10 research outputs found

    Ring-oscillator with multiple transconductors for linear analog-to-digital conversion

    Get PDF
    This paper proposes a new circuit-based approach to mitigate nonlinearity in open-loop ring-oscillator-based analog-to-digital converters (ADCs). The approach consists of driving a current-controlled oscillator (CCO) with several transconductors connected in parallel with different bias conditions. The current injected into the oscillator can then be properly sized to linearize the oscillator, performing the inverse current-to-frequency function. To evaluate the approach, a circuit example has been designed in a 65-nm CMOS process, leading to a more than 3-ENOB enhancement in simulation for a high-swing differential input voltage signal of 800-mVpp, with considerable less complex design and lower power and expected area in comparison to state-of-the-art circuit based solutions. The architecture has also been checked against PVT and mismatch variations, proving to be highly robust, requiring only very simple calibration techniques. The solution is especially suitable for high-bandwidth (tens of MHz) medium-resolution applications (10–12 ENOBs), such as 5G or Internet-of-Things (IoT) devices.This research was funded by Project TEC2017-82653-R, Spain

    High-Bandwidth Voltage-Controlled Oscillator based architectures for Analog-to-Digital Conversion

    Get PDF
    The purpose of this thesis is the proposal and implementation of data conversion open-loop architectures based on voltage-controlled oscillators (VCOs) built with ring oscillators (RO-based ADCs), suitable for highly digital designs, scalable to the newest complementary metal-oxide-semiconductor (CMOS) nodes. The scaling of the design technologies into the nanometer range imposes the reduction of the supply voltage towards small and power-efficient architectures, leading to lower voltage overhead of the transistors. Additionally, phenomena like a lower intrinsic gain, inherent noise, and parasitic effects (mismatch between devices and PVT variations) make the design of classic structures for ADCs more challenging. In recent years, time-encoded A/D conversion has gained relevant popularity due to the possibility of being implemented with mostly digital structures. Within this trend, VCOs designed with ring oscillator based topologies have emerged as promising candidates for the conception of new digitization techniques. RO-based data converters show excellent scalability and sensitivity, apart from some other desirable properties, such as inherent quantization noise shaping and implicit anti-aliasing filtering. However, their nonlinearity and the limited time delay achievable in a simple NOT gate drastically limits the resolution of the converter, especially if we focus on wide-band A/D conversion. This thesis proposes new ways to alleviate these issues. Firstly, circuit-based techniques to compensate for the nonlinearity of the ring oscillator are proposed and compared to equivalent state-of-the-art solutions. The proposals are designed and simulated in a 65-nm CMOS node for open-loop RO-based ADC architectures. One of the techniques is also validated experimentally through a prototype. Secondly, new ways to artificially increase the effective oscillation frequency are introduced and validated by simulations. Finally, new approaches to shape the quantization noise and filter the output spectrum of a RO-based ADC are proposed theoretically. In particular, a quadrature RO-based band-pass ADC and a power-efficient Nyquist A/D converter are proposed and validated by simulations. All the techniques proposed in this work are especially devoted for highbandwidth applications, such as Internet-of-Things (IoT) nodes or maximally digital radio receivers. Nevertheless, their field of application is not restricted to them, and could be extended to others like biomedical instrumentation or sensing.El propósito de esta tesis doctoral es la propuesta y la implementación de arquitecturas de conversión de datos basadas en osciladores en anillos, compatibles con diseños mayoritariamente digitales, escalables en los procesos CMOS de fabricación más modernos donde las estructuras digitales se ven favorecidas. La miniaturización de las tecnologías CMOS de diseño lleva consigo la reducción de la tensión de alimentación para el desarrollo de arquitecturas pequeñas y eficientes en potencia. Esto reduce significativamente la disponibilidad de tensión para saturar transistores, lo que añadido a una ganancia cada vez menor de los mismos, ruido y efectos parásitos como el “mismatch” y las variaciones de proceso, tensión y temperatura han llevado a que sea cada vez más complejo el diseño de estructuras analógicas eficientes. Durante los últimos años la conversión A/D basada en codificación temporal ha ganado gran popularidad dado que permite la implementación de estructuras mayoritariamente digitales. Como parte de esta evolución, los osciladores controlados por tensión diseñados con topologías de oscilador en anillo han surgido como un candidato prometedor para la concepción de nuevas técnicas de digitalización. Los convertidores de datos basados en osciladores en anillo son extremadamente sensibles (variación de frecuencia con respecto a la señal de entrada) así como escalables, además de otras propiedades muy atractivas, como el conformado espectral de ruido de cuantificación y el filtrado “anti-aliasing”. Sin embargo, su respuesta no lineal y el limitado tiempo de retraso alcanzable por una compuerta NOT restringen la resolución del conversor, especialmente para conversión A/D en aplicaciones de elevado ancho de banda. Esta tesis doctoral propone nuevas técnicas para aliviar este tipo de problemas. En primer lugar, se proponen técnicas basadas en circuito para compensar el efecto de la no linealidad en los osciladores en anillo, y se comparan con soluciones equivalentes ya publicadas. Las propuestas se diseñan y simulan en tecnología CMOS de 65 nm para arquitecturas en lazo abierto. Una de estas técnicas presentadas es también validada experimentalmente a través de un prototipo. En segundo lugar, se introducen y validan por simulación varias formas de incrementar artificialmente la frecuencia de oscilación efectiva. Para finalizar, se proponen teóricamente dos enfoques para configurar nuevas formas de conformación del ruido de cuantificación y filtrado del espectro de salida de los datos digitales. En particular, son propuestos y validados por simulación un ADC pasobanda en cuadratura de fase y un ADC de Nyquist de gran eficiencia en potencia. Todas las técnicas propuestas en este trabajo están destinadas especialmente para aplicaciones de alto ancho de banda, tales como módulos para el Internet de las cosas o receptores de radiofrecuencia mayoritariamente digitales. A pesar de ello, son extrapolables también a otros campos como el de la instrumentación biomédica o el de la medición de señales mediante sensores.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Juan Pablo Alegre Pérez.- Secretario: Celia López Ongil.- Vocal: Fernando Cardes Garcí

    High order VCO based Delta Sigma modulator

    Get PDF

    Digital-Based Analog Processing in Nanoscale CMOS ICs for IoT Applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Floating-Gate Design and Linearization for Reconfigurable Analog Signal Processing

    Get PDF
    Analog and mixed-signal integrated circuits have found a place in modern electronics design as a viable alternative to digital pre-processing. With metrics that boast high accuracy and low power consumption, analog pre-processing has opened the door to low-power state-monitoring systems when it is utilized in place of a power-hungry digital signal-processing stage. However, the complicated design process required by analog and mixed-signal systems has been a barrier to broader applications. The implementation of floating-gate transistors has begun to pave the way for a more reasonable approach to analog design. Floating-gate technology has widespread use in the digital domain. Analog and mixed-signal use of floating-gate transistors has only become a rising field of study in recent years. Analog floating gates allow for low-power implementation of mixed-signal systems, such as the field-programmable analog array, while simultaneously opening the door to complex signal-processing techniques. The field-programmable analog array, which leverages floating-gate technologies, is demonstrated as a reliable replacement to signal-processing tasks previously only solved by custom design. Living in an analog world demands the constant use and refinement of analog signal processing for the purpose of interfacing with digital systems. This work offers a comprehensive look at utilizing floating-gate transistors as the core element for analog signal-processing tasks. This work demonstrates the floating gate\u27s merit in large reconfigurable array-driven systems and in smaller-scale implementations, such as linearization techniques for oscillators and analog-to-digital converters. A study on analog floating-gate reliability is complemented with a temperature compensation scheme for implementing these systems in ever-changing, realistic environments

    Digital-based analog processing in nanoscale CMOS ICs for IoT applications

    Get PDF
    The Internet-of-Things (IoT) concept has been opening up a variety of applications, such as urban and environmental monitoring, smart health, surveillance, and home automation. Most of these IoT applications require more and more power/area efficient Complemen tary Metal–Oxide–Semiconductor (CMOS) systems and faster prototypes (lower time-to market), demanding special modifications in the current IoT design system bottleneck: the analog/RF interfaces. Specially after the 2000s, it is evident that there have been significant improvements in CMOS digital circuits when compared to analog building blocks. Digital circuits have been taking advantage of CMOS technology scaling in terms of speed, power consump tion, and cost, while the techniques running behind the analog signal processing are still lagging. To decrease this historical gap, there has been an increasing trend in finding alternative IC design strategies to implement typical analog functions exploiting Digital in-Concept Design Methodologies (DCDM). This idea of re-thinking analog functions in digital terms has shown that Analog ICs blocks can also avail of the feature-size shrinking and energy efficiency of new technologies. This thesis deals with the development of DCDM, demonstrating its compatibility for Ultra-Low-Voltage (ULV) and Power (ULP) IoT applications. This work proves this state ment through the proposing of new digital-based analog blocks, such as an Operational Transconductance Amplifiers (OTAs) and an ac-coupled Bio-signal Amplifier (BioAmp). As an initial contribution, for the first time, a silicon demonstration of an embryonic Digital-Based OTA (DB-OTA) published in 2013 is exhibited. The fabricated DB-OTA test chip occupies a compact area of 1,426 µm2 , operating at supply voltages (VDD) down to 300 mV, consuming only 590 pW while driving a capacitive load of 80pF. With a Total Harmonic Distortion (THD) lower than 5% for a 100mV input signal swing, its measured small-signal figure of merit (FOMS) and large-signal figure of merit (FOML) are 2,101 V −1 and 1,070, respectively. To the best of this thesis author’s knowledge, this measured power is the lowest reported to date in OTA literature, and its figures of merit are the best in sub-500mV OTAs reported to date. As the second step, mainly due to the robustness limitation of previous DB-OTA, a novel calibration-free digital-based topology is proposed, named here as Digital OTA (DIG OTA). A 180-nm DIGOTA test chip is also developed exhibiting an area below the 1000 µm2 wall, 2.4nW power under 150pF load, and a minimum VDD of 0.25 V. The proposed DIGOTA is more digital-like compared with DB-OTA since no pseudo-resistor is needed. As the last contribution, the previously proposed DIGOTA is then used as a building block to demonstrate the operation principle of power-efficient ULV and ultra-low area (ULA) fully-differential, digital-based Operational Transconductance Amplifier (OTA), suitable for microscale biosensing applications (BioDIGOTA) such as extreme low area Body Dust. Measured results in 180nm CMOS confirm that the proposed BioDIGOTA can work with a supply voltage down to 400 mV, consuming only 95 nW. The BioDIGOTA layout occupies only 0.022 mm2 of total silicon area, lowering the area by 3.22X times compared to the current state of the art while keeping reasonable system performance, such as 7.6 Noise Efficiency Factor (NEF) with 1.25 µVRMS input-referred noise over a 10 Hz bandwidth, 1.8% of THD, 62 dB of the common-mode rejection ratio (CMRR) and 55 dB of power supply rejection ratio (PSRR). After reviewing the current DCDM trend and all proposed silicon demonstrations, the thesis concludes that, despite the current analog design strategies involved during the analog block development

    Digital Centric Multi-Gigabit SerDes Design and Verification

    Get PDF
    Advances in semiconductor manufacturing still lead to ever decreasing feature sizes and constantly allow higher degrees of integration in application specific integrated circuits (ASICs). Therefore the bandwidth requirements on the external interfaces of such systems on chips (SoC) are steadily growing. Yet, as the number of pins on these ASICs is not increasing in the same pace - known as pin limitation - the bandwidth per pin has to be increased. SerDes (Serializer/Deserializer) technology, which allows to transfer data serially at very high data rates of 25Gbps and more is a key technology to overcome pin limitation and exploit the computing power that can be achieved in todays SoCs. As such SerDes blocks together with the digital logic interfacing them form complex mixed signal systems, verification of performance and functional correctness is very challenging. In this thesis a novel mixed-signal design methodology is proposed, which tightly couples model and implementation in order to ensure consistency throughout the design cycles and hereby accelerate the overall implementation flow. A tool flow that has been developed is presented, which integrates well into state of the art electronic design automation (EDA) environments and enables the usage of this methodology in practice. Further, the design space of todays high-speed serial links is analyzed and an architecture is proposed, which pushes complexity into the digital domain in order to achieve robustness, portability between manufacturing processes and scaling with advanced node technologies. The all digital phase locked loop (PLL) and clock data recovery (CDR), which have been developed are described in detail. The developed design flow was used for the implementation of the SerDes architecture in a 28nm silicon process and proved to be indispensable for future projects

    Subsampling receivers with applications to software defined radio systems

    Get PDF
    Este trabajo de tesis propone la utilización sistemas basados en submuestreo como una alternativa para la implementación de la etapa de down-conversion de los receptores de radio frecuencia (RF) empleados para aplicaciones multi-estándar y SDR (Software Defined Radio). El objetivo principal será el de optimizar el diseño en cuanto a flexibilidad y simplicidad, las cuales son propiedades inherentes en los sistemas basados en submuestreo. Por tanto, como reducir el número de componentes al mínimo es clave cuando un mismo receptor procesa diferentes estándares de comunicación, las arquitecturas basadas en submuestreo han sido seleccionadas, donde la reusabilidad de los componentes empleados es posible, así como la reducción de los costes totales de los receptores de comunicación y de los equipos de certificación que emplean estas arquitecturas. Un motivo adicional por el que los sistemas basados en submuestreo han sido seleccionados es el concerniente a la topología del receptor. Como la idea de la tecnología SDR es implementar todas las funcionalidades del receptor (filtrado, amplificación) en el dominio digital, el convertidores analógico-digital (ADC) deberá estar localizado en la cadena de recepción lo más cerca posible a la antena, siendo el objetivo final el convertir la señal directamente de RF a digital. Sin embargo, con los actuales ADC no es posible implementar esta idea debido al alto ancho de banda que necesitarían sin perder resolución para cubrir las especificaciones de los estándares de comunicaciones inalámbricas. Por tanto, los sistemas basados en submuestreo se presentan como la opción más adecuada para implementar este tipo de sistemas debido a que pueden muestrear la señal de entrada por debajo de la tasa de Nyquist, si se cumplen ciertas restricciones en cuanto a la elección de la frecuencia de muestreo. De este modo, los requerimientos del ADC serán relajados ya que, usando estas arquitecturas, este componente procesará la señal a frecuencias intermedias. Una vez se han introducido los conceptos principales de las técnicas de submuestreo, esta tesis doctoral presenta el diseño de una tarjeta de adquisición de datos basada en submuestreo con la finalidad de ser implementada como un receptor de test y certificación de banda ancha. El sistema propuesto proporciona una alta resolución para un elevado ancho de banda, a partir del uso de un S&H de bajo jitter y de un convertidor analógico digital ADC que trabaja a frecuencias intermedias. El sistema es implementado usando dispositivos comerciales en una placa de circuito impreso diseñada y fabricada, y cuya caracterización experimental muestra una resolución de más 8 bits para un ancho de banda analógico de 20 MHz. Concretamente, la resolución medida será mayor de 9 bits hasta una frecuencia de entrada de 2.9 GHz y mayor de 8 bits para una frecuencia de entrada de hasta 6.5 GHz, lo cual resulta suficiente para cubrir los requerimientos de la mayor parte de los actuales estándares de comunicaciones inalámbricas (GPS, GSM, GPRS, UMTS, Bluetooth, Wi-Fi, WiMAX). Sin embargo, los receptores basados en submuestreo presentan algunos importantes inconvenientes, como son adicionales fuentes de ruido (jitter y plegado de ruido térmico) y una dificultad añadida para implementarlo en escenarios multi-banda y no lineales. Acerca del plegado de ruido en la banda de interés, esta tesis propone el uso de una técnica basada en una arquitectura de reloj múltiple con el objetivo de aumentar la resolución y cubrir un número mayor de estándares para su test y certificación. Empleando una frecuencia de muestreo mayor para el caso del S&H, se conseguirá reducir este efecto, aumentando la resolución en aproximadamente 0.5-1 bit respecto al caso de sólo usar una fuente de reloj. Las expresiones teóricas de esta mejora son desarrolladas y presentadas en esta tesis, siendo posteriormente corroboradas de modo experimental. Por otra parte, esta tesis también propone novedosas técnicas para la aplicación de estos sistemas de submuestreo en entornos multi-banda y no lineales, los cuales presentan desafíos adicionales por el hecho de existir la posibilidad de solapamiento entre la señal de interés y los otros canales de comunicación, así como de solapamiento con sus armónicos. De este modo, esta tesis extiende el uso de los sistemas basados en submuestreo para este tipo de entornos, proponiendo técnicas para la elección de la frecuencia óptima de muestreo que evitan el solapamiento entre señales, a la vez que consiguen incrementar la resolución del receptor. Finalmente, se presentará la optimización en cuanto a características de ruido de un receptor concreto para aplicaciones de banda dual en entornos no lineales. Dicho receptor estará basado en las técnicas de reloj múltiple presentadas anteriormente y en una estructura de multi-filtro entre el S&H y el ADC. El sistema diseñado podrá emplearse para diversas aplicaciones a ambos lados de la cadena de comunicación, tal como en receptores de detección de espectro para radio cognitiva, o implementando el bucle de realimentación de un transmisor para la linealización de amplificadores de potencia. Por tanto, la presente tesis doctoral cuenta con tres contribuciones diferenciadas. La primera de ellas es la dedicada al diseño de un prototipo de recepción multi-estándar basado en submuestreo para aplicaciones de test y certificación. La segunda aportación es la dedicada a la optimización de las especificaciones de ruido a partir de las técnicas presentadas basadas en reloj múltiple. Por último, la tercera contribución principal es la relacionada con la extensión de este tipo de técnicas a sistemas multi-banda en entornos no lineales. Todas estas contribuciones han sido estudiadas teóricamente y experimentalmente validadas

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts

    Topical Workshop on Electronics for Particle Physics

    Get PDF
    corecore