10 research outputs found

    Hybrid Symbolic-Numeric Computing in Linear and Polynomial Algebra

    Get PDF
    In this thesis, we introduce hybrid symbolic-numeric methods for solving problems in linear and polynomial algebra. We mainly address the approximate GCD problem for polynomials, and problems related to parametric and polynomial matrices. For symbolic methods, our main concern is their complexity and for the numerical methods we are more concerned about their stability. The thesis consists of 5 articles which are presented in the following order: Chapter 1, deals with the fundamental notions of conditioning and backward error. Although our results are not novel, this chapter is a novel explication of conditioning and backward error that underpins the rest of the thesis. In Chapter 2, we adapt Victor Y. Pan\u27s root-based algorithm for finding approximate GCD to the case where the polynomials are expressed in Bernstein bases. We use the numerically stable companion pencil of G. F. JĂłnsson to compute the roots, and the Hopcroft-Karp bipartite matching method to find the degree of the approximate GCD. We offer some refinements to improve the process. In Chapter 3, we give an algorithm with similar idea to Chapter 2, which finds an approximate GCD for a pair of approximate polynomials given in a Lagrange basis. More precisely, we suppose that these polynomials are given by their approximate values at distinct known points. We first find each of their roots by using a Lagrange basis companion matrix for each polynomial. We introduce new clustering algorithms and use them to cluster the roots of each polynomial to identify multiple roots, and then marry the two polynomials using a Maximum Weight Matching (MWM) algorithm, to find their GCD. In Chapter 4, we define ``generalized standard triples\u27\u27 X, zC1 - C0, Y of regular matrix polynomials P(z) in order to use the representation X(zC1 - C0)-1 Y=P-1(z). This representation can be used in constructing algebraic linearizations; for example, for H(z) = z A(z)B(z) + C from linearizations for A(z) and B(z). This can be done even if A(z) and B(z) are expressed in differing polynomial bases. Our main theorem is that X can be expressed using the coefficients of 1 in terms of the relevant polynomial basis. For convenience we tabulate generalized standard triples for orthogonal polynomial bases, the monomial basis, and Newton interpolational bases; for the Bernstein basis; for Lagrange interpolational bases; and for Hermite interpolational bases. We account for the possibility of common similarity transformations. We give explicit proofs for the less familiar bases. Chapter 5 is devoted to parametric linear systems (PLS) and related problems, from a symbolic computational point of view. PLS are linear systems of equations in which some symbolic parameters, that is, symbols that are not considered to be candidates for elimination or solution in the course of analyzing the problem, appear in the coefficients of the system. We assume that the symbolic parameters appear polynomially in the coefficients and that the only variables to be solved for are those of the linear system. It is well-known that it is possible to specify a covering set of regimes, each of which is a semi-algebraic condition on the parameters together with a solution description valid under that condition.We provide a method of solution that requires time polynomial in the matrix dimension and the degrees of the polynomials when there are up to three parameters. Our approach exploits the Hermite and Smith normal forms that may be computed when the system coefficient domain is mapped to the univariate polynomial domain over suitably constructed fields. Our approach effectively identifies intrinsic singularities and ramification points where the algebraic and geometric structure of the matrix changes. Specially parametric eigenvalue problems can be addressed as well. Although we do not directly address the problem of computing the Jordan form, our approach allows the construction of the algebraic and geometric eigenvalue multiplicities revealed by the Frobenius form, which is a key step in the construction of the Jordan form of a matrix

    Geometry of the sets of Nash equilibria in mixed extensions of finite games

    Full text link
    The theory of strategic games in normal form is a part of game theory. The most important solution concept for them is the notion of a Nash equilibrium. Nash defined it and proved that the mixed extension of any finite game has Nash equilibria. Here the space in which the Nash equilibria live is a product of simplices, namely a product of spaces of probability distributions, each over a finite set of pure strategies. The existence leads to questions on the shape of the set of all Nash equilibria for a given game. In this thesis we concentrate on generic games. There it is well-known that the number of Nash equilibria is finite and odd. It is interesting to think about the maximal number of Nash equilibria in generic games with fixed number of players and fixed finite sets of pure strategies. In general, the precise number is unknown. But in the case of 2 players, there are good upper and lower bounds, which are not so far apart. In the case of m ≥ 3 players, up to now only an upper bound was known. In the case of m players each of whom has exactly two pure strategies, we present a lower bound, which is surprisingly close to the known upper bound. It is more than half of the upper bound. This result was the outcome of a mixture of conceptual and calculational steps. We present more calculational results for such games. We also study with computer a certain 2-person game where each player has six pure strategies. One chapter recalls a good part of the history of the problem. The penultimate chapter works out an old foundational result on the union of the sets of mixed Nash equilibria for all games with fixed player set and fixed finite sets of pure strategies. The second chapter presents a stronger result on generic games than can be found in the literature. The product of simplices embeds naturally into a product of real projective spaces. The equalities and inequalities for Nash equilibria make sense in this bigger space. In the case of generic games all involved hypersurfaces are smooth and maximally transversal in this bigger space

    Inequalities between mixed volumes of convex bodies: volume bounds for the Minkowski sum

    Get PDF
    In the course of classifying generic sparse polynomial systems which are solvable in radicals, Esterov recently showed that the volume of the Minkowski sum P1+⋯+PdP_1+\dots+P_d of dd-dimensional lattice polytopes is bounded from above by a function of order O(m2d)O(m^{2^d}), where mm is the mixed volume of the tuple (P1,…,Pd)(P_1,\dots,P_d). This is a consequence of the well-known Aleksandrov-Fenchel inequality. Esterov also posed the problem of determining a sharper bound. We show how additional relations between mixed volumes can be employed to improve the bound to O(md)O(m^d), which is asymptotically sharp. We furthermore prove a sharp exact upper bound in dimensions 2 and 3. Our results generalize to tuples of arbitrary convex bodies with volume at least one.Comment: 21 pages, 5 figures; error in the statement of Theorem 3.3 correcte

    Homotopy algorithms for solving structured determinantal systems

    Get PDF
    Multivariate polynomial systems arising in numerous applications have special structures. In particular, determinantal structures and invariant systems appear in a wide range of applications such as in polynomial optimization and related questions in real algebraic geometry. The goal of this thesis is to provide efficient algorithms to solve such structured systems. In order to solve the first kind of systems, we design efficient algorithms by using the symbolic homotopy continuation techniques. While the homotopy methods, in both numeric and symbolic, are well-understood and widely used in polynomial system solving for square systems, the use of these methods to solve over-detemined systems is not so clear. Meanwhile, determinantal systems are over-determined with more equations than unknowns. We provide probabilistic homotopy algorithms which take advantage of the determinantal structure to compute isolated points in the zero-sets of determinantal systems. The runtimes of our algorithms are polynomial in the sum of the multiplicities of isolated points and the degree of the homotopy curve. We also give the bounds on the number of isolated points that we have to compute in three contexts: all entries of the input are in classical polynomial rings, all these polynomials are sparse, and they are weighted polynomials. In the second half of the thesis, we deal with the problem of finding critical points of a symmetric polynomial map on an invariant algebraic set. We exploit the invariance properties of the input to split the solution space according to the orbits of the symmetric group. This allows us to design an algorithm which gives a triangular description of the solution space and which runs in time polynomial in the number of points that we have to compute. Our results are illustrated by applications in studying real algebraic sets defined by invariant polynomial systems by the means of the critical point method

    Analysis of Biochemical Reaction Networks using Tropical and Polyhedral Geometry Methods

    Get PDF
    The field of systems biology makes an attempt to realise various biological functions and processes as the emergent properties of the underlying biochemical network model. The area of computational systems biology deals with the computational methods to compute such properties. In this context, the thesis primarily discusses novel computational methods to compute the emergent properties as well as to recognize the essence in complex network models. The computational methods described in the thesis are based on the computer algebra techniques, namely tropical geometry and extreme currents. Tropical geometry is based on ideas of dominance of monomials appearing in a system of differential equations, which are often used to describe the dynamics of the network model. In such differential equation based models, tropical geometry deals with identification of the metastable regimes, defined as low dimensional regions of the phase space close to which the dynamics is much slower compared to the rest of the phase space. The application of such properties in model reduction and symbolic dynamics are demonstrated in the network models obtained from a public database namely Biomodels. Extreme currents are limiting edges of the convex polyhedrons describing the admissible fluxes in biochemical networks, which are helpful to decompose a biochemical network into a set of irreducible pathways. The pathways are shown to be associated with given clinical outcomes thereby providing some mechanistic insights associated with the clinical phenotypes. Similar to the tropical geometry, the method based on extreme currents is evaluated on the network models derived from a public database namely KEGG. Therefore, this thesis makes an attempt to explain the emergent properties of the network model by determining extreme currents or metastable regimes. Additionally, their applicability in the real world network models are discussed

    Ahlfors circle maps and total reality: from Riemann to Rohlin

    Full text link
    This is a prejudiced survey on the Ahlfors (extremal) function and the weaker {\it circle maps} (Garabedian-Schiffer's translation of "Kreisabbildung"), i.e. those (branched) maps effecting the conformal representation upon the disc of a {\it compact bordered Riemann surface}. The theory in question has some well-known intersection with real algebraic geometry, especially Klein's ortho-symmetric curves via the paradigm of {\it total reality}. This leads to a gallery of pictures quite pleasant to visit of which we have attempted to trace the simplest representatives. This drifted us toward some electrodynamic motions along real circuits of dividing curves perhaps reminiscent of Kepler's planetary motions along ellipses. The ultimate origin of circle maps is of course to be traced back to Riemann's Thesis 1851 as well as his 1857 Nachlass. Apart from an abrupt claim by Teichm\"uller 1941 that everything is to be found in Klein (what we failed to assess on printed evidence), the pivotal contribution belongs to Ahlfors 1950 supplying an existence-proof of circle maps, as well as an analysis of an allied function-theoretic extremal problem. Works by Yamada 1978--2001, Gouma 1998 and Coppens 2011 suggest sharper degree controls than available in Ahlfors' era. Accordingly, our partisan belief is that much remains to be clarified regarding the foundation and optimal control of Ahlfors circle maps. The game of sharp estimation may look narrow-minded "Absch\"atzungsmathematik" alike, yet the philosophical outcome is as usual to contemplate how conformal and algebraic geometry are fighting together for the soul of Riemann surfaces. A second part explores the connection with Hilbert's 16th as envisioned by Rohlin 1978.Comment: 675 pages, 199 figures; extended version of the former text (v.1) by including now Rohlin's theory (v.2

    A Sequence of Symmetric BĂ©zout Matrix Polynomials

    No full text
    There are problems concerning the set of root of a sequence of polynomials. A simple question is to ask if the set of roots lies entirely in real numbers. Many approaches to answering this question are known. The main object of this dissertation is to develop new tools for tackling the above problem. In order to be able to apply the ideas we define a specific numerical sequence, and then we consider the sequence of their minimal polynomials over the rational numbers. The first step is to find a recursive way of defining the sequence of polynomials by using the so-called BĂ©zout matrices, which are a specific family of matrix polynomials. Having the construction of minimal polynomials as the determinant of some BĂ©zout matrix, we interpret the roots of each polynomial as eigenvalues of the corresponding BĂ©zout matrix. Then by using a symmetric linearization of such matrix polynomial we can talk about the real roots
    corecore