633 research outputs found

    Mixing the reactive with the personal: Opportunities for end-user programming in personal information management

    No full text
    The transition of personal information management (PIM) tools off the desktop to the Web presents an opportunity to augment these tools with capabilities provided by the wealth of real-time information readily available. In this chapter, we describe a personal information assistance engine that lets end-users delegate to it various simple context- and activity-reactive tasks and reminders. Our system, Atomate, treats RSS/ATOM feeds from social networking and life-tracking sites as sensor streams, integrating information from such feeds into a simple unified RDF world model representing people, places and things and their time-varying states and activities. Combined with other information sources on the web, including the user's online calendar, web-based e-mail client, news feeds and messaging services, Atomate can be made to automatically carry out a variety of simple tasks for the user, ranging from context-aware filtering and messaging, to sharing and social coordination actions. Atomate's open architecture and world model easily accommodate new information sources and actions via the addition of feeds and web services. To make routine use of the system easy for non-programmers, Atomate provides a constrained-input natural language interface (CNLI) for behavior specification, and a direct-manipulation interface for inspecting and updating its world model

    A SoLiD app to participate in a scalable semantic supply chain network on the blockchain (Demo)

    Get PDF
    To allow for inter-organisational processes in networks withlow trust, Supply Chains and corresponding information are moving tothe blockchain. On the blockchain, this information poses a scalabilitychallenge. To tackle this challenge, we propose a solution that minimisesthe data stored on the blockchain, which we base on semantic datamodelling in knowledge graphs, decentralised management of interlinkeddata, and a light-weight Smart Contract. In this demo, we focus onthe web agent to participate in Supply Chain networks built using ourapproach, and our corresponding data modellin

    Linked Research on the Decentralised Web

    Get PDF
    This thesis is about research communication in the context of the Web. I analyse literature which reveals how researchers are making use of Web technologies for knowledge dissemination, as well as how individuals are disempowered by the centralisation of certain systems, such as academic publishing platforms and social media. I share my findings on the feasibility of a decentralised and interoperable information space where researchers can control their identifiers whilst fulfilling the core functions of scientific communication: registration, awareness, certification, and archiving. The contemporary research communication paradigm operates under a diverse set of sociotechnical constraints, which influence how units of research information and personal data are created and exchanged. Economic forces and non-interoperable system designs mean that researcher identifiers and research contributions are largely shaped and controlled by third-party entities; participation requires the use of proprietary systems. From a technical standpoint, this thesis takes a deep look at semantic structure of research artifacts, and how they can be stored, linked and shared in a way that is controlled by individual researchers, or delegated to trusted parties. Further, I find that the ecosystem was lacking a technical Web standard able to fulfill the awareness function of research communication. Thus, I contribute a new communication protocol, Linked Data Notifications (published as a W3C Recommendation) which enables decentralised notifications on the Web, and provide implementations pertinent to the academic publishing use case. So far we have seen decentralised notifications applied in research dissemination or collaboration scenarios, as well as for archival activities and scientific experiments. Another core contribution of this work is a Web standards-based implementation of a clientside tool, dokieli, for decentralised article publishing, annotations and social interactions. dokieli can be used to fulfill the scholarly functions of registration, awareness, certification, and archiving, all in a decentralised manner, returning control of research contributions and discourse to individual researchers. The overarching conclusion of the thesis is that Web technologies can be used to create a fully functioning ecosystem for research communication. Using the framework of Web architecture, and loosely coupling the four functions, an accessible and inclusive ecosystem can be realised whereby users are able to use and switch between interoperable applications without interfering with existing data. Technical solutions alone do not suffice of course, so this thesis also takes into account the need for a change in the traditional mode of thinking amongst scholars, and presents the Linked Research initiative as an ongoing effort toward researcher autonomy in a social system, and universal access to human- and machine-readable information. Outcomes of this outreach work so far include an increase in the number of individuals self-hosting their research artifacts, workshops publishing accessible proceedings on the Web, in-the-wild experiments with open and public peer-review, and semantic graphs of contributions to conference proceedings and journals (the Linked Open Research Cloud). Some of the future challenges include: addressing the social implications of decentralised Web publishing, as well as the design of ethically grounded interoperable mechanisms; cultivating privacy aware information spaces; personal or community-controlled on-demand archiving services; and further design of decentralised applications that are aware of the core functions of scientific communication

    Web-oriented Event Processing

    Get PDF
    How can the Web be made situation-aware? Event processing is a suitable technology for gaining the necessary real-time results. The Web, however, has many users and many application domains. Thus, we developed multi-schema friendly data models allowing the re-use and mix from diverse users and application domains. Furthermore, our methods describe protocols to exchange events on the Web, algorithms to execute the language and to calculate access rights

    Knowledge-infused and Consistent Complex Event Processing over Real-time and Persistent Streams

    Full text link
    Emerging applications in Internet of Things (IoT) and Cyber-Physical Systems (CPS) present novel challenges to Big Data platforms for performing online analytics. Ubiquitous sensors from IoT deployments are able to generate data streams at high velocity, that include information from a variety of domains, and accumulate to large volumes on disk. Complex Event Processing (CEP) is recognized as an important real-time computing paradigm for analyzing continuous data streams. However, existing work on CEP is largely limited to relational query processing, exposing two distinctive gaps for query specification and execution: (1) infusing the relational query model with higher level knowledge semantics, and (2) seamless query evaluation across temporal spaces that span past, present and future events. These allow accessible analytics over data streams having properties from different disciplines, and help span the velocity (real-time) and volume (persistent) dimensions. In this article, we introduce a Knowledge-infused CEP (X-CEP) framework that provides domain-aware knowledge query constructs along with temporal operators that allow end-to-end queries to span across real-time and persistent streams. We translate this query model to efficient query execution over online and offline data streams, proposing several optimizations to mitigate the overheads introduced by evaluating semantic predicates and in accessing high-volume historic data streams. The proposed X-CEP query model and execution approaches are implemented in our prototype semantic CEP engine, SCEPter. We validate our query model using domain-aware CEP queries from a real-world Smart Power Grid application, and experimentally analyze the benefits of our optimizations for executing these queries, using event streams from a campus-microgrid IoT deployment.Comment: 34 pages, 16 figures, accepted in Future Generation Computer Systems, October 27, 201

    Understanding Federation: An Analytical Framework for the Interoperability of Social Networking Sites

    Get PDF
    Although social networking has become a remarkable feature in the Web, full interoperability has not arrived. This work explores the main 5 paradigms of interoperability across social networking sites, corresponding to the layers in which we an find interoperability. Building on those, a novel analytical framework for SNS interoperability is introduced. Seven representative interoperability SNS technologies are compared using the proposed framework. The analysis exposes an overwhelming disparity and fragmentation in the solutions for tackling the same problems. Although there are a few solutions where consensus is reached and are widely adopted (e.g. in object IDs), there are multiple central issues that are still far from being widely standarized (e.g. in profile representation). In addition, several areas have been identified where there is clear room for improvement, such as privacy controls or data synchronization
    corecore