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Mathematika 66 (2020) 1003–1027 doi:10.1112/mtk.12055

INEQUALITIES BETWEEN MIXED VOLUMES OF CONVEX BODIES:
VOLUME BOUNDS FOR THE MINKOWSKI SUM

GENNADIY AVERKOV, CHRISTOPHER BORGER AND IVAN SOPRUNOV

Abstract. In the course of classifying generic sparse polynomial systems which are solvable
in radicals, Esterov recently showed that the volume of the Minkowski sum P1 + · · · + Pd of
d-dimensional lattice polytopes is bounded from above by a function of order O(m2d

), where m is
the mixed volume of the tuple (P1, . . . , Pd ). This is a consequence of the well-known Aleksandrov–
Fenchel inequality. Esterov also posed the problem of determining a sharper bound. We show how
additional relations between mixed volumes can be employed to improve the bound to O(md ), which
is asymptotically sharp. We furthermore prove a sharp exact upper bound in dimensions 2 and 3.
Our results generalize to tuples of arbitrary convex bodies with volume at least one. This paper relies
extensively on colour figures. Some references to colour may not be meaningful in the printed version,
and we refer the reader to the online version which includes the colour figures.

§1. Introduction.

1.1. Combinatorial structure of systems of algebraic equations with m solutions. Consider
Laurent polynomials

f1, . . . , fd ∈ C[z±1
1 . . . , z±1

d ]

with fixed Newton polytopes P1, . . . , Pd and generic coefficients. By the famous Bernstein–
Khovanskii–Kouchnirenko (BKK) theorem [2] (see also [6, § 7.5]), the number of solutions to
the corresponding generic system of equations

f1 = · · · = fd = 0 (1)

in the complex torus (C \ {0})d depends only on the tuple of Newton polytopes P =
(P1, . . . , Pd ) and is equal to V(P1, . . . , Pd ), the so-called normalized mixed volume of
P1, . . . , Pd . This means that the number of solutions m of a generic system (1) can be
computed purely combinatorially. It is an interesting task to revert this process and be able
to infer structural and/or quantitative properties of the tuples P associated to systems with a
given number m ∈ Z>0 of solutions. Recently, a number of results in this direction have been
obtained. In [9] systems with exactly one solution have been completely classified by Esterov
and Gusev. Esterov and Gusev [10] also classified systems with at most four solutions in the
case when all Newton polytopes P1, . . . , Pd coincide up to translations. The authors of this
manuscript classified, using an algorithmic approach, all systems with up to four solutions
for d = 3 and all systems with up to 10 solutions for d = 2; see [1]. It is natural to expect
a unifying structure for all tuples P = (P1, . . . , Pd ) with small values of the mixed volume
m. For example, such structural results were obtained in [9] for m = 1 and conjectured by
Esterov and Gusev for m = 2 (private communication). However, as m gets larger, we do not
expect structural results for all tuples to hold, so it makes more sense to concentrate on the
quantitative aspects, such as volume bounds for the polytopes Pi and their Minkowski sums.
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1004 GENNADIY AVERKOV, CHRISTOPHER BORGER AND IVAN SOPRUNOV

In this manuscript we focus on the case when all the Newton polytopes P1, . . . , Pd are
full-dimensional. Esterov [8] has shown that in this case the volume of the Minkowski sum

�(P) := P1 + · · · + Pd

has the asymptotic order at most O(m2d
), as m → ∞. This bound allows to control the

sizes of the Pi in the tuple P. In particular, it implies that the number of possible tuples
P of d-dimensional lattice polytopes with a given value of the mixed volume m is finite,
up to the natural equivalence consisting of permutation of the polytopes within the tuple,
independent lattice translations of the polytopes, and a common unimodular transformation
of all the polytopes of the tuple. In the course of showing this bound, Esterov [8] also raised
the question of determining a sharper bound for the volume of �(P).

While our motivation comes from the theory of Newton polytopes, we do not exploit any
combinatorial properties of lattice polytopes in this paper. In fact, our approach works in a
more general context of convex bodies. However, we prefer to rescale the usual d-dimensional
Euclidean volume by a factor of d!, as it is common in the theory of Newton polytopes. We
denote this normalized volume by Vol. We remark that any other rescaling of the Euclidean
volume would work just as well.

1.2. Asymptotic behavior of Vol(�(P)). We sketch the approach of Esterov.
Consider a tuple K = (K1, . . . , Kd ) of convex bodies in Rd satisfying Vol(K1) �

1, . . . , Vol(Kd ) � 1. One can represent Vol(�(K )) as the sum

Vol(�(K )) =
∑

i1,...,id∈{1,...,d}
V(Ki1, . . . , Kid ) (2)

of all possible mixed volumes that can be built from convex bodies K1, . . . , Kd and then
relate the mixed volumes V(Ki1, . . . , Kid ) via the Aleksandrov–Fenchel inequality [16,
Theorem 7.3.1]

V(A, B,C)2 � V(A, A,C) V(B, B,C), where C = (C3, . . . ,Cd ), (AF)

which holds for any convex bodies A, B,C3, . . . ,Cd in Rd . Considering the system

V2
i, j,k3,...,kd

� Vi,i,k3,...,kd V j, j,k3,...,kd , Vk1,...,kd � 1, ∀ i, j, k1, . . . , kd ∈ {1, . . . , d} (3)

formally, as a system of inequalities in variables Vi1,...,id , and using the condition V1,2,...,d = m,
Esterov deduced a bound on each Vi1,...,id in terms of m and d by combining the inequalities
of the system (3). This produced the asymptotic estimate

Vol(�(K )) � O(m2d
), as m → ∞. (4)

We call this approach the black-box application of (AF).
The bound (4) shows that there exists an estimate of the form Vol(�(K )) = O(mε(d )), with

ε(d ) � 2d . It is easy to see that ε(d ) is at least d , since for K = (mKd , Kd , . . . , Kd ) with
Vol(Kd ) = 1, one has Vol(�(K )) = (m + d − 1)d . We have been able to verify that, by the
black-box application of (AF), the best exponent ε(d ) that one can get satisfies 3(d−2)/3 �
ε(d ) � 3d/3, which is surprisingly far from d , for large d . A priori, there might be different
reasons for this situation: ε(d ) might be much larger than d or (AF), applied in the black-box
style, is too weak in the context of the problem. In the beginning of this project it was hard for
us to believe that the latter could be the case, because (AF) are very general inequalities that
directly imply and subsume many other inequalities related to volumes of convex bodies, with
the isoperimetric and Brunn–Minkowski inequalities among the most prominent examples.
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INEQUALITIES BETWEEN MIXED VOLUMES OF CONVEX BODIES: VOLUME BOUNDS 1005

Nevertheless, we have been able to prove the following result (see Theorem 4.9 for an explicit
bound).

THEOREM 1.1. Among all convex bodies K1, . . . , Kd in Rd satisfying

Vol(K1) � 1, . . . , Vol(Kd ) � 1, and V(K1, . . . , Kd ) = m,

the maximum of Vol(K1 + · · · + Kd ) is of order O(md ), as m → ∞.

Interpreting Theorem 1.1 in terms of the BKK theorem allows to derive the following
corollary for generic system of polynomial equations.

COROLLARY 1.2. Let f1, . . . , fd ∈ C[z±1
1 . . . , z±1

d ] be generic Laurent polynomials with
fixed d-dimensional Newton polytopes and let m be the number of solutions of the system
f1 = · · · = fd = 0 in the complex torus (C \ {0})d . Then the product f1 · · · fd is a Laurent
polynomial containing at most O(md ) monomials, as m → ∞.

The assertion of Corollary 1.2 agrees nicely with the well-known Bézout theorem [7, § 8.7].
Indeed, if f1, . . . , fd are generic polynomials of total degrees k1, . . . , kd then m = k1 · · · kd

by Bézout’s theorem. Also the number of monomials in each fi is of order kd
i . Therefore, the

number of monomials in f1 · · · fd is of order md .
Our proof of Theorem 1.1 uses the inequality

V(A, A, D) V(B,C, D) � 2 V(A, B, D) V(A,C, D), where D = (D3, . . . , Dd ), (�)

valid for any convex bodies A, B,C, D3, . . . , Dd in Rd . This inequality explicitly appears in
[4, Lemma 5.1] and is derived using the same argument as in the proof of [16, Lemma 7.4.1].
Interestingly, (�) is derived from (AF) algebraically, but not in a black-box style. We sketch
the proof of (�) in § 4. While the estimate Vol(�(K )) = O(md ) is obtained via a black-box
application of (�), the derivation itself is non-trivial. For the asymptotic bound to be obtained,
each single Vi1,...,id must be estimated in terms of m = V1,...,d , possibly tightly. This estimation
task can be linked to a linear optimization problem, since by taking the logarithms (e.g., to
the base 2) of (�) we obtain the linear inequality

log V(A, A, D) + log V(B,C, D) � 1 + log V(A, B, D) + log V(A,C, D) (log�)

in the logarithms of the mixed volumes. The duality theory of linear programming tells us
that the best upper bound on the terms vi1,...,id := log Vi1,...,id ∈ R�0, which can be derived
from (log�) using the black-box approach can be verified by taking a non-negative linear
combination of the inequalities

vi,i,k3,...,kd + vs,t,k3,...,kd � 1 + vi,s,k3,...,kd + vi,t,k3,...,kd ∀ i, s, t, k3, . . . , kd ∈ {1, . . . , d}, (5)

that arise by plugging K1, . . . , Kd into (log�) in all possible ways, and taking into account
that vi1,...,id ∈ R�0 and v1,...,d = log m. This task might appear straightforward because one
“only” needs to combine (5) in such a way that the best possible bound on vi1,...,id can be
confirmed. In fixed small dimensions we actually employed this approach using CPLEX [15]
as a solver for the resulting linear program. However, these computations also revealed that
the linear combinations of inequalities of the form (log�) that confirm the best possible
bound are very complicated and use a vast amount of inequalities. Furthermore, compared to
(AF), the more complicated structure of (log�) having the sum of two mixed volumes as an
upper bound destroys any attempt of simple successive application of (log�) similar to the
application of (AF) in Esterov’s approach. Our way of handling this complexity is to derive
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1006 GENNADIY AVERKOV, CHRISTOPHER BORGER AND IVAN SOPRUNOV

simpler inequalities with a single term on both sides (Theorem 4.9). We then show how these
inequalities can be successively applied to obtain the bound of order O(md ).

1.3. Exact bounds in small dimensions. Esterov’s approach gives an exact upper bound on
Vol(�(K )) in dimension 2. It is not hard to check by directly applying (AF) with d = 2 that
the following holds.

PROPOSITION 1.3. Let m ∈ R�1. Consider two-dimensional convex bodies K1, K2 in R2

satisfying

Vol(K1) � 1, Vol(K2) � 1, and V(K1, K2) = m.

Among all such bodies,
(a) the maximum of Vol(K1) is m2 and
(b) the maximum of Vol(K1 + K2) is (m + 1)2.

Both maxima are attained when K1 = mK2 and Vol(K2) = 1.

The inequality (AF) is still strong enough to obtain the exact bound on Vol(�(K )) in
dimension 3. We have the following result.

THEOREM 1.4. Let m ∈ R�1. Consider three-dimensional convex bodies K1, K2, K3 ⊂ R3

satisfying

Vol(K1) � 1, Vol(K2) � 1, Vol(K3) � 1, and V(K1, K2, K3) = m.

Among all such bodies,
(a) the maximum of Vol(K1) is m3,
(b) the maximum of Vol(K1 + K2) is (m + 1)3, and
(c) the maximum of Vol(K1 + K2 + K3) is (m + 2)3.

All three maxima are attained when K1 = mK2 = mK3 and Vol(K3) = 1.

Theorem 1.4 is obtained using a computer-assisted approach, which involved the
linearization of (AF), produced in the same way as the linearization (log�) of (�) above.

Based on the above evidence and the asymptotic behavior of Vol(�(P)) presented in
Theorem 1.1 we propose the following conjecture.

CONJECTURE 1.5. Among all convex bodies K1, . . . , Kd in Rd satisfying

Vol(K1) � 1, . . . , Vol(Kd ) � 1, and V(K1, . . . , Kd ) = m,

for any 1 � � � d , the maximum of Vol(K1 + · · · + K�) equals (m + � − 1)d and is attained
when K1 = mK2 = · · · = mKd with Vol(Kd ) = 1.

We know that the conjecture is true for � = 1 (Remark 3.2) and for d � 3 (Proposition 1.3
and Theorem 1.4). All other cases are open.

1.4. Organization of the paper. In § 2 we introduce basic preliminary definitions and results
and fix notation. Section 3 is devoted to employing the Aleksandrov–Fenchel inequalities to
prove an upper bound for the volume of the Minkowski sum of a tuple of fixed mixed volume
in general dimension. Furthermore, we show that the relations providing this bound are best
possible if we consider only the Aleksandrov–Fenchel inequalities. In § 4 we use additional
inequalities between mixed volumes in order to prove a stronger bound on the volume of the
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INEQUALITIES BETWEEN MIXED VOLUMES OF CONVEX BODIES: VOLUME BOUNDS 1007

Minkowski sum that is asymptotically sharp. In § 5 we shift our attention from asymptotic
bounds in general dimension to proving the exact bound in dimension 3. Finally, § 6 contains
a result that allows to simplify Conjecture 1.5 in the case � < d and discusses open questions
about the relations between mixed volumes for compact convex sets which were motivated
by the work on this project.

§2. Preliminaries. For d ∈ Z>0, let [d] := {1, . . . , d}. We use e1, . . . , ed to denote the
standard basis vectors in Rd . Consider a convex body K ⊂ Rd , that is, a compact convex set
with positive d-dimensional volume. Let Vol(K ) denote the normalized volume of K , that is,
the usual Euclidean volume rescaled by a factor of d!. In particular, the normalized volume
of the standard simplex conv{0, e1, . . . , ed} equals 1. Recall that the Minkowski sum of two
sets A, B in Rd is the vector sum

A + B = {a + b : a ∈ A, b ∈ B}.
Let K1, . . . , Kd be compact convex sets in Rd . The (normalized) mixed volume V(K1, . . . , Kd )

is the unique function in K1, . . . , Kd which is symmetric, multilinear with respect to
Minkowski addition, and which coincides with the normalized volume on the diagonal, that
is,

V(K, . . . , K ) = Vol(K )

for any compact convex set K ⊂ Rd . Here is an explicit expression for the mixed volume [16,
§ 5.1]:

V(K1, . . . , Kd ) = 1

d!

d∑
n=1

(−1)d+n
∑

i1<···<in

Vol(Ki1 + · · · + Kin ).

Let us denote by Kd the set of all convex bodies in Rd and let Kd,1 ⊂ Kd denote the subset
of those convex bodies, whose normalized volume is at least 1.

Fix n > 0 and a family K of compact convex sets in Rd , and consider an ordered n-tuple
K = (K1, . . . , Kn) of elements in K. It defines a collection of nd mixed volumes(

V(Ki1, . . . , Kid ) : i1, . . . , id ∈ {1, . . . , n}).
Since the mixed volume V(Ki1, . . . , Kid ) is invariant under permutation of the indices, we
introduce an alternative notation

VK (p1, . . . , pn) = V(K1, . . . , K1︸ ︷︷ ︸
p1

, . . . , Kn, . . . , Kn︸ ︷︷ ︸
pn

).

In this notation, the mixed-volume configuration of an n-tuple K = (K1, . . . , Kn) is the vector

(VK (p))p∈�n,d
∈ R

�n,d

�0 (6)

indexed by the set

�n,d := {
(x1, . . . , xn) ∈ Zn

�0 : x1 + · · · + xn = d
}
. (7)

For example, in the case d = 3, n = 2, the mixed-volume configuration of a pair K = (K1, K2)

of three-dimensional convex bodies consists of the following four mixed volumes:

VK (3, 0) = V(K1, K1, K1) = Vol(K1),

VK (2, 1) = V(K1, K1, K2),
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1008 GENNADIY AVERKOV, CHRISTOPHER BORGER AND IVAN SOPRUNOV

VK (1, 2) = V(K1, K2, K2),

VK (0, 3) = V(K2, K2, K2) = Vol(K2).

Furthermore, given a family of compact convex sets K, we define the mixed -volume
configuration space

V(K, �n,d ) :=
{
(VK (p))p∈�n,d

: K ∈ Kn
}
, (8)

which represents all possible sets of values of the different mixed volumes indexed by p ∈ �n,d

built for convex sets from K. When all sets from K are full-dimensional, we also introduce
the logarithmic mixed-volume configuration space

v(K, �n,d ) :=
{
(vK (p))p∈�n,d

: K ∈ Kn
}
, where vK (p) := log VK (p). (9)

Here and throughout the paper log denotes the logarithm to base 2.
Recall that, given an n-tuple K = (K1, . . . , Kn) ∈ (Kd )n, we denote by �(K ) := K1 +

· · · + Kn ∈ Kd the Minkowski sum over its elements and by VK ∈ R�n,d the mixed-volume
configuration corresponding to K ; see (6).

In what follows, we have two points of view for the elements of R�n,d . On one hand, R�n,d is
a vector space over R and we can treat its elements merely as vectors of RN with N = |�n,d |.
On the other hand, since �n,d is a subset of Rd , we can talk about elements of R�n,d as functions
on �n,d which may or may not possess some discrete concavity properties. Because of this,
we will call the elements of R�n,d functions or vectors depending on the context.

The following proposition, which immediately follows from the multilinearity of the mixed
volume, relates the volume of the Minkowski sum �(K ) to the mixed-volume configuration
of K .

PROPOSITION 2.1. Let K ∈ (Kd )n. Then we have the following formula for the volume of
the Minkowski sum of the elements in K:

Vol(�(K )) =
∑

p∈�n,d

(
d

p

)
VK (p), (10)

where
(d

p

) = d!
p1!···pn! denotes the multinomial coefficient for p = (p1, . . . , pn).

Qualitatively, Proposition 2.1 shows that Vol(�(K )) is a linear function of VK ∈ R�n,d .
Since the convex bodies in the tuple K have positive volume, it implies that VK ∈ R

�n,d

>0 (see,
e.g., Lemma 3.1). Hence, we can use the logarithmic mixed-volume configuration vK ∈ R�n,d

and reformulate (10) as

Vol(�(K )) =
∑

p∈�n,d

(
d

p

)
2vK (p).

This shows that Vol(�(K )) is a convex function of vK . When the convex bodies in the tuple
K have volume at least 1, Lemma 3.1 implies that VK ∈ R

�n,d

�1 and, consequently, vK ∈ R
�n,d

�0 .
Below we restate the Aleksandrov–Fenchel inequalities (AF) in the VK (p)-notation

introduced in (6).

THEOREM 2.2 (Aleksandrov–Fenchel Inequalities). Let i, j ∈ [d] with i �= j and p =
(p1, . . . , pd ) ∈ �d,d a point satisfying pi, p j � 1. Then, for every d-tuple K of d-dimensional
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INEQUALITIES BETWEEN MIXED VOLUMES OF CONVEX BODIES: VOLUME BOUNDS 1009

Figure 1 (colour online): Illustration of (log AF) for d = 3. Elements of R�3,3 are real-valued functions on
the ten lattice points of the triangle with the vertices 3e1, 3e2, 3e3. The restriction of vK ∈ R�3,3 to any of the
red and any of the cyan segments generates a concave sequence.

convex bodies in Rd , one has

VK (p)2 � VK (p + ei − e j ) VK (p − ei + e j ). (11)

Equivalently, in the log-notation, one has

2 vK (p) � vK (p + ei − e j ) + vK (p − ei + e j ). (log AF)

Recall that a sequence r0, r1 . . . , rn of non-negative real numbers is log-concave if r2
i �

ri−1ri+1 holds for all 0 < i < n. Furthermore, a sequence r0, . . . , rn of arbitrary real numbers
is called concave if 2ri � ri−1 + ri+1 for all 0 < i < n. In this terminology, (11) is the discrete
log-concavity property of the function VK ∈ R�d,d along the direction ei − e j for every i, j ∈
[d] and i �= j. Equivalently, (log AF) describes the concavity of vK ∈ R�d,d in the direction
ei − e j . See also Fig. 1 for an illustration in the case d = 3.

Concave and log-concave sequences are well studied in convex analysis and combinatorics.
In § 4 we will work with relations of the more general type

1

2
ri−1 + 1

2
ri+1 � ri + C (12)

that depend on a constant C � 0. We informally refer to inequalities of the form (12) as
weak concavity relations. In the following lemma we include basic properties of sequences
satisfying such weak concavity relations, which mimic basic properties of concave sequences.

LEMMA 2.3. Let r0, r1 . . . , rn be a sequence of non-negative real numbers satisfying (12)
for all 0 < i < n for some constant C � 0. Then

(i)
1

2
ri−1 + 1

2
r j+1 � 1

2
ri + 1

2
r j + ( j − i + 1)C for all 0 < i � j < n;
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1010 GENNADIY AVERKOV, CHRISTOPHER BORGER AND IVAN SOPRUNOV

(ii)
n − 1

n
r0 + 1

n
rn � r1 + (n − 1)C;

(iii)
n − k

n
r0 + k

n
rn � rk + k(n − k)C for all 1 � k � n.

Proof.
(i) This follows by adding (and simplifying) the inequalities 1

2 rk−1 + 1
2 rk+1 � rk + C for

i � k � j.
(ii) For every 0 < i < n we have

n − i

2
ri−1 + n − i

2
ri+1 � (n − i)ri + (n − i)C.

Adding these inequalities and simplifying we obtain the required inequality.
(iii) We use induction on k. For k = 1 this is the statement of part (ii). Assume

n − k

n
r0 + k

n
rn � rk + k(n − k)C.

Applying this to the sequence r1, . . . , rn we get

n − k − 1

n − 1
r1 + k

n − 1
rn � rk+1 + k(n − 1 − k)C. (13)

Applying part (ii) to the sequence rk, . . . , rn we get

n − k − 1

n − k
rk + 1

n − k
rn � rk+1 + (n − k − 1)C. (14)

From part (i) we have

r0 + rk+1 � r1 + rk + 2kC. (15)

Finally, multiplying (13) by n − 1, (14) by n − k, and (15) by n − k − 1 and adding the
results we obtain

(n − k − 1)r0 + (k + 1)rn � nrk+1 + n(k + 1)(n − k − 1)C,

as required. �

Remark 2.4. It is convenient to restate (iii) in Lemma 2.3 in a more symmetric form:

k

k + l
rp−l + l

k + l
rp+k � rp + klC, (16)

for any 0 � l � p and 0 � k � n − p.

§3. The asymptotics derived from the Aleksandrov–Fenchel inequalities. The goal of this
section is to investigate the relations among mixed volumes that follow from the Aleksandrov–
Fenchel inequalities in the black-box fashion and to study the sharpness of such relations.

3.1. Relations and bounds coming from Aleksandrov–Fenchel inequalities. The following
lemma shows how Aleksandrov–Fenchel inequalities yield certain higher-order log-concavity
relations on the function VK ∈ R�d,d .

LEMMA 3.1 (Concavity Relations from Aleksandrov–Fenchel). For n, k ∈ [d], consider a
“copy” of �n,k in �d,d given by

S = {
c1ei1 + · · · + cnein + t : (c1, . . . , cn) ∈ �n,k

}
,
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INEQUALITIES BETWEEN MIXED VOLUMES OF CONVEX BODIES: VOLUME BOUNDS 1011

where 1 � i1 < · · · < in � d and t ∈ Zd
�0 satisfies t1 + · · · + td = d − k. Denote the vertices

of conv(S) by b j = kei j + t ∈ �d,d for j ∈ [n]. Then, for every K ∈ (Kd )d and every p ∈ S,
the mixed-volume configuration VK satisfies the log-concavity relation

VK (p)k � VK (b1)
c1 · · · VK (bn)

cn, (17)

where (c1, . . . , cn) ∈ �n,k is the unique vector satisfying kp = c1b1 + · · · + cnbn.

Proof. For the sake of readability we pass to proving an equivalent logarithmic version of
(17), that is, we show the inequality

vK (p) � c1

k
vK (b1) + · · · + cn

k
vK (bn).

We will prove the statement by induction on the number n of vertices of S. For n = 2 the
statement follows directly from Remark 2.4 together with Theorem 2.2. Let n now be an
arbitrary positive integer and assume without loss of generality that the vertices of S are of
the form bi = kei + t for all i ∈ [n]. We may assume that p is an interior point of conv(S),
as otherwise we can pass to the face of conv(S) containing p and obtain the statement by
induction. It is straightforward to verify that the line p + R(e1 − e2) intersects the two facets
F1 = conv(b2, . . . , bn) and F2 = conv(b1, b3, . . . , bn) of conv(S) in lattice points a1, a2 in
the relative interior of F1 and F2, respectively. Then vK (p) = vK (a1 + τ (e1 − e2)) for some
τ ∈ Z�1 and, by Theorem 2.2, the logarithmic mixed volumes

vK (a1), vK (a1 + (e1 − e2)), . . . , vK (a1 + τ (e1 − e2)), . . . , vK (a2)

form a concave sequence. By Remark 2.4, this implies

vK (p) � σ1 vK (a1) + σ2 vK (a2), (18)

for unique rational positive numbers σ1, σ2 ∈ Q>0 with σ1 + σ2 = 1 and p = σ1a1 + σ2a2.
As a1 and a2 are lattice points in the relative interior of the facets F1 and F2, respectively, one
has

a1 = μ1
2b2 + μ1

3b3 + · · · + μ1
nbn, a2 = μ2

1b1 + μ2
3b3 + · · · + μ2

nbn,

for some positive rational numbers μ1
2, μ

1
3, . . . , μ

1
n, μ

2
1, μ

2
3, . . . , μ

2
n ∈ Q>0. By the induction

hypothesis this implies

vK (a1) � μ1
2 vK (b2) + μ1

3 vK (b3) + · · · + μ1
n vK (bn),

vK (a2) � μ2
1 vK (b1) + μ2

3 vK (b3) + · · · + μ2
n vK (bn).

Combining this with (18) one obtains

vK (p) �
(
σ2μ

2
1

)
vK (b1) + (

σ1μ
1
2

)
vK (b2)

+ (
σ1μ

1
3 + σ2μ

2
3

)
vK (b3) + · · · + (

σ1μ
1
n + σ2μ

2
n

)
vK (bn).

By construction, the coefficients on the right-hand side satisfy

p = (
σ2μ

2
1

)
b1 + (

σ1μ
1
2

)
b2 + (

σ1μ
1
3 + σ2μ

2
3

)
b3 + · · · + (

σ1μ
1
n + σ2μ

2
n

)
bn, (19)

which proves the claim as the barycentric coordinates of p with respect to the vertices
b1, . . . , bn are unique (in particular, all coefficients in (19) are integral multiples of 1

k by
construction of S). �
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1012 GENNADIY AVERKOV, CHRISTOPHER BORGER AND IVAN SOPRUNOV

Remark 3.2. The particular case of Lemma 3.1 when S = �d,d and p = 1 provides the
following bound for the product of the volumes of the Ki:

VK (1)d � Vol(K1) · · · Vol(Kd ).

This inequality can also be found in [16, (7.64)]. In particular, we see that if all Ki have volume
at least 1 then Vol(Ki) � VK (1)d for every i ∈ [d].

The following is the main statement of this section which provides bounds that the
Aleksandrov–Fenchel relations yield for the mixed volume VK (p) for any p ∈ �d,d when
VK (1) is fixed.

THEOREM 3.3 (Bounds from Aleksandrov–Fenchel inequalities). Let K ∈ (Kd,1)
d be a

d-tuple of d-dimensional convex bodies of volume at least 1 and p ∈ �d,d . Then

vK (p) � vK (1)
∏

i : pi>0

pi. (20)

Furthermore, given that VK (1) = m, one obtains the following bound:

Vol(�(K )) � m3q2r
dd , (21)

where d = 3q + 2r with q ∈ Z�0 and r ∈ {0, 1, 2}.

Proof. We prove (20) by inductively using Lemma 3.1. The induction is over the number
of zero entries of p which we denote by k. Let us without loss of generality restrict to the case
that p is decreasing, that is, p1 � · · · � pd .

As k = 0 implies p = 1 the statement is trivially fulfilled in this case. Now let k ∈ [d − 1]
be arbitrary. Assume p = (p1, . . . , pd−k, 0, . . . , 0) has exactly k zero entries and assume that
the statement is true for any vector with at most k − 1 zero entries. Consider the vector

p′ = (1, p2, . . . , pd−k, 1, . . . , 1︸ ︷︷ ︸
p1−1 times

, 0, . . . , 0).

Clearly p′ has fewer zero entries than p and, therefore,

vK (p′) � vK (1)
∏

i : p′
i>0

p′
i = vK (1) p2 · · · pd−k.

However, if one writes p′ as the barycenter of a suitable (p1 − 1)-simplex, Lemma 3.1 yields

vK (p′) � 1

p1
vK (p1, p2, . . . , pd−k, 0, . . . , 0)

+ 1

p1
vK (0, p2, . . . , pd−k, p1, 0, . . . , 0)

+ 1

p1
vK (0, p2, . . . , pd−k, 0, p1, 0, . . . , 0)

+ · · ·

+ 1

p1
vK (0, p2, . . . , pd−k, 0, . . . , 0, p1, 0, . . . , 0).
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INEQUALITIES BETWEEN MIXED VOLUMES OF CONVEX BODIES: VOLUME BOUNDS 1013

In particular, vK (p) = vK (p1, . . . , pd−k, 0, . . . , 0) � p1 vK (p′), as we assumed the volumes
of the Ki to be at least 1 and therefore all terms on the right-hand side of the above inequality
are non-negative. This proves (20).

We now proceed to using (20) in order to show the bound (21). Write d = 3q + 2r for
unique non-negative integers q, r with r ∈ {0, 1, 2}. We first show that the maximal value of∏

i : pi>0 pi =: g(p) is attained at a point pmax with q entries equal to 3, r entries equal to 2,
and the remaining entries equal to 0.

Note first that 2	k/2
 > k for all k � 6. Therefore, for any point p ∈ �d,d with one coordinate
being k � 6, we can construct another point p′ by replacing the entry with value k with 	k/2

entries with value 2 and obtain g(p′) > g(p). Similarly, any entry with value 5 in p can be
replaced by two entries with values 2 and 3, respectively, to increase the value of g. As also
any entry with value 4 can be replaced by two entries both with value 2 without changing the
value of g, this shows that there exists a point p maximizing g with pi � 3 for all i ∈ [d]. If
p has an entry with value 1, one can construct a point increasing the value of g by replacing
1,3 with 2,2, or 2,1 with 3, or 1,1 with 2. One of these replacements is always possible and,
hence, a point p maximizing g can be chosen such that pi ∈ {0, 2, 3} for all i ∈ [d]. Finally
the observation that 2 · 2 · 2 < 3 · 3 shows that the maximum of g is actually attained by pmax.

Combining this insight with Proposition 2.1 one obtains that, for any tuple K ∈ (Kd,1)
d ,

one has

Vol(�(K )) =
∑

p∈�d,d

(
d

p

)
2vK (p) �

∑
p∈�d,d

(
d

p

)
2vK (1)g(pmax ) = ddmg(pmax ),

where m = 2vK (1) = VK (1). This shows (21). �

3.2. On the optimality of Theorem 3.3. This subsection is devoted to showing that
Theorem 3.3 actually provides the best bounds that one can get by only using Aleksandrov–
Fenchel inequalities in what we call black-box style in the introduction. In order to make this
term precise we need to define the set of all positive-valued functions on �d,d that satisfy
all linearized Aleksandrov–Fenchel inequalities (log AF). In this language, a statement that
is obtained in black-box style from the Aleksandrov–Fenchel inequalities is a statement that
holds for each function in this set.

Definition 3.4. We define the Aleksandrov–Fenchel cone AFCd ⊂ R�d,d as the set of all
v ∈ R�d,d satisfying

v(p) � 0 for all p ∈ {de1, . . . , ded}, and

2 v(p) � v(p + ei − e j ) + v(p − ei + e j ) for all p, p ± (ei − e j ) ∈ �d,d with i, j ∈ [d].

We also define the Aleksandrov–Fenchel polytope AFPd to be the following hyperplane section
of AFCd :

AFPd := {v ∈ AFCd : v(1) = 1}.

The Aleksandrov–Fenchel inequality implies

v(Kd,1, �d,d ) ⊆ AFCd .

Furthermore, for all d-tuples K ∈ (Kd,1)
d with VK (1) = m, we have vK (1) = log m and,

hence, vK ∈ (log m) AFPd .
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1014 GENNADIY AVERKOV, CHRISTOPHER BORGER AND IVAN SOPRUNOV

Remark 3.5. It is straightforward to verify that Theorem 3.3 and in particular Lemma 3.1
are proven by iterated linear combination of inequalities (log AF). This shows that the bound
(20) in Theorem 3.3 holds for any v ∈ (log m) AFPd .

The following proposition shows that Theorem 3.3 provides the best possible bounds that
can be deduced from Aleksandrov–Fenchel inequalities in a black-box style.

PROPOSITION 3.6. Let p∗ ∈ �d,d . Then

max
w∈AFPd

w(p∗) =
∏

i : p∗
i >0

p∗
i .

Proof. Let p∗ = (p∗
1, . . . , p∗

d ). Without loss of generality, we can assume that the entries
of p are sorted in descending order. Let r ∈ [d] be the largest number satisfying p∗

r > 0.
The fact that

∏
i : pi>0 pi = p1 · · · pr is an upper bound is true by Theorem 3.3 (see

Remark 3.5). It remains to confirm that this value is indeed the maximum. To this end,
consider w ∈ R�d,d given by

w(p) = p1 · · · pr for p ∈ �d,d .

Under this assumption, we see that for the chosen w one has w(p∗) = ∏
i : p∗

i >0 p∗
i .

It remains to verify that w ∈ AFPd . We need to show that w ∈ R�d,d is discretely concave
in the directions ei − e j with i �= j in the variables p = (p1, . . . , pd ). The function w is a
product of some of the variables p1, . . . , pd . If neither pi nor p j occurs in the product, w(p)

is constant therefore concave in direction ei − e j . If exactly one of the variables pi and p j

occurs in the product, then the function is linear in direction ei − e j . Now consider the case
that both pi and p j occur in the product. For simplicity, let i = 1 and j = 2, so

w(p) = p1 p2u,

where u = ∏r
i=3 pi � 0 is independent of p1 and p2 and so is constant when we change p

along the direction e1 − e2. Changing p along the direction e1 − e2 means, fixing p ∈ �d,d ,
and considering the discrete function φ : {−p1, . . . , p2} → Z given by

φ(s) := w(p + se1 − se2) = (p1 + s)(p2 − s)u.

If u = 0, φ is identically equal to 0. Otherwise it is immediately clear that φ is concave because
it is given by an expression that defines a concave quadratic polynomial. �

§4. An asymptotically sharp bound derived from square inequalities. One of the main tools
in proving the asymptotically sharp bound in Theorem 1.1 is the following inequality which
expresses a log-concavity property of VK over a “square” in �d,d whose edge directions are
the standard directions ei − e j .

LEMMA 4.1 (Square inequalities). Let K ∈ (Kd )d be a d-tuple of d-dimensional convex
bodies. Let u1 = ei1 − e j and u2 = ei2 − e j for pairwise different i1, i2, j ∈ [d]. Then

VK (p) VK (p + u1 + u2) � 2 VK (p + u1) VK (p + u2),

for any p ∈ �d,d satisfying p j � 2.

Proof. This result appears in [4, Lemma 5.1]. For the sake of completeness we outline an
argument which also appears in the proof of [16, Lemma 7.4.1]. For simplicity we assume that
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INEQUALITIES BETWEEN MIXED VOLUMES OF CONVEX BODIES: VOLUME BOUNDS 1015

u1 = e1 − e3, u2 = e2 − e3, and p + u1 + u2 = 1. Then, in the standard notation, the above
statement becomes

V(K1, K2, K ′) V(K3, K3, K ′) � 2 V(K1, K3, K ′) V(K2, K3, K ′), (22)

where K ′ denotes the (d − 2)-tuple (K3, . . . , Kd ). Consider a family of d-tuples of convex
bodies (K1 + sK3, K2 + tK3, K ′) for positive real s, t . It follows by the Aleksandrov–Fenchel
inequality applied to this tuple that the quadratic form

At2 + 2Bst + Cs2, where A = V(K1, K3, K ′)2 − V(K1, K1, K ′) V(K3, K3, K ′)

B = V(K1, K2, K ′) V(K3, K3, K ′) − V(K1, K3, K ′) V(K2, K3, K ′)

C = V(K2, K3, K ′)2 − V(K2, K2, K ′) V(K3, K3, K ′)

is non-negative for all positive s, t . Similarly, applying the Aleksandrov–Fenchel inequality to
the tuple (tK1 + sK2, K3, K ′) we see that the quadratic form At2 − 2Bst + Cs2 is non-negative
for all positive s, t . This implies that the discriminant of both forms must be non-positive, that
is, B2 � AC. Ignoring the negative terms in A and C, this produces:(

V(K1, K2, K ′) V(K3, K3, K ′) − V(K1, K3, K ′) V(K2, K3, K ′)
)2

� V(K1, K3, K ′)2 V(K2, K3, K ′)2.

Finally, taking the square root of both sides and rearranging, we obtain (22). �

The square inequalities indeed give relations that do not follow as combinations of
Aleksandrov–Fenchel inequalities as the following shows.

COROLLARY 4.2. Let d ∈ Z�3. There exist functions f : �d,d → R�0 that satisfy all
Aleksandrov–Fenchel relations but that are not of the form VK for any K ∈ (Kd )d .

Proof. We will explicitly construct one such function f . Set f (1) = 3 and f (p) = 1 for all
1 �= p ∈ �d,d . It is easy to verify that f satisfies all Aleksandrov–Fenchel relations. However,
as 3 = f (3, 0, 0, 1 . . . , 1) f (1, 1, 1, 1, . . . , 1) > 2 f (2, 1, 0, 1 . . . , 1) f (2, 0, 1, 1, . . . , 1) =
2, Lemma 4.1 shows that there exists no K ∈ (Kd )d that satisfies VK = f . �

For our later purposes we need a slight generalization of Lemma 4.1 that can be obtained by
combining different square inequalities. It is convenient to introduce the following notation.
Consider a subset I ⊂ [d] and an element j ∈ [d] \ I . Denote

uI, j =
∑
i∈I

(ei − e j ).

When I = {i} we write ui, j for u{i}, j = ei − e j .

LEMMA 4.3 (Generalized Square Inequalities). Let K ∈ (Kd )d be a d-tuple of d-
dimensional convex bodies. Let I ⊂ [d] and i, j ∈ [d] \ I. Then

VK (p) VK (p + uI, j + ui, j ) � 2|I| VK (p + uI, j ) VK (p + ui, j )

for any p ∈ �d,d satisfying p j > |I|.

Proof. We will prove the statement by induction on |I|. Note that for |I| = 1 the statement
is given by Lemma 4.1. Assume |I| > 1. Pick k ∈ I and let I ′ = I \ {k}. By the induction
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1016 GENNADIY AVERKOV, CHRISTOPHER BORGER AND IVAN SOPRUNOV

hypothesis

VK (p) VK (p + uI ′, j + ui, j ) � 2|I ′| VK (p + uI ′, j ) VK (p + ui, j ).

Applying Lemma 4.1 where we replace p by p + uI ′, j and set u1 = ui, j and u2 = uk, j , we
obtain

VK (p + uI ′, j ) VK (p + uI ′, j + ui, j + uk, j ) � 2 VK (p + uI ′, j + ui, j ) VK (p + uI ′, j + uk, j ).

Multiplying the above two inequalities and noting that uI ′, j + uk, j = uI, j we obtain the
claim. �

The following lemma shows that the functions VK ∈ R�d,d satisfy certain weak log-
concavity relations in any direction of the form uI, j for I ⊂ [d] and j ∈ [d] \ I .

LEMMA 4.4. Let K ∈ (Kd )d be a d-tuple of d-dimensional convex bodies. Let I ⊂ [d] and
j ∈ [d] \ I. Then

VK (p + kuI, j )
l

k+l VK (p − luI, j )
k

k+l � 2kl(|I|
2 ) VK (p)

for any k, l ∈ N and p ∈ �d,d satisfying p + kuI, j, p − luI, j ∈ �d,d .

Proof. We will prove the special case of k = l = 1 and the general case follows from (16)
in Remark 2.4. The proof of the special case is again via induction on |I|. For |I| = 1 we
recover the Aleksandrov–Fenchel inequality.

Assume |I| > 1. Pick i ∈ I and let I ′ = I \ {i}. Then uI, j = ui, j + uI ′, j . By the induction
hypothesis, replacing p by p + ui, j , we have

VK (p + ui, j + uI ′, j )
1
2 VK (p + ui, j − uI ′, j )

1
2 � 2(|I ′ |

2 ) VK (p + ui, j ).

Furthermore, by the Aleksandrov–Fenchel inequality we have

VK (p + ui, j − uI ′, j )
1
2 VK (p − ui, j − uI ′, j )

1
2 � VK (p − uI ′, j ).

Finally, by Lemma 4.3, where we replace I by I ′ and p by p − uI ′, j , we have

VK (p − uI ′, j ) VK (p + ui, j ) � 2|I ′| VK (p) VK (p + ui, j − uI ′, j ).

It remains to multiply the three inequalities above and note that
(|I ′|

2

) + |I ′| = (|I|
2

)
. �

Our next result (Theorem 4.6) provides a method for bounding mixed volumes in directions
of the form

∑
i∈I ei − ∑

j∈J e j for some disjoint subsets I, J ⊂ [d] with |I| = |J|. Similar to
above we introduce special notation for such directions:

uI,J =
∑
i∈I

ei −
∑
j∈J

e j .

We will first illustrate the statement and the proof of Theorem 4.6 with an example.

Example 4.5. Let K ∈ (K6,1)
6 be a 6-tuple of six-dimensional convex bodies of volume at

least 1. We will show that

vK (2, 2, 2, 0, 0, 0) � 2 vK (1) + 6, (23)

where 1 = (1, 1, 1, 1, 1, 1). First, by Lemma 3.1, in logarithmic notation we have

1

3
(vK (1, 1, 1, 3, 0, 0) + vK (1, 1, 1, 0, 3, 0) + vK (1, 1, 1, 0, 0, 3)) � vK (1). (24)
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INEQUALITIES BETWEEN MIXED VOLUMES OF CONVEX BODIES: VOLUME BOUNDS 1017

Figure 2 (colour online): Two examples of concavity relations of the type shown in Lemma 3.1.

Figure 3 (colour online): Bounding vK (2, 2, 2, 0, 0, 0) in terms of vK (1, 1, 1, 1, 1, 1). We use the fact that all
points that we draw live inside the three-dimensional slice {p ∈ �6,6 : p1 = p2 = p3} of the five-dimensional
simplex �6,6.

The corresponding 2-simplex is depicted in blue in Figure 3. Now, for each of the summands
in the left-hand side of (24), we use the weak log-concavity relations in the directions
(1, 1, 1, −3, 0, 0), (1, 1, 1, 0, −3, 0), and (1, 1, 1, 0, 0, −3) given by Lemma 4.4 and obtain

1

2
vK (2, 2, 2, 0, 0, 0) + 1

2
vK (0, 0, 0, 6, 0, 0) � 3 + vK (1, 1, 1, 3, 0, 0)

1

2
vK (2, 2, 2, 0, 0, 0) + 1

2
vK (0, 0, 0, 0, 6, 0) � 3 + vK (1, 1, 1, 0, 3, 0)

1

2
vK (2, 2, 2, 0, 0, 0) + 1

2
vK (0, 0, 0, 0, 0, 6) � 3 + vK (1, 1, 1, 0, 0, 3).
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1018 GENNADIY AVERKOV, CHRISTOPHER BORGER AND IVAN SOPRUNOV

In Figure 3 these directions are shown in green. These inequalities, together with (24), provide
the bound (23), as vK (0, 0, 0, 6, 0, 0), vK (0, 0, 0, 0, 6, 0), and vK (0, 0, 0, 0, 0, 6) are non-
negative.

THEOREM 4.6. Let K ∈ (Kd,1)
d be a d-tuple of d-dimensional convex bodies of volume

at least 1. Let I, J ⊂ [d] be disjoint subsets with |I| = |J|. Then

vK (p + uI,J ) �
μ + 1

μ
vK (p) + (μ + 1)

(	d/2

2

)
,

for any p ∈ �d,d such that p ± uI,J ∈ �d,d , where μ = min(pi : i ∈ I ).

Proof. First we write p as the barycenter of a simplex with vertices b j = p − uJ\{ j}, j , for
j ∈ J . Applying Lemma 3.1 we get

1

|J|
∑
j∈J

vK (p − uJ\{ j}, j ) � vK (p). (25)

In order to establish the required bound for vK (p + uI,J ) we estimate each summand vK (p −
uJ\{ j}, j ) from below using the weak concavity relations along uI, j given by Lemma 4.4. Indeed,
applying Lemma 4.4 with p replaced by p − uJ\{ j}, j and (k, l ) = (1, μ), in the logarithmic
notation we get

μ

μ + 1
vK (p − uJ\{ j}, j + uI, j ) + 1

μ + 1
vK (p − uJ\{ j}, j − μuI, j )

� μ

(|I|
2

)
+ vK (p − uJ\{ j}, j ).

Note that −uJ\{ j}, j + uI, j = uI,J . Also, since we assumed that the Ki have volume at least 1,
the second term in the left-hand side is non-negative and, hence, can be dropped. We thus
obtain

μ

μ + 1
vK (p + uI,J ) − μ

(|I|
2

)
� vK (p − uJ\{ j}, j ).

Plugging these estimates into (25) yields

vK (p + uI,J ) �
μ + 1

μ
vK (p) + (μ + 1)

(|I|
2

)
.

Finally, using |I| � 	d/2
 we get the claim. �

Remark 4.7. One may be led to think that functions VK satisfy certain weak log-concavity
relations in any direction uI,J . Indeed, the bound of Theorem 4.6 is exactly what one would
get from relations of the form

μ

μ + 1
vK (p + uI,J ) + 1

μ + 1
vK (p − uI,J ) � vK (p) + C.

for C = (|I|
2

)
. In Proposition 4.8 we show that for |I| = |J| = 2 we indeed almost have such

relations but for a slightly larger constant C = 2. However, according to our computations,
for |I| = |J| > 2 our methods cannot show such weak concavity relations along uI,J anymore
no matter the constant C.
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INEQUALITIES BETWEEN MIXED VOLUMES OF CONVEX BODIES: VOLUME BOUNDS 1019

PROPOSITION 4.8. Let K ∈ (Kd )d be a d-tuple of d-dimensional convex bodies and I, J
disjoint subsets of [d] with |I| = |J| = 2. Then

VK (p + uI,J ) VK (p − uI,J ) � 24 VK (p)2,

for any p ∈ �d,d satisfying p ± uI,J ∈ �d,d .

Proof. For simplicity, we assume I = {1, 2}, J = {3, 4}. Applying Lemma 4.1 with p
replaced by p − e1 + e3 and u1 = e1 − e3, u2 = e2 − e3 we get

VK (p − e1 + e3) VK (p + e2 − e3) � 2 VK (p) VK (p − e1 + e2).

Next, applying Lemma 4.1 with p replaced by p + e1 + e2 − e3 − e4 and u1 = e3 − e1, u2 =
e4 − e1 we get

VK (p + e1 + e2 − e3 − e4) VK (p − e1 + e2) � 2 VK (p + e2 − e4) VK (p + e2 − e3).

Multiplying the above inequalities we obtain

VK (p + e1 + e2 − e3 − e4) VK (p − e1 + e3) � 4 VK (p) VK (p + e2 − e4).

Similarly, switching the indices 1 ↔ 4 and 2 ↔ 3, we obtain

VK (p − e1 − e2 + e3 + e4) VK (p − e4 + e2) � 4 VK (p) VK (p + e3 − e1).

Finally, the product of the last two inequalities provides the result. �

The following is our key result regarding bounds on mixed volumes in general dimension.

THEOREM 4.9. Let K ∈ (Kd,1)
d be a d-tuple of d-dimensional convex bodies of volume

at least 1 and p ∈ �d,d . Then one has

vK (p) � max(p)

(
vK (1) + (max(p) − 1)

(	d/2

2

))
, (26)

Consequently,

vK (p) � max(p) vK (1) + C(d ),

where C(d ) is a constant only depending on the dimension d.
Furthermore, given that VK (1) = m, one obtains the following bound:

Vol(�(K )) � 2d(d−1)(	d/2

2 )dd md . (27)

Proof. We will show that there is a sequence of inequalities of the type shown in Theorem 4.6
that yields (26). Let us, without loss of generality, assume that p is a decreasing vector, that
is, p1 � · · · � pd . Hence max(p) = p1.

Let us define the set of admissible vectors Sp at a point p ∈ �d,d to be

Sp :=
⎧⎨
⎩

n∑
i=1

ei −
l+n∑

j=l+1

e j for l � n � 1, l + n � d and n satisfying p1 = · · · = pn

⎫⎬
⎭.

We claim that there is a sequence of decreasing vectors a1, . . . , ap1 ∈ �d,d starting at a1 = 1
and ending at ap1 = p such that ai+1 − ai ∈ Sai for 1 � i < p1 and, hence, max(ai) = i for
all 1 � i � p1. We call such a sequence an admissible path from 1 to p. The existence of
such a path can be easily seen by induction on p1. If p1 = 1 then p = 1 and there is nothing
to show, so let p1 � 2. Let n be the maximal index satisfying pn = p1 and l be the maximal
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1020 GENNADIY AVERKOV, CHRISTOPHER BORGER AND IVAN SOPRUNOV

Figure 4 (colour online): Admissible paths from 1 ∈ �6,6 to any decreasing point p ∈ �6,6. The red paths
from 1 to (4,2,0,0,0,0) is the one constructed in the proof of Theorem 4.9.

index satisfying pl > 0. Consider the vector

p′ = (p1 − 1, . . . , pn − 1, pn+1, . . . , pl , 1, . . . , 1︸ ︷︷ ︸
n times

, 0, . . . , 0).

One can check that p′ ∈ �d,d exists and is decreasing by construction. By the induction
hypothesis there is an admissible path from 1 to p′ of length p1 − 1. Moreover, p − p′ ∈ Sp′ ,
and therefore there exists an admissible path from 1 to p of length p1. To illustrate this,
Figure 4 shows all admissible paths from 1 ∈ �6,6 to any decreasing point p in �6,6. For
example, there are three admissible paths from (1,1,1,1,1,1) to (4,2,0,0,0,0); the one in red is
the path constructed by the above inductive process.

Let us now show how the existence of such an admissible path implies (26). Let ai+1 and
ai be two terms in an admissible path from 1 to p. By Theorem 4.6 we have

vK (ai+1) �
μ + 1

μ
vK (ai) + (μ + 1)

(	d/2

2

)
,

where μ is the minimum of those entries of ai which increase when we pass to ai+1. But all
these entries are equal to i by the construction of the admissible sequence. Hence, we can
write

vK (ai+1) �
i + 1

i
vK (ai) + (i + 1)

(	d/2

2

)
.
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INEQUALITIES BETWEEN MIXED VOLUMES OF CONVEX BODIES: VOLUME BOUNDS 1021

Applying this repeatedly we obtain

vK (p) �
(

2

1

)(
3

2

)
· · ·

(
p1

p1 − 1

)
vK (1) + p1(p1 − 1)

(	d/2

2

)

= p1 vK (1) + p1(p1 − 1)

(	d/2

2

)
,

which concludes the proof of (26). The inequality using a constant C(d ) only depending on
the dimension d follows directly from (26) and the observation that max(p) is bounded by d .

Assume now that VK (1) = m. Combining Proposition 2.1 with the observation that the
maximum of the bounds from (26) is attained, for example, at p = (d, 0, . . . , 0), one obtains

Vol(�(K )) =
∑

p∈�d,d

(
d

p

)
2vK (p) �

∑
p∈�d,d

(
d

p

)
2vK (d,0,...,0) = dd2vK (d,0,...,0).

Explicitly plugging in the bound from (26) for vK (d, 0, . . . , 0) yields (27). �

Remark 4.10. Note that the bound from Theorem 4.9 shows that, for any p ∈ �d,d , the
maximum of VK (p) among all d-tuples (Kd,1)

d of d-dimensional convex bodies of volume
at least 1 that satisfy VK (1) = m is of order O(mmax(p)) as m → ∞. To see that the order of
this bound is sharp, fix p ∈ �d,d and let i ∈ [d] be an index satisfying pi = max(p). Then
any tuple K ∈ (Kd,1)

d of the form Ki = mA and Kj = A for every j ∈ [d] \ {i} for a convex
body A with Vol(A) = 1 yields VK (1) = m, while VK (p) = mpi = mmax(p).

Proof of Theorem 1.1. The assertion is a direct consequence of Theorem 4.9. �

Proof of Corollary 1.2. Let Pi be the Newton polytope of fi. Then Q = P1 + · · · + Pd is the
Newton polytope of the product f1 · · · fd . The number of monomials in f1 · · · fd is at most the
number of lattice points in Q. By Blichfedt’s inequality [3], one has |Q ∩ Zd | � Vol(Q) + d ,
which in combination with Theorem 1.1, yields the assertion. �

§5. Confirmation of Conjecture 1.5 in dimension 3. In this section we use a computer-
assisted approach to prove Theorem 1.4, which establishes Conjecture 1.5 in dimension 3.
The high level description of the approach is as follows. In the setting of Conjecture 1.5, we
know that vK ∈ (log m) AFPd . Since Vol(K1 + · · · + K�) is a linear combination of mixed
volumes, we conclude that Vol(K1 + · · · + K�) = F (vK ), where F is an explicitly given
convex function. Since F is convex, the maximum of F on (log m) AFPd is attained at the
vertices of (log m) AFPd . We calculate the vertices of the Aleksandrov–Fenchel polytope
AFP3 using a computer. The values of F at the vertices of (log m) AFP3 are functions of
m given by rather simple algebraic expressions. It turns out that one can bound all such
expressions from above by (m + � − 1)3 for m ∈ R�1.

While the Aleksandrov–Fenchel polytope has rather many vertices (there are 24 vertices
in total), the amount of algebraic computations that we need to carry out can be significantly
reduced by taking into account the symmetries. On R�3,3 we introduce the action of the
symmetric group S3 on three elements. We introduce the action of S3 on R�3,3 by defining σv

as

(σv)(p1, p2, p3) = v(pσ (1), pσ (2), pσ (3))

for σ ∈ S3 and v ∈ R�3,3 . It is clear that AFP3 is invariant under the action of S3 on R�3,3 ,
which means that σv ∈ AFP3 holds for all σ ∈ S3 and all v ∈ AFP3.
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1022 GENNADIY AVERKOV, CHRISTOPHER BORGER AND IVAN SOPRUNOV

Figure 5: Illustration to Proposition 5.1. The Aleksandrov–Fenchel polytope AFP3 has 24 vertices that are
split into 7 orbits under the action of S3. The diagrams present the coordinates vi(p) of the seven vertices
v1, . . . , v7.

In the following proposition, we use ep with p ∈ �d,d to denote the standard basis vectors
of R�d,d . This means, ep(q) ∈ {0, 1} with ep(q) = 1 if and only if p = q.

PROPOSITION 5.1 (Vertices of AFP3). The polytope AFP3 has 24 vertices, which are split
into 7 orbits under the action of S3 on AFP3, with the orbits generated by the following seven
vertices

v1 = e(1,1,1),

v2 = 2e(2,1,0) + e(1,2,0) + e(1,1,1),

v3 = 2e(2,1,0) + 2e(1,2,0) + e(1,1,1),

v4 = 2e(2,1,0) + e(1,2,0) + 1

2
e(2,0,1) + e(1,0,2) + e(1,1,1),

v5 = 2e(2,1,0) + e(1,2,0) + 2e(2,0,1) + e(1,0,2) + e(1,1,1),

v6 = 2e(2,1,0) + e(1,2,0) + 2e(2,0,1) + e(1,0,2) + 3e(3,0,0) + e(1,1,1),

v7 = 2

3
e(2,1,0) + 4

3
e(1,2,0) + 4

3
e(2,0,1) + 2

3
e(1,0,2) + 2

3
e(0,2,1) + 4

3
e(0,1,2) + e(1,1,1).
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INEQUALITIES BETWEEN MIXED VOLUMES OF CONVEX BODIES: VOLUME BOUNDS 1023

Proof. We used sagemath [18] to determine the vertices of AFP3, given by a system
of linear inequalities. Sagemath is one of the many possibilities to do computations with
polytopes over the field of rational numbers. Polymake [11] and Normaliz [5] are two other
possibilities. �

Proof of Theorem 1.4. For all three assertions, the equality case is verified in a
straightforward way. We prove the respective inequalities.

By Remark 3.2, Vol(K1) � m3, so (a) follows. For the verification of assertions (b) and (c),
we use Proposition 5.1. We fix the standard component-wise partial order � on R�3,3 , that
is, v � w if and only if v(p) � w(p) holds for every p ∈ �3,3. It is clear that the vertices
v1, . . . , v6 of AFP3 are related by

v1 � v2 � v3 (28)

v4 � v5 � v6. (29)

For (b) we have

Vol(K1 + K2) =
3∑

i=0

(
3

i

)
VK (i, 3 − i, 0) =

3∑
i=0

(
3

i

)
2vK (i,3−i,0),

where vK ∈ (log m) AFP3. Changing the base from 2 to m, we see that Vol(K1 + K2) is
bounded by the maximum of the function gm : R�3,3 → R

gm(v) := mv(3,0,0) + 3mv(2,1,0) + 3mv(1,2,0) + mv(0,3,0)

over v ∈ AFP3. The function gm(v) is convex so that the maximum is attained at one of the
vertices of AFP3. By Proposition 5.1, the vertices of AFP3 have the form σvi with σ ∈ S3

and i ∈ {1, . . . , 7}. Taking into account (28) and (29), it follows that it is enough to check the
cases i ∈ {3, 6, 7}. First, we detect the maximum of gm in the orbits generated by v3, v6, and
v7. It is straightforward to check that

φ3(m) := max
σ∈S3

fm(σv3) = 2 + 6m2,

φ6(m) := max
σ∈S3

fm(σv6) = 1 + 3m + 3m2 + m3 = (m + 1)3,

φ7(m) := max
σ∈S3

fm(σv7) = 2 + 3m2/3 + 3m4/3.

Clearly, φ7(m) � φ3(m) � φ6(m), where φ3(m) � φ6(m) holds since φ6(m) − φ3(m) =
(m − 1)3. Thus, (m + 1)3 is an upper bound for Vol(K1 + K2).

Similarly, for (c) we have

Vol(K1 + K2 + K3) =
∑

p∈�3,3

(
3

p

)
VK (p) =

∑
p∈�3,3

(
3

p

)
2vK (p),

where vK ∈ (log m) AFP3. To obtain the desired upper bound for Vol(K1 + K2 + K3) we
maximize the function fm : R�3,3 → R

fm(v) :=
∑

p∈�3,3

(
3

p

)
mv(p)
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1024 GENNADIY AVERKOV, CHRISTOPHER BORGER AND IVAN SOPRUNOV

over v ∈ AFP3. Again, the function fm is convex and so its maximum is necessarily attained
in one of the vertices of AFP3. On the other hand, it is clear that the function is invariant
under the action of S3 on AFP3, as one clearly has fm(σv) = fm(v) for every v ∈ AFP3 and
σ ∈ S3. It follows that it is enough to compare the values of fm on the vertices v1, . . . , v7

from Proposition 5.1. That means v � w implies fm(v) � fm(w) for all v, w ∈ R�3,3 . The
latter property follows from the assumption m � 1 and the non-negativity of multinomial
coefficients. In view of (28) and (29) it suffices to compare fm(v3), fm(v6) and fm(v7).
The non-negativity of fm(v6) − fm(v3) for m � 1 can be phrased as the non-negativity of
fm+1(v6) − fm+1(v3) for m � 0. It turns out that fm+1(v6) − fm+1(v3) is a polynomial in m
all of whose coefficients are non-negative. Hence fm+1(v6) − fm+1(v3) � 0 holds for every
m � 0, which implies fm(v6) − fm(v3) � 0 for m � 1.

Comparing fm(v7) to fm(v6) can be carried out in a similar fashion, but note that v7 is a
fractional point. We can still reduce the verification to the polynomial setting by noting that
3v7 is an integral point. The validity of fm(v6) � fm(v7) for all m � 1 can be rephrased as the
inequality f(m+1)3 (v6) − f(m+1)3 (v7) � 0 for all m � 0. The latter is true since f(m+1)3 (v6) −
f(m+1)3 (v7) is a polynomial all of whose coefficients are non-negative. Summarizing, we
conclude that fm(v6) = (m + 2)3 is the maximum of fm(v) for v ∈ AFP3 and, hence, an
upper bound on Vol(K1 + K2 + K3). �

§6. Concluding remarks and outlook.

6.1. On tuples maximizing the volume of the Minkowski sum. The following proposition
converts Conjecture 1.5 to a more specific situation.

PROPOSITION 6.1. Let m ∈ R�1 and let � ∈ {1, . . . , d}. Consider a tuple K =
(K1, . . . , Kd ) of convex bodies satisfying

Vol(K1) � 1, . . . , Vol(Kd ) � 1, and V(K1, . . . , Kd ) = m

and maximizing Vol(K1 + · · · + K�). Then
(a) for each such optimal tuple, Vol(Ki) = 1 holds for all except possibly one choice of

i ∈ {1, . . . , �} and for every i > �;
(b) for � < d − 1, there exists an optimal tuple that satisfies K�+1 = · · · = Kd.

Proof.
(a) If αi := Vol(Ki)

1/d > 1 holds for some i > � then the tuple is not optimal since changing
K1 to αiK1 and Ki to 1

αi
Ki we obtain a new tuple K ′ = (K ′

1, . . . , K ′
d ) of mixed volume m

with Vol(K ′
1 + · · · K ′

�) > Vol(K1 + · · · + K�).
Now, assume that � � 2 and that for at least two choices of i ∈ {1, . . . , �} one
has Vol(Ki) > 1. We can assume Vol(K1) > 1 and Vol(K2) > 1. We consider the
tuple ( 1

t K1, tK2, K3, . . . , Kd ), depending on t > 0. Clearly, V( 1
t K1, tK2, K3, . . . , Kd ) =

V(K ). Furthermore, the function f : R>0 → R>0 given by f (t ) := Vol( 1
t K1 + tK2 +

K3 + · · · + K�) is a strictly convex function. This can be seen by writing f (t ) as a
non-negative linear combination of functions t p, which are strictly convex for every
p ∈ Z \ {0, 1}. For ε > 0 small enough and every t ∈ [1 − ε, 1 + ε], the volumes of 1

t K1

and tK2 are at least one. Since f (t ) is strictly convex, its maximum on [1 − ε, 1 + ε] is
attained at the boundary and is strictly larger than f (1). This contradicts the optimality
of the tuple K and shows that Vol(Ki) = 1 for all except possible one choice of
i ∈ {1, . . . , �}.
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(b) In view of Lemma 3.1,

m = V (K1, . . . , Kd ) �
d∏

i=�+1

V (K1, . . . , K�, Ki, . . . , Ki)
1/(d−�)

� min
i∈{�+1,...,d}

V (K1, . . . , K�, Ki, . . . , Ki) =: m′.

So, taking the i for which the above minimum is attained and replacing the tuple
(K1, . . . , Kd ) by the tuple ( m

m′ K1, K2, . . . , K�, Ki, . . . , Ki), we keep the mixed volume of
the tuple unchanged without decreasing the volume of the Minkowski sum of its first �

bodies.
�

The latter proposition somewhat simplifies the original optimization problem, but still the
problem remains non-trivial. Say, for d = 4 and � = 2, the problem is turned to the maximiza-
tion of Vol(A + B) subject to Vol(A) � 1, Vol(B) = Vol(C) = 1 and V(A, B,C,C) = m. As
we have seen in the proof of Theorem 1.4, in every triple that maximizes Vol(K1 + · · · + K�)

for 1 � � � 3, the bodies K1, . . . , K� are homothetic. While we have no evidence of this being
true in higher dimensions, we remark that this, together with Proposition 6.1, would imply
the statement of Conjecture 1.5.

6.2. Relations between mixed volumes: the quest for tight inequalities and a complete
description. The work on the problem of bounding Vol(�(K )) has taught us that the current
knowledge of the relations between mixed volumes is still rather limited and the literature
might miss some important inequalities beyond the classical ones. Such new inequalities would
probably be of interest to a broader community of experts, including researchers interested
in metric aspects of convex sets, as well as researchers working on combinatorial aspects of
algebraic geometry. The problem of describing the relationship between mixed volumes goes
back to the 1960 work [17] of Shephard (see also Problems 6.1 in [12, p. 109] for a similar
problem for the so-called Quermassintegrals).

In [17] Shephard provided a complete description of mixed-volume configurations for two
d-dimensional convex bodies. Recall that Kd denotes the family of all d-dimensional convex
bodies in Rd .

THEOREM 6.2 (Shephard [17, Theorem 4]). The mixed-volume configuration space
V(Kd , �2,d ) is the set of all V ∈ R

�2,d

>0 that satisfy the Aleksandrov–Fenchel inequalities

V(i, d − i)2 � V(i + 1, d − i − 1)V(i − 1, d − i + 1) ∀i ∈ [d − 1].

Equivalently, the logarithmic mixed-volume configuration space v(Kd , �2,d ) is a polyhedral
cone, described by the linearized Aleksandrov–Fenchel inequalities

2 v(i, d − i) � v(i + 1, d − i − 1) + v(i − 1, d − i + 1) ∀i ∈ [d − 1].

A refined version of Theorem 6.2 can be found in [14, Lemma 2.1]. This brings us to the
following natural question about mixed-volume configuration spaces in general.

Problem 6.3. Let n, d ∈ Z�2 and let K be the family of all compact convex sets in Rd .
Is V(K, �n,d ) a semialgebraic set? That is, can V(K, �n,d ) be described by a boolean
combination of polynomial inequalities?
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Problem 6.3 is open for all choices of n and d except for the case n = 2, covered by
Theorem 6.2, and the case (n, d ) = (3, 2), solved by Heine [13]. To formulate the result of
Heine we consider the family K of non-empty compact convex subsets of R2. With each triple
K = (K1, K2, K3) ∈ K3 of such sets one can associate the matrix

MK :=

⎛
⎜⎝

V(K1, K1) V(K1, K2) V(K1, K3)

V(K2, K1) V(K2, K2) V(K2, K3)

V(K3, K1) V(K3, K2) V(K3, K3)

⎞
⎟⎠ .

The matrix MK is symmetric and has non-negative entries. Clearly, V(K, �3,2) is linearly
isomorphic to {MK : K ∈ K3}. By (AF), V(Ki, Kj )

2 � V(Ki, Ki) V(Kj, Kj ) holds for all 1 �
i < j � 3, which means the three 2 × 2 diagonal minors of MK are non-positive. It turns out
that these conditions are not enough to describe the respective mixed-volume configuration
because there is yet another inequality det(MK ) � 0, which is missing. As was shown by
Heine, adding this inequality, one obtains a complete description:

THEOREM 6.4 (Heine [13, p. 118]). Let K be the family of compact convex subsets of R2.
Then {MK : K ∈ K3} is the set of symmetric 3 × 3 matrices M with non-negative entries that
satisfy the conditions

det(M) � 0, det(M{1,2}) � 0, det(M{1,3}) � 0, det(M{2,3}) � 0.

Here, det(MI ) is the diagonal minor indexed by I ⊆ {1, 2, 3}.

The condition det(M) � 0 in Theorem 6.4 is non-redundant. Consider, for example, the
matrix

M =

⎛
⎜⎝

1 1 2

1 1 1

2 1 1

⎞
⎟⎠

with det(M) = −1, det(M{1,2}) = 0, det(M{1,3}) = −3, det(M{2,3}) = 0, for which all of the
above conditions but det(M) � 0 are fulfilled. However, M does not come from any triple of
convex bodies K1, K2, K3 in R2. Indeed, the conditions det(M{1,2}) = 0 and det(M{2,3}) = 0
would imply that the corresponding Aleksandrov–Fenchel (Minkowski) inequalities become
equalities:

V (K1, K1)V (K2, K2) = V (K1, K2)
2, V (K2, K2)V (K3, K3) = V (K2, K3)

2,

which happens only when all three bodies are homothetic (see, e.g., [16, Theorem 7.2.1]).
But this would contradict the strict inequality V (K1, K1)V (K3, K3) < V (K1, K3)

2.
By Theorem 6.4, Problem 6.3 has a positive solution for n = 3 and d = 2, as it provides

an explicit description of V(K, �3,2) by a system of non-strict polynomial inequalities. The
smallest open cases of the classification problem for V(K, �n,d ) are (n, d ) = (4, 2) and
(n, d ) = (3, 3). In view of Heine’s theorem, already in dimension 2, (AF) does not provide
all possible relations between mixed volumes. As a complement, our result clearly indicates
that, in dimension at least 5, (AF) does not even provide the correct asymptotic approximation
of relations between mixed volumes.
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