take an exact solution approach to the queue-based DT-MSM

problem in [Yun and Xia, 2010] and develop a partially-distributed CG algorithm. To identify an

attractive set of data flows, the authors exploit the uncapacitated nature of WSN arcs and form

separable shortest-path problems with non-negative costs at each sensor. While more efficient, this

approach is only partially distributed, because the CG scheme requires the communication and

solution of a master problem.

Whereas the previous approaches assume the sink travel time between locations to be

negligible, Keskin et al. [2011] propose two MIP models to determine a sink tour that maximizes the

lifetime of a WSN having a non-negligible sink travel time. The authors allow the sink to complete
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multiple identical tours and place an upper bound on the duration of the sink tour to enforce a

maximum tolerable delay. For the first model, gathered data is transmitted to the sink with no

restrictions on the number of transmission hops, while the second model places an upper bound of

the number of hops. To determine data flows in both cases, the authors implement a shortest-path

algorithm based on residual energy levels. Rather than solving the MIP, the authors propose a set of

heuristics to find a good feasible sink tour.

Alternatively, Behdani et al. [2013] determine a sink traversal tour and a set of data flows to

maximize the lifetime of a WSN with a finite maximum tolerable delay and non-negligible sink travel

time. For this problem, the authors allow sensors to transmit data to some location ` even when the

sink is not currently dwelling at, or traveling to, `. The sink must thus arrive at ` no more than D

time units after a sensor begins transmission to `. The goal is to find a sink tour over a subset of L,

and determine data flows to each location visited by the sink.

Because their model is important to the discussion in this section, we cover it in detail below.

The authors first define t`m to be the time it takes the sink to travel from ` ∈ L to m ∈ L. Thus, the

sink can only travel on arcs that satisfy t`m ≤ D, resulting in a directed sink graph G′ = (L,A) with

an arc set A = {(`,m) : t`m ≤ D}. For convenience, define node sets K+
` = {m ∈ L : (`,m) ∈ A}

and K−` = {m ∈ L : (m, `) ∈ A}.

Let P̄i = Pi/C be the energy capacity of each sensor i during a sink tour, where C corresponds

to the number of tours the sink must complete. Variable r` represents the period of time during

which sensors transmit data to location `. Let v` and u`m be binary variables that equal 1 if location

` is visited by the sink and if the sink travels along arc (`,m) ∈ A, respectively. Therefore, the sink’s

dwelling time at ` must be at least tm` if um` = 1. Let the binary variable s` equal 1 if the sink tour

originates at `. Also, define q`m = s`× [the amount of time that sensors transmit data to m before

the sink begins movement toward m from its preceding sink location]. Thus, if s` = 1, then data is

transmitted to m for q`m +
∑
k∈K−m tkmukm time units before the sink arrives at m. Letting M be a

large constant value, the DT-MSM problem with a finite tolerable delay and non-negligible travel

time can be formulated by the following NLP model [Behdani et al., 2013].

max
∑
`∈L

r` (2.5a)

s.t. r` ≤Mv` ∀` ∈ L (2.5b)
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∑
`∈L

∑
j∈N

e`ij +
∑
j∈S

cjiy
`
ji

 ≤ P̄i ∀i ∈ S (2.5c)

∑
j∈N

y`ij −
∑
j∈S

y`ji − bir` = 0 ∀i ∈ N , ` ∈ L (2.5d)

∑
m∈K+

`

u`m = v` ∀` ∈ L (2.5e)

∑
m∈K−`

um` =
∑
m∈K+

`

u`m ∀` ∈ L (2.5f)

∑
`∈T

∑
m∈T

u`m ≥ vk + vr − 1 ∀T ⊂ L : 2 ≤ |T | ≤ |L| − 2, k ∈ T , r ∈ T (2.5g)

∑
`∈L

s` = 1 (2.5h)

s` ≤ v` ∀` ∈ L (2.5i)

q`m +
∑
k∈K−m

tkmukm ≤ D ∀` ∈ L, m ∈ L (2.5j)

q`m ≥
∑
k∈K−m

q`k +
∑
h∈K−k

(thk − rk)uhk

ukm −D(1− s`) ∀` ∈ L, m ∈ L (2.5k)

D(1− s`) + r` ≥ q`` +
∑

m∈K−m

tm`um` ∀` ∈ L (2.5l)

v` ∈ {0, 1} ∀` ∈ L (2.5m)

u`m ∈ {0, 1} ∀` ∈ L, m ∈ K+
` (2.5n)

q`m ≥ 0 ∀`,m ∈ L (2.5o)

r` ≥ 0 ∀` ∈ L (2.5p)

The objective function (2.5a) maximizes the total time data is transmitted to any sink location ` ∈ L

while constraints (2.5b) ensure that data can only be transmitted to location ` if visited by the

sink. Constraints (2.5c) and (2.5d) enforce energy-capacity and flow-balance constraints, respectively.

Constraints (2.5e)–(2.5g) ensure that the sink’s traversal corresponds to a single tour that visits all

nodes ` such that v` = 1. Note that the exponential set of constraints (2.5g) in particular serve as

subtour elimination constraints. Constraints (2.5h) and (2.5i) guarantee that one node is selected as

the origin, from among those nodes ` for which v` = 1. Constraints (2.5j) and (2.5k) ensure that

data transmitted to location m ∈ L is not delayed longer than D time units if vm = 1, while (2.5l)
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enforces a similar maximum tolerable delay restriction at the origin location. Finally, constraints

(2.5m) and (2.5n) enforce binary constraints on variables v and u, while constraints (2.5o) and (2.5p)

enforce non-negativity of variables q and r. To solve this problem, the authors add a set of auxiliary

variables to linearize model (2.5), and add the subtour elimination constraints (2.5g) as needed in a

branch-and-cut fashion.

To illustrate the relationship between maximum lifetime and maximum tolerable delay, we

consider a single mobile-sink delay-tolerant WSN lifetime maximization example. For this example

the sink can move among locations 1, 2, and 3 traveling at a fixed speed of 1 km per hour. The

arc labels in Figure 2.17a depict the distances between sink locations, and the table in Figure 2.17b

displays the distances between sensors and sink locations. The energy to send one unit of data from

a sensor to a sink location is equal to the distance between the two nodes. Each sensor possesses a

battery power of 500 units, and the data generation rate for each sensor is 1 data unit per hour.
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tions

Figure 2.17: Distances (in km) for the single mobile-sink WSN example

Figure 2.18 shows how maximum WSN lifetime grows as a function of maximum tolerable

delay. In general, WSN lifetime is nondecreasing in terms of delay, but this function might be

nonconcave and even discontinuous, as is the case even in this simple example. When data cannot be

delayed by three or more hours, the sink must remain stationary. Therefore, the sink remains at

location 2 in Figure 2.17a for a maximum lifetime of 41.7 hours, which is longer than the maximum

lifetime achieved if the sensor were stationary at locations 1 or 3. We thus vary the maximum

tolerable delay parameter and solve (2.5) to determine the maximum WSN lifetime. Next, suppose

that data can be delayed by three hours. The sink can then travel between locations 2 and 3 without

violating the delay constraint. The maximum lifetime increases by 46% to 60.9 hours. As the

maximum tolerable delay increases from three to six hours, the maximum lifetime linearly increases
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as sensor 6 is able to transmit more data to the more favorable sink location 3, thus prolonging

network lifetime.
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Figure 2.18: Maximum WSN lifetime as a function of maximum tolerable delay

The WSN lifetime also has a discontinuous jump when data can be delayed by 6 hours

because the sink can then move between location 1 and location 3. As the maximum tolerable delay

increases beyond 6 hours, each sensor is able to transmit more data to its nearest sink location

to balance energy consumption to prolong network lifetime. When the maximum tolerable delay

surpasses roughly 30.7 hours, the single mobile-sink WSN reaches the maximum lifetime for its

multiple stationary-sink WSN counterpart and yields equivalent flows to the case when a sink is

placed at each possible location.

2.4.3 Multiple Mobile-Sink WSNs

Just as independently adding and mobilizing sinks prolongs WSN lifetime, introducing

multiple mobile sinks further balances energy consumption and prolongs WSN lifetime. Gandham

et al. [2003] present a sink-relocation and data-routing approach for multiple mobile-sink WSNs. The

authors first assume that a limited number of sinks dwell at some set of locations for a predetermined

period of time until they are relocated to a new set of locations. Assuming that the sink relocation

time is negligible, they formulate an IP model to determine this new set of locations from among

a set of predefined discrete locations, along with data flows from the sensors to one of the sink

locations, in a manner that minimizes the maximum energy consumption among all sensors. They
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Author (Model) Problem specification Technique

Multiple mobile-sink models

Gandham et al. [2003] Periodic sink relocation and rout-
ing

Rounding heuristic to solve an IP
that minimizes the maximum en-
ergy consumption among all sen-
sors

Basagni et al. [2008] Sink relocation and routing Decompose LP model to add vio-
lated dual constraints by solving
a p-median problem

Basagni et al. [2009] Distributed sink relocation and
routing

Allow sensors to communicate
with neighboring sensors to im-
prove network awareness

Marta and Cardei [2009] Distributed reactive sink move-
ment on a hexagonal grid

Sink relocates to an area having
greater energy when neighboring
sensors reach a low-energy thresh-
old

Saad and Tourancheau [2009] Multiple mobile sink control
within buildings

IP with a minimum sink dwelling
time, shortest-path algorithm for
routing

Table 2.7: Section 2.4.3 summary, where sink travel times are negligible and routing cannot be
delayed

heuristically solve the IPs by rounding fractional LP relaxation values, repeating the process until a

sensor exhausts its energy.

Basagni et al. [2008] present a set of heuristics for determining the movement of multiple

sinks in addition to data-routing decisions. The authors formulate and decompose an LP model to

the multiple MSM problem to add violated dual constraints using a p-median problem [Mladenović

et al., 2007]. Additionally, Basagni et al. [2009] formulate a distributed version of their heuristic that

allows sensors to communicate with neighboring sensors to improve network awareness. Performance

comparisons show that the distributed heuristic achieves near-optimal network lifetimes that provide

significant improvements compared to random sink mobility and multiple static sink deployment.

Marta and Cardei [2009] take a reactive approach for sink mobility to create a heuristic

where sinks periodically move along the perimeter of a hexagonal grid to form a virtual backbone.

Each sink monitors its neighboring sensors. When a predefined percentage of these sensors reaches a

low energy threshold, the sink moves to avoid burdening those sensors with relaying a large amount

of data to the sink. The sink thus searches for nearby areas along the perimeter whose local sensors
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have greater energy. Since sinks only utilize information within its neighborhood, this heuristic is

implemented in a distributed manner. The authors also consider the case in which the sink moves

along a non-predetermined path from one location to another.

Finally, as an application of these studies, Saad and Tourancheau [2009] examine the

deployment of multiple mobile sinks in WSNs within buildings. The authors explore a clustering

mechanism to decompose the WSN, using an IP to determine sink trajectories and dwelling times.

Because frequently relocating sinks can be expensive, the authors require sinks to dwell at each

location for a minimum time period. For local and global routing decisions, the authors implement a

shortest-path algorithm that considers the distance between nodes and the residual energy capacities

at each sensor. The authors compare three scenarios for their application: stationary sinks, multiple

sinks moving within different clusters, and multiple sinks moving throughout the entire network.

2.5 Alternative Optimization Metrics

Section 2.5.1 explores techniques for maximizing the lifetime of the remaining network after

a sensor exhausts its energy. In Section 2.5.2 we examine algorithms for maximizing the coverage

area and connectivity of a WSN. We explore approaches for minimizing data transmission delays in

Section 2.5.3. Table 2.8 summarizes the papers discussed in this Sections 2.5.1 and 2.5.2, and Table

2.9 summarizes those discussed in Section 2.5.3.

2.5.1 Maximizing Conditional Sensor Lifetime

For this discussion, given a feasible solution to problem (2.1) represented by variables ŷ and

ẑ, the lifetime of sensor i ∈ S is given by

Piẑ(∑
j∈N eij ŷij +

∑
h∈S chiŷhi

) . (2.6)

Suppose that for some feasible y, we sort these sensor lifetimes in nondecreasing order, yielding

lifetimes L1(y), . . . , L|S|(y) (where we omit ẑ from this notation for simplicity). Formulation (2.1)

maximizes L1(y), with no regard to Lj(y), for j ≥ 2. Typically, though, multiple optimal solutions

exist to (2.1). Defining L0(y) = 0 for any solution y, the jth conditional lifetime is the maximum

possible value of Lj(y), over all solutions y feasible to the constraints in (2.1), such that Li(y) equals

the ith conditional lifetime for all i = 0, . . . , j − 1. By optimizing the |S|th conditional lifetime, we
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Author (Model) Problem specification Technique

Maximizing conditional sensor lifetime

Dagher et al. [2007] Conditional sensor lifetime Iterative LP algorithm to identify
a PO solution

Mansouri et al. [2008] Conditional commodity lifetime Solve |L| MIPs to determine PO
solution

Maximizing connectivity and coverage

Yun et al. [2010b] Connectivity-constrained sensor
deployment

Provides relation to general set-
covering problem with polygon-
based methodology to prove opti-
mality

Wang and Wu [2014] Single-objective sensor deploy-
ment to avoid network fragmen-
tation

Improves connectivity and cover-
age by deploying sensors at criti-
cal nodes and low-coverage areas

Pradhan and Panda [2012] Sensor deployment for coverage
and connectivity

Particle swarm optimization algo-
rithm

Sengupta et al. [2013] Sensor deployment/routing for
coverage, lifetime, and energy use

GA to solve a series of weighted
single-objective problems to find
a PO solution

Sengupta et al. [2012] Same as [Sengupta et al., 2013],
with varying connectivity require-
ments

Decompose IP into subproblems
and use GA to simultaneously
solve the subproblems

Özdemir et al. [2013]
(MOEA/D)

Cluster formation to balance en-
ergy consumption and coverage

Evolutionary algorithm that se-
lects active sensors as cluster-
heads

Rossi et al. [2012b] Max lifetime and min coverage
breach under bandwidth limits

CG approach with a GA to solve
the MIP subproblems

Rossi et al. [2012a] Coverage/energy tradeoff when
sensing ranges are adjustable

Formulations for two problems;
CG approach with GAs to solve
the MIP subproblems

Gentili and Raiconi [2013] Single-objective data-rout-
ing with minimum coverage
constraints

Greedy approach to initialize CG
scheme, additional subproblem
constraints to avoid redundant
columns

Table 2.8: Section 2.5.1 and 2.5.2 summary

maximize L1(y), breaking ties by maximizing L2(y), and so on, with maximizing L|S|(y) as the final

criterion. We refer to this problem as the conditional lifetime problem.

Dagher et al. [2007] present an algorithm for solving the conditional lifetime problem. The

algorithm tracks “fixed” sensors, which are sensors whose lifetime values have been determined. Let
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E (initially empty) denote the set of all fixed sensors. Their algorithm iteratively solves a series of

LPs, each of which contains the constraints in (2.1) plus constraints restricting the fixed sensors to

take on their designated lifetime values. At each iteration, the algorithm enforces the condition that

all lifetimes for sensors not in E must equal some common value ζ, and solves an LP to maximize ζ.

Next, for every sensor j not in E, the algorithm solves individual LPs to maximize the lifetime of

sensor j, subject to the constraints on the previous model, and constraints stating that every other

sensor in E has a lifetime of at least ζ. If the maximum lifetime of each individual LP is ζ, for all

j /∈ E, then the current solution solves the conditional lifetime problem. If not, then the algorithm

solves another LP for each sensor not in E to identify a sensor ̂ /∈ E whose lifetime cannot exceed ζ.

Sensor ̂’s lifetime is then fixed to ζ, and sensor ̂ is placed in E.

Mansouri et al. [2008] take a multi-commodity approach to maximize conditional lifetime,

in which a commodity consists of all data originating at various targets destined for a common

sink. A commodity’s lifetime is given by the minimum lifetime among all sensors transmitting that

commodity. Using a similar conditional lifetime definition as [Dagher et al., 2007], the authors

propose an iterative algorithm that solves an MIP to maximize the first conditional commodity

lifetime, in which binary variables specify whether a sensor transmits a specific commodity. Step

n ≥ 2 of the algorithm chooses a solution among those optimal in step n− 1 that maximizes the next

conditional commodity lifetime. The algorithm iteratively runs until the |L|th conditional commodity

lifetime has been maximized, where |L| is the total number of sinks.

2.5.2 Maximizing Coverage and Connectivity

Sensor locations are not only vital in maximizing WSN lifetime, but are also critical in

assuring that all targets are covered as desired. Optimizing lifetime and maximizing coverage are two

different objectives, but can be considered in joint optimization studies as detailed in this section.

Yun et al. [2010b] explore a proactive method to find the smallest set of deployed sensors that

collectively monitors all target locations, under the condition that each sensor must be connected to

k other nodes for some k ≤ 6. They show how the sensor deployment problem relates to the general

set-covering problem and use a polygon-based methodology to prove optimality.

Because the failure of a single sensor can potentially disconnect networks, Wang and Wu

[2014] seek to improve WSN connectivity by deploying additional sensors within an existing network.

In particular, they place sensors at critical nodes whose removal would partition the network into

48



two or more separate components.

Assuming that sensors correspond to a set of vertices located in Euclidean space (Figure

2.19a), the authors first create a planar subgraph of the WSN by removing a subset of crossing edges

(Figure 2.19b). Next, for each sensor i, the algorithm finds its neighbors Ci in this planar graph. If

there exist |Ci| 2-simplices involving i and a pair of nodes in Ci, then i is deemed non-critical (see

Figure 2.19c). (A 2-simplex is a two-dimensional polytope formed by the convex hull of three sensors,

i.e., a triangle.) The algorithm then iteratively removes each of the remaining sensors to determine if

it is critical. If so, a backup sensor is placed near the critical sensor (Figure 2.19d). Additionally, the

authors implement a protocol to reduce the size of large 2-simplices in the subgraph that correspond

to areas of low coverage in the WSN (Figure 2.20a). Their algorithm uses a localized method to

identify these simplices and introduces a new sensor to reduce its size by eliminating at least one

sensor its boundary (Figure 2.20b).

	

Sensor	

(a) Original graph

	

(b) Planar subgraph

	

Non-critical	sensor	i	
Set	Ci	

(c) Non-critical sensor

	

Critical	sensor	
Non-critical	sensor	

(d) Critical and non-critical sensor graph

Figure 2.19: Locating critical sensors

While the prior literature in this section focuses on deploying sensors to maximize connectivity,

Pradhan and Panda [2012] search for a Pareto-optimal (PO) solution that jointly considers coverage

and lifetime. (A feasible solution x to a multi-objective problem is said to be PO if no other feasible

solution exists that is better than x with respect to one objective and at least as good as x with respect

to the other objectives [Censor, 1977].) The authors first define WSN coverage to be the percentage

of target locations being monitored by at least one sensor. They then propose a multi-objective
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Figure 2.20: Locating and reducing the size of a coverage hole

PSO algorithm in which each particle corresponds to a set of deployed sensors and data flows. After

their algorithm initializes particle positions and fitness functions, each particle randomly moves

through the solution space according to the fitness value of the best current solution. During each

iteration, their algorithm compares newly-generated solutions, stores any non-dominated solutions,

and updates associated fitness functions. The authors show that their algorithm produces a diverse

set of solutions along the Pareto frontier of the two objectives.

Similarly, Sengupta et al. [2013] propose a sensor deployment and data-routing approach

that (a) maximizes coverage, (b) maximizes network lifetime, and (c) minimizes energy consumption.

The authors decompose this problem into a series of weighted single-objective optimization problems

to find PO solutions. Sengupta et al. [2012] extend the work in [Sengupta et al., 2013] to maximize

network lifetime and coverage area, in which different portions of the network require varying levels

of connectivity. They decompose a multi-objective IP into a series of smaller weighted subproblems

that are simultaneously solved using a GA.

Özdemir et al. [2013] use a weighted-sum approach to implement a decomposition-based multi-

objective evolutionary algorithm (MOEA/D) to determine a set of sensor clusters and clusterheads

that maximizes coverage and minimizes energy consumption. A solution using their MOEA/D

algorithm contains a set of clusterheads and a set of active sensors that relay data to a clusterhead.

In each iteration of the algorithm, clusterheads are selected from among the set of active sensors from

the previous solution. Results show that the MOEA/D improves upon solutions provided by standard

GAs when solving the clusterhead selection problem with a coverage maximization objective.

Another portion of literature focuses on optimizing a single objective while ensuring that

secondary objectives meet some desired level. Rossi et al. [2012b] present a CG-based solution

technique for two alternative WSN network problems that also optimize network coverage. The first
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problem, minimizing coverage breach under bandwidth constraints (MCBB), determines a set of

data flows that minimizes the number of uncovered targets given lifetime and bandwidth constraints.

The second problem searches for a solution that maximizes network lifetime under coverage and

bandwidth constraints (MNLB). The authors formulate an MIP for both problems, in which binary

variables denote whether a sensor monitors some set of targets. The authors implement a CG

algorithm to solve these models and present a GA to solve the MIP subproblem. If the GA reaches

a local optimum, then the authors solve the MIP to find an attractive column or prove optimality

of the current solution. The authors also consider a bi-objective problem to explore the trade-off

between maximizing network lifetime and minimizing the number of uncovered targets. They solve a

series of MCBB instances with varying levels of lifetime constraints to search for the Pareto frontier

of the two objectives. Results show that mixing the GA and MIP to solve the MCBB and MNLB

subproblems produces competitive results compared to strictly solving the MIP.

Rossi et al. [2012a] extend their work in [Rossi et al., 2012b] to maximize WSN coverage

when sensors are capable of adjusting their coverage ranges to conserve energy. The authors present

two MIP variations in which sensing ranges are continuously adjustable or are chosen from among a

set of predetermined values. Similar to [Rossi et al., 2012b], they present a CG algorithm using a

GA to solve the subproblem. In this case, results show that the GA decreases computational time

over solving the subproblem exactly by branch-and-bound, without compromising solution quality.

Gentili and Raiconi [2013] also give a CG-based algorithm to determine a schedule of data

flows that maximizes lifetime when some (1− α) percentage of targets may be left uncovered. They

implement a greedy approach to initialize their CG scheme and implement some regularity conditions

to speed up convergence. Additionally, they add a set of constraints to the subproblem to avoid

redundant columns. Compared to the case when all targets must be covered, the authors show that

the lifetime increases by 48.2% for α = 85%.

2.5.3 Minimizing Transmission Delay

As described in Section 2.4.2.2, some WSNs permit delays in data transmission. While long

delays may be permitted for some cases, other applications give higher priority to data transmitted to

the sink in real-time. For such applications, researchers also consider minimizing total delay, defined

as the time between when the data arrives at a sensor and when it arrives at a sink.
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Author (Model) Problem specification Technique

Minimizing Transmission Delay

Shah-Mansouri and Wong
[2007]

Distributed data-routing to max
lifetime and min delay

Iterative LP algorithm, regular-
ized method with dual decompo-
sition to solve subproblems

Xu et al. [2012] Sink traversal with delay limits Set-covering formulation, in-tree
for routing flows

Ammari [2013] (TED) Data-routing to min and balance
energy consumption and min de-
lay

Decompose area around sen-
sors to prioritize nearby sensors,
weighted-sum model for routing

Shan et al. [2013] Distributed backbone construc-
tion to min data transmission
length

Balances energy consumption
among sensors some number of
hops away from the sink

Table 2.9: Section 2.5.3 summary

Shah-Mansouri and Wong [2007] examine the problem of finding a data-routing plan that

maximizes network lifetime; furthermore, if multiple optimal solutions to this problem exist, then

the procedure optimizes a secondary objective. The secondary objectives they consider are the

minimization of transmission delay and the minimization of total energy consumption. One approach

simply solves an initial LP to maximize network lifetime. Then, one can solve an additional LP to

minimize the secondary objective, in which all sensors’ lifetimes are constrained to be no less than

the maximum lifetime value. As an alternative, the authors propose a regularization method to

combine these two LPs into a single optimization problem. They present a regularization function

corresponding to each secondary objective that can be added to the objective function of the initial

LP to formulate a regularized optimization model. The authors show that as long as the coefficient on

this regularization function is no greater than some positive threshold, a solution to this regularized

model corresponds to an optimal solution using the iterative LP approach. Using dual decomposition,

they decompose this model into subproblems located at each sensor that can be solved in a distributed

manner. The authors show that this regularized approach maximizes network lifetime and provides

shorter transmission delays and lower energy consumption compared to the algorithms in [Chang

and Tassiulas, 1999] and [Madan and Lall, 2004].

Xu et al. [2012] examine the trade-off between network lifetime and transmission delay for

the DT-MSM problem (see Section 2.4.2.2). The authors develop a heuristic that determines a mobile
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sink trajectory and routing protocol with varying bounds on maximum delay. At each iteration of

the algorithm, a new sink location is added to the trajectory as long as delay bounds are not violated.

Sink locations are chosen with respect to the total number of sensors that neighbor the sink location,

and the distance between each sensor and the sink location. The algorithm then builds an in-tree

of data flows at each sink location so as to minimize total energy consumption. Additionally, the

authors propose two heuristics to determine the sink trajectory based on a set-covering formulation.

Ammari [2013] propose a multi-objective optimization approach to determine a set of data

flows that minimizes energy consumption, balances energy consumption among the sensors, and

minimizes transmission delay. To solve this problem, the authors propose a data-forwarding protocol,

trade-off with energy delay (TED), to find an appropriate trade-off among these three objectives.

This protocol first decomposes the area around each sensor in such a way that gives priority to closer

sensors when relaying data transmissions. To determine data flows, they formulate a weighted-sum

model to optimize over the three objectives.

In some applications, data transmission must be delayed at a node until all data from

neighboring nodes is received. Additionally, data originating at sensors located at nodes in a routing

tree may require a large number hops for transmission. In these cases data transmission may

accumulate significant delays due to paths that have a large number of hops. Shan et al. [2013] take

a centralized approach to this problem. Their approach builds a backbone that maximizes network

lifetime while minimizing the length of data-flow paths from each sensor to a sink. The algorithm

heuristically constructs a routing tree that balances energy consumption among all sensors that are

at least some number of hops away from the sink. They propose a distributed refinement algorithm

that exchanges information between neighboring nodes to balance the energy consumption among

the children of each node.

2.6 Future Challenges

This chapter reveals many open areas for future research. One key assumption that may

not be satisfied in practice regards the a priori knowledge of instance data. Demands originating

at targets (or sensors) would appear to be far less certain. The online approaches in Section 2.3.1

consider uncertain or unknown data demand distributions, while most other studies in the literature

assume known uniform demands. We recommend research targeted towards situations in the middle,
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where some imperfect knowledge of demands is available. In these cases, future research could employ

stochastic programming [Higle and Sen, 1991, Mulvey and Ruszczyński, 1995, Neely, 2010] or robust

optimization [Ben-Tal and Nemirovski, 2002, Mulvey et al., 1995, Romich et al., 2015] principles to

determine data flows in order to achieve an expected maximum lifetime, or worst-case maximum

lifetime, as appropriate.

The previous works assume that data transmissions are free of interference that inhibit

successful transmission and lead to low-quality or unreliable data. For practical implementation,

future research needs to consider the presence of stochastic interference levels. Multi-path or

redundant data transmissions may be viable options to embed interference countermeasures into

network protocols. Similarly, works in this chapter assume that network coordination and operation

are free of attacks. Since WSNs often transmit data on public channels, they are susceptible to

attacks on transmission links [Das, 2009]. Similarly, sensors are prone to physical attacks since they

are commonly left unattended after deployment. Countermeasures for such attacks could be modeled

as a network interdiction problem [Golden, 1978, Janjarassuk and Linderoth, 2008, Smith et al.,

2013], in which a WSN operator maximizes lifetime after an adversary attacks some set of links.

Additionally, this problem could be extended to a three-stage model in which the WSN operator

fortifies the WSN (e.g., relocating sensors, alleviating bandwidth restrictions) before an adversary

attacks.

While the approaches in this chapter seek to balance energy consumption among all sensors,

WSN lifetime is still constrained by finite sensor battery power. Some WSNs allow for energy

harvesting [Gilbert and Balouchi, 2008, Kansal et al., 2007, Visser and Vullers, 2013, Vullers et al.,

2010], in which sensors gather energy by means of various mechanisms (e.g., solar power, radio

frequency energy transfer, microwave energy transfer) to recharge their battery. Future optimization

approaches need to address how to utilize these energy sources to prolong network lifetime. Employing

such techniques also opens up the discussion for multiple optimization problems, such as when and

how to harvest energy to sustainably operate a WSN.

Data flows are predominantly assumed to be non-negative continuous values, but for some

applications, positive data-flow values less than some minimum threshold may be undesirable. To

characterize such cases, future optimization approaches may utilize semicontinous variables that,

if positive, must be no less than some lower bound. Another common assumption is that data is

transmitted (virtually) instantaneously from sensors to other nodes in the network. If this transmission
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time is non-negligible, then for problems having tolerable delays, the transmission times from the

data origin to its destination must be taken into account. For mobile-sink WSN models, the sink may

need to dwell at each location for some minimum amount of time to ensure that all data transmissions

are retrieved.

Clustering techniques presented in Section 2.3.2 help to decentralize network protocols and

coordination. A majority of the presented work propose heuristic techniques for the clusterhead

selection and cluster formation problems. While Nikolidakis et al. [2013] and Kuila and Jana [2014]

propose LP models for a special case of the clusterhead selection problem, future work could employ

mathematical programming techniques for the general clusterhead selection and cluster formation

problems. This work might examine exact decomposition-based solution techniques, such as column

generation and Langrangian relaxation.

Typically, sinks are assumed to exist at specified discrete locations, although some research

also regards the placement of sensors and sinks from among a set of discrete candidate locations.

The placement of sensors in a more general Euclidean space is a very challenging research problem

that warrants investigation. Additionally, if multiple sensor deployment is infeasible or too costly,

sensor mobilization may be a viable solution. Future research could consider the presence of a mobile

sensor that moves along a set of predetermined discrete locations. Similar to mobile-sink models,

a mobile-sensor lifetime maximization model might consider determining a sensor’s trajectory and

dwelling times at each location. Furthermore, in mobile-sink examples, the speed of the sink is

exogenous, and does not utilize any resources within the system. An alternative model regards the

case in which sinks have energy too, and this energy is consumed by receiving data and by moving

from one location to another. Moreover, the rate at which this energy is consumed would be a

function of the sink’s speed. Such a model could examine the alternative of maximizing the sink

lifetime.

Finally, we submit that many future WSN studies will be guided within context-specific

applications. The algorithms presented in this chapter are mostly targeted toward models that have

broad applicability. When implementing these algorithms for specific applications, certain aspects

of the network will need to be tailored for the situation at hand, revealing even richer classes of

problems for study.
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Chapter 3

Augmenting-flow Algorithms for

Solving a Class of Maximum Flow

Problems Having Node-capacity

Restrictions

3.1 Introduction and Problem Statement

In this chapter we study a variation of the maximum flow problem (MFP) having a set of

node-capacity restrictions. This problem takes place on a graph G = (V,A) with a node set V and

an arc set A. Set V contains a source node s and a sink node t. As usual, each arc (i, j) ∈ A has a

capacity of cij > 0, which refers to the maximum amount of flow that can be sent on (i, j). In this

chapter we examine the case in which each unit of flow on (i, j) consumes gij > 0 units of capacity

at node i ∈ V, and define bi > 0 to be the capacity of node i.

To formulate this problem, let scalar variable z refer to the maximum flow through the

network, and let non-negative variables xij correspond to the amount of flow on arc (i, j) ∈ A. The

node-capacitated maximum flow problem (NCMFP) seeks to send as much flow as possible from s to

t without violating any node- or arc-capacity constraint. The NCMFP can be formulated by the

following linear programming (LP) model.

max z (3.1a)

s.t.
∑

i:(s,i)∈A

xsi = z (3.1b)
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−
∑

j:(j,t)∈A

xjt = −z (3.1c)

∑
j:(i,j)∈A

xij −
∑

h:(h,i)∈A

xhi = 0 ∀i ∈ V \ {s, t} (3.1d)

∑
j:(i,j)∈A

gijxij ≤ bi ∀i ∈ V \ {t} (3.1e)

0 ≤ xij ≤ cij ∀(i, j) ∈ A (3.1f)

The objective function (3.1a) and constraints (3.1b) and (3.1c) maximize flow from s to t, and

constraints (3.1d) ensure flow balance among all nodes in V \ {s, t}. Constraints (3.1e) and (3.1f)

represent node- and arc-capacity constraints, respectively. Finally, constraints (3.1f) also enforce flow

non-negativity.

For the special case in which there exist constants gi, such that gij = gi, ∀(i, j) ∈ A, the

NCMFP can be simplified to the MFP by first splitting each node i ∈ V into two nodes i1 and

i2, and adding an arc (i1, i2) ∈ A, with ci1i2 = bi/gi. All arcs (h, i) ∈ A are revised to (h, i1),

and all arcs (i2, j) ∈ A are revised to (i2, j). Ford and Fulkerson [1958] utilize this transformation

when gij ∈ {0, 1}, ∀(i, j) ∈ A. On a similar note, the NCMFP can also accommodate the case in

which flow on arc (i, j) consumes capacity at node j, if flows on each arc (i, j) consume an identical

amount of capacity at node j. Suppose that for all i ∈ V : (i, j) ∈ A, flow on (i, j) consumes

hj > 0 units of capacity at node j. We can transform this model to the NCMFP by adjusting

g′jk = gjk + hj , ∀(j, k) ∈ A, and bounding z by bt/ht if bt is finite.

In this chapter we address the more general statement of the NCMFP having gij > 0, ∀(i, j) ∈

A, in which the aforementioned transformations cannot be applied. Figure 3.1 illustrates an NCMFP

instance. Figure 3.1a displays all data for this example, while Figure 3.1b displays an optimal set of

flows that maximizes flow from s to t without violating any node- or arc-capacity restrictions. Each

dashed arc (i, j) refers to a positive non-saturated flow 0 < xij < cij on (i, j), while each solid arc

(i, j) refers to a saturated flow xij = cij on (i, j). Not surprisingly, the maximum flow-minimum cut

theorem [Ahuja et al., 1993] for the MFP does not hold for the NCMFP. Figure 3.1b demonstrates

this claim since there exists a path (s, 1, 2, 4, t) of non-saturated arcs from s to t. (Clearly, however,

if a cut set of saturated arcs does not exist, then every s–t path containing only non-saturated arcs

in an optimal solution must visit at least one node whose capacity is exhausted.) Thus, traditional

augmenting-flow algorithms (e.g., Ford-Fulkerson [Ford and Fulkerson, 1956] and push-relabel [Ahuja
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Figure 3.1: Node-capacitated network flow example, in which bs = b3 = b4 = bt =∞.

et al., 1993]) generally will not optimize the NCMFP.

In the absence of constraints (3.1e), model (3.1) can be used to solve the MFP having

only arc-capacity constraints. To avoid the computational difficulties associated with solving a

linear program, many efficient augmenting-flow algorithms have been proposed to solve the MFP.

While some algorithms augment flow on all arcs along s–t paths (e.g., Ford-Fulkerson [Ford and

Fulkerson, 1956]) during each augmentation, other approaches augment flows on individual arcs (e.g.,

push-relabel). These algorithms do not allow flows to violate capacity constraints, and terminate

when it can be verified (sometimes indirectly) that every s–t path includes a saturated arc in the

current solution. One of the key observations in this chapter is that an analogous criterion — that

every such path either visits a saturated arc or a node whose capacity is exhausted — is not sufficient

to prove optimality. Generally speaking, there may exist a flow circulation that increases the available

capacity on a set of exhausted nodes, thus permitting additional flow to be transmitted from s to t

(see Section 3.2.3).

Depending on the network size and data characteristics, solving (3.1) could become time-

consuming. Our primary contributions are thus two augmenting-flow algorithms that avoid solving

(3.1) for the NCMFP. Both algorithms modify an augmenting-flow algorithm to obtain a feasible

NCMFP solution. Rather than solving (3.1), the first algorithm implements two smaller auxiliary

LPs to solve the NCMFP. These two LPs either prove the optimality of a given NCMFP solution,

terminate with a feasible NCMFP solution, or augment flow first on a circulation to increase some

node capacities and then on an s–t path to maximize additional flow in the network. This first

algorithm tends to encounter small, easily solvable LPs; however, some situations might call for the
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complete avoidance of linear programming subroutines. Accordingly, our second approach is heuristic

only, and modifies the circulation-generation part of the first approach to obviate the necessity of

solving an LP.

This rest of this chapter is organized as follows. In Section 3.2, we present our almost-exact

augmenting-flow algorithm for the NCMFP. We next detail a heuristic version of our augmenting flow

algorithm in Section 3.3. Finally, Section 3.4 presents computational results for both augmenting-flow

algorithms.

3.2 Augmenting Path and Cycle Algorithm

In this section we describe our almost-exact Augmenting Path and Cycle (APC) algorithm

for solving the NCMFP. We refer to the APC as almost-exact because, in most cases, it obtains a

feasible NCMFP solution for which we can prove optimality. In all other cases, the APC produces

flows close to optimal for the NCMFP. We first describe the APC initialization phase in Section 3.2.1

that determines an initial set of feasible flows x̄. Next, Section 3.2.2 details a dual-based heuristic

algorithm for checking the optimality of x̄. When flows x̄ are not deemed optimal, we implement the

APC augmenting-flow phase in Section 3.2.3 to either prove the optimality of flows x̄, terminate the

APC with feasible flows x̄, or to identify and adjust flow on a set of augmenting cycles and an s–t

path. We also describe the situations in which the APC produces sub-optimal solutions. Finally, in

Section 3.2.4 we prove the conditions in which the APC produces flows x̄ optimal to the NCMFP.

3.2.1 APC Initialization Phase

To obtain an initial feasible solution to (3.1), we execute a modified version of the augmenting-

flow (AF) algorithm [Ahuja et al., 1993] for solving the MFP. We call our modified AF algorithm

the m-AF algorithm. Letting set A′ contain all arcs in the residual network of G given flows x̄ (i.e.,

A′ = {(i, j) : (i, j) ∈ A and x̄ij < cij , or (j, i) ∈ A and x̄ij > 0}), the standard AF first determines an

s–t path p containing only arcs in A′. Alternatively, the m-AF searches for an s–t path p̄ that contains

only reverse arcs (u, v) ∈ A′ \ A or forward arcs (i, j) ∈ A′ ∩A for which node i has positive residual

capacity. The AF augments as much flow as possible on p while satisfying capacity restrictions

for all arcs contained within p and maintaining flow balance at all intermediate nodes visited by

p. The AF saturates the flow on an arc with each path augmentation. Alternatively, the m-AF

augments as much flow as possible on p̄ while satisfying all arc- and node-capacity restrictions and
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maintaining flow balance at all intermediate nodes visited by p̄. With each augmentation, the m-AF

either saturates an arc (i, j) so that x̄ij = cij or exhausts a node i so that
∑
j:(i,j)∈A gij x̄ij = bi.

The standard AF terminates with optimal flows for the MFP when no such path p exists.

Similarly, when all paths in the residual network originating at s are blocked by a saturated arc or an

exhausted node, the m-AF terminates with feasible flows x̄; however, these flows need not be optimal

to the NCMFP. A full description of the m-AF is given in Appendix A. At the conclusion of this

initialization phase, the APC proceeds to the optimality checking phase in Section 3.2.2.

Figure 3.2 displays the residual network after executing the m-AF on the network in Figure

3.1. The solution depicted gives a total flow of z̄ = 8.5 units. At conclusion of the m-AF, we define	
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Figure 3.2: Residual network of x̄ at m-AF termination

b̄i =
∑
j:(i,j)∈A gij x̄ij to be the residual capacity of each node i ∈ V. Defining VR as the set of all

exhausted nodes, place node i in VR when b̄i = 0, ∀i ∈ V . Next, we define c̄uv = cuv − x̄uv to be the

residual capacity of each forward arc (u, v) ∈ A′ ∩ A, c̄uv = x̄vu to be the residual capacity of each

reverse arc (u, v) ∈ A′ \ A, and z̄ =
∑
i:(s,i)∈A x̄si to be the current maximum flow value.

3.2.2 APC Optimality Checking Phase

We provide a subroutine in this subsection to check if flows x̄ are optimal to (3.1) by

heuristically seeking a feasible solution to the dual formulation of (3.1) that is complementary slack

to x̄. If this dual-based heuristic succeeds, then x̄ is optimal to (3.1); otherwise, we cannot yet

determine if x̄ is optimal.
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To formulate the dual of (3.1), let variables αi correspond to the dual values associated

with constraints (3.1b), (3.1c), and (3.1d) for all i ∈ V; let variables γij be the dual values for

arc-capacity constraints (3.1e) for each (i, j) ∈ A; and let variables βi correspond to the dual values

for node-capacity constraints (3.1f) for each i ∈ V \ {t}. The dual formulation of (3.1) is as follows.

min
∑

(i,j)∈A

cijγij +
∑
i∈V

biβi (3.2a)

s.t. αt − αs = 1 (3.2b)

αi − αj + γij + gijβi ≥ 0 ∀(i, j) ∈ A (3.2c)

γij ≥ 0 ∀(i, j) ∈ A (3.2d)

βi ≥ 0 ∀i ∈ V (3.2e)

Our dual heuristic algorithm thus seeks to determine a set of α-, β-, and γ-values that satisfy

(3.2b)–(3.2e) and the following complementary slackness conditions:

βi

bi − ∑
j:(i,j)∈A

gij x̄ij

 = 0 ∀i ∈ V \ {t}, (3.3a)

γij(cij − x̄ij) = 0 ∀(i, j) ∈ A, (3.3b)

x̄ij(αi − αj + γij + gijβi) = 0 ∀(i, j) ∈ A. (3.3c)

Dual Heuristic Initialization: Let VR contain all exhausted nodes at the end of the initialization

phase (i.e., VR = {i ∈ V :
∑
j:(i,j)∈A gij x̄ij = bi}). Set Ā will contain all arcs (i, j) that have been

examined by our heuristic in the sense that (3.3c) is satisfied for (i, j). Similarly, V contains the set

of examined nodes i ∈ V for which a final value for αi has been chosen. We begin by tentatively

setting αi = 0 and βi = 0, ∀i ∈ V \ {t}, and γij = 0, ∀(i, j) ∈ A. Initialize Ā = ∅ and V = {s, t} by

setting αt = 1 to satisfy (3.2b). Therefore, (3.3a), (3.3b), and (3.3c) are all satisfied at this point,

except for (3.3c) corresponding to all (i, t) ∈ A : x̄it > 0.

Define Vs as all nodes i ∈ V for which there exists a path p̄si from s to i in A′ that does

not visit any nodes in VR other than i, which may or may not belong to VR. For all nodes i ∈ Vs,

keep αi = 0 and place i in V. For all arcs (m,n) ∈ A contained within each such path p̄si, place

(m,n) in Ā. Note that for all (m,n) ∈ A : m ∈ Vs, n ∈ Vs; (3.2c) is satisfied for (m,n) at equality.

Define Vt as all nodes i ∈ V for which there exists a path p̄it from i to t in A′ that does not visit
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any exhausted nodes (including node i itself). For all nodes i ∈ Vt, set αi = 1 and place i in V. For

all arcs (m,n) ∈ A contained within each such path p̄it, place (m,n) in Ā since constraint (3.2c) is

satisfied at equality for all (m,n) ∈ A : m ∈ Vt, n ∈ Vt. Both sets Vs and Vt can be constructed by

executing a breadth-first-search (BFS) in A′ originating at s and t, respectively.

Dual Step 1: For all arcs (i, j) ∈ A \ Ā such that i ∈ Vs \ VR, j ∈ V, and x̄ij = cij , set γij = αj

and place (i, j) in Ā. Thus, this choice of γij satisfies (3.2c), (3.3b), and (3.3c) for (i, j). If Ā = A,

then go to Dual Step 5. Otherwise, proceed to Dual Step 2.

Dual Step 2: Locate an arc (̂ı, ̂) ∈ A \ Ā : 0 < x̄ı̂̂ < cı̂̂, ı̂ ∈ VR ∩ V, and ̂ ∈ Vt. If no such arc

exists or if two such arcs (̂ı, ̂1) and (̂ı, ̂2) exist, then terminate the dual heuristic algorithm without

a complementary slack dual-feasible solution. Otherwise, set βı̂ = (1− αı̂)/gı̂̂ and add arc (̂ı, ̂) to

Ā. Note that this choice of βı̂ satisfies (3.2c) and (3.3c) for (̂ı, ̂), and maintains feasibility to (3.3a)

for ı̂ because ı̂ ∈ VR. Additionally, βî ≥ 0, since we terminate the dual algorithm if αî > 1 for any

î ∈ V. Proceed to Dual Step 3.

Dual Step 3: For all arcs (̂ı, k) ∈ A such that k ∈ Vt and x̄ı̂k = cı̂k, set γı̂k = 1− αı̂ − gı̂kβı̂ and

add (̂ı, k) to Ā. If γı̂k < 0, then terminate the dual heuristic algorithm without a complementary

slack dual-feasible solution. Otherwise, this choice of γı̂k satisfies constraints (3.2c) and (3.3c) for

(̂ı, k) without violating (3.3b) since x̄ı̂k = cı̂k. Proceed to Dual Step 4a.

Dual Step 4a: Execute a BFS to search for a path p̄ı̂m̂ over arcs in A originating at ı̂ and

terminating at a node m̂ ∈ V for which there exists an arc (m̂, n̂) ∈ A \ Ā : 0 < x̄m̂n̂ < cm̂n̂ and

n̂ ∈ V. If no such path exists, return to Dual Step 1. Otherwise, let k̂ be the second node visited by

p̄ı̂m̂ and proceed to Dual Step 4b.

Dual Step 4b: Execute a BFS to search for a path p̄n̂û over arcs in A originating at n̂ and

terminating at a node û ∈ V for which x̄ûv = cûv, ∀v ∈ Vt : (û, v) ∈ A \ Ā. If a path p̄n̂û does not

exist, then proceed to Dual Step 4c. Otherwise, construct a path p̄ı̂û by joining path p̄ı̂m̂, arc (m̂, n̂),

and path p̄n̂û. If αj 6= αı̂ + gı̂k̂βı̂ for any j ∈ V visited by p̄ı̂û, then terminate the dual heuristic

algorithm without a complementary slack dual-feasible solution. Otherwise, for each node ` ∈ V \ V

visited by p̄ı̂û, place ` in V and set α` = αı̂ + gı̂k̂βı̂. If α` > 1 for any ` in V, then terminate the
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dual heuristic algorithm without a complementary slack dual-feasible solution. Otherwise, for all

v ∈ Vt : (û, v) ∈ A \ Ā, set γûv = 1− αı̂ − gı̂k̂βı̂ and place (û, v) in Ā. If γûv < 0, then terminate the

dual heuristic algorithm without a complementary slack dual-feasible solution. Otherwise, this choice

of γûv satisfies (3.2c) and (3.3c). Finally, for all arcs (m,n) ∈ A \ Ā contained within path p̄ı̂û, place

(m,n) in Ā since our choice of αm and αn satisfies (3.2c) and (3.3c). Return to Dual Step 4a.

Dual Step 4c: Execute a BFS to search for a path p̄n̂û over arcs in A originating at n̂ and

terminating at a node û ∈ VR \ V . If no such path p̄n̂û exists, then return to Dual Step 1. Otherwise,

construct a path p̄ı̂û by joining path p̄ı̂m̂, arc (m̂, n̂), and path p̄n̂û. If αj 6= αı̂ + gı̂k̂βı̂ for any

j ∈ V visited by p̄ı̂û, then terminate the dual heuristic algorithm without a complementary slack

dual-feasible solution. Otherwise, for each node ` ∈ V \ V visited by p̄ı̂û, place ` in V and set

α` = αı̂ + gı̂k̂βı̂. If α` > 1 for any ` in V, then terminate the dual heuristic algorithm without a

complementary slack dual-feasible solution. Otherwise, for all arcs (m,n) contained within path p̄ı̂û,

place (m,n) in Ā since our choice of αm and αn satisfies (3.2c) and (3.3c). Return to Dual Step 4a.

Dual Step 5: Terminate successfully with a set of dual values complementary slack to x̄. Thus,

flows x̄ are optimal to (3.1).

If this heuristic algorithm does not determine that flows x̄ are optimal, then the APC

proceeds to the augmenting-flow phase of the APC in Section 3.2.3 to either prove the optimality of

x̄ or to identify a set of flow adjustments that allow for additional flow to be augmented on an s–t

path without violating any constraints (3.1b)–(3.1f).

We illustrate our dual heuristic algorithm on the network of flows x̄ in Figure 3.3.	

s 
1s 

1 

2 1 

9 4 5 8 

t 

Exhausted Node 

Non-exhausted Node 
Saturated Arc 
Non-saturated Arc 3 

6 

7 

Figure 3.3: Dual heuristic example
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Dual Initialization: Initialize by setting all dual values equal to 0, VR = {1, 3}, Vs = {s, 1}, and

Vt = {4, 5, 8, 9, t}. Next, set αi = 1, ∀i ∈ Vt, and place all nodes i ∈ Vs ∪ Vt in V . Finally, place arcs

(s, 1), (4, t), (5, t), (8, t) and (9, t) in Ā. For this network of flows, no arcs (i, j) ∈ A exist for which

i ∈ Vs, j ∈ Vt, and x̄ij = cij .

Dual Step 1: There exist no arcs (i, j) ∈ A \ Ā for which i ∈ Vs \ VR, j ∈ V, and x̄ij = cij .

Proceed to Dual Step 2.

Dual Step 2: Set (̂ı, ̂) = (1, 5) since node 1 ∈ V ∩ VR and node 5 ∈ Vt. Set β1 = 1/g15, place

(1, 5) in Ā, and proceed to Dual Step 3.

Dual Step 3: Set γ14 = 1 − g14β1 because x̄14 = c14 and node 4 ∈ Vt. Place (1, 4) in Ā, and

proceed to Dual Step 4a.

Dual Step 4a: Since (1, 6) /∈ Ā originates at 1 and 0 < x̄16 < c16, then set m̂ = 1, n̂ = 6 and

k̂ = 6. Proceed to Dual Step 4b.

Dual Step 4b: Since x̄7t = c7t and t ∈ Vt, then set û = 7 and p̄n̂û = (6, 7). Construct path

p̄ı̂û = (1, 6, 7) by joining arcs (1, 6) and (6, 7). Thus, set α6 = α7 = g16β1 and add nodes 6 and 7 to

V. Next, set γ7t = 1− g16β1 and add arcs (1, 6), (6, 7), and (7, t) to Ā. Return to Dual Step 4a.

Dual Step 4a: Since (1, 2) /∈ Ā originates at 1 and 0 < x̄12 < c12, then set m̂ = 1, n̂ = 2, and

k̂ = 2. Proceed to Dual Step 4b.

Dual Step 4b: No such path exists. Proceed to Dual Step 4c.

Dual Step 4c: Since 3 ∈ VR, then set û = 3 and p̄n̂û = (2, 3). Construct path p̄ı̂û = (1, 2, 3) by

joining arcs (1, 2) and (2, 3). Thus, set α2 = α3 = g12β1, add nodes 2 and 3 to V , and add arcs (1, 2)

and (2, 3) to Ā. Repeat Dual Step 4a.

Dual Step 4a: No such path exists. Return to Dual Step 1.

Dual Step 1: Set γs3 = α3 because s ∈ Vs \ VR, 3 ∈ V, and x̄s3 = cs3. Then, add arc (s, 3) to Ā

and proceed to Dual Step 2.
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Dual Step 2: Set (̂ı, ̂) = (3, 9) because 3 ∈ V ∩ VR, node 9 ∈ Vt, and (3, 9) ∈ A \ Ā. Set

β3 = (1− α3)/g39, place (3, 9) in Ā, and proceed to Dual Step 3.

Dual Step 3: Since x̄38 = c38 and node 8 ∈ Vt, set γ38 = 1 − α3 − g38β3, place (3, 8) in Ā, and

proceed to Dual Step 4a.

Dual Step 4a: No such path exists. Return to Dual Step 1.

Dual Step 1: Since Ā = A, then go to Dual Step 5.

Dual Step 5: Terminate successfully with a set of dual values complementary slack to x̄. Thus,

flows x̄ are optimal.

3.2.3 APC Augmenting-flow Phase

At this point in the algorithm, if flows x̄ have yet to be deemed optimal in Section 3.2.2,

then all s–t paths in A′ must visit a node in VR. Recalling that b̄i = 0 for all i ∈ VR, we identify a

strategy for adjusting flows x̄ in such a way that increases b̄i for some nonempty set of nodes i ∈ VR

without violating the node- or arc-capacity restriction or flow balance at any node i ∈ V in order

to increase the current maximum flow value z̄. These flow adjustments thus correspond to sending

flows across a set of augmenting cycles in A′.

Consider the following example residual network A′ corresponding to flows x̄ in Figure 3.4

that details an example of when this set contains a single augmenting cycle.
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(a) Residual network corresponding to flows x̄
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(b) Network displaying g-values

Figure 3.4: Flow adjusting circulation example
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Without adjusting flows in Figure 3.4a, additional flow cannot be sent from s to t since

the only s–t path (s, 1, 2, t) visits exhausted node 2. Note that adjusting flows on the directed

cycle (1, 3, 2, 1) by a single unit of flow increases the residual capacity of node 2 by g23 = 5 without

decreasing the residual capacity of any other exhausted node to allow for at most 5/6 units of

flow to be augmented on (s, 1, 2, t). Any augmenting cycle that increases the residual capacity of

a node i ∈ VR without decreasing the residual capacity of any node in VR \ {i} is referred to as a

capacity-increasing cycle.

Additionally, a set of multiple augmenting cycles may exist that are not individually capacity-

increasing but jointly increase the residual capacity of a set of nodes in VR without decreasing the

residual capacity of any other nodes in VR. We refer to such set as a joint-cycle set. As an example,

consider the following residual network in Figure 3.5. For this example, let g12 = 2, g13 = 9, g14 = 10,

g23 = 5, and g24 = 6, and observe that VR = {1, 2}. Consider cycle 1, given by (1, 2, 3, 1), and cycle
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Data:	
g12	=	2	
g13	=	9	
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g24	=	6	
	

Figure 3.5: Residual network motivating the LP phase

2, given by (1, 4, 2, 1). Adjusting flow on cycle 1 increases the residual capacity of node 1 at a rate of

g13 − g12 = 7 but decreases the residual capacity of node 2 at a rate of g23 = 5, while adjusting flow

on cycle 2 increases the residual capacity of node 2 at a rate of g24 = 6 but decreases the residual

capacity of node 1 at a rate of g14 − g12 = 8. Thus, neither cycle is capacity-increasing.

However, a combination of flow adjustments on these two cycles may simultaneously increase

the residual capacity of both nodes 1 and 2. Letting the flow on cycles 1 and 2 be ∆1 and ∆2,
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respectively, the residual capacity of nodes 1 and 2 are given as:

b̄1 = (g13 − g12)∆1 − (g14 − g12)∆2 = 7∆1 − 8∆2,

b̄2 = −g23∆1 + g24∆2 = −5∆1 + 6∆2.

By setting ∆1 = 1 and ∆2 = 21/25, the residual capacities b̄1 and b̄2 increase by 7/25 and 1/25,

respectively, to allow for additional flow to be augmented on (s, 1, 2, 4, t).

For some cases, the process of identifying a set of capacity-increasing cycles that allow for

more flow to be sent from s to t can be accomplished without solving an LP, as we will show in

Section 3.3. Alternatively, detecting the existence of a joint-cycle set is evidently more difficult, and

so we resort to the use of linear programming to either find a joint-cycle set among arcs in A′ or

prove that no joint-cycle set exists. Defining the residual arc capacity c̄ as before, let continuous

variables yij ≥ 0, ∀(i, j) ∈ A′ : c̄ij > 0, be positive when arc (i, j) is contained within an augmenting

cycle found within a joint-cycle set. Let continuous variables 0 ≤ si ≤ 1, ∀i ∈ VR, be positive when

adjusting flows x̄ according to y increases residual capacity at node i, and 0 otherwise. The following

LP seeks to find a joint-cycle set that maximizes the number of nodes in VR whose residual capacity

can be increased by adjusting flows according to y.

max
∑
i∈VR

si (3.4a)

s.t.
∑

j:(i,j)∈A′, c̄ij>0

yij −
∑

k:(k,i)∈A′, c̄ki>0

yki = 0 ∀i ∈ V (3.4b)

∑
k:(k,i)∈A′\A, c̄ki>0

gikyki −
∑

j:(i,j)∈A′∩A, c̄ij>0

gijyij − si ≥ 0 ∀i ∈ VR (3.4c)

0 ≤ si ≤ 1 ∀i ∈ VR (3.4d)

yij ≥ 0 ∀(i, j) ∈ A′ : c̄ij > 0 (3.4e)

Objective function (3.4a) maximizes the number of nodes in VR whose residual capacity can be

increased, and constraints (3.4b) ensure that flows y, if not all zero, form a set of augmenting cycles

that comprise a joint-cycle set. Constraints (3.4c) and (3.4d) ensure variable si equals 1 when the

residual capacity at node i ∈ VR increases as a result of adjusting flows according to y, as proved in

Proposition 1 below. Finally, constraints (3.4e) ensure non-negativity.

Proposition 1. Variables si, ∀i ∈ VR, are binary in any optimal solution to (3.4).
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Proof. Let s̄ and ȳ be the vector of s-values and y-values, respectively, for a given optimal solution

to (3.4), having an objective function value s∗ =
∑
i∈VR s̄i. Assume by contradiction that 0 < s̄i < 1

for some node i ∈ VR. We can modify this solution by multiplying ȳ by scalar 1/s̄i and setting s̄i = 1

with all other s̄-values remaining constant. This solution remains feasible to constraints (3.4b)–(3.4e)

since 1/s̄i > 1. Additionally, s∗ increases by 1− s̄i, which contradicts the optimality of the original

solution. This completes the proof.

The augmenting-flow phase of the APC thus proceeds as follows. Let Θ be the index set of

all augmenting cycles found so far, and let ȳ be the set of flows in an optimal solution to (3.4). We

identify capacity-increasing cycles by executing a DFS originating at each node i ∈ VR, for which

si = 1 in an optimal solution to (3.4), among those arcs (i, j) ∈ A′ : ȳij > 0. Next, place each

identified cycle in Θ, and remove any duplicate cycles found in Θ. Defining VR as the set of all nodes

i ∈ VR for which the APC has found an augmenting cycle that increases the residual capacity at

node i, place node i in VR if si = 1 in an optimal solution to (3.4). Determining the cycles in Θ in

this way ensures that Θ consists of at least one cycle that increases the residual capacity at each

node in VR. Next, execute a DFS to search for an s–t path p̄ among those arcs in A′ that visits only

those nodes in {V \ VR} ∪ {VR}. If no path p̄ exists, then each s–t path p in A′ visits some set of

exhausted nodes in V , and no capacity-increasing cycles exist that jointly increase the capacity of all

exhausted nodes visited by p. In this case, flows x̄ are deemed optimal according to the proof of

optimality detailed in Section 3.2.4.

When some path p̄ exists, decomposing flows ȳ, from an optimal (3.4) solution, into the set

of augmenting cycles Θ in the aforementioned way typically allows for additional flow to be sent on

p̄. When augmenting flow on cycles in Θ does not allow for positive flow to be sent on p̄, there exists

some alternative decomposition of flows ȳ into a set of capacity-increasing cycles that does allow

for flow to be augmented on p̄. For such cases, the current solution obtained by the APC is not yet

optimal. Determining this alternative flow decomposition is non-trivial and could require solving an

additional LP larger than either (3.4) or (3.5). Thus, we terminate the APC with flows x̄ feasible to

the NCMFP when such cases occur.

Thus, we must determine the amount by which to adjust flow on each cycle in Θ to maximize

the allowable flow on p̄. To do so, define Ap̄ as the set of all arcs contained within p̄ and Vp̄ as the

set of all nodes visited by p̄, and let λ represent the amount by which we augment flow on p̄. Next,

remove any cycles in Θ that do not visit a node in Vp̄, let ∆k represent the amount by which we

adjust flow on each cycle θk ∈ Θ, and let θk be the set of all arcs contained within each cycle θk ∈ Θ.
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Let set V p̄R ⊆ VR consist of all exhausted nodes visited by p̄, let VΘ be the set of all nodes visited by a

cycle in Θ, and let AΘ be the set of all arcs contained within a cycle in Θ. Define Θi ⊆ Θ to be the set

of all cycles visiting node i ∈ VΘ, and let set Θuv ⊆ Θ consist of all cycles containing arc (u, v) ∈ AΘ.

Finally, define residual capacities b̄i =
∑
j:(i,j)∈A gij x̄ij , ∀i ∈ V; c̄uv = cuv − x̄uv, ∀(u, v) ∈ A′ ∩ A;

and c̄vu = x̄uv, ∀(v, u) ∈ A′ \ A.

The following LP can now be solved to determine a set of flow adjustments ∆k, ∀θk ∈ Θ,

that allow for a maximum amount of flow λ to be augmented on path p̄ while maintaining the

feasibility of flows x̄.

max λ (3.5a)

s.t.
∑
θk∈Θi

 ∑
j:(i,j)∈Ak∩{A′∩A}

gij∆k −
∑

h:(h,i)∈Ak∩{A′\A}

gih∆k


+

∑
m:(i,m)∈Ap̄∩{A′∩A}

gimλ−
∑

`:(`,i)∈Ap̄∩{A′\A}

gi`λ ≤ 0, ∀i ∈ V p̄R, (3.5b)

∑
θk∈Θi

 ∑
j:(i,j)∈Ak∩{A′∩A}

gij∆k −
∑

h:(h,i)∈Ak∩{A′\A}

gih∆k


+

∑
m:(i,m)∈Ap̄∩{A′∩A}

gimλ−
∑

`:(`,i)∈Ap̄∩{A′\A}

gi`λ ≤ b̄i, ∀i ∈ VΘ \ V p̄R, (3.5c)

∑
m:(i,m)∈Ap̄∩{A′∩A}

gimλ−
∑

`:(`,i)∈Ap̄∩{A′\A}

gi`λ ≤ b̄i, ∀i ∈ Vp̄ \ V p̄R, (3.5d)

− c̄vu ≤
∑

θk∈Θuv

∆k −
∑

θm∈Θvu

∆m + λ ≤ c̄uv ∀(u, v) ∈ A′ ∩ Ap̄ ∩ AΘ, (3.5e)

− c̄vu ≤
∑

θk∈Θuv

∆k −
∑

θm∈Θvu

∆m ≤ c̄uv ∀(u, v) ∈ {A′ ∩ AΘ} \ Ap̄, (3.5f)

− c̄vu ≤ λ ≤ c̄uv ∀(u, v) ∈ {A′ ∩ Ap̄} \ AΘ, (3.5g)

∆k ≥ 0, ∀θk ∈ Θ, (3.5h)

λ ≥ 0. (3.5i)

Objective function (3.5a) maximizes the flow λ on p̄, while constraints (3.5b) ensure that capacity

consumed by adjusting flow at each exhausted node visited by p̄ is non-positive. Constraints (3.5c)

similarly ensure that the capacity consumed by adjusting flow at each node visited by a cycle in

Θ but not p̄ does not exceed residual capacity b̄i at node i. Constraints (3.5d) ensure that the

capacity consumed by adjusting flow at each node visited by p̄ but not any cycle in Θ does not exceed
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residual capacity b̄i at node i. Constraints (3.5e) guarantee that flow adjustments do not violate

the non-negativity or arc-capacity restrictions on each arc (u, v) contained within p̄ and a cycle in

Θ. Constraints (3.5f) similarly guarantee that the flow on each arc contained within a cycle in Θ

but not within p̄ remains non-negative and does not violate arc-capacity restrictions. Constraints

(3.5g) guarantee that the flow on each arc (u, v) contained within p̄ but not within a cycle in Θ

remains non-negative and does not violate arc-capacity restrictions. Finally, (3.5h) and (3.5i) enforce

non-negative flows on each cycle in Θ and on path p̄, respectively.

An optimal solution to (3.5) provides a set of flow adjustments ∆̄k, ∀θk ∈ Θ, and the flow λ̄

to be augmented path p̄. Thus, to conclude this phase of the APC, solve model (3.5). If λ̄ = 0, then

there exists an alternative decomposition of flows ȳ that allows for positive flow to be augmented on

p̄, and we terminate the APC with feasible flows x̄.

Otherwise, if λ̄ > 0, then update flows x̄ by setting

x̄uv = x̄uv + λ̄+
∑

θk∈Θuv

∆̄k −
∑

θk∈Θvu

∆̄k, ∀(u, v) ∈ Ap̄ ∩ {A′ ∩ A},

x̄uv = x̄uv − λ̄+
∑

θk∈Θuv

∆̄k −
∑

θk∈Θvu

∆̄k, ∀(v, u) ∈ Ap̄ ∩ {A′ \ A},

x̄uv = x̄uv +
∑

θk∈Θuv

∆̄k −
∑

θk∈Θvu

∆̄k, ∀(u, v) ∈ {AΘ \ Ap̄} ∩ {A′ ∩ A}.

For all forward arcs (u, v) ∈ A′ ∩ A, update residual capacity c̄uv = cuv − x̄uv. For all reverse

arcs (v, u) ∈ A′ \ A, update residual capacity c̄vu = x̄uv. Finally, update residual node capacity

b̄i = bi−
∑
j:(i,j)∈A gij x̄ij , update current maximum flow value z̄ = z̄+ λ̄, and return to the optimality

checking phase of the APC to check if flows x̄ can be deemed optimal.

3.2.4 APC Algorithm Optimality

Theorem 1. Let x̄ be flows determined by the APC algorithm, such that each s–t path p in A′ visits

some set of exhausted nodes in VR, and no capacity-increasing cycles exist that jointly increase the

residual capacity of all exhausted nodes visited by p. Flows x̄ are optimal to the NCMFP.

Proof. We prove Theorem 1 by constructing a dual-feasible solution to (3.2) for which the following

complementary slackness conditions are satisfied: βi(bi−
∑
j:(i,j)∈A gij x̄ij) = 0, ∀i ∈ V ; γij(cij−x̄ij) =

0, ∀(i, j) ∈ A; and constraints (3.2c) are satisfied at equality for all positive-flow arcs. To provide

such a solution, we first define βi = 0, ∀i ∈ V \ VR; γij = 0, for all arcs (i, j) ∈ A : x̄ij < cij and

γij = αj − αi − gijβi for all (i, j) ∈ A : x̄ij = cij . The first two complementary slackness conditions

are thus satisfied.

We define dual values αi, ∀i ∈ V, and βi, ∀i ∈ VR, according to their right-hand shadow

price (RHSP) interpretation. That is, let A′ consist of all arcs in the residual network corresponding
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to x̄. For i ∈ V, we compute αi by placing an infinitesimal supply at node i and determining

the proportion of that supply that can be sent to t on arcs in A′ without violating node-capacity

constraints. The values for βi, for all i ∈ VR, are defined analogously when an additional unit of

capacity is allocated to node i. More precisely, the following LP models define αi, ∀i ∈ V, and

βi, ∀i ∈ VR.

Model (3.6) computes αi for node i ∈ V by determining a set of flows yi that maximize flow

fi into node t when an additional unit of supply originates at node i.

max fi (3.6a)

s.t.
∑

j:(j,t)∈A′
yjt = fi (3.6b)

∑
j:(i,k)∈A′

yik −
∑

h:(h,i)∈A′
yhi = 1 (3.6c)

∑
w:(v,w)∈A′

yvw −
∑

u:(u,v)∈A′
yuv = 0 ∀v ∈ V \ {s, i, t} (3.6d)

∑
v:(u,v)∈A′∩A

guvyuv −
∑

v:(u,v)∈A′\A

gvuyuv ≤ 0 ∀u ∈ VR (3.6e)

yuv ≥ 0 ∀(u, v) ∈ A′ (3.6f)

Objective function (3.6a) and constraint (3.6b) maximize flow into t. Constraint (3.6c) ensures that a

single unit of flow originates at i, and constraints (3.6d) ensure flow balance at all nodes in V \{s, i, t}.
Constraints (3.6e) ensure that the net capacity consumption at each node u ∈ VR is less than or

equal to 0, noting that arcs in A ∩A′ refer to forward arcs in the residual network and A′ \ A refers

to backward arcs in the residual network. Constraints (3.6f) state non-negativity restrictions on the

flow variables. We set αi equal to the optimal objective function value of (3.6).

Similar to (3.6), model (3.7) computes βi for each node i ∈ VR by determining a set of flows

ȳi for which flow f̄i into t is maximized when one unit of capacity is allocated to node i.

max f̄i (3.7a)

s.t.
∑

v:(v,t)∈A′
ȳvt = f̄i (3.7b)

∑
w:(v,w)∈A′

ȳvw −
∑

u:(u,v)∈A′
ȳuv = 0 ∀v ∈ V \ {s, t} (3.7c)

∑
k:(i,k)∈A′∩A

gikȳik −
∑

k:(i,k)∈A′\A

gkiȳik ≤ 1 (3.7d)

∑
w:(v,w)∈A′∩A

gvwȳvw −
∑

w:(v,w)∈A′\A

gwv ȳvw ≤ 0 ∀v ∈ VR \ {i} (3.7e)

ȳuv ≥ 0 ∀(u, v) ∈ A′ (3.7f)

Constraints (3.7d) and (3.7e) ensure that the net node capacity consumption at i ∈ VR is less than

or equal to 1 and 0 at all nodes in VR \ {i}. We set βi equal to the optimal objective value of (3.7).

We now show that our duals satisfy the constraints of (3.2), and that arc-capacity restrictions

(3.2c) written for (i, j) ∈ A holds as an equality when x̄ij > 0. To accomplish this, we examine (3.2c)
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for some (i, j) ∈ A by considering three possible cases: (a) x̄ij = 0, (b) x̄ij = cij , or (c) 0 < x̄ij < cij .

Let yi∗ and ȳi∗ be optimal solutions to models (3.6) and (3.7) corresponding to a node i ∈ V , having

objective function values α∗i and β∗i , respectively.

For case (a), the fact that x̄ij = 0 implies that γij = 0, and so we show that α∗i + gijβ
∗
i ≥ α∗j .

By contradiction, suppose that α∗j −α∗i − gijβ∗i > 0. Define y′ = yi∗+ ȳi∗ as the aggregation solution

that results from simultaneously incrementing one unit of supply at node i and one unit of capacity

at node i. Define ε to be a small positive number and eij to be a column vector of size |A′| with

a 1 in the element corresponding to (i, j) and zeros elsewhere. Consider the alternative aggregate

flow solution y′′ = (1− ε)yi∗ + (1− gijε)ȳi∗ + ε(eij + yj∗). We claim that y′′ contains the flows for

which the net node-i capacity consumption increases by no more than 1, and the net flow out of

node i increases by 1. To see that, let κi be the left-hand-side value of (3.6e), written for node i,

corresponding to yi∗, and let κ̄i be the left-hand-side value of (3.6e) corresponding to ȳi∗ (where

κi = 0 if i /∈ VR). Note that κi ≤ 0 and k̄i ≤ 1. In y′′, the net node-i capacity consumption becomes

(1− ε)κi + (1− gijε)κ̄i + εgij ≤ 1, with equality holding only when κi = 0 and κ̄i = 0. Also, the net

flow out of node i is given by (1− ε) + 0 + ε = 1 in solution y′′. Observe that y′′ decomposes into two

feasible solutions to (3.6) and (3.7) written for node i, and that the combined objective of y′′(i.e.,

the flow reaching node t) is (1 − ε)α∗i + (1 − gijε)β∗i + εα∗j = α∗i + β∗i + ε(α∗j − α∗i − gijβ∗i ). That

objective exceeds the combined objective of y′, α∗i + β∗i , by assumption that α∗j − α∗i − gijβ∗i > 0,

contradicting the optimality of yi∗ and ȳi∗.

For case (b), because we have that γij = α∗j − α∗i − gijβ
∗
i , we only need to show that

α∗i + gijβ
∗
i ≤ α∗j . By contradiction, suppose that α∗j < α∗i + gijβ

∗
i . Since there exists positive

capacity on arc (j, i) ∈ A′ \ A, we can employ a similar strategy as with case (a) by exchanging

indices i and j to build an alternative solution to (3.6) for node j having an objective value equal

to α∗i + β∗i + ε(α∗i + gijβ
∗
i − α∗j ). This objective exceeds the objective value of solution yj∗, α∗j , by

assumption that α∗i + gijβ
∗
i − α∗j > 0, contradicting the optimality of yj∗.

For case (c), since there exists positive capacity on arc (i, j) ∈ A′ and (j, i) ∈ A′ \ A, we can

employ our arguments for cases (a) and (b) to show that α∗i + gijβ
∗
i = α∗j . Thus, constraints (3.2c)

are satisfied at equality for all positive-flow non-saturated arcs (i, j) ∈ A.

Next, we define α∗t = 1 and show that computing α∗s using model (3.6) satisfies constraint

(3.2b). To do so, we need only to show that α∗s must equal 0. By contradiction, when α∗s = 1 for any

solution to (3.6), then there must exist an augmenting path from s to t in A′ that does not visit

an exhausted node. However, the APC would have discovered this path and augmented flow that

saturated an arc or node capacity on that path by means of solving LPs (3.4) and (3.5). Thus, α∗s
must be strictly less than 1. Additionally, when 0 < α∗s < 1, there must exist a path from s to t in

A′ visiting some set of exhausted nodes. To send flow through any of these exhausted nodes, there

must exist a set of augmenting cycles increasing residual capacity at each exhausted node visited by

this path. This contradicts our assumption that each s–t path p in A′ visits some set of exhausted

nodes in VR, and no capacity-increasing cycles exist that jointly increase the residual capacity of all

exhausted nodes visited by p. Thus, α∗s must equal 0, and (3.2b) is satisfied.

Finally, our definition of the duals satisfies constraints (3.2d) and (3.2e) for all i ∈ V. The

APC algorithm thus produces flows x̄, for which there exists a complementary slack dual-feasible

solution, when each s–t path p in A′ visits some set of exhausted nodes in V and no capacity-increasing

cycles exist that increase the residual capacity of each exhausted node visited by p. This proves that

x̄ is optimal.
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3.3 Heuristic APC Algorithm

Identifying a joint-cycle set discussed in Section 3.2.3 requires solving an LP since a combi-

nation of multiple cycles may be needed to increase the residual capacity of some exhausted nodes.

Determining a flow adjustments for this set of cycles also necessitates the need for linear programming.

Section 3.2.3 alternatively shows that determining flow adjustments is straightforward when only a

single capacity-increasing cycle is needed to increase the residual capacity of a set of exhausted nodes.

Thus, when solving a linear programming subroutine is not possible, we present the following the

heuristic APC (h-APC) algorithm for identifying and augmenting flows on a set of capacity-increasing

cycles that allow additional flow from s to t.

The h-APC is thus described as follows. After executing the m-AF algorithm to obtain

feasible flows x̄, the h-APC first checks the optimality of x̄ by executing the dual-based algorithm

found in Section 3.2.2. When flows x̄ are not deemed optimal, the h-APC employs two subroutines

for identifying capacity-increasing cycles and their respective flow adjustments: the cycle generation

procedure (CGP) in Section 3.3.1 for identifying a set of capacity-increasing cycles Θ and the

augmenting-flow subroutine (AFS) in Section 3.3.2 for determining the flow adjustment on each cycle

in Θ that allows for the maximum amount of flow to be augmented on an s–t path.

To employ these subroutines, we enforce the condition that the set of capacity-increasing

cycles Θ found during the CGP is non-overlapping. A set of cycles Θ is deemed non-overlapping

when (a) all cycles in Θ are arc-disjoint; (b) for all nodes î visited by any cycle in Θ, only a single

forward arc (̂i, j) ∈ A′ ∩ A or reverse arc (k, î) ∈ A′ \ A is contained within any cycle in Θ; and (c)

for all node pairs j, k visited by any set of cycles in Θ, only one of the two such arcs (j, k) ∈ A′ ∩ A

or (k, j) ∈ A′ \ A may be contained within any cycle in Θ. This definition of Θ ensures that a

capacity-increasing cycle in Θ increases the residual capacity of a set of exhausted nodes without

decreasing the residual capacity of any nodes in Θ.

3.3.1 Cycle Generation Procedure

For the CGP, define parameters guuv, g
v
uv ≥ 0, ∀(u, v) ∈ A. If (u, v) ∈ A′ ∩A (i.e., (u, v) is a

forward arc), then guuv = guv and gvuv = 0. Otherwise, if (u, v) ∈ A′ \ A (i.e., (u, v) is a reverse arc),

then guuv = 0 and gvuv = gvu. Let the residual capacity of each arc (u, v) ∈ A∩A′ be c̄uv = cuv − x̄uv,

and let the residual capacity of each arc (u, v) ∈ A′ \ A be c̄uv = x̄vu. Define VR to be the set of all
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nodes i ∈ VR for which the CGP has found a cycle that increases the residual capacity at node i,

and let set VΘ ⊆ V consists of all nodes visited by at least one cycle in Θ.

To identify a cycle that increases residual capacity at node i ∈ VR without overlapping an

existing cycle in Θ, define a graph Gi having a node set Vi and an arc set Ai. Define AΘ ⊆ A′ as the

set of all arcs contained within any cycle in Θ as well as all forward arcs (û, v) ∈ A′ ∩ A and reverse

arcs (w, û) ∈ A′\A for which û ∈ VΘ. Let Vi contain nodes uv for all arcs (u, v) ∈ {A′\AΘ} : c̄uv > 0.

For all arc pairs (j, i), (i, k) ∈ A′ for which ji, ik ∈ Vi, let arc (ji, ik) belong to Ai when giji−giik > 0.

The strict inequality in this definition reflects the requirement that residual capacity at node i must

strictly increase. For all arc pairs (u, v), (v, w) ∈ A′ : v ∈ VR \ {i}, let arc (uv, vw) belong to Ai

when gvuv − gvvw ≥ 0 and uv, vw ∈ Vi. Finally, for all arc pairs (u, v), (v, w) ∈ A′ : v ∈ V \ VR, let

arc (uv, vw) belong to Ai when uv, vw ∈ Vi.

Any cycle over arcs in A′ containing a reverse arc (j, i) ∈ A′ \ A corresponds to a cycle over

arcs in Ai visiting node ji ∈ Vi. Furthermore, any cycle visiting ji ∈ Vi must also visit some node

ik ∈ Vi for which giji > giik because arc (ji, ik) ∈ Ai. Such a cycle is therefore capacity-increasing at

node i. Our definition of Vi ensures that the set of cycles Θ found by the CGP is non-overlapping.

The CGP proceeds as follows. The CGP first constructs Gi for a node i ∈ VR \ V ′R, in which

V ′R consists all nodes i ∈ VR for which the CGP has already searched for a capacity-increasing cycle

at node i. The CGP then searches for a cycle over arcs in Ai originating at some node ji ∈ Vi

corresponding to a reverse arc (j, i) ∈ A′ \ A. In the algorithm that formally defines this process

below, set φ contains all nodes ji ∈ Vi : (j, i) ∈ A′ \ A for which the CGP has already searched for a

capacity-increasing cycle originating at node ji. Let set θk consist of all arcs contained within the

kth cycle in Θ.

CGP Initialization: Set k = 1, θ1 = ∅, Θ = ∅, V ′R = ∅, and VR = ∅, and proceed to CGP Step

1.

CGP Step 1: If V ′R = VR, then proceed to CGP Step 3. Otherwise, for some node i ∈ VR \ V ′R,

construct Gi, Vi, and Ai. Set φ = ∅, place i in V ′R, and proceed to CGP Step 2.

CGP Step 2: Identify a node ji ∈ Vi \ φ : (j, i) ∈ A′ \ A. If no such node exists, then return to

CGP Step 1. Otherwise, place ji in φ and execute a DFS originating at ji over arcs in Ai. If this

search does not yield a capacity-increasing cycle, then repeat CGP Step 2. Otherwise, place all arcs
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contained within the identified capacity-increasing cycle in sets θk and AΘ and place all nodes visited

by this cycle in VΘ. For all nodes î ∈ VΘ visited by this cycle, place all forward arcs (̂i, j) ∈ A′ ∩ A

and reverse arcs (k, î) ∈ A′ \ A in AΘ. Place all nodes i ∈ VR \ VR visited by this cycle in VR, place

all nodes i ∈ VR \ V ′R visited by this cycle in V ′R, set k = k + 1, and return to CGP Step 1.

CGP Step 3: Execute a DFS to search for an s–t path p̄ visiting only those nodes in {V\VR}∪{VR}.

If no such path exists, we resort to executing the optimal augmenting-flow algorithm detailed in

Section 3.2.3 to determine whether there exists some joint-cycle set. Otherwise, proceed to the AFS

to determine the flow adjustment on each cycle in Θ and the flow on path p̄.

We demonstrate the CGP on the residual network of arcs A′ for flows x̄ in Figure 3.6a, in

which VR contains only node 2.
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(a) Residual network corresponding to flows x̄
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(b) Network displaying g-values

Figure 3.6: CGP implementation example

CGP Initialization: Set k = 1, θ1 = ∅, Θ = ∅, V ′R = ∅, VR = ∅, and proceed to CGP Step 1.

CGP Step 1: Choose i = 2 ∈ VR \ V ′R, and construct G2, V2, and A2. Figure 3.7 displays the

transformed graph G2 of nodes V2 and arcs A2. Set φ = ∅, place 2 in V ′R, and proceed to CGP Step

2.

CGP Step 2: Place node t2 ∈ Vi \ φ in φ since (t, 2) ∈ A′ \ A. Execute a DFS originating at t2

over arcs in Ai. This search does not yield a capacity-increasing cycle, so repeat CGP Step 2.

CGP Step 2: Place node 32 ∈ Vi \ φ in φ since (3, 2) ∈ A′ \ A. Execute a DFS originating at 32

over arcs in Ai. This search yields the capacity-increasing cycle (32, 21, 13). Place arcs (3, 2), (2, 1),

and (1, 3) in sets θ1 and AΘ, and place nodes 1, 2, and 3 in VΘ. Place forward arcs (1, 2), (2, 3), (2, t)
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and reverse arcs (3, 1), (3, 2), (t, 2), (t, 3) in AΘ, place 2 in VR, set k = 2, and return to CGP Step

1.

CGP Step 1: Since V ′R = VR, proceed to CGP Step 3.

CGP Step 3: Execute a DFS visiting only those nodes in {V \ VR} ∪ {VR} = {s, 1, 2, 3, t} to

determine the path p̄ = (1, 2, t).

	 	1s	

2s	

12	

t2	

21	

s1	

13	

23	

t3	 2t	

32	

Figure 3.7: Transformed graph G2 for determining a capacity-increasing cycle at node 2.

3.3.2 Augmenting-flow Subroutine

Given the set of capacity-increasing cycles Θ and path p̄ found at the conclusion of the CGP,

the AFS seeks to determine a flow adjustment ∆k on each cycle θk ∈ Θ that allows for the maximum

flow augmentation λ on p̄. To do so, define Ap̄ as the set of all arcs contained within p̄, Vp̄ as the set

of all nodes visited by p̄, and Θp̄ ⊆ Θ as the set of all cycles visited by any node in Vp̄. Define AΘp̄

as the set of all arcs contained within any cycle in Θp̄, VΘp̄ as the set of all nodes visited by any

cycle in Θp̄, Ak as the set of all arcs contained within a cycle θk ∈ Θp̄, and Vk as the set of all nodes

visited by a cycle θk ∈ Θp̄. Define Θi (Θuv) as the set of cycles in Θp̄ that visit node i ∈ VΘp̄
(arc

(u, v) ∈ AΘp̄). All ∆-values and λ must satisfy the following inequalities for the adjusted flows to

remain feasible to (3.1):

∑
θk∈Θi

 ∑
j:(i,j)∈Ak∩{A′∩A}

gij∆k −
∑

h:(h,i)∈Ak∩{A′\A}

gih∆k


+

∑
m:(i,m)∈Ap̄∩{A′∩A}

gimλ−
∑

`:(`,i)∈Ap̄∩{A′\A}

gi`λ ≤ b̄i, ∀i ∈ Vp̄ ∪ VΘp̄
, (3.8)

76



− c̄vu ≤
∑
k∈Θuv

∆k −
∑

m∈Θvu

∆m + λ ≤ c̄uv ∀(u, v) ∈ Ap̄, (3.9)

− c̄vu ≤
∑
k∈Θuv

∆k −
∑

m∈Θvu

∆m ≤ c̄uv ∀(u, v) ∈ AΘp̄
\ Ap̄, (v, u) /∈ Ap̄. (3.10)

Inequalities (3.8) ensure that the capacity consumed at each node visited by p̄ or any cycle in Θp̄

does not exceed its residual capacity. Inequalities (3.9) and (3.10) ensure that the net sum of flow

adjustments does not exceed the residual arc capacity on each arc contained within p̄ or any cycle

in Θp̄. Inequalities (3.9) and (3.10) also ensure that the flow on each arc in Ap̄ ∪ AΘp̄
remains

non-negative. The AFS thus determines values of ∆k, ∀θk ∈ Θp̄, in order to maximize λ, subject to

(3.8)–(3.10).

The AFS begins in Step 1 by establishing scalar upper bounds on λ. These bounds are

derived from constraints (3.8) for nodes i ∈ Vp̄ \ VΘp̄ and (3.9) for arcs (u, v) ∈ Ap̄ \ AΘp̄ for which

(v, u) /∈ AΘ. Step 2 then establishes scalar upper bounds on ∆k, ∀θk ∈ Θp̄, based on (3.8) for nodes

i ∈ VΘp̄
\ Vp̄ and (3.10) for arcs (u, v) ∈ AΘp̄

\Ap̄ for which (v, u) /∈ Ap̄. We refer to such constraints

as simple constraints.

The AFS then analyzes constraints that involve both λ and ∆k for some θk ∈ Θp̄. These

constraints are given by (3.8) for nodes i ∈ VΘp̄
∩ Vp̄ and (3.9) for arcs (u, v) ∈ Ap̄ ∩ AΘp̄

and for

(u, v) ∈ Ap̄ \ AΘp̄ , (v, u) ∈ AΘp̄ . We call these linking constraints in the following discussion. Since

all cycles in Θp̄ are non-overlapping, these constraints contain only λ and a single ∆k, as opposed to

the multiple ∆-variables that would appear in these constraints if the cycles overlapped. Letting gp̄u

(gku) be the capacity consumed at node u ∈ Vk ∩ Vp̄ as a result of augmenting a single unit of flow

along p̄ (θk ∈ Θp̄), define

gp̄u =
∑

v:(u,v)∈Ap̄∩{A′∩A}

guv −
∑

w:(w,u)∈Ap̄∩{A′\A}

guw, ∀u ∈ Vk ∩ Vp̄,

gku =
∑

v:(u,v)∈Ak∩{A′∩A}

guv −
∑

w:(w,u)∈Ak∩{A′\A}

guw, ∀u ∈ Vk ∩ Vp̄, θk ∈ Θp̄.

The overlapping constraints can be written as follows for each cycle θk ∈ Θp̄:

λ ≤ b̄u − gku∆k

gp̄u
, ∀u ∈ Vk ∩ Vp̄, gp̄u > 0, (3.11a)

λ ≥ gku∆k − b̄u
−gp̄u

, ∀u ∈ Vk ∩ Vp̄, gp̄u < 0, gku > 0, (3.11b)

λ ≤ c̄uv −∆k, ∀(u, v) ∈ Ap̄ ∩ Ak, (3.11c)

77



λ ≤ c̄uv + ∆k, ∀(u, v) ∈ Ap̄ \ Ak, (v, u) ∈ Ak, (3.11d)

λ ≥ 0. (3.11e)

If gp̄u = 0 or both gp̄u < 0 and gku ≤ 0, then constraints (3.8) do not provide a finite upper bound or a

positive lower bound on λ. In either of these cases, constraints (3.8) are satisfied for any λ ≥ 0 and

∆k ≥ 0.

We now consider the problem, which we term SUBk, of maximizing λ subject to constraints

(3.11a)–(3.11e), given θk ∈ Θp̄. Constraints (3.11a), (3.11c), and (3.11d) imply that λ is bounded

above by a piecewise linear concave function of ∆k, and constraints (3.11b) and (3.11e) imply that λ

is bounded below by a piecewise linear convex function of ∆k. Define λ′k and ∆′k as the values of λ

and ∆k, respectively, in an optimal solution to SUBk. For each cycle θk ∈ Θp̄, the AFS optimizes

SUBk in Step 3 and returns values λ′k and ∆′k or reports that the problem is unbounded. Each

optimal SUBk solution bounds the value of λ (in addition to the bounds on λ established in Step 1),

and ∆k is bounded above by the minimum of ∆′k and the upper bound on ∆k established in AFS

Step 2. AFS Step 4 uses these observations to establish optimal values for ∆k, ∀θk ∈ Θp̄, and λ,

before updating x̄ij , ∀(i, j) ∈ A′. For the organization of AFS Step 3, let

• Θ̃ be the set of all cycles θk ∈ Θp̄ for which bounds on λ and ∆k have been established based

on linking constraints,

• CUBk be the set of all constraints (3.11a), (3.11c), or (3.11d) that form the upper concave hull

of SUBk,

• CLBk be the set of all constraints (3.11b) or (3.11e) that form the lower convex hull of SUBk,

• ek represent the best current solution to SUBk,

• the slope of each constraint in (3.11a) or (3.11b) be defined as −gku/gp̄u

• the slope of each constraint in (3.11c) and each constraint in (3.11d) be −1 and 1, respectively,

• c̄ be the constraint formed by the bound ∆ub
k found in AFS Step 2 having a slope defined as ∞,

• λub and ∆ub
k represent the upper bounds on λ and ∆k, ∀θk ∈ Θp̄, respectively, based on

(3.8)–(3.10).
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AFS Step 1: Compute λub as the minimum value of c̄uv over all arcs (u, v) ∈ Ap̄ corresponding

to simple constraints (3.9). If there are no such constraints, then set λub = ∞. Next, set λub =

min{λub, mini∈{Vp̄\VΘp̄}{b̄i/g
p̄
i }}, where the inner minimization evaluates to ∞ if Vp̄ \ VΘp̄

= ∅.

Proceed to AFS Step 2.

AFS Step 2: For each θk ∈ Θp̄, compute ∆ub
k as the minimum value of c̄uv over all arcs (u, v) ∈ Ak

corresponding to simple constraints (3.10). If there are no such constraints, then set ∆ub
k =∞. Next,

set ∆ub
k = min{∆ub

k , mini∈Vk\Vp̄{b̄i/gki }} for each θk ∈ Θp̄. (The inner minimization also evaluates

to ∞ if Vk \ Vp̄ = ∅.) Set Θ̃ = ∅, and proceed to AFS Step 3.

AFS Step 3: If Θ̃ = Θp̄, then proceed to AFS Step 3d. Otherwise, identify a cycle θk ∈ Θp̄ \ Θ̃,

and proceed to AFS Step 3a.

AFS Step 3a: Determine the constraints CUBk that form the concave upper hull for SUBk, and

sort the constraints CUBk in decreasing order according to slope. Determine the constraints CLBk that

form the convex lower hull for SUBk. Proceed to AFS Step 3b. (Appendix A provides an algorithm

for determining sets CUBk and CLBk .)

AFS Step 3b: If there exists a constraint in CUBk having positive slope, then let ĉ be the constraint

in CUBk having the minimum positive slope, and let ω be the slope of ĉ. Otherwise, let ω = 0. Define

Ĉ to be the subset of constraints in CLBk ∪ {c̄} having a slope greater than ω, and sort Ĉ in increasing

order according to slope. If all constraints in CUBk have positive slope and Ĉ = ∅, then SUBk is

unbounded. In that case, set λ′k =∞ and ∆′k =∞, and proceed to AFS Step 3d. Otherwise, set c̃

to be the constraint in CUBk having the maximum negative slope (i.e., the smallest absolute value of

all negative slopes). Set ek to be the intersection point of constraints ĉ and c̃, and set i = 0. Proceed

to AFS Step 3c.

AFS Step 3c: If Ĉ = ∅, then determine λ′k and ∆′k for solution ek and proceed to AFS Step 3d.

Otherwise, identify a constraint c in Ĉ having minimum slope. If ek is feasible to c, then remove c

from Ĉ, set ek equal to the intersection of constraints ĉ and c̃, set i = max{i− 1, 0}, and repeat AFS

Step 3c. Otherwise, if ek is not feasible to c, then set c̃ = c, i = i+ 1, ĉ to be the constraint in CUBk

having the ith minimum positive slope, and ek as the intersection of ĉ and the constraint in CUBk
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having (i+ 1)st minimum positive slope, and repeat AFS Step 3c.

AFS Step 3d: If λ′k < λub, then set λub = λ′k. Place θk in Θ̃, and return to AFS Step 3.

AFS Step 4: Set λ = λub and ∆k = ∆ub
k ,∀θk ∈ Θp̄. Update flows x̄ by setting

x̄uv = x̄uv + λ+
∑

θk∈Θuv

∆k −
∑

θk∈Θvu

∆k, ∀(u, v) ∈ Ap̄ ∩ {A′ ∩ A},

x̄uv = x̄uv − λ+
∑

θk∈Θuv

∆k −
∑

θk∈Θvu

∆k, ∀(v, u) ∈ Ap̄ ∩ {A′ \ A}, and

x̄uv = x̄uv +
∑

θk∈Θuv

∆k −
∑

θk∈Θvu

∆k, ∀(u, v) ∈ {AΘp̄ \ Ap̄} ∩ {A′ ∩ A}.

Return to the optimality checking phase of the h-APC to check if flows x̄ can be deemed optimal.

3.4 Computational Results

In this section we present computational results for the APC and the h-APC. We first

compare the APC with LP (3.1) for solving the NCMFP over large networks. We then describe

the results for the h-APC for smaller networks more prevalent in WSN applications. We solve all

mathematical programming models using CPLEX 12.8 via ILOG Concert Technology. We performed

all experiments on a computer having a 2.9GHz Dual-core Intel i7 processor with 8GB RAM. We

present all CPU times in seconds and impose a 3600 second time limit and a 7GB memory limit.

For all instances, we consider randomly-generated integer c- and g-values uniformly distributed

between [1, 10] and [1, 6], respectively. Additionally, for each instance, we consider a uniform b-value

for all nodes in V . We consider sparse networks having an average node out-degree of |V|/2. We first

generate five random instances of the NCMFP for networks having 100, 200, 300, 400, 500, 600, 700,

and 800 nodes, in which bi = 50, ∀i ∈ V . We also generate five random instances of the NCMFP over

networks having 800 nodes, in which b = 30, 35, 40, 45, and 55. Finally, we generate five random

instances of the NCMFP over networks having 1000 nodes, in which b = 30, 35, 40, 45, 50, and 75.

In all cases, we deem flows produced by the APC as optimal when the optimality gap is less than or

equal to 0.01%. Thus, we set optimality gap to 0% for any APC solution whose optimality gap is

< 0.01%.

Tables 3.1 displays the computational results for the APC and model (3.1) when b = 50,

Table 3.2 displays the computational results of the APC and (3.1) for networks having 800 nodes, and
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Table 3.3 displays the computational results of the APC for networks having 1000 nodes. Each table

depicts the average CPU time and the average number of calls to LPs (3.4) and (3.5) for the APC.

Additionally, Tables 3.1 and 3.2 also depict the average optimality gap for the APC at termination.

Table 3.1: Average NCMFP results for b = 50

Number of Nodes
CPU Time (sec.)

Average Number of APC LPs Average Opt. Gap

LP APC

100 0.95 0.36 3.8 0%

200 8.67 2.66 9.4 0.06%

300 9.31 5.50 5.6 0%

400 23.78 13.28 9.0 0.07%

500 55.15 39.17 11.6 0.23%

600 96.11 39.78 13.2 0%

700 174.52 42.83 8.8 0.08%

800 308.46 87.20 14.4 0.09%

Table 3.1 displays the computational results for networks when b = 50. Both solution

techniques required less than one second on average to solve the NCMFP over networks having 100

nodes. For all sizes of networks, the APC required less time than the LP. The LP required less than

one minute to solve all instances of networks having 500 nodes or fewer, and the APC required less

than one minute, on average, for networks having 700 nodes or fewer. The savings in computational

time for the APC increases as the size of the network grows. For example, the LP requires about

twice as much computational time as the APC for networks having 300 nodes. For networks having

800 nodes, the LP takes almost four times longer to solve the NCMFP than the APC.

On average, the APC produced an NCMFP solution within 0.25% of optimality for all

instances of b = 50. Furthermore, the APC produced a solution within 0.09% of optimality for all

network sizes, except for those having 500 nodes. The larger optimality gap for networks having 500

nodes was due to one instance that terminated with a solution having an optimality gap around 1%.

The APC was able to determine an optimal solution for all instances of networks having 100, 300, or

600 nodes. For all other sizes of networks, the positive average optimality gap is a result of one or

two instances terminating with a small positive optimality gap.

Table 3.2 displays the computational results for networks having 800 nodes. As the value

of b increases from 30 to 35, the computational time for the APC also increases since the APC

solved models (3.4) and (3.5) more often before termination. The small number of calls to the LP for
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Table 3.2: Average NCMFP results over networks having 800 nodes

b
CPU Time (sec.)

Average Number of APC LPs Average Opt. Gap

LP APC

30 296.0 45.1 4.4 0.92%

35 319.1 163.7 23.6 0.92%

40 293.8 124.5 20.0 0.35%

45 283.8 55.9 7.8 0.20%

50 308.5 87.2 14.4 0.09%

55 287.8 73.6 13 0%

75 265.3 12.4 0 0%

b = 30 is likely due to the fact that the APC terminated early with a sub-optimal solution. Thus, the

likelihood that the APC determines an optimal NCMFP solution increases as the b-value increases.

Solving models (3.4) and (3.5) requires more time when more capacity-increasing cycles

exist in the residual network that increase capacity at exhausted nodes. Thus, the computational

time of the APC is more dependent on the number of times models (3.4) and (3.5) are solved since

these models only require a few seconds to solve, on average. The computational time for the APC

decreases as the number of times (3.4) and (3.5) are solved also decreases. For example, the APC

required solving (3.4) and (3.5) most frequently when b = 35, which results in the highest average

computational time among all values of b. When b ≥ 75, the computational time for the APC

remained around 12 seconds, and our dual heuristic determined a dual feasible solution corresponding

to a minimum cut in all such instances. The APC may be especially useful when a large network

contains a relatively small set of particular nodes that are susceptible to exhaustion. Alternatively,

the computational time for the LP requires approximately 293 seconds for all values of b.

Table 3.3: Average APC results over networks having 1000 nodes

b CPU Time (sec.) Average Number of APC LPs

30 101.3 6.4

35 208.7 18.4

40 231.8 25

45 188.9 19

50 230.0 28.2

75 22.0 0

Table 3.3 displays the computational results for networks having 1000 nodes. A preliminary

investigation revealed that model (3.1) was unable to find an optimal solution for most instances
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before reaching memory limit for networks having 1000 nodes. The APC requires less computational

time for networks having lower values of b. The average computational time for the APC increased

as the value of b increased until reaching its maximum average computational time when b = 40.

The computational time then decreased as b increased from 40 to 45. As with networks having 800

nodes, this trend in computational time is likely due to the fact that the APC terminates early with

a sub-optimal solution for lower values of b. The computational time for instances when b = 50 was

particularly large as a single instance required over 600 seconds to solve.

The instances requiring the most computational time also required the most number of calls

to (3.4) and (3.5). Thus, as observed with networks having 800 nodes, the computational time for the

APC increases as the number of times (3.4) and (3.5) are solved also increases. Finally, for b = 75,

the APC only required roughly 22 seconds since our dual heuristic algorithm determined a feasible

set of duals without solving LPs (3.4) or (3.5). Overall, these results show that the APC appears to

be an attractive alternative to (3.1) for determining a quality solution to the NCMFP over large

networks having 800 nodes or more. For many of these instances, the APC was able to determine an

optimal NCMFP solution. In all other instances, the APC was able to determine a solution within

1% of optimality, on average, while requiring significantly less computational time and memory.

To explore the effectiveness of the h-APC, we next generate five random instances of the

NCMFP over networks having 100 nodes for b = 40, 45, 50, 55, and 60. Table 3.4 depicts the average

CPU time, the average number of calls to the AFP subroutine, and the average optimality gap at

termination of the h-APC. The optimality gap in this case refers to the relative percent difference

between the flow value determined by the h-APC and the optimal maximum flow value.

Table 3.4: Average h-APC results over networks having 100 nodes

b CPU Time (sec.) Average Number of Calls to AFP Average Opt. Gap

40 136.53 10.4 0.41%

45 205.12 18.8 0.39%

50 132.76 7.4 0.13%

55 94.05 8.2 0.05%

60 0.01 0 0%

Table 3.4 displays the computational results for the h-APC over networks having 100 nodes.

The h-APC required the most computational time when b = 45. The h-APC also required the most

calls to the AFP subroutine for this value of b. As the b-value increased beyond 45, the average
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computational time and the number of calls to the AFP decrease. Thus, results show that the h-APC

requires less time and is more likely to determine an optimal solution for higher values of b and that

the computational time likely depends on the number of calls to the AFP subroutine. When b ≥ 60,

the dual heuristic determined a feasible set of dual values corresponding to a minimum cut without

executing the h-APC.

The h-APC determined a flow within a 1% of the maximum flow in all instances. Most

instances were solved within two minutes having a flow within 0.5% of the maximum flow. As b

increases, the average optimality gap alternatively decreases. For example, the h-APC produced a

flow within 0.25% of the maximum flow in all instances for b = 50. Two out of five such instances

were solved to optimality within 90 seconds. Alternatively, the LP and the APC required less than a

second to solve the NCMFP over networks having 100 nodes. The CGP and AFP subroutines within

the h-APC require too much computational time to be considered useful. Thus, the h-APC is not an

attractive solution technique for the NCMFP in most cases. However, the h-APC may be a practical

solution technique in the case that no linear programming solver is available.

84



Chapter 4

Models and Algorithms for Solving

Maximum Flow Problems Having

Semicontinuous Path-flow

Restrictions in Simultaneous Flow

Settings

4.1 Introduction and Problem Description

Consider a variation of the maximum flow problem (MFP) having node and arc capacities,

along with semicontinuous flow restrictions. These problems take place on a graph G having nodes V

and arcs A. Contained within V is a source node s and a sink node t. For every node i ∈ V \ {s, t},

there exists a directed path from s to i and from i to t. Let N ∈ Z|V|×|A| be the node-incidence matrix

of G, where each column corresponding to arc (i, j) ∈ A has exactly two non-zero entries: 1 in row i

and −1 in row j. Let n ∈ Z|V| be the vector of supply/demand values, in which ns = 1, nt = −1,

and ni = 0, ∀i ∈ V \ {s, t}.

Let cij > 0 be the capacity of each arc (i, j) ∈ A. For this problem we also define bi > 0 as

the capacity for node i ∈ V. Each unit of flow on arc (i, j) ∈ A consumes one unit of capacity on

(i, j), and gij ≥ 0 units of capacity at node i. Scalar variable z corresponds to the maximum flow

through the network, and variables xij represent the amount of flow on arc (i, j) ∈ A. The MFP

without semicontinuous flow restrictions can be formulated by the following linear programming (LP)
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model.

max z (4.1a)

s.t. Nx− nz = 0 (4.1b)∑
j:(i,j)∈A

gijxij ≤ bi ∀i ∈ V (4.1c)

xij ≤ cij ∀(i, j) ∈ A (4.1d)

x ≥ 0 (4.1e)

The objective function (4.1a) maximizes flow transmitted in the network, while constraints (4.1b)

ensure flow balance. Constraints (4.1c) and (4.1d) correspond to node and arc capacity constraints,

respectively. Constraints (4.1e) enforce flow non-negativity. Throughout, we assume without loss of

generality that there exists an optimal solution to (4.1).

As described in Chapter 1, flows that satisfy semicontinuous restrictions with respect to a

given set of variables are said to be stable. The simplest case enforces stability restrictions on arc flows,

which can be achieved by defining a binary variable yij , ∀(i, j) ∈ A, and restricting uyij ≥ xij ≥ `yij

[Beale, 1979, 1980, 1985]. Instead, we examine problems having stability restrictions on network

paths, in which a path refers to a common amount of flow from any source node to any demand node

using a sequence of arcs that visits each node at most once. Assuming all flows are simultaneously

transmitted, we require that flow fp on each path p, if positive, must be greater than or equal to `.

Any solution satisfying these restrictions are deemed static-stable.

The rest of the chapter is organized as follows. Section 4.2 presents an MIP formulation that

is pseudo-polynomial in size and a B&P algorithm for the MFP having static-stable restrictions. In

Section 4.3 we present the computational results of our algorithms.

4.2 Problem Definition and Formulations

In Section 4.2.1 we examine the MFP with static-stable restrictions. We present two

formulations for this problem, and show how to solve a relaxation of one of our formulations by

column generation. In Section 4.2.2 we present a branching mechanism for our B&P algorithm.
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4.2.1 Static Stability Formulations

We begin by examining the maximum flow problem with static-stable restrictions (MFP-S).

These restrictions imply arc stability, because if all positive path flows are at least as large as `, then

all arc flows must be as well. However, arc-stable restrictions do not necessarily imply static stability,

as demonstrated by the network flow in Figure 4.1, where ` = 10, node 1 is the lone source node, and

node 5 is the lone sink node.
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(a) Example flow with stable arc flows
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(b) Remaining flows after p1
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(c) Remaining flows after p2

Figure 4.1: Static stability example with ` = 10

The network flow in Figure 4.1a satisfies arc-stable restrictions. Now, suppose that there

exists a static-stable solution. Such a solution must include arc (1, 2) on some path to node 5. There

are two such paths: p1 = (1, 2, 4, 5) and p2 = (1, 2, 5). Figure 4.1b depicts the remaining flows after

sending flow on p1. A path having no more than 2 units of flow must include arcs (2, 4) and (4, 5),

and such a path would not be stable. If arc (1, 2) is included in path p2 (Figure 4.1c), then the next

path including arc (2, 5) would not be stable. Therefore, no static-stable solution exists corresponding

to the flows in Figure 4.1.

We formulate an MIP model for the MFP-S. Letting z̄ be the maximum flow sent in an

optimal solution to (4.1), which provides an upper bound on the optimal MFP-S objective since

semicontinuity restrictions are relaxed, an upper bound on the number of paths that can be used in

any MFP-S solution is given by bz̄/`c. Thus, let S = {1, . . . , bz̄/`c} be an index set of at most bz̄/`c

s–t paths. Continuous variables φp and xpij represent the amount of flow on path p = 1, . . . , bz̄/`c

and the amount of flow on arc (i, j) ∈ A in path p, respectively. Binary variable ypij equals 1 if and

only if arc (i, j) has positive flow in path p.

max z (4.2a)
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s.t.
∑
p∈S

∑
i:(s,i)∈A

xpsi − z = 0 (4.2b)

−
∑
p∈S

∑
j:(j,t)∈A

xpjt + z = 0 (4.2c)

∑
p∈S

∑
j:(i,j)∈A

gijx
p
ij ≤ bi ∀i ∈ V (4.2d)

∑
p∈S

xpij ≤ cij ∀(i, j) ∈ A (4.2e)

∑
j:(i,j)∈A

ypij −
∑

h:(h,i)∈A

yphi = 0 ∀i ∈ V \ {s, t}, p ∈ S (4.2f)

xpij = φpy
p
ij ∀p ∈ S, (i, j) ∈ A (4.2g)∑

i:(s,i)∈A

y1
si = 1 (4.2h)

∑
i:(s,i)∈A

ypsi ≤
∑

i:(s,i)∈A

yp−1
si ∀p = 2, . . . , bz̄/`c (4.2i)

φp ≤ φp−1 ∀p = 2, . . . , bz̄/`c (4.2j)∑
i:(s,i)∈A

`ypsi ≤ φ
p ≤

∑
i:(s,i)∈A

csiy
p
si ∀p ∈ S (4.2k)

φp ≥ 0 ∀p ∈ S (4.2l)

ypij ∈ {0, 1} ∀p ∈ S, (i, j) ∈ A (4.2m)

The objective function (4.2a) and constraints (4.2b) and (4.2c) maximize flow from s to t. Constraints

(4.2d) and (4.2e) enforce node and arc capacity constraints, respectively. Constraints (4.2f) ensure

that there exists an equal number of positive inflow and outflow arcs at each node in V \ {s, t} on

each path p, while nonlinear constraints (4.2g) ensure that the flow on each arc (i, j) in path p

equals φp. Constraints (4.2f) and (4.2g) enforce flow balance, although they do not prevent subtours.

However, since gij ≥ 0,∀(i, j) ∈ A, these subtours can be removed from any solution to (4.2) a

posteriori without affecting feasibility or the objective function value. Note that constraints (4.2g)

can be linearized by replacing φpy
p
ij with an auxiliary variable upij , ∀p = 1, . . . , bz̄/`c, (i, j) ∈ A, and

adding the following McCormick linearization constraints [McCormick, 1983]:

upij ≥ 0

upij ≥ φ
p
ij +M(ypij − 1)
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upij ≤ φ
p
ij

upij ≤Mypij

for all p = 1, . . . , bz̄/`c, (i, j) ∈ A. These constraints effectively enforce upij = φp when ypij = 1,∀p =

1, . . . , bz̄/`c, (i, j) ∈ A, and 0 otherwise. We set M equal to the maximum arc capacity among all

arcs (i, j) ∈ A.

Constraints (4.2h)–(4.2j) are symmetry-breaking constraints, as we describe in more detail

below. Constraints (4.2k) guarantee static stability, while constraints (4.2l) and (4.2m) enforce

non-negativity and binary restrictions on variables φp and ypij , respectively. Note that model

(4.2) is pseudo-polynomial in size, having O(bz̄/`c|A|) integer and continuous variables, along with

O(bz̄/`c|A|) structural constraints.

Without the presence of symmetry-breaking constraints, we could reshuffle the path indices

for a given solution and obtain an equivalent symmetrical solution. Thus, the branch-and-bound

(B&B) tree would be forced to explore many mirror-image solutions during the search process, which

substantially increases computational effort. Symmetry-breaking constraints enforce hierarchies

that eliminate some (or all) symmetrical solutions. (For a full description of symmetry-breaking

constraints, see [Sherali and Smith, 2001].) In this formulation, constraints (4.2h)–(4.2j) ensure that

the flow on path p− 1 is at least as large as the flow on path p for all p = 2, . . . , bz̄/`c.

Model (4.2) can be solved using B&B. However, the linear programming relaxation of (4.2)

is weak, as the y-variables can fractionate in order to accommodate paths that do not satisfy the

semicontinuous restrictions. Also, the MIP likely contains a relatively small number of positive-flow

paths relative to bz̄/`c. Thus, as an alternative, we propose a B&P algorithm that couples column

generation (CG) with a branching mechanism to enforce static stability. For the CG scheme, we

define P as the set of all possible s–t paths. After we relax stability restrictions and include only

some subset of paths P̄ ⊂ P , we obtain the following continuous restricted master problem (RMP),

in which the semicontinuity restrictions are omitted, effectively representing the linear programming

relaxation of the problem. Let variables λp represent the flow on path p ∈ P̄ , and define z as before.

Let parameter vpij equal 1 if arc (i, j) ∈ A is in path p ∈ P̄ . The RMP is formulated as follows:

max z (4.3a)

s.t.
∑
p∈P̄

∑
i:(s,i)∈A

vpsiλp − z = 0 (αs) (4.3b)
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−
∑
p∈P̄

∑
j:(j,t)∈A

vpjtλp + z = 0 (αt) (4.3c)

∑
p∈P̄

∑
j:(i,j)∈A

gijv
p
ijλp ≤ bi ∀i ∈ V (βi) (4.3d)

∑
p∈P̄

vpijλp ≤ cij ∀(i, j) ∈ A (γij) (4.3e)

λp ≥ 0 ∀p ∈ P̄ . (4.3f)

The objective function (4.3a) and constraints (4.3b) and (4.3c) maximize flow in the network. Con-

straints (4.3d) and (4.3e) correspond to node and arc capacity constraints, respectively. Constraints

(4.3f) enforce flow non-negativity. Note that because (4.3) contains no constraints involving semicon-

tinuity restrictions, it is equivalent to formulation (4.1) when P̄ = P . We turn to the problem of

branching to enforce semicontinuity in Section 4.2.2.

Let αs, αt, βi, and γij be the dual values for constraints (4.3b)–(4.3e), respectively. The LP

subproblem (also called the pricing problem) seeks an s–t path p so that λp has a positive reduced

cost in (4.3). Letting Ap ⊆ A be the set of arcs having positive flow on path p, the negative of the

reduced cost for p is

αs − αt +
∑

(i,j)∈Ap

(βigij + γij). (4.4)

We thus identify a path from s to t that minimizes (4.4). The pricing problem can then be modeled

by the following shortest path problem, in which variables wij equal 1 if there exists flow on arc

(i, j), and 0 otherwise.

αs − αt + min
∑

(i,j)∈A

(βigij + γij)wij (4.5a)

s.t.
∑

i:(s,i)∈A

wsi = 1 (4.5b)

∑
j:(i,j)∈A

wij −
∑

h:(h,i)∈A

whi = 0 ∀i ∈ V \ {s, t} (4.5c)

∑
j:(j,t)∈A

wjt = 1 (4.5d)

wij ≥ 0 ∀(i, j) ∈ A (4.5e)

Because the β- and γ-values are non-negative, no negative-cost arcs exist in the network. The pricing

problem is thus solvable using Dijkstra’s algorithm [Dijkstra, 1959].
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Using the RMP and pricing problem, the CG algorithm is as follows. We first solve the RMP

given some set of initial paths in P̄ , which can be arbitrarily chosen. We recover the dual values

from the RMP to formulate the pricing problem objective (4.5a). If the optimal objective function

value to the pricing problem is negative, then we have identified a path having a positive reduced

cost. This path is added to P̄ and the RMP is re-solved to generate a new set of dual values. This

process repeats until no positive reduced-cost paths are identified, at which time we have recovered

an optimal solution to the LP relaxation of the MFP-S. If any optimal flows are not stable, then we

enforce a set of branching constraints to enforce stability, as described in Section 4.2.2.

4.2.2 Branching Mechanisms

When the optimal solution identified to the RMP formulation above is not static stable, the

B&P algorithm enters a branching phase. Branching on λ-variables is ineffective: When some variable

λ̄p is less than `, then setting λ̄p = 0 will generally result in the CG phase rediscovering path p. Adding

constraints to prevent the regeneration of such columns destroys the totally unimodular constraint

matrix structure in the pricing problem. To maintain efficient solution techniques, branching should

be based on original arc-flow variables rather than variables in the RMP [Barnhart et al., 1995,

Desrosiers et al., 1995]. Thus, our primary branching rule is based on aggregate arc flows over all

paths in P̄ .

Branching is required for two particular cases with respect to aggregate arc flow. In Section

4.2.2.1 we present branching constraints when the aggregate flow on some arc (i, j) is not stable. We

then present branching rules in Section 4.2.2.2 for the case in which the identified optimal RMP

solution is not static stable, but the aggregate arc flows corresponding to this solution are arc stable.

4.2.2.1 Non-Stable Aggregate Arc Flows

Consider an arc (i, j) for which aggregate flow in the RMP solution is in the interval (0, `).

Our branching strategy attempts to enforce the condition that aggregate flow on (i, j) is either zero

or no less than `. Define Wij to be the set of all paths in which arc (i, j) ∈ A has positive flow. On

the down-branch, we ensure that no flow exists on (i, j) by removing all paths in Wij from the RMP,

and prohibiting the future generation of paths in Wij by removing (i, j) from the pricing problem.

The up-branch would ideally require a flow of at least ` on (i, j); however, the dual values

corresponding to these constraints would be non-positive, which makes the pricing problem NP-hard.
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Instead, we employ an alternative strategy, which begins by determining a minimal cut-set C satisfying

the conditions specified below.

Proposition 2. Consider an RMP solution in which the aggregate-flow solution is acyclic, and in

which the aggregate flow on arc (i, j) ∈ A is not stable. Define positive-flow arcs as those for which

there is positive flow in the aggregate-flow solution. Let X contain node i and each node m ∈ V for

which there exists a path using positive-flow arcs from m to i. Additionally, let X̄ = V \X. If set C
contains all arcs (h, k) for which h ∈ X and k ∈ X̄, then C is a minimal cut-set containing (i, j).

Furthermore, there exist no positive-flow arcs (u, v) in C for which u ∈ X̄ and v ∈ X.

Proof. Because there are no positive-flow cycles in the given RMP solution, node j ∈ X̄ and (i, j) ∈ C.
Additionally, for every m ∈ V such that there exists a positive-flow path from m to i, there must

also exist a positive-flow path from s to m. There also exists a path from each k ∈ X̄ to t that does

not use an arc in C. To see this, recall that there exists a path from k to t by assumption. If that

path used an arc (u, v) ∈ C, then there is a path from k to u, along with a path from u to i (due to

the fact that u ∈ X). But then, k ∈ X as well, which is a contradiction. Therefore, all positive-flow

paths from k ∈ X̄ to t do not contain an arc in C. Additionally, if any (h, k) ∈ C were omitted from

C, then there would exist a path from s to t containing arc (h, k).

Therefore, C is a minimal cut-set containing (i, j). Finally, if there were some arc (u, v)

having positive flow such that u ∈ X̄ and v ∈ X, then there must also exist a positive-flow path from

u to i and u must be contained in X. Thus, there exist no positive-flow arcs (u, v) in C from u ∈ X̄
to v ∈ X. This completes the proof.

We determine a cut-set C by first removing any redundant cycles in the aggregate-flow

solution, and then computing X as prescribed in Proposition 2. Letting ẑ be the maximum flow

value for an optimal RMP solution, note that the sum of aggregate flows
∑

(i,j)∈C v
p
ij λ̂p equals ẑ. We

enforce the up-branch by adding the constraint:

∑
p∈P̄

∑
(h,k)∈C\(i,j)

vphkλp ≤ ẑ − `. (4.6)

Letting πCijẑ be the (non-negative) dual associated with constraint (4.6) written for arc (i, j), cut C,

and bound ẑ, the objective function of the pricing problem now becomes:

αs − αt + min
∑

(i,j)∈A

(βigij + γij)wij +
∑

(h,k)∈C\(i,j)

πCijẑwhk.

Since all π-values are non-negative, problem (4.5) can still be solved by Dijkstra’s algorithm on the

up-branch.

We now demonstrate that any static-stable solution having positive aggregate flow on arc

(i, j) satisfies (4.6).
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Proposition 3. Define MP′ as formulation (4.3) with P̄ = P , augmented with inequality (4.6)

corresponding to C, (i, j), and ẑ. Let (x̄, z̄) be an aggregate flow solution to problem (4.1) in which

x̄ij ≥ `. Then there exists a solution, λ̄, to MP′ such that
∑
p∈P̄ v

p
hkλ̄p = x̄hk, ∀(h, k) ∈ A.

Proof. Consider any feasible flow decomposition solution λ̄ corresponding to x̄ (known to exist due

to the flow decomposition theorem [Ahuja et al., 1993]). Then, noting that C is a cut-set in G we

have that
∑
p∈P̄

∑
(h,k)∈C v

p
hkλ̄p ≤ ẑ, because ẑ is an upper bound on the maximum flow. Since∑

p∈P̄ v
p
ij λ̄p ≥ ` due to the inclusion of (4.6) in MP ′, we get that

∑
p∈P̄

∑
(h,k)∈C\(i,j) v

p
hkλ̄p must be

no more than ẑ − `, as desired. This completes the proof.

Corollary 1. Consider a solution λ̄ to (4.3) such that 0 <
∑
p∈P̄ v

p
ij λ̄p < `. Constraint (4.6) cuts

off λ̄.

Proof. The left-hand side of (4.6) evaluates to ẑ −
∑
p∈P̄ v

p
ij λ̄p, and so (4.6) is violated by ` −∑

p∈P̄ v
p
ij λ̄p > 0 units.

Although constraint (4.6) written with respect to some (i, j), C, and ẑ cuts off the current

non-stable RMP solution, it does not require the aggregate flow on (i, j) to be greater than or equal

to `. To see why, consider the example in Figure 4.2 with ` = 10.
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Figure 4.2: Non-stable aggregate arc-flow solution with ` = 10

For the flows in Figure 4.2, the maximum flow value is ẑ = 70. If we branch on arc (2, 6), then

letting X = {1, 2} and C = {(2, 4), (2, 5), (2, 6), (1, 3)}, we add inequality
∑
p∈P̄

∑
(h,k)∈C\(2,6) v

p
hkλp ≤

60 on the up-branch. Since the total flow among arcs (h, k) ∈ C \ (2, 6) is 67, inequality (4.6) cuts

off the non-stable aggregate arc-flow solution in Figure 4.2. Note however that the next solution

generated could be identical to the one in Figure 4.2, except with seven fewer units of flow on each of
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the arcs (1, 3), (3, 7), and (7, 10). Thus, (4.6) cuts off the current RMP solution but does not force

flow on (i, j) to be at least `.

In the preceding example, after adding (4.6) corresponding to (i, j), C, and ẑ to RMP, we

obtained a new solution for which (i, j) is still non-stable and C is still a cut-set. The objective, z′,

from this solution is strictly less than ẑ. If we branch again on (i, j), then there is no need to explore

the down-branch (which was generated at the parent node of the B&P tree). The next up-branch

could generate (4.6) corresponding to (i, j), C, and z′. Because z′ < ẑ, this new inequality implies

the one generated for ẑ, and so (4.6) is merely updated by replacing x̂ with z′.

In one special case, all arcs in C might emanate from a single node i. In that case, we can

alternatively use the following constraint to enforce the up-branch condition:

∑
p∈P̄

∑
(i,k)∈C:k 6=j

gikv
p
ikλp ≤ bi − gij`. (4.7)

This inequality is valid on the up-branch by the same logic as in Proposition 3. Inequality (4.7) may

be particularly strong when gij is large relative to the other arcs (i, k) ∈ C : k 6= j. We compare the

strength of inequalities (4.6) and (4.7) using the following example. Letting g12 = g13 = 1, g14 =

5, b1 = 72, and ` = 10, consider the set of aggregate arc flows in Figure 4.3. For the flows in Figure
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Figure 4.3: Non-stable aggregate arc-flow solution with ` = 10

4.3, ẑ = 36 and arcs (1, 4) and (4, 5) are non-stable. Let C = {(1, 2), (1, 3), (1, 4)} and examine

non-stable arc (1, 4). Inequality (4.6) is given by
∑
p∈P̄ (vp12 + vp13)λp ≤ 26, and inequality (4.7) is

given by
∑
p∈P̄ (vp12 + vp13)λp ≤ 22, which is tighter than (4.6).

Inequality (4.7) might not cut off the current optimal solution when
∑
p∈P̄

∑
(i,k)∈C:k 6=j gikv

p
ikλ̄p+

gij` < bi. Even when (4.7) cuts off the current optimal solution, inequalities (4.6) and (4.7) do not

in general dominate one another. In our implementation, we investigate adding either (4.6), (4.7), or
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both on an up-branch, depending on the extent to which each inequality is violated by the current

optimal solution. In fact, it is possible that neither inequality is violated by a significant amount

with respect to the current optimal RMP solution. In that case, we can directly branch up on a

non-stable λp variable, as explained at the end of Section 4.2.2.2.

4.2.2.2 Stable Aggregate Arc Flows

Now consider the case in which aggregate arc flows in the RMP solution are stable. If all

path flows in P̄ are also stable, then the current solution to the RMP is feasible for the MFP-S,

and no additional branching is required. Otherwise, there exists at least one path in P̄ having

a non-stable flow. In this case, there may or may not exist an alternative path decomposition

corresponding to these aggregate flows that does indeed satisfy the static-stable restriction. The

stable path decomposition problem (SPDP) is the problem of determining if a set of stable aggregate

arc flows having non-stable path flows can be decomposed into a set of stable path flows.

Theorem 2. The SPDP is NP-hard.

The proof of Theorem 2 is provided in the Appendix B. Given Theorem 2, we now present

a heuristic polynomial-time algorithm for solving SPDP. Given a set of stable aggregate arc flows

Fij , ∀(i, j) ∈ A, the algorithm is as follows. Define rij ≥ 0 as the remaining flow to be sent on arc

(i, j) ∈ A, and initialize rij = Fij , ∀(i, j) ∈ A. For the first step, find the minimum remaining flow

rmin = min{rij : (i, j) ∈ A}. If 0 < rmin < `, then the algorithm terminates and fails to provide

an SPDP solution. Otherwise, find a path p̄ from s to node t using only arcs (i, j) such that either

rij ≥ ` + rmin or rij = rmin; furthermore, at least one arc in the path should satisfy the latter

condition. Since the graph of aggregate arc flows is directed and acylic, we can find a path satisfying

the aforementioned conditions in polynomial time using depth-first search with a state variable

recording whether or not an arc (i, j) has been traversed having rij = rmin. Again, if no such path

exists, then the algorithm fails to identify an SPDP solution. Otherwise, reduce the flow rij on each

arc (i, j) in p̄ by rmin and return to the first step.

When the heuristic fails to decompose stable aggregate arc flows into a set of static-stable

path flows, the stable aggregate arc-flow solution may still correspond to an SPDP solution. Rather

than executing an exponential-time algorithm to determine if the SPDP has a solution, we instead

simply branch directly on the λ-variables. For the up-branch, we enforce λp ≥ ` for some non-stable

path p, and we enforce λp = 0 on the down-branch. To avoid re-generating path p along the
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down-branch, we add constraint ∑
(i,j)∈Ap

wij ≤ |Ap| − 1, (4.8)

to the pricing problem. With the addition of any constraints of the form (4.8), the pricing problem

constraint matrix is no longer totally unimodular. Thus, we must now solve the IP formulation of

pricing problem (4.5) to generate new paths. Hence, we replace (4.5e) with binary restrictions on

the w-variables whenever (4.8) is added to the pricing problem.

4.3 Computational Results

In this section we present computational results for the MFP-S. We evaluate the performance

and scalability of our B&P approach for the MFP-S in Sections 4.3.1 and 4.3.2, respectively. We

implement our B&P algorithm in C using SCIP Optimization Suite 3.2.1 [Gerald et al., 2016]. We

solve all mathematical optimization problems within the B&P using the SCIP default solver, SoPlex.

All MIP instances are solved using CPLEX 12.6.2 via ILOG Concert Technology. We performed

all experiments on a computer having a 2.9GHz Dual-core Intel i7 processor with 8GB RAM. We

present all CPU times in seconds and impose a 3600 second time limit and 7GB memory limit.

4.3.1 Solving the MFP-S

We first analyze the performance of our B&P approach on the MFP-S using randomly-

generated g-, b-, and c-values for dense networks having an arc between every distinct node pair

except between s and t. Defining relay nodes to be those found in the set V \ {s, t}, we generate

five random instances of the MFP-S for each combination of networks having 10, 15, and 20 relay

nodes and ` ∈ {1, 3, 5}. For each network size and value of `, the b-values, g-values, and c-values are

random integers uniformly distributed between [25, 100], [1, 12], and [10, 20], respectively.

We compare our B&P approach with model (4.2) when solving the MFP-S. Tables 4.1, 4.2,

and 4.3 display the computational results of both approaches for networks having 10, 15, and 20

relay nodes, respectively. Each table depicts the average CPU time, average number of branches,

the total number of instances solved given an optimality gap of 0.1%, the average optimality gap

at termination, and the number of generated columns for the B&P. For those instances that are

terminated due to the time limit, we record the number of branches in the B&B tree and the current

optimality gap observed after 3600 seconds, and count the CPU time required for the instance as
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3600 seconds.

Table 4.1 shows that, on average, the B&P algorithm requires no more than one second to

solve the MFP-S for networks having 10 relay nodes. For all values of `, the maximum CPU time

using B&P is 2.3 seconds. While the average CPU time slightly increases from ` = 1 to ` = 3, we

observe no significant change when increasing ` from 3 to 5. We note that our branching technique

found only one instance in which an arc-stable solution did not correspond to a static-stable solution.

For this instance, our SPDP heuristic algorithm (found in Section 4.2.2.2) was able to decompose

this arc-stable solution into a static-stable solution.

Alternatively, Table 4.1 shows that, on average, model (4.2) requires almost 15 minutes to

solve the MFP-S when ` = 1, almost 30 minutes when ` = 3, and about 41 minutes when ` = 5. We

observe that, when ` = 1, all instances are solved to optimality within our proposed time limit. We

also observe that the CPU time for solving (4.2) increases as ` increases. Although (4.2) contains

fewer variables for larger values of `, the branch-and-bound tree grows significantly as ` increases, as

observed in Table 4.1. Thus, (4.2) reaches the time limit in three out of five instances when ` = 5.

The average optimality gap at the time limit for these three instances is about 1.5%.

Table 4.1: Average MFP-S results over networks having 10 relay nodes

CPU Time (sec.) # of Branches # Solved Opt. Gap # of Columns

Lower bound ` MIP B&P MIP B&P MIP B&P MIP B&P B&P

1 892.9 0.3 46835.0 1 5 5 0% 0% 20.0

3 1794.3 0.9 95415.6 13.0 4 5 0.3% 0% 32.6

5 2461.4 1.0 226250.2 5.8 2 5 0.9% 0% 44.4

For networks having 15 relay nodes, Table 4.2 shows that B&P requires, on average, less

than 13 seconds to terminate with an optimal solution. (The maximum time to solve any instance

was 46 seconds.) As observed in Table 4.1, there is an increase in CPU time when increasing ` from 1

to 3, but only a slight CPU time increase when ` is increased to 5. Among all instances, B&P found

three arc-stable solutions that were not static-stable. For two of these instances, our SPDP algorithm

was able to obtain a static-stable solution without branching directly on a λ-variable. In the third

instance (for which ` = 5), our algorithm was forced to branch on a λ-variable. While the CPU time

for this instance was only 14.9 seconds, the time to solve the same instance for `-values equal to 1

and 3 was 0.6 and 1.4 seconds, respectively. As expected, branching on a λ-variable increased the

relative CPU time for solving this instance.
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By contrast, model (4.2) solved the MFP-S to optimality in only three total instances, each

having ` = 1. Unlike networks having 10 relay nodes, model (4.2) reached the memory limit in three

instances. For `-values equal to 3 or 5, the average optimality gap at termination was about 3%. As

expected, even when (4.2) found an optimal solution within the time or memory limits, the B&P

algorithm required significantly less computational time for these networks.

Table 4.2: Average MFP-S results over networks having 15 relay nodes

CPU Time # of Branches # Solved Opt. Gap # of Columns

Lower bound ` MIP B&P MIP B&P MIP B&P MIP B&P B&P

1 2447.5 3.2 87709.6 45.8 3 5 0.4% 0% 104.2

3 2953.7 11.8 152976.4 68.2 0 5 3.8% 0% 177.8

5 3570.3 12.6 439615.0 154 0 5 3.8% 0% 183.6

Finally, Table 4.3 displays the computational results for solving the MFP-S on networks

having 20 relay nodes. For two instances, the B&P algorithm invoked the SPDP subroutine to

successfully obtain a static-stable solution without branching on a λ-variable. Similar to the results

for smaller networks, the B&P outperforms model (4.2). Model (4.2) reached the time or memory

limit in all instances, and the average optimality gap at termination was at least 10% for all values

of `. (For each instance that terminates due to memory limitations, we record the CPU time of the

instance as the time at which the memory limit was reached. Hence, the average CPU time reported

for the model (4.2) when ` = 3 is less than 3600, since some of those instances reached the memory

limit.)

On the same set of instances, we note that the average CPU time for the B&P actually

decreased as ` increased from 3 to 5 for those instances. We suspect that, in most of the instances

for which ` = 5, heuristics used by SCIP were able to cut off a large number of infeasible solutions

before entering the branching phase. In doing so, the resulting branching tree was smaller. Thus,

increasing ` seems to have a minor effect on the computational time of the B&P.

Table 4.3: Average MFP-S results over networks having 20 relay nodes

CPU Time # of Branches # Solved Opt. Gap # of Columns

Lower bound ` MIP B&P MIP B&P MIP B&P MIP B&P B&P

1 3600.0 3.7 1232.8 24.2 0 5 29.4% 0% 77.2

3 2749.3 9.8 15337.8 99.2 0 5 10.8% 0% 203.8

5 3600.0 4.1 120627.2 34.4 0 5 14.0% 0% 207.2
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4.3.2 Scalability of B&P Algorithm

Next, we examine the scalability of our B&P approach. To do so, we solve five randomly-

generated MFP-S problem instances of networks having 25, 30, 35, 40, 45, and 50 relay nodes. In

this section, we present the average CPU time, average number of branches in the branching tree,

the number of instances solved to optimality, and the average number of generated columns. We set

the optimality gap to 0.1%, the time limit to 3600 seconds, and let ` = 3 for all instances.

Table 4.4 shows that as the size of the network increases, the CPU time, the size of the

branching tree, and the number of generated columns also increase. On average, networks having 25

relay nodes were solved within 11 seconds while networks having 30 relay nodes were solved in about

32 seconds. It is worth noting that for all networks having 35 relay nodes or fewer, the B&P algorithm

solved all five instances to optimality within the allotted time and memory limits. For networks

having 40 or 45 nodes, two out of five instances were solved to optimality before reaching the memory

limit. The average optimality gap after reaching the memory limit in these three instances was about

0.3%. Thus, even after reaching the memory limit, B&P provided a relatively high-quality lower

bound on the MFP-S. For networks having 50 nodes, the B&P reached the memory limit quicker

than network instances having 40 or 45 relay nodes, due to the large size of the master problem and

associated branching tree.

Table 4.4: Average MFP-S results using the B&P approach where ` = 3

Number of nodes CPU Time # of Branches # Solved Opt. Gap # of Columns

25 10.9 73.8 5 0% 249.4

30 32.0 201.6 5 0% 436.0

35 53.6 215.6 5 0% 762.0

40 142.1 291.4 2 0.7% 1004.2

45 119.4 414.4 2 0.4% 1080.6

50 96.7 128.2 0 1.1% 1008.4
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Chapter 5

Dynamic Network Flow Problems

in Non-simultaneous Flow Settings

Network flow problems commonly employ static flow assumptions in which flows are simul-

taneously transmitted. Alternatively, some applications require dynamic flows to be transmitted

according to a non-simultaneous schedule. In dynamic flow settings, an arc may be required to

undergo setup each time it begins transmitting flow. Such setup requirements may be modeled in

terms of flow. For example, reconsider the machine scheduling problem discussed in Chapter 1 in

which the flow on a path refers to the amount of time a worker utilizes a machine to process a job. A

worker likely requires some preparation time after moving from one machine to another. In this case

a policy might require each worker to spend at least some minimum amount of time processing jobs

on a machine before moving to another machine. Scheduling a worker on a machine for some time

less than this preparation time is often undesirable for many reasons, including safety and quality

considerations that arise when workers switch tasks (see, e.g., [Monsell, 2003]).

The problems we consider in this chapter take place on a graph G consisting of node set

V and arc set A. Set V contains a single source s, a single sink t, and a set of intermediate nodes.

Each arc (i, j) ∈ A has a capacity of cij > 0, which refers to the maximum amount of flow that can

be sent on (i, j). We assume that non-simultaneous flows can only be sent on one s–t path at a

time. Thus, a network flow must be decomposed into a set of paths, which can in turn be organized

into a schedule P corresponding to the order in which flow is sent across each path. Schedule P is

composed of paths p1, . . . , pq having flow values f1, . . . , fq, where fk > 0, ∀k = 1, . . . , q, and that

flow is transmitted on the paths in that order.
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There are many dynamic flow applications in addition to the machine scheduling setting

discussed in Chapter 1. Consider the presence of setup costs, in which a fixed cost is incurred

each time an arc begins transmission. In WSN optimization, operators are required to pay a fixed

cost to begin transmitting information from one sensor to another [Yick et al., 2008]. These fixed

costs often correspond to the financial and/or computational effort required to establish a secure

communication link between a pair of sensors [Perrig et al., 2004, Shi and Perrig, 2004]. Whenever a

sensor discontinues transmission, this communication link either ceases to exist or is assumed not to

be secure. Thus, each time a sensor begins transmission, a new secure communication link must be

set up to avoid interference.

We study a pair of dynamic flow network flow problems, in which the first considers the

presence of setup constraints, and the second considers the presence of setup costs. The former

problem can be modeled by the maximum flow problem having dynamic stability restrictions (MFP-

D). The latter problem can be modeled by the minimum-cost flow problem having arc-activation

costs (MCF-A), in which an arc (i, j) is said to be activated on path p when (i, j) has positive flow

on the pth scheduled path, but not on the (p− 1)st scheduled path.

Our contributions in this chapter are as follows. One, we discuss the notion of dynamic

stability and present a mixed-integer programming (MIP) model for the MFP-D. Two, we present

a heuristic algorithm that obtains lower and upper bounds for the MFP-D. Three, we provide

motivation for the MCF-A and present an MIP model for its solution. Four, as an alternative to this

MIP, we employ a relaxation-based algorithm for obtaining upper and lower bounds.

In Section 5.1.1 we describe the MFP-D, and we present an MIP model for its solution in

Section 5.1.2. Section 5.1.3 details our heuristic algorithm for the MFP-D, and Section 5.1.4 details

computational results for displaying the performance of this heuristic. Section 5.2 describes the

MCF-A and its applications, and Section 5.2.1 presents an MIP model for the MCF-A. Section

5.2.3 details our bounding algorithm for the MCF-A. Section 5.2.4 finally details the efficacy of this

algorithm when compared to an MIP.

5.1 Dynamic Flow Stability

In this section we consider stability restrictions under the dynamic flow assumptions. In

Section 5.1.1, we describe the MFP with dynamic-stable restrictions on paths, and compare it to
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problems in foregoing chapters of this work. Then, in Section 5.1.2 we give an MIP formulation for

the MFP-D. Finally, we present a series of heuristic algorithms to determine lower and upper bounds

for the MFP-D in Section 5.1.3.

5.1.1 Problem Description and Model

To first explain the notion of dynamic stability, a schedule S of paths is said to be feasible to

the MFP-D if for every arc (i, j) ∈ A, we have
∑v
k=t fk ≥ ` if (i, j) belongs to all paths pt, pt+1, . . . , pv,

but not pt−1 or pv+1, where p0 and pq+1 are defined as empty paths. A network flow solution is

dynamic stable if some ordered path decomposition exists that satisfies the above restrictions. The

motivation behind dynamic stability is that when an arc is used to send flow, it sends at least `

units of flow in an uninterrupted interval of time. While the dynamic-stable lower bound can be

arc-dependent, we assume a uniform lower bound ` for all arcs in A for simplicity of notation.
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(a) Example flow with path p1 (dashed)
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Figure 5.1: Dynamic-stable example with ` = 4

To illustrate the notion of dynamic stability, consider the flows depicted in Figure 5.1a, and

suppose that ` = 4. To determine if there exists a schedule of paths for these flows that meets

dynamic-stable restrictions, we first note that such a schedule must include some path that sends 4

units of flow on arc (2, 3). We let this path be p1 = (1, 2, 3, 5, 6). After flow is sent on p1, arcs (3, 5)

and (5, 6) both have 3 remaining units of flow to send. These arcs must be included in the next

path p2 to remain stable. If they are not included in p2, some future path would need to send the

remaining 3 < ` units of flow along these arcs.

The next path in the schedule must therefore be p2 = (1, 2, 4, 3, 5, 6), which has 3 units of
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flow. The last path must be p3 = (1, 2, 4, 3, 6), having 5 units of flow, which completes the path-flow

schedule. Figure 5.2 displays a Gantt chart depicting time intervals during which arcs send flow

(normalized so that transmitting each unit of flow corresponds to one unit of time). Note that each

such interval is no less than 4 units. Thus, while this set of paths is dynamic stable, there does not

exist any static-stable solution corresponding to the flows depicted in Figure 5.1a.

	

0 3 6 9 12 

(1,2) 

Path Schedule 

(2,3) 

(2,4) 

(4,3) 

(3,5) 

(3,6) 

(5,6) 

Figure 5.2: Gantt chart of arc flows corresponding to flows in Figure 5.1

For the MFP-D, an optimal set of flows must be organized into an ordered schedule of

path flows. The dynamic-stable restrictions state that the sum of flows on successive positive-flow

paths using each arc (i, j) ∈ A must be at least `. A schedule P of flows x̄ is said to be aggregate

arc stable when
∑|P|
p=1 x̄ij ∈ {0, [`, cij ]}, ∀(i, j) ∈ A, in which arc capacity cij corresponds to an

upper bound on xij . As described in a previous chapter an arc-stable solution is one for which

xij ∈ {0, [`, cij ]}, ∀(i, j) ∈ A.

Lemma 1. Any feasible dynamic-stable solution is also an aggregate arc-stable solution.

Proof. Consider a set of dynamic-stable flows. For each (i, j) ∈ A, there exists at least one subset

{k, k + 1, . . . , v} ⊆ S of ordered paths having flows {fk, fk+1, . . . , fv} on (i, j) in which
∑v
i=k fi ≥ `.

Thus, the aggregate flow on (i, j) among all paths in S is also greater than or equal to `.

However, arc stability does not necessarily imply dynamic stability. Appendix C describes

an example arc-stable solution to show this implication. Furthermore, a dynamic-stable solution is

not necessarily a static-stable solution either. Recall from Chapter 4 that the flows in Figure 5.3a

cannot be decomposed into a static-stable solution. We show that there does exist a dynamic-stable
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solution corresponding to these flows. Let the schedule begin with path (1, 2, 4, 5) having 10 units of
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(a) Set of arc-stable flows
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(b) Updated network after flow on (1, 2, 4, 5)
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(c) Updated network after flow on
(1, 3, 2, 4, 5)

Figure 5.3: Network example with ` = 10

flow. Arcs (2, 4) and (4, 5) are active in the updated network (Figure 5.3b). The next path must

be (1, 3, 2, 4, 5) having 2 units of flow. The last path must then be (1, 3, 2, 5) having 13 units of

flow. Therefore, the arc flows in Figure 5.3a correspond to a dynamic-stable solution, but not a

static-stable solution. For the alternative implication, consider Lemma 2.

Lemma 2. Any feasible static-stable solution is also a dynamic-stable solution.

Proof. Consider a static-stable solution. In this case, the flow fk on each positive-flow path pk,∀k ∈ S
is greater than or equal to `. Any ordering of these paths in the dynamic-stable problem is therefore

feasible.

Therefore, the set of arc-stable solutions contains the set of dynamic-stable solutions, which

in turn contains the set of static-stable solutions.

5.1.2 MFP-D MIP Formulation

We now present an MIP model for the MFP-D. Let S = {1, . . . , |A|} be the index set for

the path schedule solution. (Our choice of |A| is chosen as the maximum number of paths in any

schedule; as before, computing a precise bound is beyond the scope of this work.) Let the set Ω

contain all combinations of u, v ∈ S such that u ≤ v. Variable xpij represents the flow on arc (i, j) for

the pth scheduled path. Let ypij be a binary variable that equals 1 if arc (i, j) is on the pth scheduled

path and 0 otherwise. The variable wuvij equals 1 if arc (i, j) sends flow on the set of consecutive
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paths u, . . . , v such that (u, v) ∈ Ω, and 0 otherwise. The MFP-D can be modeled as follows.

max z (5.1a)

s.t.
∑
p∈S

∑
i:(s,i)∈A

xpsi − z = 0 (5.1b)

−
∑
p∈S

∑
j:(j,t)∈A

xpjt + z = 0 (5.1c)

∑
p∈S

∑
j:(i,j)∈A

gijx
p
ij ≤ bi ∀i ∈ V (5.1d)

xpij ≤ cijy
p
ij ∀(i, j) ∈ A, ∀p ∈ S (5.1e)∑

j:(i,j)∈A

ypij −
∑

h:(h,i)∈A

yphi = 0 ∀i ∈ V \ {s, t}, p ∈ S (5.1f)

xpij = φpy
p
ij ∀p ∈ S, (i, j) ∈ A (5.1g)∑

i:(s,i)∈A

y1
si = 1 (5.1h)

∑
i:(s,i)∈A

ypsi ≤
∑

i:(s,i)∈A

yp−1
si ∀p = 2, . . . , |S| (5.1i)

wuvij ≤ y
p
ij ∀(i, j) ∈ A, (u, v) ∈ Ω, p = u, . . . , v (5.1j)

wuvij ≥
v∑

p=u

ypij − (v − u) ∀(i, j) ∈ A, (u, v) ∈ Ω (5.1k)

`
(
wuvij − w

u−1,v
ij − wu,v+1

ij

)
≤

v∑
p=u

xpij ∀(i, j) ∈ A, (u, v) ∈ Ω (5.1l)

φp ≥ 0 ∀p ∈ S (5.1m)

wuvij ≥ 0 ∀(i, j) ∈ A, (u, v) ∈ Ω (5.1n)

ypij ∈ {0, 1} ∀(i, j) ∈ A, p ∈ S (5.1o)

Objective function (5.1a) and constraints (5.1b) and (5.1c) maximize the amount of flow z transmitted

from s to t. Constraints (5.1d) and (5.1e) enforce node- and arc-capacity restrictions, respectively.

Constraints (5.1f) enforce flow balance at all intermediate nodes, and constraints (5.1g) enforce φp

to be the flow on each path p ∈ S. Constraints (5.1h) and (5.1i) are a set of symmetry-breaking

constraints. Constraints (5.1j) and (5.1k) ensure that variable wuvij equals 1 if and only if consecutive

paths from u to v have positive flow and contain arc (i, j). Constraints (5.1l) enforce that the sum

of consecutive paths from u to v using arc (i, j) must be 0 or at least as large as `. Constraints
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(5.1m) and (5.1n) enforce non-negativity restrictions on the φ- and w-variables and constraints (5.1o)

enforce binary restrictions on y.

Observe that in the MFP-S, any positive-flow subtours can be removed a posteriori from a

solution without affecting its feasibility or its objective function value, given that gij ≥ 0, ∀(i, j) ∈ A.

Model (5.1) does not prevent positive-flow subtours, because removing a positive-flow subtour from

an MFP-D solution may cause that solution to become infeasible. For example, consider a schedule

of paths from a solution to (5.1) for which arc (i, j) has positive flow on a subtour contained within

pk. Suppose that (i, j) also has positive flow on pk−1 but not pk−2 or pk+1. If the flow on pk−1 is less

than ` and the flow on the subtour in pk is removed, then the revised solution would not be dynamic

stable with respect to the flow on (i, j). Subtours can thus play the role of allowing (otherwise

unnecessary) flows to be transmitted for the purpose of meeting dynamic-stable restrictions.

For some applications flows on these subtours can actually be routed, and so model (5.1)

is a valid formulation. If subtours need to be prohibited, then we can modify (5.1) by introducing

additional variables µpi , ∀p = 1, . . . , |S|, i = |V| \ {s, t} that represent the position of node i along

the interior of path p (not including nodes s or t). Define AI as the set of interior arcs, defined

as (i, j) ∈ A : i 6= s and j 6= t. The following Miller-Tucker-Zemlin [Miller et al., 1960] (MTZ)

constraints eliminate subtours:

µpj ≥ µ
p
i + 1 + (|V| − 2)(ypij − 1) ∀p = 1, . . . , |S|, ∀(i, j) ∈ AI (5.2a)

0 ≤ µpi ≤ (|V| − 3)
∑

j:(i,j)∈A

ypij ∀p = 1, . . . , |S|, ∀i ∈ V \ {s, t}. (5.2b)

Constraints (5.2a) force µpj ≥ µ
p
i + 1 when ypij = 1, ∀(i, j) ∈ AI, while constraints (5.2b) ensure that

µpi is positive only when a path visits node i, and otherwise bounds the µ-variables between 0 and

|V| − 3.

A column generation approach to solving the MFP-D may not be a promising approach

since it requires an ordering of such paths, as opposed to an unordered collection in simultaneous

flow setting. Furthermore, determining valid inequalities to cut off infeasible solutions to (5.1) is

difficult due to interdependencies within the path schedule.
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5.1.3 MFP-D Heuristic Algorithm

As described in Section 5.1.1, an arc-stable solution, in which
∑
p∈S x

p
ij ∈ {0, [`, cij ]}, yields

an upper bound on the MFP-D. We can find such a solution either by solving a maximum flow problem

formulation with constraints uyij ≥ xij ≥ `yij , ∀(i, j) ∈ A, as in [Beale, 1985], or by executing the

B&P algorithm using only the branching mechanism described in Chapter 4. Additionally, any

feasible solution to the MFP-D yields a lower bound. We thus present a heuristic that takes an

arc-stable solution as input and attempts to create a dynamic-stable solution whose aggregate flows

are similar to those of the arc-stable solution. This process thus yields lower and upper bounds on the

optimal MFP-D objective and assumes that positive-flow subtours are allowed in a dynamic-stable

solution.

We first define Fij as the flow on (i, j) ∈ A in the given arc-stable solution and F̄ as the

maximum flow value obtained from our heuristic. At each iteration k of our heuristic, we will

determine a new path and its associated flow to include in the solution. The heuristic defines

remaining flows, rkij ≥ 0, as Fij minus the flow transmitted on arc (i, j) ∈ A on the first k − 1 paths

identified by the heuristic. Also, at iteration k, Ak denotes the set of active arcs that must be

included in the kth path for the final schedule to be dynamic stable. The MFP-D heuristic is given

as follows.

Initialization: Set k = 1, A1 = ∅, and r1
ij = Fij , ∀(i, j) ∈ A. Set F̄ = 0 and let the incumbent

solution be null.

Step 1: If rkij = 0, ∀(i, j) ∈ A, then go to Step 4b. Otherwise, let rkmin = min{rkij : (i, j) ∈ A, rkij >

0}. If Ak = ∅, then go to Step 2a, and otherwise go to Step 2b.

Step 2a: Find an s–t path pk consisting only of arcs (i, j) ∈ A : rkij > 0, such that rkij = rkmin for

at least one arc (i, j) belonging to pk. Appendix C describes how this path is computed. Assign a

flow of fk = rkmin to path pk and go to Step 3.

Step 2b: Find any s–t path pk consisting only of arcs (i, j) ∈ A : rkij > 0 that contains all arcs in

Ak, as detailed in Appendix C. Set fk equal to the minimum rkij-value among all arcs belonging to

pk. If such a path does not exist, then go to Step 4a. Otherwise, continue to Step 3.
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Step 3: For each arc (i, j) on path pk, set rk+1
ij = rkij − fk; for all other arcs (i, j), set rk+1

ij = rkij .

Place all active arcs in Ak+1. Attempt to convert this partial solution into a feasible solution by

executing the improvement phase discussed below. Iterate by setting k = k+ 1, and return to Step 1.

Step 4a: Terminate the algorithm and report the incumbent solution. The value F̄ yields a lower

bound on MFP-D.

Step 4b: Terminate the algorithm. The current schedule of paths p1, p2, . . . , pk−1 with correspond-

ing flows f1, f2, . . . , fk−1 is dynamic stable. Moreover, the flow obtained in this solution equals that

of the given arc-stable solution, and hence the heuristic solution must be optimal to the MFP-D.

At Step 3 of the foregoing algorithm, we attempt to find a feasible MFP-D solution to

strengthen the MFP-D lower bound via an improvement phase. This phase operates by appending

path flows to the end of a partial solution obtained so far in the algorithm, with the goal of identifying

a good-quality feasible solution. The appended paths are temporary in the sense that they are not

directly used in the remainder of the main algorithm. The improvement phase steps are described as

follows.

Improvement Step 1: If Ak+1 contains active-nonstable arcs (see Section 5.1.1), then go to

Improvement Step 2. Otherwise, the set of paths p1, p2, . . . , pk having respective flows f1, f2, . . . , fk

corresponds to a feasible MFP-D solution. Insert a dummy null path p̄k+1 having flow f̄k+1 = 0, and

go to Improvement Step 3.

Improvement Step 2: Find a path p̄k+1 that includes all active-nonstable arcs in Ak+1. The

method for finding this path is described in Appendix C. If a path p̄k+1 is found and f̄k+1 results in

all active-nonstable arcs becoming either active-stable or not active, then go to Improvement Step 3.

Otherwise, exit the improvement phase and continue with the heuristic.

Improvement Step 3: A feasible solution has been identified. If
∑k
g=1 fg + f̄k+1 > F̄ , then set

F̄ =
∑k
g=1 fg + f̄k+1 and update the incumbent solution accordingly. Set counter h = 2 and continue

to Improvement Step 4.

Improvement Step 4: Find a static-stable s–t path p̄k+h that is feasible with respect to the

remaining node and arc capacities after flows f1, f2, . . . , fk, f̄k+1, f̄k+2, . . . , f̄k+(h−1) are transmitted.
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Appendix C describes how to find such a path. If a path p̄k+h exists, then go to Improvement Step 5.

If no such path exists, then terminate the improvement phase and continue with the heuristic.

Improvement Step 5: Determine the largest possible flow value f̄k+h on path p̄k+h without

violating any node or arc capacities. If
∑k
g=1 fg +

∑h
i=1 f̄k+i > F̄ , set F̄ =

∑k
g=1 fg +

∑h
i=1 f̄k+i

and update the incumbent. Set h = h+ 1 and repeat Improvement Step 4.

5.1.4 Computational Results

In this section, we explore the trade-off between implementing our B&P approach in Chapter

4 and solving model (5.1) when seeking an optimal solution to the MFP-D. While using the B&P

algorithm is only guaranteed to obtain a lower bound on the MFP-D, model (5.1) is much larger

and more difficult to solve. Thus, we explore whether the possible improvement in the objective

function value by solving (5.1) is worth the additional computational effort in doing so. Thus, we

solve the MFP-S and the MFP-D via our B&P approach and model (5.1), respectively, for ten

randomly-generated networks having only seven relay nodes. For all instances, we set ` = 1 and use

the same ranges of b, g, and c as before in Chapter 4, in which bi ∈ [25, 100], ∀i ∈ V and gij ∈ [1, 12]

and cij ∈ [10, 20], ∀(i, j) ∈ A. A preliminary investigation revealed that model (5.1) was unable find

an optimal solution for most instances before reaching the time or memory limits for networks having

more than seven relay nodes, or for instances having ` > 1.

Table 5.1 displays the objective function values and CPU times for solving the MFP-S and

MFP-D via the B&P approach and model (5.1) for each instance. For nine of the ten instances, both

approaches found the same objective function value, but model (5.1) took significantly longer to solve.

Thus, the static-stable solution provided by the B&P approach was also dynamic-stable in all of these

instances. The average CPU time for the B&P approach was about 0.4 seconds. For those instances

solved within the time limit, the average CPU time to solve the MFP-D was about 356 seconds.

Thus, the B&P approach obtains an arc-stable solution that provides a relatively high-quality lower

bound on the MFP-D much faster than (5.1) obtains an optimal dynamic-stable solution. In almost

all instances, this lower bound also corresponds to an optimal dynamic-stable solution.

Next, we examine the performance of our MFP-D heuristic presented in Section 5.1.3 for

obtaining lower and upper bounds on the MFP-D. To do so, we execute this heuristic starting from

the arc-stable solutions provided by the B&P approach on the fifteen network instances having 20
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Table 5.1: Results for solving the MFP-S and the MFP-D

Instance Objective Function Value CPU Time

MFP-S MFP-D MFP-S MFP-D

1 31.3 31.3 0.2 92.7

2 30.5 30.5 0.2 129.7

3 36.3 36.3 0.2 72.7

4 22.2 22.2 0.2 93.4

5 28.7 28.7 0.8 3600

6 32.3 32.3 0.2 3600

7 32.5 32.5 0.2 104.9

8 39.6 39.6 0.3 98.5

9 40.2 40.2 1.0 48.0

10 34.5 34.5 0.6 2208.6

relay nodes described in Chapter 4. Table 5.2 displays the results of executing our heuristic on these

flow solutions. For all instances, the MFP-D heuristic was able to successfully decompose the given

arc-stable solution into a dynamic-stable solution in less than 0.01 seconds, resulting in a provably

optimal solution for each instance over each ` ∈ {1, 3, 5}. When coupled with the B&P approach to

obtain an arc-stable solution, the average CPU time was 3.8s, 9.9s, and 5.4s when ` = 1, 3, and 5,

respectively.

Table 5.2: Average results for the MFP-D heuristic for networks having 20 relay nodes

Lower bound ` Gap between LB and UB CPU Time

1 0% 3.8

3 0% 9.9

5 0% 5.4

5.2 Minimum-cost Flow Problem Having Arc-activation Costs

In this section we consider the presence of arc-activation costs in minimum-cost network flow

problems in dynamic flow settings. In Section 5.2.1, we describe the MCF-A, its applications, and its

relationship to the fixed-charge network flow problem. We next present an MIP model for the MCF-A

in Section 5.2.2, and Section 5.2.3 decomposes this MIP to improves its solvability and details an

algorithm for obtaining upper and lower bounds for the MCF-A. Finally, we present computational

results detailing the effectiveness of our algorithm in Section 5.2.4.
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5.2.1 Introduction and Problem Statement

For each arc (i, j) ∈ A, define aij > 0 as the cost to activate arc (i, j) ∈ A, and define dij > 0

as the cost to transmit a unit of flow on arc (i, j) ∈ A. The MCF-A is defined as the problem of

determining a schedule of path flows P that minimize the sum of the activation and transmission

costs required to send f units of flow from s to t. The MCF-A stipulates that activation cost aij is

incurred each time a sequence of paths in P begins transmitting flow on (i, j). For example, recall

from Section 5.1.1 the following flows in Figure 5.4a.
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(a) Sum of flows in an MCF-A solution
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(b) Updated network after flow on (1, 2, 4, 5)
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(c) Updated network after flow on
(1, 3, 2, 4, 5)

Figure 5.4: Network flow example for an MCF-A solution

The sequence of paths in P is p1 = (1, 2, 4, 5), p2 = (1, 3, 2, 4, 5), and p3 = (1, 3, 2, 5) having

10, 2, and 13 units of flow, respectively. Path p1 activates arcs (1, 2), (2, 4), and (4, 5). Next, path p2

activates arcs (1, 3) and (3, 2) since (2, 4) and (4, 5) were included on the previously scheduled path

p1. Finally, path p3 only activates (2, 5). Thus, P activates each positive-flow arc only once, yielding

a total activation cost of a12 + a24 + a45 + a13 + a32 + a25. Alternatively, consider the schedule of

paths P ′ = {p1, p3, p2} having 10, 13, and 2 units of flow, respectively. Schedule P ′ incurs a total

activation cost of a12 + 2a24 + 2a45 + a13 + a32 + a25 since both paths p1 and p2 activate arcs (2, 4)

and (4, 5).

The MCF-A is closely related to the fixed-charge network flow problem (FCNFP), in which

any positive flow on an arc incurs a single fixed cost in addition to any transmission costs [Hochbaum

and Segev, 1989]. The MCF-A is not equivalent to the FCNFP, since an optimal MCF-A solution

may require an arc to be activated multiple times. The flows in Figure 5.5 display a case in which
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this occurs. The flows in Figure 5.5 must be decomposed into a schedule of paths P to determine
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Figure 5.5: MCF-A solution in which arcs must be activated more than once

if an MCF-A solution exists that activates all arcs only once. Consider when P begins with path

p1 = (1, 2, 4, 6, 8, 10) having 12 units of flows, such that the flow on arc (6, 8) is exhausted. Path p1

thus activates arcs (1, 2), (2, 4), (4, 6), (6, 8), and (8, 10) for the first time. The next path in P must

include arcs (1, 2), (2, 4), (4, 6), and (8, 10) to send flows on cycles within the network, thus avoiding

the reactivation of certain arcs. Since no other positive-flow paths from 1 to 10 exist that contain

both arcs (4, 6) and (8, 10), at least one of these arcs must be activated again on a later path in P.

Further examination shows that some arcs must be activated multiple times for any MCF-A solution

regardless of which path starts P.

As described in Chapter 1, the MCF-A can be used to model network flow problems in

interdependent infrastructure systems. Cavdaroglu et al. [Cavdaroglu et al., 2013] study the problem

of restoring public services after a disaster disrupts civil infrastructure systems. In these problems,

the managers are required to pay a fixed financial or labor cost to deploy temporary arcs that provide

an interim infrastructure for deploying essential and non-essential services (e.g. transportation,

telecommunication, and power). Restoration and planning decisions must be made according to

non-simultaneous schedule since these infrastructure are commonly interdependent. Therefore,

the MCF-A could be employed to model a variation of this problem, in which arcs expire after

infrastructures are deconstructed.

5.2.2 MCF-A MIP Model

For the MCF-A, define a schedule of paths P = {1, . . . , f}. (Note that f is a valid bound on

the size of P because an optimal solution exists in which all flows are integer-valued.) Continuous

variable xpij refers to the amount of flow on arc (i, j) ∈ A on the pth path in P, binary variable ypij

equals 1 if and only if arc (i, j) ∈ A is activated on the pth path, and binary variable zpij equals 1 if

and only if arc (i, j) ∈ A has positive flow on the pth path. Defining z0
ij = 0, ∀(i, j) ∈ A, the MCF-A
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can be modeled by the following MIP.

min

|P|∑
p=1

∑
(i,j)∈A

(
dijx

p
ij + aijy

p
ij

)
(5.3a)

s.t.

|P|∑
p=1

∑
i:(s,i)∈A

xpsi = f, (5.3b)

∑
j:(i,j)∈A

xpij −
∑

h:(h,i)∈A

xphi = 0 ∀i ∈ V \ {s, t}, p = 1, . . . , |P|, (5.3c)

∑
i:(s,i)∈A

zpsi ≤ 1 ∀p = 1, . . . , |P|, (5.3d)

∑
j:(i,j)∈A

zpij −
∑

h:(h,i)∈A

zphi = 0 ∀i ∈ V \ {s, t}, p = 1, . . . , |P|, (5.3e)

zpij ≤ x
p
ij ≤ cijz

p
ij ∀(i, j) ∈ A, p = 1, . . . , |P|, (5.3f)

|P|∑
p=1

xpij ≤ cij ∀(i, j) ∈ A, (5.3g)

ypij ≥ z
p
ij − z

p−1
ij ∀(i, j) ∈ A, p = 1, . . . , |P|, (5.3h)

xpij , y
p
ij ≥ 0 ∀(i, j) ∈ A, p = 1, . . . , |P|, (5.3i)

zpij ∈ {0, 1} ∀(i, j) ∈ A, p = 1, . . . , |P|. (5.3j)

Objective function (5.3a) minimizes the sum of the activation and transmission costs. Constraints

(5.3b) and (5.3c) enforce flow balance conditions. Constraints (5.3d) guarantee that no more than

one out-flow arc at s has positive flow on each path p = 1, . . . , |P|, and constraints (5.3e) ensure that

positive flows do not split at any intermediate node on each path p. Constraints (5.3f) ensure the

flow on each arc (i, j) on each path does not exceed cij , and these constraints guarantee zpij equals 1

if and only if arc (i, j) has positive flow on path p. (This constraint is also valid by the observation

that an optimal solution exists in which all flows are integer-valued.) Constraints (5.3g) guarantee

that the sum of flow on all paths using each arc (i, j) ∈ A does not exceed cij .

For each arc (i, j) ∈ A and path p = 1, . . . , |P|, constraints (5.3h) ensure that ypij equals 1

when (i, j) has positive flow on the pth path, but not on the (p− 1)st path. Constraints (5.3i) and

(5.3j) enforce non-negativity restrictions on variables x and y and binary restrictions on z, respectively.

Since z-variables are binary, then zpij − z
p−1
ij either equals −1, 0, or 1. Thus, at optimality, ypij = 0

when zpij − z
p−1
ij ≤ 0, and ypij = 1 when zpij − z

p−1
ij = 1 for all (i, j) ∈ A and p = 1, . . . , |P|. Thus, we
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can relax binary restrictions on ypij for all (i, j) ∈ A and p = 1, . . . , |P|.

As with the MFP-D, model (5.3) allows for the presence of positive-flow subtours. Such

subtours may send flows on cycles within the network, thus avoiding the reactivation of certain

arcs. Model (5.3) is a valid formulation for the MCF-A if the given application allows for flow on

subtours. For applications that prohibit the existence of subtours, we can dynamically introduce

subtour elimination constraints [Laporte, 1986] each time an MCF-A solution contains subtours.

For some optimal solutions, we can shift a sub-sequence of paths in the schedule to obtain

an equivalent solution. For example, consider a feasible schedule {p1, p2, p3, p4} having 2, 0, 3, and 5

units of flow, respectively. Since p2 does not activate any arcs, we could could rearrange paths to

obtain another feasible schedule {p1, p3, p4, p2} having 2, 3, 5, and 0 units of flow, respectively. Note

that the flow costs of the second solution are equal to the flow costs of the first solution, and the

activation costs of the second solution do not exceed those of the first solution. Hence, even if the

first solution were optimal, it would be symmetric to the second one.

We thus propose symmetry-breaking constraints that prohibit solutions in which zero-flow

paths are interleaved among positive-flow paths. Without the presence of symmetry-breaking

constraints, the branch-and-bound (B&B) tree would need to explore many identical solutions of this

type; this redundant exploration significantly increases computational time [Sherali and Smith, 2001].

We thus propose the following class of inequalities:

∑
i:(s,i)∈A

z1
si = 1, (5.4a)

∑
i:(s,i)∈A

zp+1
si ≤

∑
i:(s,i)∈A

zpsi p = 1, . . . , |P| − 1. (5.4b)

Constraints (5.4a) ensure that the first path in P has positive flow, and constraints (5.4b) ensure

that the (p + 1)st path has positive flow only if the pth path also has positive flow, for all paths

p = 1, . . . , |P| − 1. Observe that (5.4a) and (5.4b) remove the necessity for including constraints

(5.3d) in the model. In the given example, adding inequalities (5.4a) and (5.4b) eliminates the

equivalent schedule {p1, p2, p3, p4} while maintaining the validity of (5.3).

A classical B&B algorithm can be used to solve model (5.3), but the linear programming

relaxation is likely weak since z-variables tend to fractionate when the positive flow on arc (i, j) for a

path p is less than cij . Additionally, the number of positive-flow paths in an optimal solution to (5.3)

is likely much fewer than f . Similar to the MFP-D, however, column generation is impractical since
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the objective function of the MCF-A relies on the ordering of positive-flow paths. Thus, we propose

an iterative relaxation scheme in Section 5.2.3.

5.2.3 Bounding Procedure for the MCF-A

Our bounding procedure is based on a relaxation of the path-based model concept. Our

relaxation solutions will consist of a set P of path flows as before, where |P| < |P|, followed by an

aggregate flow that transmits flows from s to t by any network flow that conserves flow at nodes

V \ {s, t}. Path flows are indexed by p = 1, . . . , |P| and the aggregate flow is indexed by |P| + 1.

Note that we must force the aggregate flow to be empty unless the first |P| paths have positive flow,

or else all flow in the relaxed solution would be transmitted through the aggregate flow in order to

limit activation costs. We call this new relaxation problem MCF-A2.

Variables x, y, and z are defined as before, but for all flows p = 1, . . . , |P|+ 1. The MCF-A2

can be modeled by the following MIP.

min

|P|+1∑
p=1

∑
(i,j)∈A

(
dijx

p
ij + aijy

p
ij

)
(5.5a)

s.t.

|P|+1∑
p=1

∑
i:(s,i)∈A

xpsi = f, (5.5b)

∑
j:(i,j)∈A

xpij −
∑

h:(h,i)∈A

xphi = 0 ∀i ∈ V \ {s, t}, p = 1, . . . , |P|+ 1, (5.5c)

∑
j:(i,j)∈A

zpij −
∑

h:(hi)∈A

zphi = 0 ∀i ∈ V \ {s, t}, p = 1, . . . , |P|, (5.5d)

zpij ≤ x
p
ij ≤ cijz

p
ij ∀(i, j) ∈ A, p = 1, . . . , |P|+ 1, (5.5e)

|P|+1∑
p=1

xpij ≤ cij ∀(i, j) ∈ A, (5.5f)

ypij ≥ z
p
ij − z

p−1
ij ∀(i, j) ∈ A, p = 1, . . . , |P|+ 1, (5.5g)∑

i:(s,i)∈A

z1
si = 1, (5.5h)

∑
i:(s,i)∈A

zp+1
si ≤

∑
i:(s,i)∈A

zpsi ∀p = 1, . . . , |P| − 1, (5.5i)

z
|P|+1
sj ≤

∑
i:(s,i)∈A

z
|P|
si ∀j : (s, j) ∈ A, (5.5j)
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∑
(u,v)∈A

ypuv ≥
∑

i:(s,i)∈A

zpsi ∀p = 1, . . . , |P|+ 1, (5.5k)

xpij , y
p
ij ≥ 0 ∀(i, j) ∈ A, p = 1, . . . , |P|+ 1, (5.5l)

zpij ∈ {0, 1} ∀(i, j) ∈ A, p = 1, . . . , |P|+ 1. (5.5m)

Objective function (5.5a) minimizes total flow and activation costs. Constraints (5.5b)–(5.5g) are

analogous to constraints (5.3b)–(5.3h), and constraints (5.5h)–(5.5j) are analogous to symmetry-

breaking constraints (5.4a) and (5.4b). Constraints (5.5k) ensure that a path cannot transmit flow

unless it commits to activating at least one arc on that path. The motivation for using these

constraints is that without those constraints, an optimal solution may exist in which paths 1, . . . , |P|

are identical, each sending a small flow, in order to avoid activation costs in paths 2, . . . , |P|. All

remaining flows would then be transmitted in the aggregate flow, further avoiding activation costs

and weakening the relaxation. Constraints (5.5k) thus discourage the use of consecutive identical

paths, by requiring a new arc activation each time flow is sent across a path (or across the aggregate

flow). Finally, constraints (5.5l) and (5.5m) enforce non-negativity restrictions on variables x and y

and binary restrictions on z, respectively.

Proposition 4. Problem MCF-A2 is a relaxation of problem MCF-A.

Proof. Consider any optimal solution (x̄, ȳ, z̄) to MCF-A. We construct a feasible solution (x̂, ŷ, ẑ) to

MCF-A2 whose cost does not exceed that of (x̄, ȳ, z̄) in MCF-A. First, we set x̂pij = x̄pij , ŷ
p
ij = ȳpij ,

and ẑpij = z̄pij , ∀(i, j) ∈ A and p = 1, . . . , |P|. Then, set x̂
|P|+1
ij =

∑|P|
p=|P|+1

x̄pij , ẑ
|P|+1
ij = 1 if

x̂
|P|+1
ij > 0 and ẑ

|P|+1
ij = 0 otherwise, and ŷ

|P|+1
ij = max{ẑ|P|+1

ij − ẑ|P|ij , 0}, ∀(i, j) ∈ A. Because∑|P|
p=1 x̄

p
ij =

∑|P|+1
p=1 x̂pij , ∀(i, j) ∈ A, and the ŷ- and ẑ-values are explicitly defined to satisfy the

feasibility criteria, solution (x̂, ŷ, ẑ) is feasible to MCF-A2.

Next, note that because x̂
|P|+1
ij =

∑|P|
p=|P|+1

x̄pij , we have that

|P|+1∑
p=1

∑
(i,j)∈A

dij x̂
p
ij =

|P|∑
p=1

∑
(i,j)∈A

dij x̄
p
ij .

Also, because for all (i, j) ∈ A we have that

• ẑ|P|+1
ij = maxp∈{|P|+1,...,|P|}{z̄

p
ij},

• ȳpij = max{z̄pij − z̄
p−1
ij , 0}, ∀p = |P|+ 1, . . . , |P|, at optimality, and

• ŷ|P|+1
ij = max{ẑ|P|+1

ij − ẑ|P|ij , 0},

we get that ŷ
|P|+1
ij ≤

∑|P|
p=|P|+1

ȳpij . This relationship, along with the fact that ŷpij = ȳpij , ∀p =

1, . . . , |P| and (i, j) ∈ A, yields the inequality
∑|P|+1
p=1 aij ŷ

p
ij ≤

∑|P|
p=1 aij ȳ

p
ij . An optimal solution
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(x∗, y∗, z∗) to MCF-A2 must have an objective less than or equal to that of (x̂, ŷ, ẑ), whose objective

value is less than or equal to that of (x̄, ȳ, z̄) for MCF-A as demonstrated above. This completes the

proof.

We now describe a bounding procedure that utilizes an optimal MCF-A2 solution to obtain

lower and upper bounds for the MCF-A. The lower bound is obtained by solving problem (5.5). To

obtain an upper bound, we convert the relaxation solution from MCF-A2 into a feasible solution

for MCF-A. To do so, we present the following P̂-decomposition heuristic algorithm. This heuristic

pushes flows on the |P| paths given by the solution obtained from (5.5). This solution is optimal

if aggregate flow |P| + 1 is empty (or if it is a path). Otherwise, our heuristic decomposes the

aggregate flow into a schedule of path flows P̂ = {p̂1, . . . , p̂|P̂|}, with the goal of minimizing the sum

of activation costs associated with P̂. For each step i of the P̂-decomposition, define residual flow

xi−1
uv of each arc (u, v) ∈ A to be the aggregate flow on (u, v) minus the sum of flows on (u, v) using

the first (i− 1) paths in P̂. Let set Ai−1 consist of all arcs (u, v) ∈ A for which xi−1
uv > 0 at step i.

Letting A′i−1 be the set of arcs in Ai−1 used on the (i− 1)st path in P̂ , our algorithm searches for a

path p̂i that greedily reuses arcs in A′i−1. If an arc (u, v) ∈ A′i−1 is not included in p̂i, then (u, v)

must be activated again on a later path in P̂, and so we search for a path including arcs in A′i−1

having a maximum sum of activation costs.

Given an optimal solution to (5.5), we initialize the P̂-decomposition by letting set A0 consist

of all arcs having positive aggregate flow, and letting set A′0 ⊆ A0 consist of all arcs in A0 used on

path |P|. Finally, let the length of each arc (u, v) ∈ Ai−1 be auv if (u, v) ∈ A′i−1, and 0 otherwise.

Initializing i = 0, the P̂-decomposition is as follows.

P̂-decomposition Step 1: If Ai = ∅, then terminate with schedule P̂ = {p̂1, . . . , p̂i}. Otherwise,

proceed to P̂-decomposition Step 2.

P̂-decomposition Step 2: If A′i = ∅, then proceed to P̂-decomposition Step 3. Otherwise, set

i = i+ 1, and determine a longest path p̂i among those arcs in Ai−1. Set the flow fp̂i on p̂i to be the

minimum residual flow among all arcs in p̂i, and decrease the residual flow on each arc in p̂i by fp̂i .

Return to P̂-decomposition Step 1.

P̂-decomposition Step 3: Set i = i + 1, and determine a path p̂i in Ai−1 that includes arc

(u, v) ∈ argmin(j,k)∈Ai−1
{xi−1

jk }. Set the flow fp̂i on p̂i equal to xi−1
uv , and decrease the residual flow
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on each arc in p̂i by fp̂i . Return to P̂-decomposition Step 1.

Letting P = {p̄1, . . . , p̄|P|}, the combined schedule {P, P̂} = {p̄1, . . . , p̄|P|, p̂1, . . . , p̂i} pro-

vides a feasible MCF-A solution and thus corresponds to an upper bound for the MCF-A. Since

aggregate flows assume simultaneous transmission, there exists an optimal solution to (5.5) in which

no subtours exist in the aggregate flow. Any subtours that do exist can be removed without affecting

the objective function value. The resulting graph of aggregate flows is directed and acyclic, and so

both the longest path problem in P̂-decomposition Step 2 and the path problem in P̂-decomposition

Step 3 can be solved in polynomial time.

The bounding procedure iteratively increases the size of P to improve the lower and upper

bounds until an optimal MCF-A solution is found. Letting LB and UB refer to the respective lower

and upper bounds on the optimal objective function value for the MCF-A, our bounding procedure

is as follows.

Initialization: Solve an instance of the minimum-cost flow problem over arcs in A to determine

flows x, and decompose x into a schedule of paths P̂ using the P̂-decomposition algorithm. Set

|P| = |P̂|, LB = 0, and UB equal to the total flow and activation cost of schedule P̂ . Proceed to the

Lower Bound Step.

Lower Bound Step: Solve (5.5), and set LB equal to the optimal objective function value of

(5.5). Proceed to the Upper Bound Step.

Upper Bound Step: Execute the P̂-decomposition algorithm to decompose aggregate flows into

a schedule P̂. Set UB equal to the minimum between the current value UB value and the total flow

and activation cost of the combined schedule {P, P̂}. Proceed to the Optimality Check Step.

Optimality Check Step: If LB = UB, then terminate with an optimal schedule of flows {P, P̂}.

Otherwise, increase the size of P by |P̂|, and return to the Lower Bound Step. (If |P| ≥ f , then exit

the bounding procedure and directly solve (5.3).)

Observe that the size of P increases at each non-terminating iteration of the bounding

procedure. This observation holds true because LB < UB is only possible when there is positive

aggregate flow, resulting in |P̂| > 0 in the Optimality Check Step. Constraints (5.5i) and (5.5j)

guarantee that an aggregate flow is empty unless the first |P| paths have positive flow, and constraints

118



(5.5e) guarantee that the flow, if positive, on each path p̄1, . . . , p̄|P| is greater than or equal to 1.

Thus, the aggregate flow in an optimal solution to (5.5) is empty and the bounding procedure is

guaranteed to converge finitely to an optimal MCF-A solution when |P| = f .

We present the following example network in Figure 5.6 to display how the bounding

procedure converges. For this example, f = 11, and arc labels refer to all c-, d-, and a-values. The
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Figure 5.6: Bounding procedure network example

Initialization Step solves an instance of the minimum-cost flow problem that yields a network flow

having 11 units of flow on arcs (s, 1), (1, 3), and (3, t). Next, the P̂-decomposition produces a single

path (s, 1, 3, t) having 11 units of flow and a minimum cost of 59. Thus, LB = 0, UB = 59, and

|P| = 1. Next, the Lower Bound Step solves for an optimal solution to model (5.5) having 7 units

of flow on path p̄1 = (s, 2, 3, t), 4 units of aggregate flow on (s, 2), and 2 units of aggregate flow on

arcs (2, 4), (2, t), and (4, t). The total cost of transmitting flow on schedule P is 31, and the total

cost of transmitting aggregate flows is 17. Thus, LB = 48. The P̂-decomposition algorithm in the

Upper Bound Step decomposes the aggregate flow into a schedule P̂ containing paths p̂1 = (s, 2, t)

and p̂1 = (s, 2, 4, t) each having 2 units of flow. The cost of transmitting flow on schedule P̂ is 17,

and the UB = 48. Since LB = UB, the bounding procedure terminates in the Optimality Check

Step with an optimal schedule of path flows {P, P̂} having a minimum cost of 48.

5.2.4 Bounding Procedure Computational Results

In this section we compare the performance of our bounding procedure with the MIP (5.3).

We solve all mathematical programming models using CPLEX 12.8 via ILOG Concert Technology,

and we performed all experiments on a computer having a 2.9GHz Dual-core Intel i7 processor

with 8GB RAM. We present all CPU times in seconds and impose a 3600 second time limit. For
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all instances, we consider randomly-generated integer c-, d-, and a-values uniformly distributed

between [1, 10], [1, 15], and [1, 4], respectively, for dense networks having an arc between every distinct

node pair except between s and t. We first generate five random instances of the MCF-A for each

combination of networks having 10, 12, and 15 relay nodes and flow f ∈ {10, 11, 12, 13, 14, 15}.

Tables 5.3, 5.4, and 5.5 display the computational results of both approaches for networks

having 10, 12, and 15 nodes, respectively. Each table depicts the average CPU time, average size of

|P| at optimality, the total number of instances solved given an optimality gap tolerance of 0.1%,

and the average optimality gap at termination. For those instances that are terminated due to the

time limit, we record the current optimality gap observed after 3600 seconds, and count the CPU

time required for the instance as 3600 seconds.

Table 5.3: Average MCF-A results over five networks having 10 nodes

CPU Time (sec.) Average Size of |P| # Solved (out of 5) Optimality Gap

f MIP Bounding MIP Bounding MIP Bounding MIP Bounding

10 6.46 0.32 – 2.8 5 5 0% 0%

11 115.21 10.71 – 4.4 5 5 0% 0%

12 123.53 22.84 – 5.6 5 5 0% 0%

13 183.87 5.71 – 4.5 5 5 0% 0%

14 237.15 10.81 – 5.4 5 5 0% 0%

15 835.80 88.26 – 4.8 5 5 0% 0%

Table 5.3 displays the computational results for networks having 10 nodes. In all instances,

both techniques solved the MCF-A to optimality within the given time limit. Additionally, our

bounding procedure required less CPU time than the MIP. For example, when f = 10, our procedure

solved all instances in less than one second while the MIP required at least five seconds. As flow f

increased, the CPU time for solving the MIP also increased. Alternatively, our bounding procedure

was less dependent on the value of f . Our procedure seemed to be more influenced by the size of |P|.

For example, our procedure required less time, on average, to solve the MCF-A for f = 13 than for

f = 12. The maximum CPU time required by our bounding procedure to solve any instance was 421

seconds for f = 15 and |P| = 6, at optimality. Alternatively, an instance for the same value of f

required less than one second to solve, but yielded |P| = 3 at optimality. Therefore, we observe our

procedure performs well when a small number of positive-flow paths are needed to transmit f units

of flow from s to t.

Table 5.4 next displays the computational results for networks having 12 nodes. As before,
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Table 5.4: Average MCF-A results over five networks having 12 nodes

CPU Time (sec.) Average Size of |P| # Solved (out of 5) Optimality Gap

f MIP Bounding MIP Bounding MIP Bounding MIP Bounding

10 18.07 4.78 – 4.6 5 5 0% 0%

11 333.98 34.89 – 5 5 5 0% 0%

12 283.91 20.95 – 4.4 5 5 0% 0%

13 401.56 6.65 – 4.2 5 5 0% 0%

14 711.40 113.34 – 5.6 5 5 0% 0%

15 1521.13 331.10 – 6.6 4 5 0.04% 0%

the average CPU time for the MIP increased as the size of f increased. While the MIP solved all

previous instances to optimality, it failed to solve one instance for f = 15. Unsurprisingly, the average

CPU time for solving the MIP increased as the size of the network increased from 10 nodes to 12

nodes. Our bounding procedure, on average, required more time to solve the MCF-A over networks

having 12 nodes when compared to 10 nodes. Alternatively, some instances required less time when

|P| was smaller at optimality.

Table 5.5: Average MCF-A results over five networks having 15 nodes

CPU Time (sec.) Size of |P| # Solved (out of 5) Opt. Gap

f MIP Bounding MIP Bounding MIP Bounding MIP Bounding

10 43.95 4.86 – 3.6 5 5 0% 0%

11 669.39 67.31 – 4.6 5 5 0% 0%

12 200.82 10.05 – 4.2 5 5 0% 0%

13 157.14 8.13 – 4 5 5 0% 0%

14 864.63 98.77 – 5.2 5 5 0% 0%

15 499.77 32.48 – 4.4 5 5 0% 0%

Table 5.5 displays the computational results for networks having 15 nodes. Our bounding

procedure continued to perform well when compared to the MIP. Much like networks having 10 or 12

nodes, the average CPU time of our bounding procedure increased as the average number of paths in

P increased. As observed in both tables, the size of the network had a relatively small effect on the

average CPU time of our bounding procedure. The bounding procedure did not require significantly

more time to solve the MCF-A over networks having 15 nodes than it did for 10 or 12 nodes.

Our procedure performs well when a small number of positive-flow paths are needed to

transmit f units of flow from s to t. Alternatively, we test the scalability of our bounding procedure
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to determine for what types of networks our procedure does not perform as well. We execute the

bounding procedure to solve five randomly-generated MCF-A instances over networks having 20

nodes and values f ∈ {15, 20, 25}. The MIP reached the time limit in all instances for networks of

this size and flow value.

Table 5.6: Average bounding procedure results over five networks having 20 nodes

f CPU Time (sec.) Average Size of |P| # Solved (out of 5) Optimality Gap

15 144.79 6.2 5 0%

20 864.63 6 4 7.62%

25 3459.49 10.2 1 6.59%

Table 5.6 displays that, on average, the CPU time of the bounding procedure increases as f

increases for networks having 20 nodes. Additionally, we observe that, as f increases, our bounding

procedure is less likely to be able to solve the MCF-A since more number of positive-flow paths are

needed for larger values of f . For example, bounding procedure was only able to solve one instance

for f = 25, and it still required around 2300 seconds to solve this instance. When the bounding

procedure was not able to solve the MCF-A, the average optimality gap was 7.6% and 6.6% for

f = 20 and f = 25, respectively. These results illustrate the limitations of our bounding procedure

as it relates to network characteristics.
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Chapter 6

Conclusions

In this dissertation, we presented models and algorithms for solving various classes of network

flow problems that arise in WSN applications. Spurred by the growing interest in WSN optimization,

Chapter 2 first surveyed various research approaches and extensions to the WSN lifetime maximization

problem that include online routing, clustering approaches, and lifetime maximization on specially

structured networks. We also considered the impact of having mobile and/or multiple sinks and

delay-tolerant routing, and we detailed future areas of research.

In Chapter 3 we studied a variation of the maximum flow problem having a set of node-

capacity restrictions. We highlighted the case in which each node i ∈ V has a finite capacity bi > 0,

and a unit of flow on arc (i, j) ∈ A consumes gij > 0 units of capacity at i. We presented two

augmenting-flow algorithms as alternatives to solving a large LP. The first algorithm is an almost-

exact solution technique that iteratively solves two auxiliary LP models. These LPs either terminate

the algorithm with an optimal or close to optimal solution to the NCMFP or augment flow on a

set of cycles to increase node capacities and then on an s–t path to maximize additional flow in the

network. For situations that necessitate the complete avoidance of linear programming techniques,

our second approach is a heuristic algorithm that alters the cycle identification portion of the first

approach.

The almost-exact approach required less time to solve the NCMFP when compared to solving

a single LP for the NCMFP. The savings in computational time was significant for large networks,

and this approach is especially useful when a network contains a relatively small set of particular

nodes that are susceptible to exhaustion. Our heuristic approach is an adequate option for solving

the NCMFP when linear programming solvers are unavailable.
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Some WSN applications consider the presence of in-flow costs hij > 0 incurred at each node

j ∈ V when arc (i, j) has positive flow. Both algorithms presented in Chapter 3 could be amended

to consider the presence of such costs, but the heuristic approach could become time-consuming

and tedious. Thus, we encourage future studies to examine the NCMFP having such costs. Future

studies may also investigate solution approaches to solving the NCMFP when network information

(e.g., node capacity) may be unknown or uncertain.

Next, Chapter 4 introduced a variation of the maximum flow problem having semicontinuous

restrictions (MFP-S) on path flows. Since an MIP formulation for the MFP-S is pseudo-polynomial in

size and difficult to solve, we proposed a B&P algorithm along with a specialized branching procedure

based on the presence of a cut-set in a non-feasible solution. Our computational results show that

the B&P approach significantly reduces the computational time required to solve the MFP-S to

optimality.

Extensions of this work could include exploring other variations on semicontinuous flow

restrictions. For example, an interesting research direction may be to investigate multi-modal shipping

problems, in which the lower bound on positive path flows depends on the mode of transportation.

These problems may also incorporate costs of aggregating flows at nodes, such as would be required

when moving from one mode of transportation to the next. Whereas our work explicitly enforces

semicontinuity, other problems could relax the semicontinuity assumption by penalizing via a fixed

cost each instance in which positive flows are less than some lower bound.

Finally, Chapter 5 considered network applications that require dynamic flows to be trans-

mitted according to a non-simultaneous schedule. We first considered a network flow problem, in

which an arc is required to transmit a minimum amount of flow each time it begins transmitting flow.

We modeled this problem as a maximum flow problem having dynamic semicontinuous restrictions

(MFP-D) on path flows. An MIP for solving this problem typically requires significant amount of

time to solve, and will ultimately require the use of heuristics in many practical settings. Thus,

we provided heuristic algorithms to obtain lower and upper bounds for the problem. We leave the

development of advanced MFP-D heuristics for future study.

We next considered the presence of setup costs in dynamic network flow applications, in

which a fixed cost is incurred each time an arc begins transmission. This problem can be modeled by

the minimum-cost flow problem having arc-activation costs (MCF-A), in which an arc (i, j) is said

to be activated on path p when (i, j) has positive flow on the pth scheduled path, but not on the
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(p− 1)st scheduled path. As an alternative to solving an MIP, we introduced an exact algorithm for

computing an optimal MCF-A solution. In all instances, this approach provided an improvement

in computational time over the MIP. As the amount of flow to be transmitted from source to sink

increases or the size of the network grows, our algorithm significantly decreases the time required to

solve the MCF-A when compared to the MIP.

Future research needs also to examine other problems in non-simultaneous flows, such as

multi-stage network flow problems, and in problems having stochastic parameters. For example,

consider the multi-period investment problem having uncertain returns and minimum investment

levels for single- or multi-period investments. In this case, investment decisions must be made at the

beginning of each period, and so flows, or investments, along arcs may have some minimum investment

level. An optimization algorithm would need to anticipate the possibility of having smaller-than-

anticipated returns in the investment plan, hedging against the possibility that insufficient returns

may be present in a period for which an investment was planned.
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Appendix A

How to determine upper concave hull CUB
k

Let Ck be the set of constraints (3.11a), (3.11c), and (3.11d) for cycle θk ∈ Θ;

Identify constraint c ∈ Ck having maximum slope;

Remove c from Ck and add c to CUBk ;

while Ck 6= ∅ do

Identify constraint c ∈ Ck having maximum slope;

Identify constraint c′ ∈ CUBk having minimum slope;

Identify constraint c′′ ∈ CUBk having the second minimum slope;

Determine the intersection point ecc′ of constraints c and c′;

if ecc′ is feasible to c′′ or no c′′ exists then

Remove c from Ck and add c to CUBk ;

else

Remove c′ from CUBk ;

end

end

Algorithm 1: Algorithm to determine upper concave hull CUBk

A similar algorithm can be used to determine the lower convex hull CLBk .

Modified augmenting-flow (m-AF) algorithm

Let A′ represent the set of residual arcs corresponding to flows x̄. For all forward arcs

(i, j) ∈ A′∩A, define c̄ij = cij−x̄ij as the residual capacity on (i, j). For all reverse arcs (i, j) ∈ A′\A,

define c̄ij = x̄ji as the residual capacity on (i, j). Define b̄i = bi −
∑
j:(i,j)∈A gij x̄ij to be the residual

capacity at each node i ∈ V. Thus, define ĉij = min{c̄ij , b̄i/gij} as the maximum allowable flow on

each forward arc (i, j) ∈ A′ ∩ A. Additionally, define ĉij = c̄ij as the maximum allowable flow on

each reverse arc (i, j) ∈ A′ \ A. Finally, let VR contain all nodes i ∈ V for which b̄i = 0.

m-AF Initialization: For all (i, j) ∈ A′, set x̄ij = 0 and c̄ij = cij . Set b̄i = bi, ∀i ∈ V, and

ĉij = min{c̄ij , b̄i/gij}, ∀(i, j) ∈ A. Set VR = ∅ (since bi > 0, ∀i ∈ V).
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m-AF Step 1: Execute a DFS originating at s to determine a s–t path p containing only arcs

(i, j) ∈ A′ for which ĉij > 0. If no such path exists, proceed to m-AF Step 3. Otherwise, let Ap

be the set of all arcs (i, j) ∈ A′ contained within path p, and let Vp be the set of all nodes i ∈ V

visited by p. Next, let δ = min{ĉij : (i, j) ∈ Ap}. For each arc (i, j) ∈ Ap, augment δ units of flow

on each forward arc (i, j) ∈ A′ ∩A by setting x̄ij = x̄ij + δ and on each reverse arc (j, i) ∈ A′ \ A by

setting x̄ij = x̄ij − δ. Finally, for each arc (i, j) ∈ Ap, update residual capacities c̄ij and c̄ji for arcs

(i, j), (j, i) ∈ A′, respectively. If (i, j) ∈ A′ ∩A, then update b̄i for node i ∈ Vp, and if (i, j) ∈ A′ \A,

then update b̄j for node j ∈ Vp. Proceed to m-AF Step 2.

m-AF Step 2: For all forward arcs (i, j) ∈ A′ ∩ A ∩ Ap, set the maximum allowable flow value

on (i, j) ∈ A′ to be ĉij = min{c̄ij , b̄i/gij}. For all reverse arcs (i, j) ∈ {A′ \ A} ∩ Ap, set ĉij = c̄ij .

Return to m-AF Step 1.

m-AF Step 3: The m-AF terminates with flows x̄ feasible to model (3.1) for the NCMFP having a

maximum flow value f =
∑
i:(s,i)∈A x̄si. The balance of flow is preserved and node- and arc-capacity

constraints are satisfied at each step of the m-AF since the m-AF augments a common amount of

flow along an entire s–t path with each augmentation.
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Appendix B

Proof of Theorem 2

Proof. Our transformation is from the 3-Partition (3PART) problem [Garey and Johnson, 1975]

defined as follows.

INSTANCE: Set N = {n1, n2, . . . , nk} of k = 3m elements of size a(ni) ∈ Z+, a bound

τ ∈ Z+, such that τ/4 < a(ni) < τ/2, for each ni ∈ N , and
∑k
i=1 a(ni) = mτ .

QUESTION: Can N be partitioned into m disjoint sets N1, N2, . . . , Nm such that, for each

i = 1, . . . ,m,
∑
nj∈Ni

a(nj) = τ (so that each Ni must contain exactly three elements

from N)?

We transform an instance of 3PART into an SPDP instance as follows. Let V consist of

nodes {s, 1, . . . , k +m+ 1, t}, and define V1 = {1, . . . , k} and V2 = {k + 2, . . . , k +m+ 1}. Let the

aggregate flow on arcs (s, i) and (i, k + 1) be a(ni), ∀i ∈ V1. Additionally, let the aggregate flow on

arcs (k + 1,m) and (m, t) be τ , for each m ∈ V2. Set ` = τ/4.

To show equivalence of these problems, first suppose that the 3PART instance is a yes-

instance. We construct an SPDP solution as follows. For each v = 1, . . . ,m, examine the set

Nv = {nh, ni, nj}. For element nh, we create an SPDP path ph = (s, h, k + 1, k + 1 + v, t) having a

flow of a(nh) units. The aggregate flow on arcs (s, h) and (h, k+ 1) are satisfied by path ph, and since

a(nh) > τ/4, the flow on ph is stable. Repeat this step for ni and nj as well, creating paths pi and

pj . The sum of flows on arcs (k+ 1, k+ v+ 1) and (k+ v+ 1, t) is given by a(nh) + a(ni) + a(nj) = τ .

Repeating this construction for all v = 1, . . . ,m yields a decomposition of stable paths from the given

stable aggregate arc flows. Thus, SPDP has a solution.

Conversely, suppose there exists an SPDP solution. For this solution, suppose first that there

exist two paths p′h and p′′h originating on arc (s, h), h ∈ V1 that have positive flows. If the flow on p′h
is ≥ t/4 (but < a(nh)), then the resulting flow on p′′h must be strictly less than τ/4 since a(nh) < τ/2.

Therefore, the aggregate flow on each arc (s, h) (and (h, k + 1)) must be satisfied by a single path ph
having a flow of a(nh). Additionally, there exists some set Nv of stable positive-flow paths whose

flows satisfy the aggregate flow τ on arc (k + 1, k + v + 1) and (k + v + 1, t), for v = 1, . . . ,m. Since

τ/4 < a(ni) < τ/2, ∀i = 1, . . . , t, each Nv corresponds to exactly three disjoint paths {ph, pi, pj}
having flow values of a(nh), a(ni), and a(nj), respectively, with a(nh) + a(ni) + a(nj) = τ . Letting

Nv = {nh, ni, nj} for each v, we recover a 3PART solution.

We have shown that 3-PART ≤p SPDP; therefore, SPDP is NP-hard.

129



Appendix C

An example showing that a given arc-stable solution is not also dynamic

stable

Let an arc-stable solution to the MFP problem be one in which the sum of positive flows

along each arc among all paths is greater than or equal to the lower bound `. Thus, an arc stable

solution satisfies the following constraint
∑
p∈S x

p
ij ∈ {0, [`, u]} To show that an arc-stable solution is

not necessarily dynamic stable, we examine the process of constructing a dynamic-stable solution from

a given arc-stable solution. In the context of constructing a solution whose aggregate flows match a

given arc-stable solution, we first introduce the notion of an active arc. Consider an ordered set of

paths p1, . . . , pv with corresponding flows f1, . . . , fv. An active arc is one that must transmit positive

flow on path v + 1 in any dynamic-stable solution including paths p1, . . . , pv and corresponding flows

f1, . . . , fv. An active arc (i, j) is deemed either active-nonstable or active-stable. Suppose that arc

(i, j) belongs to all paths pk, pk+1, . . . , pv but not pk−1. Arc (i, j) is active-nonstable if
∑v
h=k fh < `.

An arc (i, j) is active-stable if
∑v
h=k fh ≥ `, but the remaining aggregate flow that must be sent on

arc (i, j) is less than `. Consider the example in Figure 1, where ` = 10. We show that there does

not exist a dynamic-stable solution, even though the aggregate arc flows are stable.
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Figure 1: Arc-stable solution with ` = 10

Suppose there exists a schedule of paths corresponding to the aggregate arc-stable solution

in Figure 1 that meets dynamic-stable restrictions. This schedule may begin with one of the sixteen

unique paths from node 1 to node 10. Consider the case in which the schedule begins with path

p1 = (1, 2, 5, 6, 9, 10). The flow on p1 cannot exceed 11, which is the minimum flow among all arcs in

p1. If the flow on p1 were ≥ ` and < 11, then the next path must include all arcs in (2, 5), (5, 6), and

(6, 9), or else no subsequent set of paths transmitting the flows on those arcs would be able to send

enough consecutive flow over those arcs to meet the stability restrictions. However, p1 is the only

path including those arcs, and so no unique path could follow p2 in this case. For the same reason, no

flow on the first path can be less than `, or else the next path must include all arcs in p1. Therefore,
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the flow on p1 must be exactly 11. After p1 sends 11 units of flow, Figure 2 displays the remaining

flow. Arcs (2, 5) and (6, 9) have 3 and 2 remaining units of flow to send, respectively. These arcs are

active-stable because the flow on the first path p1 is greater than or equal to `. No paths exist in

the network in Figure 2 that contain both of these arcs; therefore, a dynamic-stable solution cannot

begin with p1. Now, consider when the schedule begins with path p̄1 = (1, 2, 4, 6, 8, 10). As before,
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Figure 2: Updated network after p1

this path must transmit 12 units of flow. Arcs (2, 4) and (4, 6) become active-stable in the updated

network (Figure 3) because they have 5 and 2 units of remaining flow, respectively. The next path
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Figure 3: Updated network after p̄1

in the schedule must then be p̄2 = (1, 2, 4, 6, 9, 10), having 2 units of flow. After p̄2 sends flow, arc

(2, 4) remains active-stable and arcs (6, 9) and (9, 10) become active-nonstable (Figure 4). No paths

exist in the updated network having flow on both arcs (2, 4) and (6, 9); therefore, a schedule of paths

meeting dynamic-stable restrictions cannot begin with p̄1. Similar analysis (omitted for brevity)

yields the same result for the 14 other possible initial paths. As a result, no dynamic-stable solution

corresponds to the flows in Figure 1, and we conclude that an arc-stable solution is not necessarily

dynamic stable.

Finding paths in Steps 2a and 2b of the MFP-D heuristic

For Step 2a, we identify (using breadth-first search (BFS)) a path from s to any node i such

that rkij = rkmin, using only arcs having positive residual values (i.e., (i, j) ∈ A : rkij > 0). We then

repeat this search for a path from j to t using only arcs having positive residual flow. We return a
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Figure 4: Updated network after p̄2

path pk that joins subpaths s–i and j–t with arc (i, j).

For Step 2b, we join a series of “subpaths” as in the Step 2a strategy. Each subpath is

identified using only positive residual-flow arcs, and each is computed using BFS. We first establish a

topological ordering (see, e.g., [Ahuja et al., 1993]) of nodes in the network of positive residual-flow

arcs (i, j) ∈ A : rkij > 0. This ordering exists by assumption that the input arc-stable aggregate flows

are acyclic. Assuming that the nodes are now reindexed in topological order, we then create a subpath

from s to i′ such that i′ = min{i : (i, j) ∈ Ak} and join subpath s–i′ with active arc (i′, j′) ∈ Ak.

Next, we search for a subpath from j′ to node u′, such that u′ = min{u : (u, v) ∈ Ak : u > j} and

extend our previous path with the subpath from j′–u′, followed by arc (u′, v′) ∈ Ak. This process

continues until a path from s–v is established, for some v, that uses all active arcs. We then find one

more subpath from v to t, join path s–v with subpath v–t, and set pk equal to the s–t path. If at

any point a subpath cannot be identified, then a path sought at Step 2b is not found.

Finding paths in Improvement Step 2 of the MFP-D heuristic

For Improvement Step 2, we also join a series of subpaths to create a path p̄k+1 containing

all active non-stable arcs in Ak+1. Our goal is to maximize flow on p̄k+1 in a heuristic manner

without violating any arc- or node-capacity constraints. To construct p̄k+1, we first define aij to be

the maximum possible flow on arc (i, j) without violating node- or arc-capacity constraints, given

prior flows transmitted in our heuristic solution. Letting b̄i and c̄ij be the remaining capacities on

node i and arc (i, j), respectively, after the flows on paths p1, . . . , pk are sent, then the allowable flow

on (i, j) is aij = min{b̄i/gij , c̄ij}. Additionally, we define fh,j as the maximum allowable flow on a

path from node h to node j without violating any node or arc capacity constraints along the h–j

path.

Letting Āk+1 be the set of active non-stable arcs, we first search for a widest path from

s to the tail node i of each arc (i, j) ∈ Āk+1. A widest path is one that maximizes the minimum
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flow that can be sent on the path. To find these widest paths, we implement a simple adaptation

of Dijkstra’s algorithm to solve the bottleneck path problem [Punnen, 1991]. Since all a-values are

non-negative, this search will always a set of simple s–i paths. Thus, the maximum allowable flow

fs,i on each s–i path is equal to the minimum a-value among all arcs in the path from s to i. We

select an s–i path having the maximum fs,i-value, join this path with (i, j), remove (i, j) from Āk+1,

and set fs,j = min{fs,i, aij}.

We then search for a widest path from j to the tail u of each arc (u, v) ∈ Āk+1. From among

these simple paths, we select one having a maximum f j,u-value, join s–j, j–u, and arc (u, v), and

remove (u, v) from Āk+1. The resulting s–v path may consist of subtours since some node may be

contained in both s–j and j–u. Thus, we define T s,v to be the set of nodes visited multiple times in

s–v, Ah,s,v to be the set of arcs leaving node h ∈ T s,v, and set the flow as:

fs,v = min

{
fs,j , f j,v, auv,min

{
b̄h∑

(h,k)∈Ah,s,v
ghk

: h ∈ T s,v
}}

.

We repeat our search in this fashion: We set node j to refer to node v, and reiterate by once again

looking for a widest path j–u containing an arc (u, v) ∈ Āk+1, until either no such path exists or

Āk+1 is empty. In the former case, we are unable to find a path p̄k+1. In the latter case, we identify

a widest path from v to t (known to exist by assumption), join s–v and v–t, set p̄k+1 equal to path

s–t having flow:

f̄k+1 = min

{
fs,v, fv,t,min

{
b̄h∑

(h,k)∈Ah,s,t
ghk

: h ∈ T s,t
}}

.

Finding paths in Improvement Step 4 of the MFP-D heuristic

This procedure is similar to Improvement Step 2, but without the complicating requirement

of including active non-stable arcs. We use a variation of Dijkstra’s algorithm for the bottleneck path

problem to identify a path p̄k+h that maximizes the flow from s to t without violating any node or

arc capacity constraints. Note that there will always exist an optimal solution to this problem that

is a simple path, unlike the case of Improvement Step 2. If the allowable flow along this path is less

than `, then we are unable to determine a static-stable path p̄k+h.
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M. E. Keskin, İ. K. Altınel, N. Aras, and C. Ersoy. Lifetime maximization in wireless sensor networks
using a mobile sink with nonzero traveling time. The Computer Journal, 54(12):1987–1999, 2011.

A. W. Khan, A. H. Abdullah, M. H. Anisi, and J. I. Bangash. A comprehensive study of data
collection schemes using mobile sinks in wireless sensor networks. Sensors, 14(2):2510–2548, 2014.

H. Kim, Y. Seok, N. Choi, Y. Choi, and T. Kwon. Optimal multi-sink positioning and energy-efficient
routing in wireless sensor networks. In C. Kim, editor, International Conference on Information
Networking, volume 3391, pages 264–274. Springer, 2005.

J. Ko, C. Lu, M. B. Srivastva, J. A. Stankovic, A. Terzis, and M. Welsh. Wireless sensor networks
for healthcare. Proceedings of the IEEE, 98(11):1947–1960, 2010.

P. Kuila and P. K. Jana. Energy efficient clustering and routing algorithms for wireless sensor networks:
Particle swarm optimization approach. Engineering Applications of Artificial Intelligence, 33:
127–140, 2014.

D. Kumar, T. C. Aseri, and R. B. Patel. EEHC: Energy Efficient Heterogeneous Clustered scheme
for wireless sensor networks. Computer Communications, 32:662–667, 2009.

138



G. Laporte. Generalized subtour elimination constraints and connectivity constraints. Journal of the
Operational Research Society, 37(5):509–514, 1986.

N. M. A. Latiff, C. C. Tsimenidis, and B. S. Sharif. Energy-aware clustering for wireless sensor
networks using particle swarm optimization. In Proceedings of the Annual IEEE International
Symposium on Personal, Indoor and Mobile Radio Communications, pages 1–5, Athens, 2007.
IEEE.

S. H. Lee, S. Lee, H. Song, and H. S. Lee. Wireless sensor network design for tactical military
applications: Remote large-scale environments. In Proceedings of 28th IEEE Conference on Military
Communications, pages 911–917, Boston, 2009. IEEE.

J. S. Leu, T. H. Chiang, M. C. Yu, and K. W. Su. Energy efficient clustering scheme for prolonging
the lifetime of wireless sensor network with isolated nodes. IEEE Communications Letters, 19(2):
259–262, 2015.

J. Li and P. Mohapatra. An analytical model for the energy hole problem in many-to-one sensor
networks. In Proceedings of IEEE 62nd Semiannual Vehicular Technology Conference, pages
2721–2725, Dallas, TX, 2005. IEEE.

J. Li and P. Mohapatra. Analytical modeling and mitigation techniques for the energy hole problem
in sensor networks. Pervasive and Mobile Computing, 3(8):233–254, 2007.

K. Li, H. Luan, and C. C. Shen. Qi-ferry: Energy-constrained wireless charging in wireless sensor
networks. In Proceedings of the Wireless Communications and Networking Conference, pages
2515–2520. IEEE, 2012.

M. Li, Z. Li, and A. V. Vasilakos. A survey on topology control in wireless sensor networks: Taxonomy,
comparative study, and open issues. Proceedings of the IEEE, 101(12):2538–2557, 2013.

R. Li, X. Liu, W. Xie, and N. Huang. Deployment-based lifetime optimization model for homogeneous
wireless sensor network under retransmission. Sensors, 14(12):23697–23723, 2014.

W. Liang and J. Luo. Network lifetime maximization in sensor networks with multiple mobile sinks.
In Proceedings of the IEEE 36th Conference on Local Computer Networks, pages 350–357, Bonn,
Germany, 2011. IEEE.

C. Liu and G. Cao. Distributed critical location coverage in wireless sensor networks with lifetime
constraint. In Proceedings of the 2012 IEEE INFOCOM, pages 1314–1322, Orlando, FL, 2012.
IEEE.

J. D. Lundquist, D. R. Cayan, and M. D. Dettinger. Meteorology and hydrology in Yosemite
national park: A sensor network application. In Proceedings of the 2nd International Symposium
on Information Processing in Sensor Networks, pages 518–528, Palo Alto, CA, 2003. Xerox PARC.

H. Luo, J. Luo, Y. Liu, and S. K. Das. Adaptive data fusion for energy efficient routing in wireless
sensor networks. IEEE Transactions on Computers, 55(10):1286–1299, 2006.

R. Madan and S. Lall. Distributed algorithms for maximum lifetime routing in wireless sensor
networks. In Proceedings of the IEEE GLOBECOM ’04, pages 748–753, Dallas, TX, 2004. IEEE.

V. S. Mansouri, A. H. M. Rad, and V. W. S. Wong. Multicommodity lifetime routing for wireless
sensor networks with multiple sinks. In IEEE International Conference on Communications 2008,
Beijing, 2008. IEEE.

M. Marta and M. Cardei. Improved sensor network lifetime with multiple mobile sinks. Journal of
Pervasive and Mobile Computing, 5(5):542–555, 2009.

139



G. P. McCormick. Nonlinear Programming: Theory, Algorithms, and Applications. John Wiley &
Sons, Inc., New York, NY, USA, 1983.

C. E. Miller, A. W. Tucker, and R. A. Zemlin. Integer programming formulation of traveling
salesman problems. Journal of the Association for Computing Machinery, 7(4):326–329, 1960.
ISSN 0004-5411.

J. Min, J. Kim, Y. Kwon, and Y. Lee. Multi-channel MAC protocol for real-time monitoring of weapon
flight test in wireless sensor network. In S. Yurish, editor, Proceedings of the Sixth International
Conference on Sensor Technologies and Applications, pages 83–88, Rome, 2012. IARIA.
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