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Abstract
In this thesis, we introduce hybrid symbolic-numeric methods for solving problems in
linear and polynomial algebra. We mainly address the approximate GCD problem for
polynomials, and problems related to parametric and polynomial matrices. For symbolic
methods, our main concern is their complexity and for the numerical methods we are
more concerned about their stability. The thesis consists of 5 articles which are presented
in the following order:

Chapter 1, deals with the fundamental notions of conditioning and backward error.
Although our results are not novel, this chapter is a novel explication of conditioning
and backward error that underpins the rest of the thesis.

In Chapter 2, we adapt Victor Y. Pan’s root-based algorithm for finding approximate
GCD to the case where the polynomials are expressed in Bernstein bases. We use the
numerically stable companion pencil of Guðbjörn Jónsson to compute the roots, and the
Hopcroft-Karp bipartite matching method to find the degree of the approximate GCD.
We offer some refinements to improve the process.

In Chapter 3, we give an algorithm with similar idea to Chapter 2, which finds
an approximate GCD for a pair of approximate polynomials given in a Lagrange basis.
More precisely, we suppose that these polynomials are given by their approximate values
at distinct known points. We first find each of their roots by using a Lagrange basis
companion matrix for each polynomial. We introduce new clustering algorithms and
use them to cluster the roots of each polynomial to identify multiple roots, and then
marry the two polynomials using a Maximum Weight Matching (MWM) algorithm, to
find their GCD.

In Chapter 4, we define “generalized standard triples” X, zC1 − C0, Y of regular
matrix polynomials P (z) ∈ Cn×n in order to use the representationX(zC1−C0)−1Y =
P−1(z) for z /∈ Λ(P (z)). This representation can be used in constructing algebraic lin-
earizations; for example, for H(z) = zA(z)B(z) + C ∈ Cn×n from linearizations for
A(z) and B(z). This can be done even if A(z) and B(z) are expressed in differing poly-
nomial bases. Our main theorem is thatX can be expressed using the coefficients of the
expression 1 = ∑`

k=0 ekφk(z) in terms of the relevant polynomial basis. For convenience
we tabulate generalized standard triples for orthogonal polynomial bases, the monomial
basis, and Newton interpolational bases; for the Bernstein basis; for Lagrange interpo-
lational bases; and for Hermite interpolational bases. We account for the possibility of
common similarity transformations. We give explicit proofs for the less familiar bases.

Chapter 5 is devoted to parametric linear systems (PLS) and related problems, from
a symbolic computational point of view. PLS are linear systems of equations in which
some symbolic parameters, that is, symbols that are not considered to be candidates for
elimination or solution in the course of analyzing the problem, appear in the coefficients
of the system. We assume that the symbolic parameters appear polynomially in the
coefficients and that the only variables to be solved for are those of the linear system.
It is well-known that it is possible to specify a covering set of regimes, each of which is
a semi-algebraic condition on the parameters together with a solution description valid
under that condition. We provide a method of solution that requires time polynomial
in the matrix dimension and the degrees of the polynomials when there are up to three
parameters. Our approach exploits the Hermite and Smith normal forms that may be
computed when the system coefficient domain is mapped to the univariate polynomial
domain over suitably constructed fields. Our approach effectively identifies intrinsic
singularities and ramification points where the algebraic and geometric structure of the
matrix changes. Specially parametric eigenvalue problems can be addressed as well.
Although we do not directly address the problem of computing the Jordan form, our
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approach allows the construction of the algebraic and geometric eigenvalue multiplicities
revealed by the Frobenius form, which is a key step in the construction of the Jordan
form of a matrix.

Keywords: Interpolation, Rootfinding, Conditioning, Sensitivity, Bernstein basis, Ap-
proximate GCD Maximum matching, Bipartite graph, Root clustering, Companion pen-
cil, Lagrange basis, Maximum weight matching, Hermite form, Smith form, Frobenius
form, Parametric linear systems, Standard triple, Regular matrix polynomial, Polyno-
mial bases, Companion matrix, Colleague matrix, Comrade matrix, Algebraic lineariza-
tion, Linearization of matrix polynomials.



Summary for Lay Audience
Matrices as arrays of numbers and polynomials as the simplest type of mathematical
functions naturally arise in a majority of computational problems. Such useful objects
are studied well in the literature due to their vast applications in science and engineering.
Solving linear systems of equations and finding roots of polynomials are probably the
most well understood problems. However, efforts to introduce more efficient and/or
reliable algorithms in general or for special cases are going on.

In this thesis, we focus on a few problems related to matrices and polynomials over
complex numbers with a hybrid symbolic-numeric approach. We present algorithms for
approximate Greatest Common Divisor (GCD) of polynomials in Bernstein and Lagrange
bases. Another problem we have addressed is solving linear systems with parameters as
coefficients. Relevant problems to linearization of matrix polynomials in multiple bases
are discussed as well.
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Chapter 0

Introduction

This thesis introduces hybrid symbolic-numeric methods which solve problems related
to polynomials, matrices and matrix polynomials. These objects are of huge interest due
to their vast applications in engineering and science. A large part of the literature in
computational mathematics is devoted to studying matrices and polynomials, and even
today a lot of effort is going on to extend our knowledge about them.

This short introduction is an effort to briefly present the essence of hybrid symbolic-
numeric computational methods, and is in no way comprehensive or detailed. We invite
the reader to consult [4] to get a better understanding of hybrid symbolic-numeric com-
putation. Since each individual chapter of this thesis comes with its own introduction,
here we only give an overview and the general relations between these chapters.

The exact dates for the invention or discovery of computational mathematics is not
known, but records from Babylonian/Sumerian times, such as clay tablets (date from
1800 to 1600 BC), are known [3]. Although the terms “symbolic” and “numeric” are
fairly new, the methods have been used since ancient times.

Babylonians knew 1.414222 is an approximation of
√

2. It is also known that Baby-
lonian used to compute the area of a circle by computing 3 times the square of the
radius. We also have evidence which shows that Babylonian had an approximation of π
as 3.125 (it was not presented in decimals. For more detail, see [3, P. 35]). There are
many more examples of approximations from ancient mathematics. Rather than giving
a list of such computational methods, our point is that, non-exact computation is being
used since ancient times. In recent years all these methods are considered as part of
numerical methods.

The oldest well-known computational method which is still in use is probably the
Euclidean algorithm [2]. The method was first introduced by Euclid in his treatise,
Elements. Indeed at the time no one called it the Euclidean algorithm, but the method
was being used since then. Surprisingly, this method is still being used extensively
for finding the greatest common divisor (GCD) of two integers (or more generally of
two polynomials with coefficients in over a field). Such computation which is exact
in the sense of both result and the intermediate steps, are considered as a part of
symbolic computation these days. Symbolic computation is the study of mathematical
objects and structures containing symbols. One should note that such symbols can be
of different type. For example, in an equation, variables and parameters are symbols.
While variables are the ones which are typically solved for, parameters are typically
carried in the computation and may appear in the solutions. See Chapter 5 for more
detail.
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Introduction 5

By development of mathematics, objects and structures became more formally un-
derstood. Eventually the two mentioned computational approaches, exact and approxi-
mate, became more formal with their own tools and subjects of interests. In the recent
decades a lot of efforts have been made to develop each of these independently into
a modern language. Today we know these approaches (respectively) as symbolic and
numeric computation.

There are mathematical objects of which both symbolic and numeric computational
methods are applicable to. However, there are areas such as finite fields computation
which can not be approached with numerical computation in an straightforward way.
Although both types of methods are available for specific type of computations, goals are
different for numeric and symbolic computations. Here we try to present some properties
of both approaches.

Assume we need to work with
√

2, the second root of 2. In symbolic computation√
2 is considered as a number which is a root of polynomial x2−2 and will be treated in

computations as a symbol with its own properties. In the numerical approach, we do not
work with such symbol, rather than that we work with its approximation

√
2 ≈ 1.4142.

Note that the number of decimal points considered is up to us and we may consider
more digits.

The difference between symbolic and numeric computations is not limited to how
they treat numbers (objects). The main concern in symbolic computation is complexity
(cost) of an algorithm. The complexity is also important in numeric computation, but
it is not the first priority. The main concern in numeric computation is error. These
errors may naturally arise in the input or in the process of our algorithm. There are two
major notions in numeric computation which are the first priorities and are relevant to
errors. We briefly talk about condition of a problem and stability of an algorithm here
and we invite the reader to consult [1] for more details.

Instead of formal definitions of condition number and stability of an algorithm, we
present examples which gives the ideas. Assume f(x) = (x − 1)(x − 2) = x2 − 3x + 2
and g(x) = x− 2. It is clear that gcd(f(x), g(x)) = x− 2. Now assume we have a small
perturbation in the constant term of g and we get g(x) = x − 2.0000001. The error in
the input causes that gcd(f(x), g(x)) = 1. Hence a small error in input leads to a trivial
GCD while we expect a nontrivial one. Note that the trivial GCD has nothing to do with
the algorithm we use for finding the GCD . This is a property of the problem, which is
finding the GCD . Condition of a problem measures how the result is changed for small
errors in the input. In case that the error in the result is big, similar to what we detected
in the GCD problem, we call the problem ill-conditioned (in fact, the GCD problem is even
ill-posed, that is, it fails to be a well-posed problem, which must have a unique solution
which depends continuously on the input. Here the GCD is discontinuous in the input).

Now consider the polynomial f(x) = ax2 + bx+ c. The roots of f are given by

x1 = −b+
√
b2 − 4ac

2a , x2 = −b−
√
b2 − 4ac

2a (0.0.1)

In case that b � 4ac, |b| ≈
√
b2 − 4ac. This may lead to a huge relative error for

computing x1(or x2 depending on b), which is caused by round off errors. However, these
errors are caused by our method for finding the roots. We could avoid it by changing our
method and use the fact that x1x2 = c

a . This way we can avoid subtraction of very close
numbers. The former algorithm for finding the roots of f (using formulas in (0.0.1))
is called unstable since it produces large errors in the result. A careful definition of
stability depends on meaning of “large error”.

Both of the above notions are very important in numerical methods. While designing
stable algorithms is the responsibility of numerical analysts, modelers are in charge
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of making well-conditioned problems. However, that is just in theory, in practice a
numerical analyst usually tries to replace ill-posed problems with a similar problem
which is well-posed. One can name the approximate GCD problem as such effort which
is studied in Chapters 2 and 3.

In general the main concern in numerical computation is stability and condition
number. While we also care about complexity, our first priority is to avoid producing
large errors in our computations.

Although symbolic and numeric approaches are in general considered independent,
one can combine methods from one with another. This mixed approach is getting more
popular these days and is called hybrid computation. The development of such methods
are due to the demands of efficiency and reliability in scientific computing.

As it was mentioned at the beginning, in this thesis we are concerned with polyno-
mials, matrices, and polynomial matrices which are isomorphic to matrix polynomials.
These play a fundamental role in computation for modeling and design and control.

Particularly important topics are

• rootfinding: for design, one wants to have a value of an input that produces a
desired output. This can be phrased as a rootfinding problem, p(x)−y = 0, where
y is the desired value of the polynomial p(x). There are many other applications
of rootfinding which we do not state here.

• eigenvalues: many problems can be modeled using linear transformations which
can be written as matrices. Informally, an eigenvalue λ is a scalar such that, a
matrixA acting on a vector ~v is the same as the scalar λ acting on ~v. Geometrically,
λ can be seen as an stretching factor for the action of A on specific vectors.

• polynomial eigenvalues: for P (x) a matrix polynomial, find λ such that P (λ) is
singular, which is equivalent to finding λ and ~v such that P (λ)~v is the zero vector.

Rootfinding and eigenvalues are connected by companion matrices, companion pen-
cils, and linearizations (see Chapter 5 for more details).

Given the multi-thousand year history of computational mathematics, it is surprising
that there are new things to be said. The new things in this thesis appear in Chap-
ters 2, 3, 4, and 5.

Chapter 1 deals with the fundamental notions of conditioning and backward error
(and a little bit with complexity). Chapter 1 is not novel, per se, but is a novel explication
of conditioning and backward error that underpins the rest of the thesis.

Chapters 2 and 3 look at new basis-specific algorithms for GCD, a fundamental poly-
nomial operation that we attack in part via matrices. Changing basis from Bernstein or
Lagrange is ill-conditioned, so we do not want to do that and instead we want to stay
working in the given basis.

Chapter 4 expands the scope into matrix polynomials and looks at tools for a new
linearization (that allows arbitrary bases).

Chapter 5 expands the scope again and investigates the case when matrices depend
on a parameter and gives a new complexity result in the case all the variables appear
linearly and that there are three or fewer parameters.

Chapter 6 is devoted to the concluding remarks and future work.
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Chapter 1

The Runge Example for
Interpolation and Wilkinson’s
Examples for Rootfinding

The function y = 1
1+25x2 on −1 ≤ x ≤ 1, called the Runge example1, is used in many

numerical analysis textbooks to show why high-degree polynomial interpolation using
equally-spaced nodes is bad: see for instance any of [16], [15], [4], [20], [1], [8], [11],
[19], [12] and [17]. Some textbooks, even the iconic [14], do not emphasize the crucial
qualification “using equally-spaced nodes”; or, perhaps, many readers skip over that2

or don’t retain it for other reasons, leaving only the false impression that high-degree
interpolation is always bad.

Similarly, Wilkinson’s first example polynomial 3

p20(x) =
20∏
k=1

(x− k) (1.0.1)

is widely discussed as an example—maybe the canonical example—of polynomial perfidy,
this time for rootfinding, not interpolation. As we will discuss below, both examples are
better explained using the theory of conditioning, as developed for instance by Farouki
and Rajan [10]. One considers a polynomial

p(x) =
n∑
k=0

ckφk(x) (1.0.2)

expressed in some polynomial basis {φk(x)}nk=0 for polynomials of degree at most n.
The usual monomial basis φk(x) = xk is the most common, but by no means best
for all purposes. Farouki and Goodman [9] point out that the Bernstein basis φk(x) =(n
k

)
xk(1−x)n−k has the best conditioning in general, out of all polynomial bases satisfying

1Carl David Tolmé Runge (30 August 1856−3 January 1927) was a German mathematician, physicist,
and spectroscopist.

2“tl;dr” as the kids say nowadays.
3James Hardy Wilkinson. Born: 27 September 1919 in Strood, Kent, England- Died: 5 October

1986 in Teddington, Middlesex, England. He worked with Turing in 1946. He won the Chauvenet Prize
in 1970 for mathematical exposition for his paper “The Perfidious Polynomial” [22]. His book, “The
Algebraic Eigenvalue Problem” was foundational for the field of numerical linear algebra.

8
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φk(x) ≥ 0 on the interval 0 ≤ x ≤ 1. Surprisingly, Corless and Watt [7] show Lagrange
bases can be better; see also J. M. Carnicer and Y. Khiar [5].

We now discuss Farouki and Rajan’s formulation. The idea is that one investigates
the effects of small relative changes to the coefficients ck, such as might arise from data
error or perhaps approximation or computational error. The model is

p(x) + ∆p(x) =
n∑
k=0

ck(1 + δk)φk(x) (1.0.3)

where each |δk| ≤ ε, usually taken to be small. For instance, if ε = 0.005, each coefficient
can be in error by no more than 0.5%. In particular, zero coefficients are not allowed to
be disturbed at all.

Then,

|∆p(x)| =
∣∣∣∣∣
n∑
k=0

ck(1 + δk)φk(x)−
n∑
k=0

ckφk(x)
∣∣∣∣∣ (1.0.4)

=
∣∣∣∣∣
n∑
k=0

ckδkφk(x)
∣∣∣∣∣ . (1.0.5)

By the triangle inequality, this is

≤
n∑
k=0
|ckδkφk(x)| (1.0.6)

≤
(

n∑
k=0
|ck||φk(x)|

)
max

0≤k≤n
|δk| (1.0.7)

≤ B(x) · ε (1.0.8)

where
B(x) =

n∑
k=0
|ck||φk(x)| (1.0.9)

serves, for each x, as a condition number for polynomial evaluation.
This is to be contrasted with the definition of “evaluation condition number” that arises
when thinking of error ∆x in the input: If x changes to x+ ∆x, then y = f(x) changes
to y + ∆y where calculus tells us that

∆y
y

.= xf ′(x)
f(x) ·

∆x
x

. (1.0.10)

Here C = xf ′(x)/f(x) is the condition number, and instead of B(x); but B and C
measure the responses to different types of error (coefficients and input). We look at B
here.

Remark 1.1. There are many theorems4 in numerical analysis that say, effectively, that
when evaluating equation (1.0.2) in IEEE floating-point arithmetic, the computed result
is exactly of the form equation (1.0.3) for |δk| < Ku where K is a modest constant and

4See for instance those cited in Chapter 2 of [6], or equation (1.0.2) of [17] which gives a backward
error result for an inner product; in that case the modest “constant” K is proportional to the dimension
of the vector. See [18] for better, probabilistic error bounds.
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u is the unit roundoff — in double precision, 2−53 .= 10−16. This is one motivation to
study the effects of such perturbations, but there are others.

1.1 The Runge Example
If the equally-spaced nodes xk = −1 + 2k/n, k = 0, . . . , n, are used to interpolate a
function with a single polynomial of degree at most n, and the basis functions

`k(x) =

n∏
j=0
j 6=k

(x− xj)

n∏
j=0
j 6=k

(xk − xj)
(1.1.1)

which are the Lagrange interpolation basis functions, are used, then the coefficients are
the values for the Runge function:

yk = f(xk) = 1
1 + 25x2

k

. (1.1.2)

Then the condition number of the interpolant is,

B(x) =
n∑
k=0

1
1 + 25x2

k

|`k(x)| . (1.1.3)

Choosing n = 5, 8, 13, 21, 34, 55, and 89, we plot B(x) on a logarithmic vertical scale for
−1 ≤ x ≤ 1. The result is in Figure 1.1. The Maple code used to generate that figure
is as follows (similar code using MATLAB can be provided, but the Maple code below
avoids numerical issues in the construction of B(x) by using exact rational arithmetic).
We see that the maximum values for B(x) occur near x = ±1, and that for any n there
is an interval over which B(x) is small.
Digits := 15:
Ns := [seq( combinat [ fibonacci ](k), k =5..11) ]:
f := x -> 1/(1 + 25*x^2):

for N in Ns do
tau := [seq (-1 + 2*k/N, k=0..N)]:
rho := [seq(y[k], k=0..N)]:

p := CurveFitting [ PolynomialInterpolation ](tau , rho , z,
form= Lagrange ):

B := map(abs , p):
BRunge := eval(B, [seq(y[k] = f(tau[k+1]) , k=0..N)]):

pl[N] := plots[ logplot ]( BRunge , z= -1..1 , color=black):

end do:

plots[ display ]([ seq(pl[N], N in Ns)]);
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Figure 1.1: The condition number of the Runge example on equally-spaced nodes
with degrees n = 5, 8, 13, 21, 34, 55, 89.

This experiment well illustrates that interpolation of the Runge example function on
equally-spaced nodes is a bad idea. But, really, it is the nodes that are bad.

“Generations of textbooks have warned readers that polynomial interpola-
tion is dangerous. In fact, if the interpolation points are clustered and a
stable algorithm is used, it is bulletproof.”

— L.N. Trefethen, [21]

For a full explanation of the Runge phenomenon, see Chapter 13 of [21].

1.1.1 The Runge Example with Chebyshev Nodes
If instead we use xk = cos(πk/n), replacing the line

tau := [seq (-1 + 2*k/N, k=0..N)];

with
tau := [seq(evalf [2* Digits ]( cos(Pi*k/N)), k=0..N)];

then B(x) climbs no higher than about 2. Indeed we can replace plots[logplot] by
just plot. See Figure 1.2.
This is an improvement, for n = 89, of about a factor of 1022. For a detailed exposition
of why this works, and when, see [6] and the Chebfun project at www.chebfun.org.

1.1.2 Concluding remarks on the Runge example
An instructor of numerical analysis has to walk a tightrope: the students need to be
taught caution (maybe bordering on paranoia) but they also need to learn when to trust
their results. Learning to assess the sensitivity of their expression (as programmed) to
realistic changes in data values is an important objective. The Runge example is a very
clear case where these ideas can be usefully and thoroughly explored.
One can go further and replace B(x) by its upper bound in terms of the Lebesgue
function B(x) ≤ L(x)||c||∞ where L(x) = ∑n

k=0 |φk(x)|k. This more general analysis is
useful, as in [21], but loses in our opinion the chance to make a special retrospective
diagnostic of the problem at hand. Moreover, there are cases where B(x)� L(x)||c||∞
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Figure 1.2: The Runge example with Chebyshev nodes with degrees
n = 5, 8, 13, 21, 34, 55, 89.

and this overestimation could lead to the wrong conclusion.
The bad behavior of the Runge example shows up in other ways, notably in the ill-
conditioning of the Vandermonde matrix on those nodes. But the Vandermonde matrix
is ill-conditioned on Chebyshev nodes, too [3]; so that can’t be the whole story. The
explanation offered here seems more apt.

1.2 Wilkinson’s First Polynomial
Let us now consider rootfinding. Suppose r is a simple zero of p(x): That is, p′(x) 6= 0
and

0 = p(r) =
n∑
k=0

ckφk(r) . (1.2.1)

Suppose r+ ∆r is the corresponding zero of p+ ∆p. This really only makes sense if ∆p
is sufficiently small. Otherwise, the roots get mixed up. Then

0 = (p+ ∆p)(r + ∆r) = p(r + ∆r) + ∆p(r + ∆r) (1.2.2)
≈ p(r) + p′(r)∆r + ∆p(r) +O(∆2) (1.2.3)

to first order; since p(r) = 0 also we have

p′(r)∆r ≈ −∆p(r) (1.2.4)

or
|∆r| ≈

∣∣∣∣−∆p(r)
p′(r)

∣∣∣∣ ≤ B(r) · ε
|p′(r)| (1.2.5)

where
B(r) =

n∑
k=0
|ck||φk(r)| (1.2.6)

as before is the condition number. For nonzero roots, the number

A(r) =
∣∣∣∣rB(r)
p′(r)

∣∣∣∣ (1.2.7)
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has
∣∣∣∆rr ∣∣∣ ≤ A(r)ε giving a kind of mixed relative/absolute conditioning. This analysis

can be made more rigorous by using “pseudozeros” as follows. Define, for given wk ≥ 0
not all zero,

Λε(p) :=
{
z : ∃∆ck with |∆ck| ≤ wkε and

n∑
k=0

(ck + ∆ck)φk(z) = 0
}
. (1.2.8)

Normally, we take wk = |ck| in which case we may write ∆ck = ckδk.
This is the set of all complex numbers that are zeros of “nearby” polynomials—nearby
in the sense that we allow the coefficients to change. This definition is inconvenient to
work with. Luckily, there is a useful theorem, which can be found, for instance, in [6,
Theorem 5.3]; also see [13] and [2].

Theorem 1.2. Given weights wk ≥ 0, not all zero, and a basis φk(z), define the weighted
ε-pseudozero set of p(z) as in equation (1.2.8). Suppose also that

δp(z) =
n∑
k=0

∆ckφk(z).

Moreover, let

B(λ) =
n∑
k=0

wk|φk(λ)|.

Then the pseudozero set of p(z) may be alternatively characterized as

Λε(p) = {z : |p(z)| ≤ B(z) · ε} =
{
z :

∣∣∣∣zp(z)p′(z)

∣∣∣∣ ≤ ∣∣∣∣zB(z)
p′(z)

∣∣∣∣ε} (1.2.9)

This is again a condition number; the same one, as in equation (1.0.9) if wk = |ck|.
Wilkinson’s first polynomial is, with N = 20,

WN (x) =
N∏
k=1

(x− k) (1.2.10)

= (x− 1)(x− 2)(x− 3) · · · (x−N) . (1.2.11)

In this form, it is “bulletproof”. However, if we are so foolish as to expand it into its
expression in the monomial basis, namely,

WN (x) = xN − 1
2N(N + 1)xN−1 + · · ·+ (−1)N ·N ! (1.2.12)

(for N = 20 this is x20 − 210x19 + · · ·+ (20!)) and in this basis, φk = xk, the condition
number for evaluation

BN (x) = |x|N + 1
2N(N + 1)|x|N−1 + · · ·+ |N !| . (1.2.13)

is very large. See Figure 1.3.
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Figure 1.3: The condition number of Wilkinson’s first polynomial (N = 20).

When we plot the condition number for root finding, A(r) =
∣∣∣ rBN (r)
W ′N (r)

∣∣∣, we find that
for N = 20 (Wilkinson’s original choice), the maximum value occurs at r = 16 and
rB20(r)/|W ′20(r)| ≈ 1016. See Figure 1.4.

Figure 1.4: The condition number for rootfinding.

Working in single precision would give no figures of accuracy; double precision (u ≈
10−16) also does not guarantee any accuracy. For N = 30 we find rB30(r)

|W ′30(r)| > 1021

sometimes; for N = 40 it’s 1028. Working with the monomial basis for this polynomial
is surprisingly difficult. Wilkinson himself was surprised; the polynomial was intended
to be a simple test problem for his program for the ACE computer. His investigations
led to the modern theory of conditioning [22].

However, there’s something a little unfair about the scaling: the interval 0 ≤ x ≤ 20
when taken to the twentieth power covers quite a range of values. One wonders if matters
can be improved by a simple change of variable.

1.2.1 The Scaled Wilkinson Polynomial
If we move the roots 1, 2, 3, . . . , 20 to the roots −1 + 2k/21, k = 1 . . . 30, then they be-
come symmetrically placed in −1 < x < 1, and this improves matters quite dramatically,
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as we can see in Figure 1.5.

Figure 1.5: The condition number for the scaled Wilkinson polynomial, A(r) =∣∣∣ rBN (r)
W ′

N
(r)

∣∣∣.
The condition number 1013 becomes just 103, and we have to go to N = 60 to get

condition numbers as high as 1013. The scaling seems to matter. However, nearly all
of the improvement comes from the symmetry; WN will be even if N is even, and odd
if N is odd, and this means half the coefficients are zero and therefore not subject to
(relative) perturbation.
If instead we scale to the interval [0, 2] we have a different story: for roots 2− 2k/21 the
condition number B(x) reaches nearly the same heights as it did on 0 ≤ x ≤ 20. See
Figure 1.6. Similarly if we use [0, 1]. Thus we conclude that symmetry matters.

Figure 1.6: The condition number of scaled Wilkinson polynomial.

See Figure 1.7 for the pseudozeros of WN (x), where the contour levels are 10−14 and
10−18. The roots are visibly changed by extremely tiny perturbations.
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Figure 1.7: The pseudozeros of WN (x). The contour levels are 10−14 and 10−18. The
interior is blacked out because contours are difficult to draw at such sizes, in floating

point arithmetic.

1.2.2 Wilkinson’s Second Example Polynomial
The story of Wilkinson’s second example is somehow more strange. The polynomial is

C20(x) =
20∏
k=1

(x− 2−k) (1.2.14)

and the roots are 1/2, 1/4, 1/8, 1/16, . . . , 1/220. Wilkinson expected that the clustering of
roots near zero would cause difficulty for his rootfinder, once the polynomial was ex-
panded:

C20(x) = x20 −
( 20∑
k=1

1
2k

)
x19 + · · ·+

20∏
k=1

2−k . (1.2.15)

But his program had no difficulty at all! This is because the monomial basis is, in fact,
quite well-conditioned near x = 0, and the condition number for this polynomial can be
seen in Figure 1.8 on 0 ≤ x ≤ 1.

Figure 1.8: The condition number for Wilkinson’s second example polynomial (C20).
In contrast to his first test problem, it is well-conditioned.



The Runge and Wilkinson’s Example 17

In contrast, the condition number for evaluation using the Lagrange basis on equally-
spaced nodes in [0, 1], plus either x0 = 0 or x0 = 1, is horrible: for N = 20 it is already
1048, see Figure 1.9.

Figure 1.9: A portion of the condition number of C20 in the Lagrange basis on the
nodes k/20, 0 ≤ k ≤ 20.

This computation conforms to Wilkinson’s intuition that things can go wrong if
roots are clustered. Also we can see the pseudozeros of C20 in Figure 1.10. The required
perturbations needed to make visible changes are quite large: these roots are not very
sensitive to changes in the monomial basis coefficients.

Figure 1.10: The pseudozeros of C20. The contour levels are 10−1, 10−2, 10−3, 10−4,
10−6 and 10−8.

Another way to see this is to look at a problem where the roots are clustered at 1,
not at 0:

S20 =
N∏
k=1

(
x− (1− 2−k)

)
=

N∑
k=0

skx
k (1.2.16)

In this case the condition number is presented in Figure 1.11, and is huge. This polyno-
mial is very sensitive to changes in the monomial basis coefficients.
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Figure 1.11: The condition number of S20.

The condition number for evaluation using a Lagrange basis for S20 is shown in
Figure 1.12 (zoomed in for emphasis). Here the Lagrange basis is also very sensitive.

Figure 1.12: The condition number of S20 in a Lagrange basis.

Consider also the pseudozeros of S20 in Figure 1.13. The contour levels in Figure
1.13 are (from the outside in) 10−4, 10−6, 10−8, 10−10 and 10−15. In order to see a better
view of the pseudozeros, let’s consider the first contour, 10−4, which is the biggest curve
in Figure 1.13. We know that

S20 + ∆S =
20∑
k=0

sk(1 + δk)xk (1.2.17)

where ∆S = s0δ0 + s1δ1x+ s2δ2x
2 + · · ·+ s20δ20x

20. Now if we choose a point between
contour levels 10−4 and 10−6, for example p = 3 − 1.5i, we can see that p is a zero
of some S20 + ∆S(x) with all coefficients of ∆S that have |δk| < 10−4. These are all
small relative perturbations, that means everything inside the contour level 10−4 is a
zero of a polynomial that is reasonably close to S20. This is somehow backward error.
So everything inside the contour level 10−4 is a zero of a polynomial closer to S20 (in
this sense) than 10−4. Everything inside the contour level 10−6 is a zero of a polynomial
closer that 10−6 to S20, and so on.
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Figure 1.13: The pseudozeros of S20. The contour levels are 10−4, 10−6, 10−8, 10−10

and 10−15.

Notice that the innermost contour, corresponding to 10−15, is visible to the eye. This
means that trivial (unit roundoff level in double precision) changes in the coefficients
make visible changes in the root.

1.2.3 Concluding remarks on the Wilkinson rootfinding examples
The first example polynomial, ∏20

k=1(x − k), is nearly universally known as a surpris-
ing example. Yet there are very few places where one sees an elementary exposition of
Wilkinson’s theory of conditioning using this example, which is itself surprising because
the theory was essentially born from this example. We have here illustrated Wilkinson’s
theory, as refined by Farouki and Rajan, for the students.

“For accidental historical reasons therefore backward error analysis is always
introduced in connexion with matrix problems. In my opinion the ideas
involved are much more readily absorbed if they are presented in connex-
ion with polynomial equations. Perhaps the fairest comment would be that
polynomial equations narrowly missed serving once again in their historical
didactic role and rounding error analysis would have developed in a more
satisfactory way if they had not.”

— James H. Wilkinson, [22]

1.3 A final word for the instructor
Backward error analysis is difficult at first for some kinds of students. The conceptual
problem is that people are trained to think of mathematical problems as being exact;
some indeed are, but many come from physical situations and are only models, with
uncertain data. The success of BEA for floating point is to put rounding errors on the
same footing as data or modeling errors, which have to be studied anyway. This is true
even if the equations are solved exactly, by using computer algebra! The conditioning
theory for polynomials discussed here allow this to be done quite flexibly, and are useful
part of the analyst’s repertoire. Students need to know this.
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Chapter 2

Approximate GCD in a Bernstein
basis

2.1 Introduction
In general, finding the Greatest Common Divisor (GCD) of two exactly-known univariate
polynomials is a well understood problem. However, it is also known that the GCD
problem for noisy polynomials (polynomials with errors in their coefficients) is an ill-
posed problem. More precisely, a small error in coefficients of polynomials P and Q
with a non-trivial GCD generically leads to a trivial GCD. As an example of such situation,
suppose P and Q are non constant polynomials such that P |Q (P divides Q), then
gcd(P,Q) = P . Now for any ε > 0, gcd(P,Q+ε) is a constant, since if gcd(P,Q+ε) = g,
then g|Q+ ε−Q = ε. This clearly shows that the GCD problem is an ill-posed one. We
note that the choice of basis makes no difference to this difficulty.

At this point we have a good motivation to define something which can play a similar
role to the GCD of two given polynomials which is instead well-conditioned. The idea is to
define an approximate GCD [5]. There are various definitions for approximate GCD which
are used by different authors. All these definitions respect “closeness” and “divisibility”
in some sense.

In this paper an approximate GCD of a pair of polynomials P and Q is the exact GCD
of a corresponding pair of polynomials P̃ and Q̃ where P and P̃ are “close” with respect
to a specific metric, and similarly for Q and Q̃ (see Definition 2.1).

Finding the GCD of two given polynomials is an elementary operation needed for many
algebraic computations. Although in most applications the polynomials are given in the
power basis, there are cases where the input is given in other bases such as the Bernstein
basis. One important example of such a problem is finding intersection points of Bézier
curves, which is usually presented in a Bernstein basis. For computing the intersections
of Bézier curves and surfaces the Bernstein resultant and GCD in the Bernstein basis
comes in handy (see [3]).

One way to deal with polynomials in Bernstein bases is to convert them into the
power basis. In practice poor stability of conversion from one basis to another and poor
conditioning of the power basis essentially cancel the benefit one might get by using
conversion to the simpler basis (see [10]).

The Bernstein basis is an interesting one for various algebraic computations, for
instance, see [19], [21]. There are many interesting results in approximate GCD including
but not limited to [1], [5], [2], [20], [26], [8], [17], [18] and [16]. In [27], the author has
introduced a modification of the algorithm given by Corless, Gianni, Trager and Watt
in [7], to compute the approximate GCD in the power basis.

22
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Winkler and Yang in [25] give an estimate of the degree of an approximate GCD
of two polynomials in a Bernstein basis. Their approach is based on computations
using resultant matrices. More precisely, they use the singular value decomposition of
Sylvester and Bézout resultant matrices. We do not follow the approach of Winkler and
Yang here, because they essentially convert to a power basis. Owing to the difference of
results we do not give a comparison of our algorithm with the results of [25].

Our approach is mainly to follow the ideas introduced by Victor Y. Pan in [21],
working in the power basis. In distinction to the other known algorithms for approximate
GCD, Pan’s method does not algebraically compute a degree for an approximate GCD first.
Instead it works in a reverse way. In [21] the author assumes the roots of polynomials P
and Q are given as inputs. Having the roots in hand the algorithm generates a bipartite
graph where one set of nodes contains the roots of P and the other contains the roots of
Q. The criterion for defining the set of edges is based on Euclidean distances of roots.
When the graph is defined completely, a matching algorithm will be applied. Using the
obtained matching, a polynomial D with roots as averages of paired close roots will be
produced which is considered to be an approximate GCD. The last step is to use the roots
of D to replace the corresponding roots in P and Q to get P̃ and Q̃ as close polynomials.

In this paper we introduce an algorithm for computing approximate GCD in the
Bernstein basis which relies on the above idea. For us the inputs are the coefficient
vectors of P and Q. We use the correspondence between the roots of a polynomial f in
a Bernstein basis and generalized eigenvalues of a corresponding matrix pencil (Af , Bf ).
This idea for finding the roots of f was first used in [14]. Then by finding the generalized
eigenvalues we get the roots of P and Q (see [14, Section 2.3]). Using the roots and
similar methods to [21], we form a bipartite graph and then we apply the maximum
matching algorithm by Hopcroft and Karp [13] to get a maximum matching. Having
the matching, the algorithm forms a polynomial which is considered as an approximate
GCD of P andQ. The last step is to construct P̃ and Q̃ for which we apply a generalization
of the method used in [6, Example 6.10] (see Section 3.6).

Note that our algorithm, like that of Victor Y. Pan, does almost the reverse of the
well-known algorithms for approximate GCD. Usually the algebraic methods do not try
to find the roots. In [21] Pan assumes the polynomials are represented by their roots.
In our case we do not start with this assumption. Instead, by computing the roots we
can then apply Pan’s method.

The second section of this paper is provided some background for concrete com-
putations with polynomials in Bernstein bases which is needed for our purposes. The
third section present a method to construct a corresponding pair of polynomials to a
given pair (P,Q). More precisely, this section generalizes the method mentioned in [6,
Example 6.10] (which is introduced for power basis) in the Bernstein basis. The fourth
section introduces a new algorithm for finding an approximate GCD. In the final section
we present numerical results based on our method.

2.2 Preliminaries
The Bernstein polynomials on the interval 0 ≤ x ≤ 1 are defined as

Bn
k (x) =

(
n

k

)
xk(1− x)n−k (2.2.1)
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for k = 0, . . . , n, where the binomial coefficient is as usual(
n

k

)
= n!
k!(n− k)! . (2.2.2)

More generally, in the interval a ≤ x ≤ b (where a < b) we define

Bn
a,b,k(x) :=

(
n

k

)
(x− a)k(b− x)n−k

(b− a)n . (2.2.3)

When there is no risk of confusion we may simply write Bn
k ’s for the 0 ≤ x ≤ 1 case.

We suppose henceforth that P (x) and Q(x) are given in a Bernstein basis.
There are various definitions for approximate GCD. The main idea behind all of them

is to find “interesting” polynomials P̃ and Q̃ close to P and Q and use gcd(P̃ , Q̃) as
the approximate GCD of P and Q. However, there are multiple ways of defining both
“interest” and “closeness”. To be more formal, consider the following weighted norm,
for a vector v

‖v‖α,r =
(

n∑
k=1
|αkvk|r

)1/r

(2.2.4)

for a given weight vector α 6= 0 and a positive integer r or ∞. The map ρ(u, v) =
‖u− v‖α,r is a metric and we use this metric to compare the coefficient vectors of P and
Q.

In this paper we define an approximate GCD using the above metric or indeed any
fixed semimetric. More precisely, we define the pseudogcd set for the pair P and Q as

Aρ =
{
g(x) | ∃P̃ , Q̃ with ρ(P, P̃ ) ≤ σ, ρ(Q, Q̃) ≤ σ and g(x) = gcd(P̃ , Q̃)

}
.

Let
d = max

g∈Aρ
deg(g(x)) . (2.2.5)

Definition 2.1. An approximate GCD for P,Q, which is denoted by agcdσρ (P,Q), is
G(x) ∈ Aρ where deg(G) = d and ρ(P, P̃ ) and ρ(Q, Q̃) are simultaneously minimal in
some sense. For definiteness, we suppose that the maximum of these two quantities is
minimized.

In Section 2.2.3 we will define another (semi) metric, that uses roots. In Section 2.4
we will see that the parameter σ helps us to find approximate polynomials such that
the common roots of P̃ and Q̃ have at most distance (for a specific metric) σ to the
associated roots of P and Q (see Section 2.4 for more details).

2.2.1 Finding roots of a polynomial in a Bernstein basis
In this section we recount the numerically stable method introduced by Guðbjörn
Jónsson for finding roots of a given polynomial in a Bernstein basis. We only state the
method without discussing in detail its stability and we refer the reader to [14] and [15]
for more details.

Consider a polynomial

P (x) =
n∑
i=0

aiB
n
i (x) (2.2.6)

in a Bernstein basis where the ai’s are real scalars. We want to find the roots of P (x) by
constructing its companion pencil. In [14] Jónsson showed that this problem is equivalent
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to solving the following generalized eigenvalue problem. That is, the roots of P (x) are
the generalized eigenvalues of the corresponding companion pencil to the pair

AP =



−an−1 −an−2 · · · −a1 −a0

1 0

1 0

. . .
. . .

1 0


, BP =



−an−1 + an

n −an−2 · · · −a1 −a0

1 2
n−1

1 3
n−2

. . .
. . .

1 n
1


.

That is, P (x) = det(xBP −AP ). In [14], the author showed that the above method is
numerically stable.

Theorem 2.2. [14, Section 2.3] Assume P (x),AP and BP are defined as above. z is
a root of P (x) if and only if it is a generalized eigenvalue for the pair (AP ,BP ).

Proof. We show

P (z) = 0 ⇔ (zBP −AP )


Bn
n−1(z)( 1

1−z )
...

Bn
1 (z)( 1

1−z )
Bn

0 (z)( 1
1−z )

 = 0 . (2.2.7)

We will show that all the entries of

(zBP −AP )


Bn
n−1(z)( 1

1−z )
...

Bn
1 (z)( 1

1−z )
Bn

0 (z)( 1
1−z )

 (2.2.8)

are zero except for possibly the first entry:

(z − 1)Bn
1 (z)( 1

z − 1) + nzBn
0 (z)( 1

z − 1) (2.2.9)

since Bn
1 (z) = nz(1− z)n−1 and Bn

0 (z) = z0(1− z)n if n ≥ 1, so equation (2.2.9) can be
written as

− nz(1− z)n−1 + nz
(1− z)n
(1− z) = −nz(1− z)n−1 + nz(1− z)n−1 = 0 . (2.2.10)

Now for k-th entry:

(z − 1)
(1− z)B

n
n−k(z) + k + 1

n− k
z

(1− z)B
n
n−k−1(z) (2.2.11)
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Again we can replace Bn
n−k(z) and Bn

n−k−1(z) by their definitions. We find that equation
(2.2.11) can be written as

(z − 1)
(1− z)

(
n

n− k

)
zn−k(1−z)n−n+k+ k + 1

n− k
z

(1− z)

(
n

n− (k + 1)

)
zn−k−1(1−z)n−(n−k−1)

= −
(

n

n− k

)
zn−k(1− z)k + k + 1

n− k
n!

(n− (k + 1))!(k + 1)!z
n−k(1− z)k

= n!
(n− k)!k!z

n−k(1− z)k + n!
(n− k)(n− (k + 1))!k!z

n−k(1− z)k = 0 . (2.2.12)

Finally, the first entry of equation (2.2.8) is

zan
n(1− z)B

n
n−1(z) + an−1(z − 1)

(1− z) Bn
n−1(z) +

n−2∑
i=0

aiB
n
n−1(z) (2.2.13)

In order to simplify the equation (2.2.13), we use the definition of Bn
n−1(z) as follows:

zan
n(1− z)B

n
n−1(z) = z

n

(
n

n− 1

)
zn−1 1− z

1− z = znan
n

(
n

n− 1

)
= anB

n
n(z) (2.2.14)

So the equation (2.2.13) can be written as:

anB
n
n(z) + (an−1)Bn

n−1(z) +
n−2∑
i=0

aiB
n
n−1(z) (2.2.15)

This is just P (z) and so

(zBP −AP )


Bn
n−1(z)( 1

1−z )
...

Bn
1 (z)( 1

1−z )
Bn

0 (z)( 1
1−z )

 =


0
...
0
0

 (2.2.16)

if and only if P (z) = 0.

This pencil (or rather its transpose) has been implemented in Maple since 2004.

Example 2.1. Suppose P (x) is given by its list of coefficients

[42.336, 23.058, 11.730, 5.377, 2.024] (2.2.17)

Then by using Theorem 2.2, we can find the roots of P (x) by finding the eigenvalues of
its corresponding companion pencil namely:

AP :=


−5.377 −11.73 −23.058 −42.336

1 0 0 0
0 1 0 0
0 0 1 0

 (2.2.18)
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and

BP :=


−4.871 −11.73 −23.058 −42.336

1 .6666666666 0 0
0 1 1.5 0
0 0 1 4

 (2.2.19)

Now if we solve the generalized eigenvalue problem using Maple for pair of (AP ,BP ) we
get: [

5.59999999999989, 3.00000000000002, 2.1, 1.2
]

(2.2.20)
Computing residuals, we have exactly1 P (1.2) = 0, P (2.1) = 0, P (3) = 0, and P (5.6) = 0
using de Casteljau’s algorithm (see Section 2.2.4).

2.2.2 Clustering the roots
In this brief section we discuss the problem of having multiplicities greater than 1 for
roots of our polynomials. Since we are dealing with approximate roots, for an specific
root r of multiplicity m, we get r1, . . . , rm where |r− ri| ≤ σ for σ ≥ 0. Our goal in this
section is to recognize the cluster, {r1, . . . , rm}, for a root r as r̃m where |r̃ − r| ≤ σ in
a constructive way.

Assume a polynomial f is given by its roots as f(x) = ∏n
i=1(x− ri). Our goal is to

write f(x) = ∏s
i=1(x− ti)di such that (x− ti) - f(x)/(x− ti)di . In other words, di’s are

multiplicities of ti’s. In order to do so we need a parameter σ to compare the roots. If
|ri − rj | ≤ σ then we replace both ri and rj with their average.

For our purposes, even the naive method, i.e. computing distances of all roots,
works. This idea is presented as Algorithm 1. It is worth mentioning that for practical
purposes a slightly better way might be a modification of the well known divide and
conquer algorithm for solving the closest pair problem in plane [28, Section 33.4].

2.2.3 The root marriage problem
The goal of this section is to provide an algorithmic solution for solving the following
problem:

The Root Marriage Problem (RMP): Assume P and Q are polynomials given
by their roots. For a given σ > 0, for each root r of P , (if it is possible) find a unique
root of Q, say s, such that |r − s| ≤ σ.

A solution to the RMP can be achieved by means of graph theory algorithms. We
recall that a maximum matching for a bipartite graph (V,E), is M ⊆ E with two
properties:

• every node v ∈ V appears as an end point of an edge in M at most once.

• M has the maximum size among the subsets of E satisfying the previous condition.

We invite the reader to consult [4] and [24] for more details on maximum matching.
There are various algorithms for solving the maximum matching problem in a graph.

Micali and Vazirani’s matching algorithm is probably the most well-known. However
there are more specific algorithms for different classes of graphs. In this paper, as in [21],
we use the Hopcroft-Karp algorithm for solving the maximum matching problem in a
bipartite graph which has a complexity of O((m+ n)

√
n) operations.

1In some sense the exactness is accidental; the computed residual is itself subject to rounding errors.
See [6] for a backward error explanation of how this can happen.
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Algorithm 1 ClusterRoots(P, σ)
Input: P is a list of roots
Output: [(α1, d1), . . . , (αm, dm)] where αi is considered as a root with multiplicity di
temp← EmptyList
C ← EmptyList
p← size(P )
i← 1
while i ≤ p do

append(temp, P [i])
j ← i+ 1
while j ≤ p do

if |P [i]− P [j]| ≤ s then
append(temp, P [j])
remove(P, j)
p← p− 1

else
j ← j + 1

i← i+ 1
append(C, [Mean(temp), size(temp)])

return C

Now we have enough tools for solving the RMP. The idea is to reduce the RMP to a
maximum matching problem. In order to do so we have to associate a bipartite graph to
a pair of polynomials P and Q. For a positive real number σ, let GσP,Q = (GσP ∪GσQ, EσP,Q)
where

• GσP = ClusterRoots(the set of roots of P, σ),

• GσQ = ClusterRoots(the set of roots of Q, σ),

• EσP,Q =
{

({r, s}, min(dt, ds)) : r ∈ GσP , with multiplicity dr, s ∈ GσQ
with multiplicity ds,

∣∣∣r[1]− s[1]
∣∣∣ ≤ σ}

Assuming we have access to the roots of polynomials, it is not hard to see that there
is a naive algorithm to construct GσP,Q for a given σ > 0. Indeed it can be done by
performing O(n2) operations to check the distances of roots where n is the larger degree
of the given pair of polynomials.

The last step to solve the RMP is to apply the Hopcroft-Karp algorithm on GσP,Q

to get a maximum matching. The complexity of this algorithm is O(n 5
2 ) which is the

dominant term in the total cost. Hence we can solve RMP in time O(n 5
2 ).

As was stated in Section 2.2, we present a semi-metric which works with polynomial
roots in this section. For two polynomials R and T , assume m ≤ n and {r1, . . . , rm}
and {t1, . . . , tn} are respectively the sets of roots of R and T . Moreover assume Sn is
the set of all permutations of {1, . . . , n}. We define

ρ(R, T ) = min
τ∈Sn

‖ [r1 − tτ(1), . . . , rm − tτ(m)] ‖α,r,

where α and r are as before.
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Remark 2.3. The cost of computing this semi-metric by this definition is O(n!), and
therefore prohibitive. However, once a matching has been found then

ρ(R, T ) =‖ [r1 − smatch(1), r2 − smatch(2), . . . , rm − smatch(m)] ‖α,r

where the notation smatch(k) indicates the root found by the matching algorithm that
matches rk.

2.2.4 de Casteljau’s Algorithm
Another component of our algorithm is a method which enables us to evaluate a given
polynomial in a Bernstein basis at a given point. There are various methods for do-
ing that. One of the most popular algorithms, for its convenience in Computer Aided
Geometric Design (CAGD) applications and its numerical stability [9], is de Castel-
jau’s algorithm which for convenience here is presented as Algorithm 2. We note that

Algorithm 2 de Casteljau’s Algorithm

Input: C: a list of coefficients of a polynomial P (x) of degree n in a Bernstein basis of
size n+ 1

α: a point
Output: P (α)
1: c0,j ← Cj for j = 0 . . . n.
2: recursively define
ci,j ← (1− α) · ci−1,j + α · ci−1,j+1.
for i = 1 . . . n and j = 1 . . . n− i.

3: return cn,0.

the above algorithm uses O(n2) operations for computing P (α). In contrast, Horner’s
algorithm for the power basis, Taylor polynomials, or the Newton basis, and the Clen-
shaw algorithm for orthogonal polynomials, and the barycentric forms2 for Lagrange
and Hermite interpolational basis cost O(n) operations.

2.3 Computing Approximate Polynomials
This section is a generalization of [6, Example 6.10] in Bernstein bases. The idea behind
the algorithm is to create a linear system from coefficients of a given polynomial and
the values of the polynomial at the approximate roots.

Now assume
P (x) =

n∑
i=0

piB
n
i (x) (2.3.1)

is given with α1, . . . , αt as its approximate roots with multiplicities di. Our aim is to
find

P̃ (x) = (P + ∆P )(x) (2.3.2)
where

∆P (x) =
n∑
i=0

(∆pi)Bn
i (x) (2.3.3)

2Assuming that the barycentric weights are precomputed.
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so that the set {α1, . . . , αt} appears as exact roots of P̃ with multiplicities di respectively.
On the other hand, we do want to have some control on the coefficients in the sense that
the new coefficients are related to the previous ones. Defining ∆pi = piδpi (which
assumes pi’s are non-zero) yields

P̃ (x) =
n∑
i=0

(pi + piδpi)Bn
i (x) (2.3.4)

Representing P as above, we want to find {δpi}ni=0. It is worth mentioning that with our
assumptions, since perturbations of each coefficient, pi of P are proportional to itself, if
pi = 0 then ∆pi = 0. In other words we have assumed zero coefficients in P will not be
perturbed.

In order to satisfy the conditions of our problem we have

P̃ (αj) =
n∑
i=0

(pi + piδpi)Bn
i (αj) = 0 , (2.3.5)

for j = 1, . . . , t. Hence

P̃ (αj) =
n∑
i=0

piB
n
i (αj) +

n∑
i=0

piδpiB
n
i (αj) = 0 , (2.3.6)

or equivalently
n∑
i=0

piδpiB
n
i (αj) = −P (αj) , (2.3.7)

Having the multiplicities, we also want the approximate polynomial P̃ to respect mul-
tiplicities. More precisely, for αj , a root of P of multiplicity dj , we expect that αj has
multiplicity dj as a root of P̃ . As usual we can state this fact by means of derivatives of
P̃ . We want

P̃ (k)(αj) = 0 for 0 ≤ k < dj (2.3.8)
More precisely, we can use the derivatives of Equation (2.3.7) to write(

n∑
i=0

piδpiB
n
i

)(k)

(αj) = −P (k)(αj) . (2.3.9)

In order to find the derivatives in (2.3.9), we can use the differentiation matrix DB in
the Bernstein basis which is introduced in [29]. We note that it is a sparse matrix with
only 3 nonzero elements in each column [29, Section 1.4.3]. So for each root αi, we get
di equations of the type (2.3.9). This gives us a linear system in the δpi’s. Solving the
above linear system using the Singular Value Decomposition (SVD) one gets the desired
solution.

Algorithm 3 gives a numerical solution to the problem. For an analytic solution for
one single root see [22], [23], [12] and [11].
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Algorithm 3 Approximate-Polynomial(P,L)
Input: P : list of coefficients of a polynomial of degree n in a Bernstein basis

L : list of pairs of roots with their multiplicities.
Output: P̃ such that for any (α, d) ∈ L, (x− α)d|P̃ .
1: Sys← EmptyList
2: DB ← Differentiation matrix in the Bernstein basis of size n+ 1
3: X ←

[
x1 . . . xn+1

]t
4: T ← EntrywiseProduct(Vector(P ), X)
5: for (α, d) ∈ L do

A← In+1
for i from 0 to d− 1 do
A← DB ·A
eq ← DeCasteljau(A · T, α) = −DeCasteljau(A · Vector(P ), α)
append(Sys, eq)

6: Solve Sys using SVD to get a solution with minimal norm (such as 2.2.4), and return
the result.

Although Algorithm 3 is written for one polynomial, in practice we apply it to both
P and Q separately with the appropriate lists of roots with their multiplicities to get P̃
and Q̃.

2.4 Computing Approximate GCD

Assume the polynomials P (x) = ∑n
i=0 aiB

n
i (x) and Q(x) = ∑m

i=0 biB
m
i (x) are given by

their lists of coefficients and suppose α ≥ 0 and σ > 0 are given. Our goal here is
to compute an approximate GCD of P and Q with respect to the given σ. Following
Pan [21] as mentioned earlier, the idea behind our algorithm is to match the close roots
of P and Q and then based on this matching find approximate polynomials P̃ and Q̃ such
that their GCD is easy to compute. The parameter σ is our main tool for constructing
the approximate polynomials. More precisely, P̃ and Q̃ will be constructed such that
their roots are respectively approximations of roots of P and Q with σ as their error
bound. In other words, for any root x0 of P , P̃ (similarly for Q) has a root x̃0 such that
|x0 − x̃0| ≤ σ.

For computing approximate GCD we apply graph theory techniques. In fact the
parameter σ helps us to define a bipartite graph as well, which is used to construct the
approximate GCD before finding P̃ and Q̃.

We can compute an approximate GCD of the pair P and Q, which we denote by
agcdσρ (P (x), Q(x)), in the following 5 steps.
Step 1. finding the roots: Apply the method of Section 2.2.1 to getX = [x1, x2, . . . , xn]
, the set of all roots of P and Y = [y1, y2, . . . , ym], the set of all roots of Q.
Step 2. forming the graph of roots GP,Q: With the sets X and Y we form a bipar-
tite graph, G, similar to [21] which depends on parameter σ in the following way:
If |xi − yj | ≤ 2σ for i = 1, . . . , n and j = 1, . . . ,m, then we can store that pair of xi and
yj .
Step 3. find a maximummatching in GP,Q: Apply the Hopcroft-Karp algorithm [13]
to get a maximum matching {(xi1 , yj1), . . . , (xir , yjr)} where 1 ≤ k ≤ r, ik ∈ {1, . . . , n}
and jk ∈ {1, . . . ,m}.
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Step 4. forming the approximate GCD:

agcdσρ (P (x), Q(x)) =
r∏
s=1

(x− zs)ts (2.4.1)

where zs = 1
2(xis + yjs) and ts is the minimum of multiplicities of xis and yjs for

1 ≤ s ≤ r .
Step 5. finding approximate polynomials P̃ (x) and Q̃(x): Apply Algorithm 3
with {z1, . . . , zr, xr+1, . . . , xn} for P (x) and {z1, . . . , zr, yr+1, . . . , ym} for Q(x).

For steps 2 and 3 one can use the tools provided in Section 2.2.3. We also note
that the output of the above algorithm is directly related to the parameter σ and an
inappropriate σ may result in an unexpected result.

2.5 Numerical Results
In this section we show small examples of the effectiveness of our algorithm (using an
implementation in Maple) with two low degree polynomials in a Bernstein basis, given
by their list of coefficients:

P := [5.887134, 1.341879, 0.080590, 0.000769,−0.000086]

and

Q := [−17.88416,−9.503893,−4.226960,−1.05336]

defined in Maple using Digits := 30 (we have presented the coefficients with fewer than
30 digits for readability). So P (x) and Q(x) are seen to be

P (x) :=5.887134 (1− x)4 + 5.367516x (1− x)3

+ 0.483544x2 (1− x)2 + 0.003076x3 (1− x)
− 0.000086x4

and

Q(x) :=− 17.88416 (1− x)3 − 28.51168x (1− x)2

− 12.68088x2 (1− x)− 1.05336x3

Moreover, the following computations is done using parameter σ = 0.7, and un-
weighted norm-2 as a simple example of Equation (2.2.4), with r = 2 and α = (1, . . . , 1).

Using Theorem 2.2, the roots of P are, printed to two decimals for brevity,[
5.3 + 0.0 i, 1.09 + 0.0 i, 0.99 + 0.0 i, 1.02 + 0.0 i

]
This in turn is passed to ClusterRoots (Algorithm 1) to get

PClusterRoots := [[1.036 + 0.0 i, 3], [5.3 + 0.0 i, 1]]

where 3 and 1 are the multiplicities of the corresponding roots.
Similarly for Q we have:[

1.12 + 0.0 i, 4.99 + 0.0 i, 3.19 + 0.0 i
]
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maxdeg{P,Q} deg(agcdσρ (P,Q)) ‖ P − P̃ ‖2 ρ(P, P̃ ) ‖ Q− Q̃ ‖2 ρ(Q, Q̃)

2 1 0.00473 0.11619 0.01199 0.05820
4 3 1.08900 1.04012 0.15880 0.15761
6 2 0.80923 0.75634 0.21062 0.31073
7 2 0.02573 0.04832 0.12336 0.02672
10 5 0.165979 0.22737 0.71190 0.64593

Table 2.1: Distance comparison of outputs and inputs of our approximate GCD algo-
rithm on randomly chosen inputs.

which leads to

QClusterRoots := [[3.19 + 0.0 i, 1], [4.99 + 0.0 i, 1], [1.12 + 0.0 i, 1]]

Again the 1’s are the multiplicities of the corresponding roots.
Applying the implemented maximum matching algorithm in Maple (see Section

2.2.3), a maximum matching for the clustered sets of roots is

TMaximumMatching :=[[{4.99, 5.30} , 1], [{1.03, 1.12} , 1]]

This clearly implies we can define (see Step 4 of our algorithm in Section 2.4)

agcd0.7
ρ (P,Q) :=(x− 5.145)(x− 1.078)

Now the last step of our algorithm is to compute the approximate polynomials having
these roots, namely P̃ and Q̃. This is done using Algorithm 3 which gives

P̃ :=[6.204827, 1.381210, 0.071293, 0.000777,−0.000086]

and

Q̃ :=[−17.202067,−10.003156,−4.698063,−0.872077]

Note that

‖ P − P̃ ‖α,2 ≈ 0.32 ≤ 0.7 and ‖ Q− Q̃ ‖α,2 ≈ 0.68 ≤ 0.7

We remark that in the above computations we used the built-in function LeastSquares
in Maple to solve the linear system to get P̃ and Q̃, instead of using the SVD ourselves.
This equivalent method returns a solution to the system which is minimal according to
norm-2. This can be replaced with any other solver which uses SVD to get a minimal
solution with the desired norm.

As the last part of experiments we have tested our algorithm on several random
inputs of two polynomials of various degrees. The resulting polynomials P̃ and Q̃ are
compared to P and Q with respect to 2-norm (as a simple example of our weighted
norm) and the root semi-metric which is defined in Section 2.2.3. Some of the results
are displayed in Table 2.1.
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2.6 Concluding remarks
In this paper we have explored the computation of approximate GCD of polynomials given
in a Bernstein basis, by using a method similar to that of Victor Y. Pan [21]. We first
use the companion pencil of Jónsson to find the roots; we cluster the roots as Zeng does
to find the so-called pejorative manifold. We then algorithmically match the clustered
roots in an attempt to find agcdσρ where ρ is the root distance semi-metric. We believe
that this will give a reasonable solution in the Bernstein coefficient metric; in future
work we hope to present analytical results connecting the two.
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Chapter 3

Approximate GCD in Lagrange
bases

3.1 Introduction
The Euclidean algorithm or its variant, the extended Euclidean algorithm, is one of the
most well-known and useful algorithms in symbolic computation. One important role of
this rational algorithm for finding greatest common divisors of polynomials in computer
algebra is to identify, in the case where all polynomials are exact, polynomials that have
multiple roots, and indeed to compute a square-free factoring of a polynomial by starting
with the computation of the GCD of the polynomial and its derivative. Although comput-
ing the GCD of two polynomials is straightforward in exact arithmetic and although much
effort has been expended to find more efficient algorithms than the Euclidean algorithm
such as using subresultants, over R or C the GCD problem is ill-posed. More precisely,
it is an easy exercise to provide a pair of univariate polynomials with real or complex
coefficients where a small perturbation (modelling noise or ignorance of the data in the
original problem) changes a non-trivial GCD into a constant GCD.

In order to deal with ill-posedness of the GCD problem, one can look at the approx-
imate GCD problem. For a given pair P and Q of univariate polynomials over reals,
find another pair P̃ and Q̃ such that they are respectively “close” to P and Q, with a
nontrivial GCD. and their exact GCD, is called an approximate GCD of P and Q. Indeed
the closeness notion here needs clarification. For now let us just say a pseudometric
on the space of polynomials of an specific degree gives us a tool for this closeness (see
Section 3.2).

There is a vast literature on the approximate GCD problem most of which are devoted
to study this problem for polynomials given in power basis. We invite the reader to take
a look at [37], since the main ideas of this paper are borrowed from there. There are
many interesting results in approximate GCD including but not limited to [8–10, 27, 31–
33, 36, 42, 43] for approximate GCD problem in power basis.

Although the power basis is the most well understood and common basis to represent
polynomials, it is not the only one. For various purposes, sometimes we would rather to
have a polynomial in another basis such as a Bernstein basis. One of these cases happens
when one wants to find intersection of Bézier curves which in turn has applications to
Computer Aided Geometric Design. A theoretical solution is to convert the given pair
of polynomials in a Bernstein basis into the power basis. In practice it is not efficient
since the conversion is unstable and higher degrees cause more instability [7]. In [19] an
algorithm for finding an approximate GCD in a Bernstein basis is given which also follows
the ideas of [37].

36
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In many applications, one needs to do computations with polynomials given in a
Lagrange basis. More precisely, these polynomials are given by their values at certain
points. For a similar reason as in Bernstein bases, conversion is not a good option here
as well. A further reason is that Lagrange bases themselves are often well-conditioned,
and working with them directly preserves numerical stability [21]. See also [12]. Direct
computations in Lagrange bases are investigated in [1–4, 15, 38, 39]. Applications of
these ideas and similar are investigated in, for instance, [5, 11, 22, 25]. In this paper
we present an algorithm which follows the same ideas as in [37] and [19] and solves the
approximate GCD problem in Lagrange bases.

Our main working assumption is that the given data is near to data specifying a
pair of polynomials with common roots. We allow the problem solver or user to specify
a tolerance to say roughly just how near, but the method of this paper cannot work if
the given data is O(1) away from polynomials with multiple roots. To see this, one may
zero out both polynomials with an O(1) change in the polynomial values, or otherwise
trivially make them identical.

Our algorithm works with the sets of roots of a given pair of polynomials. Assume
P and Q are given with deg(P ) = n and deg(Q) = m, σ > 0 and ρt is a metric (or
pseudometric) on the space of polynomials of degree t. We will remind the reader what
a metric is, and give the definition of a pseudometric, in Section 3.2.

We first compute all roots of P and Q using the companion pencil method introduced
in [15]. The second step is to cluster the roots of each polynomial, i.e. find close roots
and replace them by one single root with an appropriate multiplicity. The next step is
to form a bipartite weighted graph with sets of vertices which are the clustered roots of
P and Q. For r and s with P (r) = Q(s) = 0, {r, s} is an edge with weight

W ({r, s}) = min{multiplicityP (r),multiplicityQ(s)}.

Then we use a Maximum Weighted Matching (MWM) algorithm to find a maximum
matching, say M , and using M we form approximate GCD. The last step is to construct
P̃ and Q̃ where ρn(P, P̃ ), ρm(Q, Q̃) ≤ σ. This step is simpler in a Lagrange basis when
it is compared to a Bernstein basis or the power basis provided that ρt be a well behaved
metric (pseudometric).

This paper is organized in the following way. Section 3.2 is devoted to provide
the necessary formal definitions for approximate GCD. A method for computing roots of
polynomials in Lagrange basis is provided in the third section. Section 3.4 introduces
a divide and conquer algorithm for clustering roots of a polynomial, together with an
alternative set of heuristics that uses symmetry. The maximum weight matching problem
is discussed in Section 3.5. Section 3.6 contains details of computing an approximate
GCD and cofactors of polynomials P̃ and Q̃. Finally we provide numerical experiments
using a Maple implementation of our algorithm.

3.2 Definitions
In this brief section we provide necessary formal definitions which lead to a careful
definition of an approximate GCD. The most crucial component of the notion of an ap-
proximate GCD is “closeness”. Hence, we need to formally present a metric on the set of
degree n polynomials. Although a metric specifies the notion of closeness completely, a
pseudometric does the job as well.
Definition 3.1. [34] A metric for a set X is a function d on the cartesian product
X ×X to the non-negative reals such that for all points x, y, and z of X,
(a) d(x, y) = d(y, x),
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(b) (triangular inequality) d(x, y) + d(y, z) ≥ d(x, z),
(c) d(x, y) = 0 if x = y, and
(d) if d(x, y) = 0, then x = y.
A pseudometric on a set X is a non-negative real valued function φ defined on X×X

and satisfies all the properties of a metric except for possibly for property (d) which is
called the distinguishability property. On the other hand, since a polynomial can be
presented with different data in Lagrange basis, regular well-known metrics are not
well-defined.
Example 3.1. Assume T3(x), the third Chebyshev polynomial of the first kind, is given
with two different representations in 2 Lagrange bases:

L1 =

−1 −1
2

1
2 1

−1 1 −1 1

 , L2 =

 −2 −1
3

1
3 3

−26 23
27 −23

27 99

 .
Now, suppose we want to use 2-norm (of matrices). Using Maple we get

‖ L1 − 0 ‖2= 3
√

2
2 ,

and

‖ L2 − 0 ‖2=

√
3824215

729 + 5
√

584620384633
729 .

This shows that the 2-norm is not well defined in Lagrange bases. Moreover, one can
get ‖ L1 − L2 ‖=

3329
27 , which shows that the property (c) does not hold.

In order to give a well-defined metric (or pseudometric) we have to consider invariants
of polynomials such as their roots.

In [19] we used the so-called root semi-metric to solve the approximate GCD problem
in Bernstein bases. In this work we use the same idea except that we consider it only
on polynomials with same degree. This leads to a well-defined pseudometric which we
call it the root-pseudometric.

Assume ρ is metric on Cn, Sn is the group of permutations of {1, . . . , n}. Moreover,
for f ∈ R[x]n (set of univariate polynomials of degree n with real coefficients) {f1, . . . , fn}
is the set of roots of f . Let Rf = (f1, . . . , fn) and τ ∈ Sn acts on Rf by acting on its
coordinates, i.e.

τ(Rf ) =
(
fτ(1), . . . , fτ(n)

)
.

The map
dn :R[x]n × R[x]n −→ R≥0

(f(x), g(x)) 7−→ 1
n

min
τ∈Sn

{
ρ (τ(Rf ), Rg)

} (3.2.1)

is a pseudometric on R[x]n. Let

Repdn(f, g) =
{
τ ∈ Sn : dn(f, g) = 1

n
ρ(τ(Rf ), Rg)

}
.

In fact the identity element of Sn gives dn(f, f) = 0 and

τ ∈ Repdn(f, g) =⇒ τ−1 ∈ Repdn(g, f),
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where τ−1 is the inverse of τ in Sn. Hence dn(g, f) = dn(f, g). The last property of a
pseudometric is the triangle inequality. For any fixed h ∈ R[x]n assume λ ∈ Repdn(f, g),
τ ∈ Repdn(f, h), γ ∈ Repdn(g, h). Now if dn(f, h) + dn(g, h) < dn(f, g) then

ρ(τ(Rf ), Rh) + ρ(γ(Rg), Rh) < ρ(λ(Rf ), Rg),

since ρ is a metric on Cn,

ρ (τ(Rf ), γ(Rg)) ≤ ρ(τ(Rf ), Rh) + ρ(γ(Rg), Rh) < ρ(λ(Rf ), Rg).

This in particular shows that ρ(λ(Rf ), Rg) was not minimum which is a contradiction.
It is worth mentioning that the distinguishability property does not hold for dn. For

a non-zero constant c, dn(cf, f) = 0.
Now that we have a metric in hand, we can formally define an approximate GCD for

a pair of polynomials. A pseudogcd set for the pair P and Q is defined as

Aα,r,σ =
{
g(x) | ∃P̃ , Q̃ with ddeg(P )(P − P̃ ) ≤ σ,

ddeg(Q)(Q− Q̃) ≤ σ and g(x) = gcd(P̃ , Q̃)
}
. (3.2.2)

Definition 3.2. An approximate GCD for P,Q which is denoted by agcdσρ (P,Q), is
G(x) ∈ Aα,r,σ where deg(G) = maxg∈Aα,r,σ deg(g(x)), and ddeg(P )(P−P̃ ),ddeg(Q)(Q−Q̃)
are minimal.

3.3 Finding roots of a polynomial in Lagrange basis
It is well known that solving polynomial equations, or finding the eigenvalues of matrix
polynomials, can be done by converting to a generalized eigenvalue problem. In this
section we want to find the roots of a given polynomial in Lagrange basis. There are
various methods for solving this problem. For example in [28] the author uses a method
of Smith [40] that has not been generalized to matrix polynomials. However, in this
work we prefer to use the generalized eigenvalue problem to find the roots of a certain
polynomial.

We recall the method introduced in [15] for finding zeros of a given polynomial in
Lagrange basis. Consider p0, p1, . . . , pn which are the values of a polynomial P at x = x0,
x = x1, · · · , and xn. Then the generalized companion matrix of the polynomial given
by its value is

C0 =



0 −p0 −p1 · · · −pn
`0 x0

`1
. . .

...
...
`n · · · xn


(3.3.1)

where `k = 1/∏j 6=k(xk − xj) are the (scalar) normalization factors of the Lagrange
polynomials Lk(x) = `k

∏
j 6=k(x− xj) and

C1 =


0

1
. . .

1

 . (3.3.2)
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Then we have

Theorem 3.3. [15] With the above notation and assumptions

det(xC1 −C0) = P (x).

The following example shows how the above theorem can be used in practice.

Example 3.2. Assume polynomial f(x) is given by:

fx = [4.1,−2.2, 1.22, 5.5, 3.23, 8.1, 9.2]

and
fy = [−2306.90,−9.41,−4827.64, 182.10,−4306.04, 3856.85, 28326.04]

where fx contains nodes and fy provides values of f on the nodes. The corresponding
companion pencil to f is

C0 =



0 2306.90 9.41 4827.64 −182.10 4306.04 −3856.85 −28326.04
−0.002 4.1 0 0 0 0 0 0

0.000009 0 −2.2 0 0 0 0 0
−0.0002 0 0 1.22 0 0 0 0
0.0009 0 0 0 5.5 0 0 0
0.0015 0 0 0 0 3.23 0 0
−0.0002 0 0 0 0 0 8.1 0
0.00008 0 0 0 0 0 0 9.2



C1 =



0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


Notice that the first row, which contains the values of the polynomial, seems to have a
somewhat large norm. Likewise notice that the first column, which contains the barycen-
tric weights, quantities that depend on the nodes and not the values, seems to have a
somewhat small norm. In some cases, these poor scalings can lead to numerical diffi-
culty. However, the first row can be multiplied by any nonzero constant whatever without
affecting the eigenvalues; likewise the first column. This can be proved by examining the
second barycentric form [16]. Thus we may choose to scale this matrix so its first row
and first column have, say, norm 1 in any reasonable norm. In what follows we will not
comment on such scalings unless we have to make them for numerical reasons. In this
present example we do not scale the matrix, but merely call the numerical software on
the “raw” matrix pair.
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The Maple command Eigenvalues returns

Float(∞) + 0.0 i
Float(∞) + 0.0 i
−2.49 + 0.0 i
−2.09 + 0.0 i
−1.70 + 0.0 i
7.10 + 0.0 i
6.79 + 0.0 i
5.30 + 0.0 i


One can verify

f(−2.49 + 0.0 i) = 0
f(−2.09 + 0.0 i) = 0
f(−1.70 + 0.0 i) = 0
f(7.10 + 0.0 i) = 0
f(6.79 + 0.0 i) = 0
f(5.30 + 0.0 i) = 0

Note that in examples through this work, we set Digits := 30 (in Maple). However, for
readability, we have showed only a few digits.

3.4 Clustering the roots
As we discussed in the first section, our algorithm gets two polynomials as input. In the
previous section we explained the method of which our algorithm is using to find roots
of each polynomial. We note that our method is numerical and the computed roots are
approximations. So it is natural to wonder if a root with a multiplicity more than 1 is
approximated as different roots which are close. Although it is not so clear when this
really has happened, we believe working with roots while merging close enough roots is a
reasonable approach and likely to lead to good results. This corresponds to what Kahan
terms projecting onto the “pejorative manifold”. We call the process of identifying close
roots as the same root with appropriate multiplicity, root clustering.

On the other hand, we can also execute this step in the algorithm after constructing
an approximate GCD. However, to be consistent with the other results in the literature,
we put clustering as the second step of our algorithm.

The problem of properly clustering complex roots of perturbed polynomials is hard,
and depends strongly on the model used for the perturbation. In the papers [6, 29], for
instance, we find the use of an oracle, which assumes that information about the exact
or “underlying” polynomial is available at the request of the user (which might be a
program) and in exchange for more computational cost. That model has been used in
polynomial computation since the pioneering work of Schönhage and leads to significant
algorithms of practical interest.

However, our model is different: as in [17] we assume that no oracle is available,
and all we have is noisy data about the polynomial (in the Lagrange case, approximate
values at well-specified nodes). In some sense this makes the problem actually impossible:
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Figure 3.1: Root Clustering for P (x) =
∏14

i=1(x−ri) is found as P (x) =
∏4

i=1(x− r̃i).
Here only distance is considered and symmetry is ignored.

there may be several pairs of polynomials nearby that have common roots. From the
incomplete data that we have, however, we must recover the approximate GCD with our
best estimate of the multiplicities. To do this, we resort to heuristics. We present one
such algorithm, that uses symmetry and distance, and we also present a divide and
conquer algorithm which follows a different idea. See Figure 3.1 for an example of a
clustering without using symmetry.

3.4.1 Heuristics for clustering complex roots
Our first heuristic is the use of distance. When a polynomial with a multiple root is
perturbed, say to q(z)(z − r)m + ∆p(z), then the multiple root is, to first order, if
∆p(r) = s is small,

z ≈ r +
(
−∆p(r)

q(r)

)1/m
. (3.4.1)

This leads to a cluster of m simple roots at a distance (s/|q(r)|)1/m away, and if s is
“small” these will be equally-spaced about a near-circle with that radius. In our current
work we do not estimate the size of q(r) but rather use some modest constants or “fuzz
factors” for this; in future work we will refine this by using the division algorithm of [1]
to give an estimate of q(r) itself.

The second heuristic is the use of the equal-angle property mentioned above. Indeed
this seems to be quite a reliable indication that we have the correct multiplicity, although
we need more experimentation to assert true confidence.

The third heuristic is to look through the list of approximate roots for clusters of
higher multiplicity first. This supplies a bias towards higher multiplicity, or equivalently
to projection onto the so-called pejorative manifold.

Access to these heuristics is possible only because we are looking at approximate roots
as a method of finding approximate GCD. Such heuristics are likely to be less valuable
for other approaches to approximate GCD in the Lagrange basis, e.g. via the Bézout
matrix [5, 24, 39].

The heuristics are easily fooled for roots of very high multiplicity, so our routine has
a default maximum order of multiplicity of 3. We have used it successfully on artificial
examples of multiplicity as high as 5, however.

Let us exhibit our heuristics with a pseudorandom sample of n = 20 points in the
square [0, 1]× [0, 1]; we used Maple’s rand() function twenty times, dividing its integer
result by 1012; half we took for x-values and the other half for y-values in z = x + iy.
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Figure 3.2: Original data plotted with open black circles. Clustered triple points
plotted with green asterisks. Clustered double points plotted with cyan diamonds.
Points left untouched by clustering plotted with solid red circles. Note that the triple
point clusters each preferred a farther point to include than one that could have been

chosen: evidently the heuristic for symmetry is working.

We clustered these points with a tolerance of 1/n2: one expects a few of n points in the
unit square to be O(1/n2) close. The results are plotted in Figure 3.2.

Two sets of triple points were found. Each of them has the interesting feature that
there is one unclustered point closer to the triple’s centre than one of the ones chosen.
We believe that the more symmetrical point was chosen, even though it was farther
away.

Three sets of double points were found; from the graph, these choices seem very
reasonable.

3.4.2 The effect of conditioning: Wilkinson’s example
Wilkinson’s famous example

20∏
k=1

(x− k) = x20− 210x19 + 20615x18− 1256850x17 + 53327946x16−· · ·+ 20! (3.4.2)

has, as is very well known, different condition numbers in the two different represen-
tations. See [20] for a detailed exposition. In that paper, as in [21], we also see that
random Lagrange bases, where the nodes are chosen uniformly at random on the interval
[0, 20], are also surprisingly well-conditioned.
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This allows us to demonstrate that the root pseudometric is connected to the co-
efficient vector metric via the condition number. Alternatively, it is connected by the
notion of pseudozeros, the set of all roots of all polynomials “nearby” in the coefficient
metric. We show by example that a small perturbation in the root pseudometric will, if
the polynomial representation is well-conditioned, generate a larger perturbation in the
coefficient vector; contrariwise, if the polynomial representation is ill-conditioned, then
a small perturbation in the root pseudometric will make an even smaller perturbation
in the coefficient vector. This is of course because we are using the relationship in the
reverse way to usual.

For example, expanding Wilkinson’s polynomial into the monomial basis produces
a famously ill-conditioned polynomial representation. If we find the zeros numerically
from that representation (say by its Frobenius companion matrix using 15 decimal Digits
in Maple) we get the roots (trimming digits after the first inconvenient one just to save
space)

[0.999999999999, 2.0000000001, · · ·
11.24, 11.64, 13.48 + 0.3917 i, 13.48− 0.3917 i,
· · · 19.009, 19.999]

where we see some of the computed roots are now complex. If we use our method to
cluster all these roots, using a tolerance of 0.05, we get

[[11.441, 2], [15.556, 2], [1.0, 1], [2.0, 1],
[3.0, 1], [4.0, 1], [5.0, 1], [6.0, 1],
[7.0005, 1], [7.9960, 1], [9.0206, 1], [9.9342, 1],
[13.481 + 0.39171 i, 1], [13.481− 0.39171 i, 1], [17.138, 1],
[17.948, 1], [19.009, 1], [19.999 + 0.0 i, 1]] . (3.4.3)

Exactly fitting a monic monomial basis polynomial to this (converted to exact ratio-
nal) data, we find that the resulting coefficient vector differs from the original only by
less than 2 · 10−5‖ ~W‖∞, where ~W = [1,−210, . . . , 20!] is the vector of monomial basis
coefficients. That is, a root change of about 0.05 corresponds to a coefficient change
twenty-five hundred times smaller—this is because the coefficients are ill-conditioned
and sensitive.

In contrast, choose 21 nodes at random on [0, 20] and use the product definition
of the Wilkinson polynomial (which is extremely well-conditioned) to evaluate it on
these nodes, to create a simulated problem to consider. We now have 21 node-value
pairs, which gives us a Lagrange basis representation. Compute the companion matrix
of [15] (available in Maple as LinearALgebra[CompanionMatrix], see [30]) and find its
eigenvalues, which will be the roots of the polynomial. When we did this, and applied our
clustering heuristics with tolerance 0.05 to the results, we got the (somewhat surprising)
answer

[[16.823, 2], [4.3500, 2], [14.837, 2], [9.3079, 3],
[7.6965, 3], [19.928, 1], [18.898, 1],
[2.1301, 1], [15.416, 1], [13.880, 1],
[12.317, 1], [6.6043, 1], [8.8976, 1]] . (3.4.4)

This has two triple roots, which we were not expecting, as well as three double roots.
When we convert this to the very well-conditioned Hermite representationK(x−r1)2(x−
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r2)2(x − r3)2(x − r4)3(x − r5)3 · · · (x − r13) and choose K as best we can1, we see that
the values of this polynomial on the original nodes form a vector that is at least 47%
different to the original values of the polynomial. That is, changes in the roots on the
order of 0.05 can only happen if the coefficients change by around a factor of one-half:
this is not a small change.

This is because the Lagrange basis on those random nodes uniformly chosen in the
region where the roots actually are is actually an extremely well-conditioned represen-
tation. Small changes in those values will produce only very tiny changes in the roots.
Even a modest change in the roots requires a significant change to the values (which are
the representation of the polynomials on those nodes).

We will discuss a formal connection of the coefficient vector perturbation with the
root pseudometric in Section 3.8.

3.4.3 A Divide and Conquer Clustering Algorithm
In this subsection we present a deterministic clustering algorithm which only considers a
tolerance directly to cluster a set of given points in the complex plain. Our algorithm is
a slight modification of the divide and conquer, Closest Pair Algorithm [23, P. 958-960].

Assume Q is an array of roots of a polynomial. We apply a sorting algorithm to
Q = (r1, . . . , rn) and get the array of roots sorted with respect to their real parts. This
can be done in O(n logn). We also add multiplicities of ri’s to them by replacing each
of them by (ri,mult(ri)).

Our algorithm has 3 steps:
Step 1: Split the points into two almost equal parts, QL and QR by considering the line
L, defined as x = <(Q[m][1]) where m = b `+r2 c, ` and r are left and right boundaries
in recursive calls. Recursively call the algorithm on QL and QR then merge the sets
(consider imaginary parts for merging).
Step 2: Once QL and QR are clustered, form an strip containing the points from them
which have distance less than σ to middle line (see Figure 3.3).

Figure 3.3: Middle strip for merging the left and right results in clustering algorithm
1We tried several things, including a matching of the average absolute value, and a least-squares fit.
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Step 3: Check the strip for close pairs and merge them. Note that for this step (u, du)
and (v, dv) will be merged as (

du · u+ dv · v
du + dv

)du+dv
,

if |u− v| ≤ σ.

Algorithm 4 ClusterRoots(Q, `, r, σ)
Input: A sorted list of roots with their multiplicities, Q.

` is the left boundary (initially `← 1)
r is the right boundary (initially r ← Size(Q)).
σ is the tolerance for clustering.

Output: Clustered roots. S ← Q
if ` = r then
S ← [Q[l]]

else
m← b(`+ r)/2c
SL ← ClusterRoots(Q, `,m, σ)
SR ← ClusterRoots(Q,m+ 1, r, σ)
S ← Merge=(QL, QR)
R← Select(S,<(S[mid][1]), σ)
i← Search(SL, R[first])
j ← Search(SR, R[last])
T ← CheckStrip(R, σ)
S ← Merge(SL[1..i− 1], R, SR[j + 1..last])

return(S)

An argument which shows that the cost of merging is O(n) is presented in [23]. This
means the running time is recursively given by T (n) = 2T (n2 ) + O(n) and using the
Master theorem [23] we can resolve it to T (n) ∈ O(n logn). Hence the total cost is
O(n logn).

Example 3.3. We work with the roots computed in Example 3.2. We need to add
multiplicities of roots to the list so that it is compatible with our clustering algorithm.
Adding the multiplicities, we get:

[[−2.499, 1], [−2.099, 1], [−1.700, 1], [5.300, 1], [6.799, 1], [7.100, 1]]

The output of ClusterRoots (implemented in Maple) for σ = 0.5 is

[[−2.299, 2], [−1.700, 1], [5.300, 1], [6.950, 2]].

Neither of the above algorithms for clustering roots is perfect. The divide and con-
quer algorithm does not give the highest degrees after clustering. As an example of its
behavior, for the input

[[1, 1], [1.5, 1], [2, 1]],
and σ = 0.5 it returns

[[1.25, 2], [2, 1]],
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Figure 3.4: mp6,q4 is the minimum of multiplicities of p6 and q4.

while we know that [1.5, 3] would be a better answer according to multiplicity. Moreover
ClusterRoots considers the given roots as points in the complex plane without consid-
ering their properties as approximate roots of polynomials.

3.5 MaximumWeight Matching problem and approximate
GCD

In order to find the GCD of two polynomials, we find their common roots. In other
words, we look at their roots and find matches between them. Since it is an exact
GCD this matching means equality. In the approximate GCD case, matching means close
enough with respect to a metric.

The above approach in looking at approximate GCD suggests us to use matching
algorithms from graph theory. In this brief section we explain the necessary concepts
and an algorithm from graph theory.

Assume G = (V,E,W ) is a weighted graph. A subsetM ⊆ E, is called a matching if
no two edges in M share a common vertex. A maximum cardinality matching (MCM)
is a matching of the maximum size as a set.

The weight of a matching (in a weighted graph) is defined as

WM =
∑
e∈M

W (e).

AmatchingM with the maximum weight is called a maximum weight matching (MWM).
Suppose n = |V | and m = |E|. It is well known that MCM for a bipartite graph

can be solved in time O(m
√
n) using the deterministic algorithm introduced by Hopcoft

and Karp. A more general deterministic algorithm for a general graph was given by
Micali and Vazirani in 1980 which runs in O(m

√
n). There are many more algorithms

for solving the same problem, we just mention that a randomized algorithm to find a
MCM in a general graph was given by Harvey in 2006 with complexity O(nω) where ω
is the exponent of n× n matrix multiplication and [35] proves that ω ≤ 2.373.
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In the case that the weights are integers, we define N to be the largest magnitude of
a weight. An MWM for a bipartite graph can be found in O(Nnω) using the randomized
algorithm introduced by Sankowski in 2006.

Following [26], for δ ∈ [0, 1] we call a matching δ-approximate matching if its weight
is at least a factor δ of the optimal matching. Similarly a δ-MWM is the problem of
finding a δ-approximate maximum weight matching. Duan and Pettie introduced an
algorithm to solve δ-MWM for a graph with integer weights in O(m(1− δ)−1 logN).

A much simpler approximate MWM algorithm is a greedy algorithm. It is well-known
that a greedy algorithm solves the problem for a general graph for δ = 1

2 (see [26]). In
our special case, the graph is bipartite and a very simple one. Our Maple implementation
of this greedy algorithm gives very good results in practice. We present the pseudocode
of the mentioned greedy algorithm here.

Algorithm 5 GreedyMWM(G)
Input: A graph G given with a list of edges and their weights

[W ({a, b}), {a, b}] which is sorted w.r.t weights.
Output: A Matching M ⊆ EG.
M ← [ ]
for g in G

if g[2] has no intersection with (2nd component of) elements in M then
append(M, g)

return M

One can verify that the running time of the above algorithm is O(m).
We complete this section by describing the construction of a bipartite graph corre-

sponding to a given pair of polynomials. Here we use similar ideas which was used in [19]
except that this time we use the algorithm by [26] to get a δ-MWM.

Now we can form a bipartite weighted graph using the roots of the given polynomials
P and Q. Assume RP and RQ are sets of roots of P and Q respectively. Let GσPQ =
(VP , VQ, EPQ,WPQ) with

• VP = ClusterRoots(RP , σ),

• VQ = ClusterRoots(RQ, σ),

• EσPQ =
{
{r, s} : r ∈ VP , s ∈ VQ,

∣∣r − s∣∣ ≤ σ},
• WPQ({r, s}) = min{multiplicityP (r),multiplicityQ(s)}.

A simple argument shows that we can form the corresponding graph to a pair of poly-
nomials by doing n2 comparisons.

3.6 Computing Approximate Polynomials and GCD

Assume M is an MWM for GσPQ. Each element in M is an edge of the graph with a
corresponding weight. We define

G(x) =
∏

{a,b}∈M

(
x−

(multiplicity(a) · a+ multiplicity(b) · b
multiplicity(a) + multiplicity(b)

))W ({a,b})
(3.6.1)
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to be the approximate GCD corresponding to M .
Using dt (Equation (3.2.1)) on the space of polynomials of degree t we can find the

approximate polynomials with desired properties. Suppose G is the approximate GCD as
in Equation (3.6.1). Suppose r1, . . . ru are clustered roots of P with multiplicity di which
do not appear in the corresponding matching to G and ru+1, . . . , r` with multiplicities
du+1, . . . , du+` are roots of P which appear in the corresponding matching toG. Similarly
let s1, . . . , sv, sv+1, . . . sv+` be the roots of Q with multiplicity d′i. Moreover suppose,
wi = W (ru+i, sv+i) for 1 ≤ i ≤ `.

We define
P̃ = G(x) ·

∏
1≤i≤u

(x− ri)di ·
∏

u+1≤i≤`
(x− ri)di−wi (3.6.2)

Q̃ = G(x) ·
∏

1≤i≤v
(x− si)d

′
i ·

∏
v+1≤i≤`

(x− si)d
′
i−wi (3.6.3)

Now it is not hard to see that there exists permutation of roots such that dn(P, P̃ ) ≤ σ
and dm(Q, Q̃) ≤ σ.

Since in each step of our algorithm we have access to roots (and their multiplicities)
of polynomials, presenting them in a Lagrange basis is straightforward.

3.7 Numerical Results
In this section we present a concrete example of computing an approximate GCD by
applying our algorithm to a pair of polynomials. In order to do so, we use a Maple
implementation of our algorithm.

Assume P and Q are given with the following data (in a Lagrange basis):

Px =[4.586334585, 5.161255391, 2.323567403, 1.809094426,
1.471852626, 4.427838553, 2.275731771, 1.020544909]

Py =[787.1243900, 3285.933680, 0.01345240, 0.00001680,
0.00880350, 499.6500860, 0.01132600, 0.12249270]

Qx =[2.812852786, 1.746745227, 2.296707006, 2.359573808,
4.747053250, 1.640439652, 5.832623175]

Qy =[−0.0095256, 0.0171306, 0.2253058, 0.2359018,
426.4319036, 0.0041690, 3314.165173]

where Py[i]’s are values of P on Px[i]’s and Qy[i]’s are values of Q on Qx[i]’s. Since Px
is of length 8 and Qx is of length 7, polynomials P and Q are respectively of degrees 7
and 6.

The first step of our algorithm is to compute the roots of P and Q. We do this by
forming the companion pencils. Corresponding to P we get

CP,0 =



0 −787.12 −3285.93 −0.013 −0.000016 −0.0088 −499.65 −0.011 −0.12
−0.068 4.58 0 0 0 0 0 0 0
0.0056 0 5.16 0 0 0 0 0 0
−2.70 0 0 2.32 0 0 0 0 0
−0.64 0 0 0 1.80 0 0 0 0
0.28 0 0 0 0 1.47 0 0 0
0.072 0 0 0 0 0 4.42 0 0
3.09 0 0 0 0 0 0 2.27 0

−0.034 0 0 0 0 0 0 0 1.02
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and for Q we get

CQ,0 =



0 0.0095 −0.017 −0.22 −0.23 −426.43 −0.0041 −3314.16
0.58 2.81 0 0 0 0 0 0

−2.13 0 1.74 0 0 0 0 0
9.85 0 0 2.29 0 0 0 0

−9.60 0 0 0 2.35 0 0 0
−0.0087 0 0 0 0 4.74 0 0

1.30 0 0 0 0 0 1.64 0
0.0014 0 0 0 0 0 0 5.83


Note that CP,1 and CQ,1 are of the form (3.3.2) (with appropriate sizes). Asking Maple
for generalized eigenvalue of the pair (CP,0, CP,1) gives

2.80 + 0.0 i
2.60 + 0.0 i
1.90 + 0.0 i
1.85 + 0.0 i
1.75 + 0.0 i
1.70 + 0.0 i
1.0 + 0.0 i


as roots of P and the corresponding pair to Q(x) gives

3.0 + 0.0 i
2.80 + 0.0 i
1.31 + 0.0 i
1.33 + 0.0 i
1.45 + 0.0 i
1.50 + 0.0 i


The second step is to cluster the set of roots. Before clustering we add multiplicities of
the roots to the list of roots.

RP = [[1, 1], [1.7, 1], [1.75, 1], [1.85, 1], [1.9, 1], [2.6, 1], [2.8, 1]],

RQ = [[1.31, 1], [1.33, 1], [1.45, 1], [1.50, 1], [2.8, 1], [3, 1]].
By applying ClusterRoots with σ = 0.5 we get

RP = [[1, 1], [1.825000000, 4], [2.700000000, 2]],

RQ = [[1.442500000, 4], [2.900000000, 2]]
The clustered roots of P and Q will give us the following bipartite graph

Figure 3.5: The bipartite graph corresponding to P and Q
.
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Note that there are two MCM’s given by

Figure 3.6: AMaximum Cardinality Matching for G, which is not a MaximumWeight
Matching

Figure 3.7: A Maximum Cardinality Matching for G, which is a Maximum Weight
Matching as well.

Although Figure 3.6 is a MCM, it is not a maximum weight matching. This leads
to a smaller degree in our approximate GCD. However, Figure 3.7 is a maximum weight
matching which gives us a higher degree GCD.

Finally we need to find G(x), P̃ and Q̃. Since the MWM given in Figure 3.7 contains
two edges we have ` = 2 and

G(x) = (x− 1.82 + 1.44
2 )4 · (x− 2.7 + 2.9

2 )2 = (x− 1.63)4 · (x− 2.8)2

which will be presented by

Gx = [1.63, 1.63, 1.63, 1.63, 2.8, 2.8, 0]

and
Gy = [0, 0, 0, 0, 0, 0, 38.98397700] .

In order to get P̃ and Q̃, we write:

r1 = 1, r1+1 = 1.82, r1+2 = 2.7
d1 = 1, d1+1 = 4, d1+2 = 2
s0+1 = 1.44, s0+2 = 2.9
d′0+1 = 4, d′0+2 = 2
w1 = 4, w2 = 2
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This gives us

P̃ (x) = G(x) · (x− 1)
Q̃(x) = G(x)

Also we can write

P̃x = [1.63, 1.63, 1.63, 1.63, 2.8, 2.8, 1, 0]
P̃y = [0, 0, 0, 0, 0, 0, 0, 38.98397700]

3.7.1 Another example of J. H. Wilkinson
In [41] we find the following example from filter design. This also appears as problem
8.41 in [16]. This is not the famous Wilkinson polynomial we discussed previously, or
his less-famous second example polynomial as also discussed in [18], but rather a third
example. The polynomial is given in the following non-standard form:

f(z) =
7∏
i=1

(
z2 +Aiz +Bi

)
+ k

6∏
j=1

(z + Cj)2 , (3.7.1)

where the constants Ai, Bi, and Cj are given data; the constant k comes from other
considerations. Wilkinson observes that for the data he uses, expansion into a monomial
basis expression of this degree 14 polynomial is a bad idea, because the result is very
ill-conditioned.

The constant k as given by Wilkinson is quite small, being k = 1.38 · 10−8. This
suggests that using the zeros of the quadratic factors of the first term in the polynomial
might give us good approximations of the zeros of f(z) itself. This turns out to be a
reasonable idea, but is not good enough for a perturbation series approach. Instead one
must use numerics, such as are advocated in this paper. We modify the problem slightly,
choosing k = 1.38627474705020 ·10−8 instead so that f(z) has at least one multiple root
(to fifteen figures). With the data given by Wilkinson, this gives

f(z) =
(
z2 + 2.008402247 z + 1.008426206

) (
z2 + 1.974225110 z + 0.9749050168

)(
z2 + 1.872661356 z + 0.8791058345

) (
z2 + 1.714140938 z + 0.7375810928

)(
z2 + 1.583160527 z + 0.6279419845

) (
z2 + 1.512571776 z + 0.5722302977

)(
z2 + 1.485030592 z + 0.5513324340

)
− 1.38627474705020 · 10−8 z2

(z + 0.7015884551)2 (z + 0.6711668301)2 (z + 0.5892018711)2 (z + 1.084755941)2

(z + 1.032359024)2 .

We compute all the zeros of each of the seven quadratic factors to fifteen figures,
and compute the mean of these zeros as our 15th evaluation point (we need one more
point than the degree in order to determine the polynomial). Then the value of f(z) is
computed at each of these 15 points (nodes).

We then compute the differentiation matrix for these nodes [3] and use that to
evaluate f ′(z) at each of the nodes. This is one more value than is required to determine
the degree 13 polynomial f ′(z) but the extra value does no harm.

We cluster the zeroes of f(z), and find that there is only one nontrivial cluster,
namely the conjugate pair z = −0.7428866±2.0122× 10−13 i, showing only those figures
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that agree in the computed approximate conjugate pair. The mean of this cluster is
−0.742886654814304270− 6.5× 10−18 i already showing the effect of taking the mean.

Computing the GCD with the values of f ′(z) on these nodes by the method of this
paper (weighting the mean of the conjugate pair as twice as good as the corresponding
zero of the derivative) gives −0.742886654814185921+7.0× 10−17 i as the only common
root.

3.8 Concluding Remarks
This paper solves the approximate GCD problem in Lagrange bases. Our algorithm follows
the ideas in [19] and [37]. The results of this work are relevant to approximate GCD for
a specific pseudometric, namely the root pseudometric.

A possible extension of this work may be approximate GCD in Lagrange bases with re-
spect to a different metric (or pseudometric). Moreover, the main algorithm of this paper
can be trivially extended to Hermite basis. The only difference will be the rootfinding
step. In order to compute the roots one can use the companion pencil presented in [13].

One may wonder why clustering is used in p(z) and separately in q(z) to identify
common roots, instead of simply considering the roots of p(z) and q(z) together and then
clustering them (and thus identifying common zeros and hence the GCD). We feel that
a significant feature of approximate multiple zeros arising from a single polynomial is
symmetry: computing p(z)(z− r)m + ε results in a near-circular symmetric cluster near
z = r. There is no reason to believe that the perturbation in q(z)(z− r)`+ δ would even
be the same magnitude, and in any case symmetry would be lost. We admit that this
is a heuristic, and does not account for structured perturbations p(z)(z − r)n + εr(z);
nonetheless we think this is a valuable heuristic and it has worked well for us in the
examples that we have tried.

An interesting example, which we will describe in a future paper, is to cluster the
roots of a Mandelbrot polynomial, defined as p0(z) = 0 and pn+1(z) = zp2

n(z)+1. These
are studied by homotopy methods in [14] using the homotopy f(z, t) = zp2

n(z) + t which
starts with double roots at t = 0: if one looks at the roots of pn+1(z) and clusters into
double roots, do we get approximations of roots of pn(z)? The answer is no, or not
often, and then only in regions of sensitivity. But this example is, as mentioned in the
previous paragraph, structured. We need to perform more experiments on this example
before commenting further.

Finally, as it is described in this current paper, the clustering heuristic by distance,
multiplicity, and symmetry does not take into any account that the points are actually
supposed to be roots of a polynomial. Because it is based on the approximation

p(r + ∆r) ≈ p(m)(r)
m! ∆rm (3.8.1)

for an m-fold zero, we should in practice post-process the clustering results, estimate the
mth derivative at a clustered root, and re-do the clustering with the “fuzz factors” of
the heuristic replaced by the estimates resulting from the post-processing. This would
increase our confidence that we had found an actual multiple root. Indeed one could
imagine an iterative algorithm being based on this refinement step. We leave this to
future work.
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Chapter 4

Generalized Standard Triples for
Algebraic Linearizations of
Matrix Polynomials

4.1 Introduction
A matrix polynomial is usually defined as follows: “A matrix polynomial P (λ) ∈
Fm×n[λ] is a polynomial in the variable λ with coefficients that are m by n matrices
with entries from the field F .” Typically an expression in the monomial basis φk(z) = zk

is given for P (λ), and often only regular matrix polynomials are considered, that is,
with m = n (we will use n for the dimension) and where detP (λ) is not identically
zero. Matrix polynomials have many applications and their study is of both classic and
ongoing interest. See the classic work [17] and [20] for theory and applications.

In this paper, as is done in [2], we consider the case when any polynomial basis φk(λ)
is used. We do require that the set {φk(λ)} for 0 ≤ k ≤ ` forms a basis for polynomials
of degree at most `. Thus, we write our regular matrix polynomial as

P (λ) =
∑̀
k=0

Pkφk(λ) , (4.1.1)

where the matrices Pk ∈ Fn×n are square, and the degree of P (λ) is at most `. The
upper bound ` on the degree is also called the grade. The notion of “grade” is useful
even for the monomial basis, but it is especially useful if the basis is an interpolational
basis or the Bernstein basis φk(z) = Bn

k (z) =
(n
k

)
zk(1 − z)n−k, when the degree of the

polynomial may not be clear from the data.
For more information, consult [26]. See also [28], [20], and consult the seminal

book [19]. Linearizations using different polynomial bases were first systematically stud-
ied in [2]. Some recent papers of interest include [5], [27], [11], [15], and [31]; this is a
very active area. See also [1]. In that paper, standard triples for structured matrices are
studied.

4.1.1 Organization of the Paper
In Section 4.1.2, we establish notation, give the definitions of algebraic linearization and
of generalized standard triples. We define this last in Definition 4.1 with reference to the
representation in Equation (4.1.10). In Section 4.1.3, we show how to use the generalized
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standard triple in the construction of algebraic linearizations. We also give a proof, by
construction of the necessary unimodular E and F , that algebraic linearizations truly
are linearizations.

In Section 4.2, we prove our main result, giving a universal expression for the gen-
eralized standard triples for the linearizations using the polynomial bases that appear
in Sections 4.3.1, 4.3.2, and 4.3.3. In Section 4.3, we introduce all the polynomial bases
by scalar examples; in that section, we also sneak in a new reversal of the Bernstein
linearization and an outline of an apparently new proof that the Hermite interpolation
basis linearization is, in fact, a linearization by explicitly constructing unimodular ma-
trices E and F that bring the linearization to diag(P (z), In, . . . , In). In Section 4.4,
we give the strict equivalence of generalized standard triples for the polynomial bases
covered in this paper. We (redundantly) give specific proofs of our generalized stan-
dard triples formula, by using the Schur complement, in Section 4.5. We give matrix
polynomial examples in Section 4.6. We sum up in the final section.

4.1.2 Notation and Definitions
Two matrix polynomials P1(λ) and P2(λ) are called unimodularly equivalent if there
exist unimodular matrix polynomials (that is, matrices with constant nonzero determi-
nant) E(λ) and F (λ) with P1(λ) = E(λ)P2(λ)F (λ). A matrix pencil L(λ) := λC1−C0
is called a linearization of the matrix polynomial P (λ) if both C1 and C0 are of di-
mension N ≥ n and L(λ) is unimodularly equivalent to the block diagonal matrix
diag(P (λ), IN−n). Two linearizations Lm(λ) and Lφ(λ) are called strictly equivalent
if the corresponding matrices are equivalent in the following stronger sense: C1,m =
EC1,φF and C0,m = EC0,φF , with the same constant unimodular matrices E and F .

Given a potential linearization zC1 − C0, it is possible to discover the matrices E
and F by computing the Hermite Form of the linearization1, with respect to the variable
z, for instance by using a modestly sized example and a symbolic computation system
such as Maple [32]. For instance, we can quickly find that if

E =



1 h4 h3 h2 h1

0 0 0 0 −1
0 0 0 −1 −z

0 0 −1 −z −z2

0 −1 −z −z2 −z3


(4.1.2)

where h5 = a5 and hk = ak + zhk+1 for k = 4, 3, 2, 1 are the partial Horner evaluations
of p(z) = a5z

5 + · · ·+ a0, and if

F =



z4 0 0 0 1
z3 0 0 1 0
z2 0 1 0 0
z 1 0 0 0
1 0 0 0 0


, (4.1.3)

1The Smith form, which is related, is also useful here; but we found that the Maple implementation of
the Hermite Form gave a simpler answer, although we had to compute the matrix F separately ourselves
because the Hermite form is upper triangular, not diagonal.
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then for the second companion form

L(z) =



za5 + a4 a3 a2 a1 a0

−1 z 0 0 0
0 −1 z 0 0
0 0 −1 z 0
0 0 0 −1 z


, (4.1.4)

we have EL(z)F = diag(p(z), 1, 1, 1, 1). Moreover, detE = ±1 and detF = ±1.
This quickly generalizes to matrix polynomials, and to arbitrary degree, establishing

(as is well-known) that this form is a linearization.
There is a related idea to linearization, that of “companion pencil” (A,B), where

the only requirement is that detP (z) = det (zB −A). A companion pencil, therefore,
has the same eigenvalues as the matrix polynomial. Companion pencils that are not
linearizations do not necessarily preserve eigenvectors or elementary divisors, and are
less useful than linearizations.

The usual reversal2 of a matrix polynomial of degree at most ` is the polynomial
revP (λ) = λ`P (λ−1). A linearization L(λ) = λC1 − C0 of P is called a strong lin-
earization if revL(λ) = C1 − λC0 is also a linearization of revP (λ).

If L(z) = zC1 − C0 ∈ CN×N [z]—where usually N = n` but not always; for La-
grange and Hermite interpolational bases some constructions use N = (n + 2)` and
others N = (n + 1)`—is a linearization of P (z), then as a necessary consequence
det(P (z)) = det(L(z)) = det(zC1 − C0). The eigenvalues of P are thus computable
from the generalized eigenvalues of L. For instance, this can be done with eig(C0,C1)
in Matlab, or Eigenvalues(C[0],C[1]) in Maple if the matrix variables are defined
appropriately (and are of complex floating-point type in Maple).

A standard pair (X,T ) for a regular matrix polynomial P (λ) expressed in the mono-
mial basis with coefficients Pk is defined in [19] or in [26] as having the following prop-
erties: X has dimension n× n`, T has dimension n`× n`,

∑̀
k=0

PkXT
k = 0 , (4.1.5)

and that the n` by n` matrix

Q =


X
XT
...

XT `−1

 (4.1.6)

2This definition, which is standard, is particularly appropriate for the monomial basis. The coeffi-
cients of the reversed matrix polynomial in the monomial basis are simply the same matrices in reverse
order. The notion of a reversal, however, is independent of the basis used, and indeed reversals can
be done differently. In [9] for instance we find a slightly different definition of reversal, appropriate for
computation in a Lagrange or Hermite interpolational basis, which maps an arbitrary finite point to
infinity; this difference allows for greater numerical stability. We will introduce something similar for
the Bernstein linearization in this present paper.
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is nonsingular. We can then define a third matrix

Y = Q−1


0n
...

0n
In

 (4.1.7)

and say that the triple (X,T ,Y ) is a standard triple for a monic P (λ). It is pointed
out in [26] that monicity of P (λ) is not required for many of the formulæ to do with
standard pairs (but is required for some).

Theorem 12.1.4 of [18] states that if there are matrices X, T , and Y of dimension
n× n`, n`× n`, and n`× n for which

P−1(λ) = X(λIn − T )−1Y (4.1.8)

then (X,T ,Y ) is a standard triple for P (λ). This is also reported in Lemma 2 in [1].
There are two other representations of a matrix polynomial given a standard triple: the
right canonical form, and the left canonical form. See Theorem 2.4 in [17]. However,
we do not need those representations for algebraic linearization: it is the resolvent form
above that we seek to generalize in this paper. The reason is that it is this formula that
is used in the proof that algebraic linearizations can be performed when the component
matrix polynomials are expressed in different bases.

A polynomial basis {φk(z)}`k=0 for polynomials of degree at most ` (grade `) is a
set of polynomials each of degree at most ` for which there is a nonsingular matrix Φ
relating the polynomials φk(z) to the monomials 1, z, . . ., z`. We can write this as


φ`(z)
φ`−1(z)

...
φ0(z)

 = Φ


z`

z`−1

z`−2

...
1

 . (4.1.9)

Frequently, we want the ` × ` matrix that only goes up to degree ` − 1. The matrix Φ
is called the change-of-basis matrix and is usually exponentially ill-conditioned in the
dimension. For example, for the Bernstein polynomials φ`j(z) =

(`
j

)
zj(1 − z)(`−j) the

change-of-basis matrix has entries φi,j =
(j
i

)
/
(`
j

)
and condition number K1 = K∞ =

(`+ 1)
(`
s

)
2`−s where s = d(`− 2)/3e (the notation dxe means the ceiling of x, the least

integer not smaller than x). A short computation shows K ∼ 3`+1√`/4π as `→∞ and
is thus exponentially growing with the dimension.

The constructions and definitions of standard triple discussed above are apparently
tied to the monomial basis because of the powers T k in Equation (4.1.6). We would
like to relax this restriction and extend the notion of standard triple to other bases,
and also to the non-monic case. In particular, we would like the following extension of
Theorem 2.4 in [19] or Theorem 12.1.4 in [18] to be available: If a matrix X ∈ Cn×N ,
the linearization L(z) = zC1 −C0 ∈ CN×N [z], and a matrix Y ∈ CN×n satisfies

P−1(z) = X(zC1 −C0)−1Y (4.1.10)

for z /∈ Λ(P ) (the set of polynomial eigenvalues of P ), then X, L(z), and Y form a
generalized standard triple for P (λ). This obviously requires regularity of P because
the formula contains P−1(z).
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Indeed, we simply require L(z) to be a linearization and take this extension as a
definition. Such things exist, as we will demonstrate, and are useful, as shown in [7].

Definition 4.1. Matrices X, zC1 −C0, and Y form a generalized standard triple for
the regular matrix polynomial P (z) if L(z) = zC1 − C0 is a linearization of P and
Equation (4.1.10) holds.

Note that the matrices X and Y do not depend on z, but the linearization L(z)
does, albeit only linearly; we could instead have chosen to use the words “standard
quadruple” to mean (X,C1,C0,Y ) where z does not appear of any of these matrices,
but this quibble seems to be a matter of aesthetics only; we may use the term “triple”
to refer to X, the linearization, and Y .
Remark 4.2. Note also that if L(z) is a linearization for P (z), then there exist uni-
modular matrices E and F with F−1(zC1 − C0)−1E−1 = diag(P−1(z), I, . . . , I). By
premultiplying by Xp = [I, 0, . . . , 0] and postmultiplying by Yp = [I, 0, . . . , 0]T , we may
find X = XpF

−1 and Y = E−1Yp so that Equation (4.1.10) holds. Thus, as a referee
pointed out, the generalized standard triples may be read off from the proof that L(z)
is indeed a linearization (with a little work).

It is not clear that if Equation (4.1.10) holds then L(z) is necessarily a linearization
of P (z). We do have, however, the following:

Lemma 4.3. If a generalized standard triple exists as in Equation (4.1.10), then the
matrix pencil zC1 −C0 is at least a companion pencil for P (z).

Proof. The norm of the resolvent ‖P−1(z)‖ will be large if and only if ‖ (zC1 −C0)−1 ‖
is large.

For various reasons, we usually do not wish to invert a “leading coefficient” here; for
instance, if the polynomial basis is not degree-graded, e.g. for the Bernstein basis, then
in order to even look at the true leading coefficient, we have to form a particular linear
combination of the existing coefficients. In floating-point arithmetic, rounding errors
can disguise the rank of the resulting matrix, hence our interest in the generalization.

All we will need for the purposes of this paper is that the representation displayed
in Equation (4.1.10) holds. The representation itself is what is useful in the recursive
construction of algebraic linearizations.

IfX, zC1−C0, and Y form a generalized standard triple according to our definition,
then so do XU , U−1(zC1 −C0)V , and V −1Y for any nonsingular matrices U and V
of dimension N by N .

Several similarities are used very frequently. For convenience, we describe two of the
most common explicitly here.

Lemma 4.4 (Flipping). Put Jas the N ×N “anti-identity”, also called the sip matrix,
for standard involutory permutation, Ji,j = 0 unless i+ j = N + 1 when Ji,N+1−i = 1.
Then J2 = I and the “flipped” linearization LF (z) = J(zC1 − C0)J has in its
generalized standard triple the matrices XF = XJ and YF = JY .

Proof. Immediate.

Remark 4.5. Flipping switches both the order of the equations and the order of the vari-
ables. It obviously does not change eigenvalues. Flipping, transposition, and flipping-
with-transposition give four common equivalent linearizations [34].
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4.1.3 Algebraic Linearizations
An algebraic linearization (H,DH), as referred to in the title of this present note, is
defined in [7] as a linearization (H,DH) of a matrix polynomial h(λ) = λa(λ)d0b(λ)+c
constructed recursively from linearizations (A,DA) and (B,DB) of the lower-degree
component matrix polynomials a(λ) and b(λ), together with constant matrices d0 and
c. The paper [7] did not give an explicit unimodular pair (EH ,FH) that reduced the
linearization to diag(za(z)d0b(z)+c0, In, . . . , In), proving that the construction actually
gave a linearization, so we give a method to construct them here. Without loss of
generality we take d0 = In.

Theorem 4.6. If the n by n matrix polynomial a(z) has linearization (A,DA) with
unimodular pair (EA,FA) and if the n by n matrix polynomial b(z) has linearization
(B,DB) with unimodular pair (EB,FB) then the pencil zDH −H is a linearization of
h(z) = za(z)b(z) +C, where the matrices DH and H are given as follows:

DH =

 DA

In
DB

 (4.1.11)

and

H =

 A 0NA,n −YAcXB

−XA 0n 0n,NB
0NB ,NA −YB B

 . (4.1.12)

HereXA = [In, 0, . . . , 0]F−1
A YA = E−1

A [In, 0, . . . , 0]T and likewiseXB = [In, 0, . . . , 0]F−1
B

and YB = E−1
A [In, 0, . . . , 0]T give the elements of the (generalized) standard triples for

a(z) and b(z).

Proof. We first construct

E1 =

EA In
EB

 (4.1.13)

and

F1 =

FA In
FB

 . (4.1.14)

Applying them we get

E1(zDH −H)F1 =


a(z) EAYAcXBFB

INA−n
XAFA zIn

EBYB b(z)
INB−n

 . (4.1.15)
Simplifying and using the definitions of the matrices appearing in the standard triples,
we get 

a(z) c
INA−n

In zIn
In b(z)

INB−n

 . (4.1.16)
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Multiplying on the right by diag(INA , b(z) · b−1(z), INB ) (which we can do except when
z is an eigenvalue of b) we get

a(z) c
INA−n

In zb(z)
b(z) b(z)

INB−n

 . (4.1.17)

An elementary block column operation (recorded as the appropriate block elementary
matrix multiplication) gets us

a(z) −c c
INA−n

In zb(z)
0 b(z)

INB−n

 . (4.1.18)

Multiplying the block containing zb(z) by a(z) and subtracting it from the first block
row (recording this operation in a factor on the left) we get

0 −za(z)b(z)− c c
INA−n

In zb(z)
0 b(z)

INB−n

 . (4.1.19)

Interchanging columns and recording it on the right, and finally pulling out a factor b(z)
by a column multiplication, we arrive at

−za(z)b(z)− c cb−1(z)
INA−n

zb(z) In
0 In

INB−n

 . (4.1.20)

The blocks zb(z) and cb−1 can be removed using a block column operation and a block
row operation, and we have arrived at the desired form (apart from a sign, which can
be absorbed either into the first row of EH or the first column of FH). All that remains
is to check that the constructed factors (recording all our operations) EH and FH are
unimodular. This is so because we put both a factor b(z) and a factor b−1(z) into
the matrices on the right and otherwise nothing depending on z, and on the left only
constant-determinant factors. This completes the proof.

Remark 4.7. The generalized standard triple for the algebraic linearization has XH =
[0, 0,XB] and YH = [Y T

A , 0, 0]T . For these linearizations, there is no notion of expressing
1 as a linear combination of anything, because this formulation is free of polynomial
bases.

Algebraic linearizations offer a new, potentially more numerically stable, class of
linearizations. The recursive construction of algebraic linearizations relies on the gener-
alized standard triples of each of the component matrix polynomials, and (as does the
unrelated paper [31]) allows different polynomial bases to be used for each component.
This present note provides some explicit formulas for generalized standard triples in
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various bases, for reference. As one reviewer points out, these formulas could simply be
obtained by reading the proofs that these linearizations are indeed linearizations; one
purpose of this paper is simply convenience.

4.2 Expressing 1 in the basis gives the triple
If the φk(x), 0 ≤ k ≤ `− 1 form a basis, we may express the polynomial 1 in that basis:
then 1 = ∑`−1

k=0 ekφk(z) defines the coefficients ek uniquely. Putting

X =
[
e`−1 e`−2 · · · e1 e0

]
⊗ I (4.2.1)

for an appropriate choice of basis always gives our generalized standard triple P−1(z) =
X(zC1 −C0)−1Y with

Y =
[
In 0n 0n · · · 0n

]T
. (4.2.2)

We prove this below for all the elementary linearizations we use in this paper.

Theorem 4.8. The generalized standard triple for P (z) in the basis Φ is given as
described above.

Proof. The following proof, which uses an idea of an anonymous referee, is simpler
than our original one. For each of the polynomial bases we examine in this paper, the
linearization satisfies either

L(z)


φ`−1(z)In
φ`−2(z)In

...
φ0(z)In

 =


In
0n
...

0n

P (z) , (4.2.3)

for degree-graded bases, or similar statements for Bernstein bases and Lagrange and Her-
mite interpolational bases, as follows. For the Bernstein basis, the polynomial elements
in the vector on the left are multiples of B`−1

j (z): [`/1 · B`−1
`−1(z), `/2 · B`−1

`−1(z), . . . , `/` ·
B`−1

0 (z)]T . For the Lagrange basis, the vector on the left is [w(z), `0(z), `1(z), . . . , ``(z)]T .
For the Hermite interpolational basis, it is the same as for the Lagrange but with the
Lagrange basis elements replaced with the Hermite interpolational basis elements.

Premultiplying by L−1(z) and post-multiplying by P−1(z), we have

L−1(z)


In
0n
...

0n

 =


φ`−1(z)In
φ`−2(z)In

...
φ0(z)In

P−1(z) . (4.2.4)

If 1 = ∑`−1
k=0 ekφk(z) is the expression of 1 in that basis, then premultiplying both sides

by
X =

[
e`−1In e`−2In . . . e0In

]
gives the theorem. Compare also Remark 4.2 which gives another formula for X and
Y .

Note that in the Bernstein, Lagrange, and Hermite interpolational cases, 1 can be
expressed as a linear combination of the elements given; for Lagrange and Hermite
the coefficient of w(z) is 0. These differences between this and the non degree-graded
bases will be brought out in the examples, and the individual proofs. See in particular
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Equation (4.4.9) and Equation (4.4.10) for Bernstein and Lagrange forms, respectively.
The Hermite interpolational case is very much like the Lagrange case. In all cases,
expressing 1 as a linear combination of elements proves to be crucial.

Remark 4.9. There are linearizations not explicitly considered in this paper; for instance,
a referee has pointed out that when a matrix polynomial is expressed in a basis where
the elements satisfy a linear recurrence, then there is an automatic way to build what
is called a CORK linearization. See [20] and [35] for details.

In what follows we examine specific cases in detail and supply specific proofs for each
basis. Indeed, much of the utility of this paper is simply writing down those details,
which will allow easier programming for the uses of these generalized standard triples.

4.3 Scalar examples of generalized standard triples
In this section, we tabulate generalized standard triples for four classes of linearizations.
We do so by scalar examples, leaving the matrix polynomial case to Section 4.6. In
contrast, in Section 4.5 where we gave proofs, we do so in full generality.

In the special case n = 1 and when the monomial basis is used, a linearization is
usually simplified by dividing by the leading coefficient, making the result monic and the
second matrix of the pair just becomes the identity. The remaining matrix is called a
“companion matrix” or Frobenius companion3. Thus finding roots of a scalar polynomial
can be done by finding eigenvalues of the companion matrix. Kublanovskaya calls these
“accompanying pencils” in [24]. For bases other than the monomial, the unfortunate
nomenclature “colleague matrix” or “comrade matrix” is also used. This nomenclature
hinders citation search and we prefer “generalized companion”, if a distinction is needed.
See [28].

Construction of a linearization from a companion matrix is, when possible at all,
a simple matter of the Kronecker (tensor) product: given C1, C0 ∈ Cn×n, take C̃1 =
C1 ⊗ In and then replace each block pkIn with the corresponding matrix coefficient
Pk ∈ Cr×r (the first pk, in pkIn, is the symbolic coefficient from p(z) = ∑`

k=0 pkφk(z);
the matrix coefficient Pk ∈ Cr×r is from P (z) = ∑`

k=0Pkφk(z).) This will be clearer by
example.

4.3.1 Bases with three-term recurrence relations
The monomial basis, the shifted monomial basis, the Taylor basis, the Newton inter-
polational bases, and many common orthogonal polynomial bases all have three-term
recurrence relations that, except for initial cases, can be written

zφk(z) = αkφk+1(z) + βkφk(z) + γkφk−1(z) . (4.3.1)

In all cases, we have αk 6= 0. For instance, the Chebyshev polynomial recurrence is
usually written Tn+1(z) = 2zTn(z) − Tn−1(z) but is easily rewritten in the above form
by isolating zTn(z), and all Chebyshev αk = 1/2 for k > 1. We give a selection in
Table 4.1, and refer the reader to section 18.9 of the Digital Library of Mathematical
Functions (dlmf.nist.gov) for more. See also [16].

3The Frobenius form of a matrix is related, but different: see for instance [33].

dlmf.nist.gov


Generalized Standard Triples 66

φk(z) Name αk βk γk φ0 φ1
zk monomial 1 0 0 1 z

(z − a)k shifted monomial 1 a 0 1 z − a
(z − a)k/k! Taylor n+ 1 a 0 1 z − a∏k−1
j=0(z − τj) Newton interpolational 1 τn 0 1 z − τ0

Tk(z) = cos
(
k cos−1(z)

)
Chebyshev 1/2 0 1/2 1 z

Pk(z) Legendre (k + 1)/(2k + 1) 0 k/(2k + 1) 1 z

Table 4.1: A short list of three-term recurrence relations for some important polyno-
mial bases discussed in Section 4.3.1. For a more comprehensive list, see The Digital
Library of Mathematical Functions. These relations and others are coded in Walter
Gautschi’s packages OPQ and SOPQ [16] and in the MatrixPolynomialObject imple-

mentation package in Maple (see [21]).

For all such bases, we have the linearization4

C1 =


p5
α4

1
1

1
1

 , (4.3.2)

C0 =


−p4 + β4

α4
p5 −p3 + γ4

α4
p5 −p2 −p1 −p0

α3 β3 γ3
α2 β2 γ2

α1 β1 γ1
α0 β0

 , (4.3.3)

(remember that αk 6= 0) and

X =
[
0 0 0 0 1

]
, (4.3.4)

Y =
[
1 0 0 0 0

]T
. (4.3.5)

For instance, a flipped and transposed linearization of this class for the Chebyshev case
is5

L(z) =



z −1
2 p0

−1 z −1
2 p1

−1
2 z −1

2 p2

−1
2 z p3 + p5

−1
2 2zp5 + p4


(4.3.6)

4For exposition, we follow Peter Lancaster’s dictum, namely that the 5 × 5 case almost always gives
the idea.

5For the matrix polynomial case, each Pk would be transposed. If we had started with P T (z) then
by flipping and transposing we get back to a linearization for P .
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has flipped and transposed X =
[
0 0 0 0 1

]
, Y =

[
1 0 0 0 0

]T. As another
instance, a Newton interpolational basis on the nodes τ0, τ1, . . ., τ5 has a linearization

z


p5

1
1

1
1

−

−p4 + τ4p5 −p3 −p2 −p1 −p0

1 τ3
1 τ2

1 τ1
1 τ0

 . (4.3.7)

The corresponding linearization for matrix polynomials of this grade is

z


P5

In
In

In
In

−

−P4 + τ4P5 −P3 −P2 −P1 −P0

In τ3In
In τ2In

In τ1In
In τ0In

 . (4.3.8)

4.3.2 The Bernstein basis
The set of polynomials {B`

k(z)}`k=0 =
(`
k

)
zk(1 − z)`−k is a set of ` + 1 polynomials

each of exact degree ` that together forms a basis for polynomials of degree at most `
(grade `). Bernstein polynomimals have many applications, for example in Computer
Aided Geometric Design (CAGD), and many important properties including that of
optimal condition number over all bases positive on [0, 1]. They do not satisfy a simple
three term recurrence relation of the form discussed in Section 4.3.1, although they
satisfy an interesting and useful “degree-elevation” recurrence, namely

(j + 1)Bn
j+1(z) + (n− j)Bn

j (z) = nBn−1
j (z) , (4.3.9)

which specifically demonstrates that a sum of Bernstein polynomials of degree n might
actually have degree strictly less than n. See [12], [13], and [14] for more details of
Bernstein bases.

A Bernstein linearization for p5(z) = ∑5
k=0 pkB

5
k(z) is

C1 =



−p4 + 1
5p5 −p3 −p2 −p1 −p0

1 2
4
1 3

3
1 4

2
1 5

1


, (4.3.10)

C0 =


−p4 −p3 −p2 −p1 −p0

1 0
1 0

1 0
1 0

 , (4.3.11)

X =
[1

5
2
5

3
5

4
5

5
5

]
, (4.3.12)

Y =
[
1 0 0 0 0

]T
. (4.3.13)
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For a construction of the E and F that show this is a linearization, see [2]. This is a
strong linearization, as we will explicitly see shortly. We have p−1(z) = X(zC1−C0)−1Y
if p(z) 6= 0. This linearization was first analyzed in [22] and [23] and has been further
studied and generalized in [29]. One of the present authors independently invented and
implemented a version of this linearization in Maple (except using PT(z), and flipped
from the above form) in about 2004. For a review of Bernstein linearizations, see the
aforementioned [29]. For a proof of their numerical stability, see the original thesis [22].
The standard triple is, we believe, new to this paper.

4.3.2.1 A new reversal

As a further novelty, we here advocate a slightly different reversal, namely rev p(z) =
(z+ 1)np(1/(z+ 1)) of a polynomial of degree at most n expressed in a Bernstein basis,
instead of the standard reversal znp(1/z). This new reversal has a slight numerical
advantage if all the coefficients of p(z) are the same sign. We also give a proof that
the linearization of this reversal is the corresponding reversal of the linearization, thus
giving a new independent proof that the linearization is a strong one.

A short computation shows that if

p(z) =
n∑
k=0

ckB
n
k (z) (4.3.14)

then
rev p(z) = (z + 1)np

( 1
z + 1

)
=

n∑
k=0

dkB
n
k (z) (4.3.15)

where

dk =
k∑
j=0

(
k

j

)
cn−j , (4.3.16)

whereas the coefficients of the standard reversal are, in contrast,

ek =
n−k∑
m=0

(−1)m
(
n− k
m

)
cn−m−k (4.3.17)

which has introduced sign changes, which may fail to preserve numerical stability if all
the ck are of one sign. A further observation is that the coefficient d0 only involves cn,
while e0 involves all ck; d1 involves cn and cn−1 while e1 involves all but c0, and so on;
in that sense, this new reversal has a more analogous behaviour to the monomial basis
reversal, which simply reverses the list of coefficients.

For interest, we note that if (A,B) is a linearization for p(z) so that p(z) = det(zB−
A), then reversing the linearization by this transformation is not a matter of simply
interchanging B and A:

(z + 1)np
( 1
z + 1

)
= (z + 1)n det

( 1
z + 1B −A

)
= det(B − (z + 1)A)
= det(B −A− zA) (4.3.18)

and so the corresponding reversed linearization is (A,B −A). The sign change is of no
importance.
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Suppose that the Bernstein linearization of p(z) is (A,B) and that the Bernstein
linearization of rev p(z) is (AR,BR). That is, the matrices AR and BR have the
same form as that of A and B, but where (A,B) contains cks the matrices (AR,BR)
contains dks. To give a new proof that the Bernstein linearization is actually a strong
linearization, then, we must find a pair of unimodular matrices (U ,V ) which have
UARV = B − A and UBRV = A, valid for all choices of coefficients ck (which
determine the corresponding reversed coefficients dk by the formula above).

Strictly speaking, such a proof is not necessary because the strength of this lin-
earization has been proved elsewhere already, but for surety and because this reversal is
unusual here is an outline of the proof.

First, it simplifies matters not to deal with V but rather with V −1. Then, our
defining conditions become

UAR = (B −A)V −1 (4.3.19)
UBR = AV −1 , (4.3.20)

which are linear in the unknowns (the entries of U and of V −1). By inspection of the
first few dimensions, we find that U and V −1 have the following form (using the six-by-
six case, for variation, to demonstrate). The anti-diagonal of the general U has entries
−(n− i+ 1)/i for i = 1, 2, . . ., n.

U =



0 0 0 0 0 −6
0 0 0 0 −5

2 u2,6

0 0 0 −4
3 u3,5 u3,6

0 0 −3
4 u4,4 u4,5 u4,6

0 −2
5 u5,3 u5,4 u5,5 u5,6

−1
6 u6,2 u6,3 u6,4 u6,5 u6,6


(4.3.21)

and

V −1 =



0 0 0 0 Λ1,5 Λ1,6

0 0 0 Λ2,4 Λ2,5 Λ2,6

0 0 Λ3,3 Λ3,4 Λ3,5 Λ3,6

0 Λ4,2 Λ4,3 Λ4,4 Λ4,5 Λ4,6

Λ5,1 Λ5,2 Λ5,3 Λ5,4 Λ5,5 Λ5,6

0 0 0 0 0 1


(4.3.22)

It is an interesting exercise to derive the explicit general formulae

ui,j = −
(
n− i+ 1

i

)(
i

n+ 1− j

)
1 ≤ i, j ≤ n (4.3.23)

Λi,j = −
(
n− i
j

)(
i

n− j

)
1 ≤ i, j ≤ n− 1 (4.3.24)

Λi,n = di −
n− i
n

cn , (4.3.25)
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and to prove that these are not only necessary for the equations above, but also sufficient.
As a quick sketch of how to do it, the matrix B − A is diagonal and gives a direct
relationship between the triangular block in V −1 and a corresponding portion of U ;
the other equation gives a recurrence relation for the entries of U . Comparison of the
final columns of the products gives an explicit formula for the final column of V −1

and an explicit formula for the entries of U by comparison of the coefficients of the
symbols ck; this formula can be seen to verify the recurrence relation found earlier,
closing the circle and establishing sufficiency. Both matrices U and V have determinant
±1: bn/2c row-permutations brings U to upper triangular form and the determinant
(−1)n (times (−1)bn/2c) can be read off as the product of the formerly anti-diagonal
elements, and similarly for the upper block of V −1 which has one dimension less giving
(−1)n−1+b(n−1)/2c.

Expansion to the matrix polynomial case merely requires the appropriate tensor
product.

4.3.3 The Lagrange interpolational basis
There are by now several Lagrange basis linearizations. The use of barycentric forms
means that Lagrange interpolation is efficient and numerically stable and is increasing
in popularity [4]. Here is the definition of the first barycentric form for interpolation of
polynomials of degree at most ` on the `+ 1 distinct nodes τk ∈ C, 0 ≤ k ≤ `. Take the
partial fraction decomposition of the reciprocal of the node polynomial

w(z) =
∏̀
k=0

(z − τk) , (4.3.26)

namely
1

w(z) =
∑̀
k=0

βk
z − τk

(4.3.27)

where the coefficients βk occurring in the partial fraction decomposition are called the
barycentric weights. A well-known explicit formula for the βk is

βk =
∏̀
j=0
j 6=k

(τk − τj)−1 . (4.3.28)

The Lagrange basis polynomials are normally written

`k(z) = βk
∏̀
j=0
j 6=k

(z − τj) . (4.3.29)

For many sets of nodes (Chebyshev nodes on [−1, 1], or roots of unity on the unit
disk) the resulting interpolant is also well-conditioned, and can even be “better than
optimal” [10], see also [6]. The linearization we use here is “too large” and has (numeri-
cally harmless in our experience) spurious roots at infinity6; for alternative formulations

6This numerical harmlessness needs some explanation. In brief, Lagrange basis matrix polynomial
eigenvalues will be well-conditioned only in a compact region determined by the interpolation nodes, and
are increasingly ill-conditioned towards infinity; in practice this means only small changes in the data
are needed to perturb large finite ill-conditioned eigenvalues out to infinity. Any eigenvalues produced
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see [35], [30]. Then the linearization is zC1 −C0 where

C1 =


0

1
1

1
1

 (4.3.30)

C0 =


0 −ρ0 −ρ1 −ρ2 −ρ3 −ρ4
β0 τ0
β1 τ1
β2 τ2
β3 τ3
β4 τ4

 . (4.3.31)

Matrices E and F demonstrating that this is indeed a linearization can be found in [2]
but because we will need them for the Hermite interpolational linearization shortly, we
introduce some here:

E =
[
In −ρD−1

0 IN−n

]
(4.3.32)

and
F =

[
w(z)In 0
φ(z)⊗ In D−1

]
. (4.3.33)

HereD = diag(z−τ0, z−τ1, . . . , z−τ`), φ(z) = [`0(z), `1(z), . . . , ``(z)]T which is also (in
the Lagrange case) related to w(z) and the βk by `k(z) = βkw(z)/(z−τk). Thus detE =
1 and detF = 1 (except at nodes z = τk, but we recover the constant by continuity).
Multiplying out, we have E(zC1 − C0)F = diag(P (z), In, . . . , In). It is amusing that
P (z) comes out exactly in the first barycentric form, P (z) = w(z)∑`

k=0 βkρk/(z − τk).
Then det(τkC1−C0) = det(ρk) = ρk here, 0 ≤ k ≤ 4 and deg(zC1−C0) ≤ 4. Thus,

p(z) = det(zC1 −C0) interpolates the given data, assuming the τk are distinct. The X
and Y for the standard triple are

X =
[
0 1 1 1 1 1

]
, (4.3.34)

Y =
[
1 0 0 0 0 0

]T (4.3.35)

Notice in this case that for the linearization N = (`+ 2)n while deg p ≤ `, and therefore
there are at least 2n eigenvalues at infinity. This can be inconvenient if n is at all large.

4.3.4 Hermite interpolational basis
The Lagrange linearization of the previous section has been extended to Hermite inter-
polational bases, where some of the nodes have “flowed together,” collapsing to fewer
distinct nodes7.

We suppose that at each remaining distinct node τi, 0 ≤ i ≤ N − 1, say, there are
now si ≥ 1 consecutive pieces of information known, namely P (τi), P ′(τi)/1!, P ′′(τi)/2!,
and so on up to the last one, the value of the si − 1-th derivative at z = τi, namely

numerically that are well outside the region determined by the interpolation nodes are likely easily
perturbed all the way to infinity, and can be safely ignored.

7A formal definition can be found in [8], for instance. The essential idea is that given two distinct
pieces of data (τk, p(τk)) and (τk+1, p(τk+1)), we also know the forward difference (pk+1 −pk)/(τk+1 −τk).
In the limit as one node approaches (flows towards) the other, we still know two pieces of information:
p(τk) and p′(τk). Hermite interpolation captures this idea.
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P (si−1)(τi)/(si − 1)!. The integer si is called the confluency of the node. The known
pieces of information are the local Taylor coefficients of the polynomial fitting the data:

ρi,j = f (j)(τi)
j! , 0 ≤ j ≤ si − 1 . (4.3.36)

This gives 1 + ` = ∑
si pieces of information, determining a polynomial of degree at

most `. The barycentric weights, this time doubly indexed as βi,j , are again computed
from the partial fraction decomposition of the reciprocal of the node polynomial

1
w(z) = 1∏N−1

i=0 (z − τi)si
=

N−1∑
i=0

si−1∑
j=0

βi,j
(z − τi)j+1 . (4.3.37)

For evaluation of the interpolating polynomial one should use the first or second barycen-
tric form; see [8] for details. For theoretical work with the Hermite interpolational bases,
however, we can define

Hi,j(z) =
si−1−j∑
k=0

βi,j+kw(z)(z − τi)−k−1 . (4.3.38)

These polynomials, each of degree at most `, form a basis (a Hermite interpolational
basis, to distinguish from the Hermite orthogonal polynomials) for polynomials of degree
at most `; moreover they generalize the Lagrange property in that only one Taylor
coefficient at only one node is 1 and all the rest are zero.

Note that the derivative P ′(z) of a matrix polynomial is a straightforward extension
to matrices of the ordinary derivative. It is isomorphic to the matrix with entries that
are the ordinary derivatives of the original matrix.

The linearization of the previous section changes to the following elegant form. The
matrix C1 is unchanged,

C1 =


0

1
. . .

1
1

 , (4.3.39)

being (`+2) by (`+2) as before. The matrix C0 changes, picking up transposed Jordan-
like blocks for each distinct node. For instance, suppose we have two distinct nodes, τ0
and τ1. Suppose further that τ0 has confluency s0 = 3 while τ1 has confluency s1 = 2.
This means that we know f(τ0), f ′(τ0)/1!, f ′′(τ0)/2!, f(τ1) and f ′(τ1)/1!. Then,

C0 =


0 −f ′′(τ0)/2! −f ′(τ0)/1! −f(τ0) −f ′(τ1)/1! −f(τ1)
β02 τ0
β01 1 τ0
β00 1 τ0
β11 τ1
β10 1 τ1

 (4.3.40)

Note the reverse ordering of the derivative values in this formulation.
The matrices E and F demonstrating that this is indeed a linearization have, so

far as we know, not been noted in the literature. They are exactly the same as for the
Lagrange basis, Equations (4.3.32) and (4.3.33), with appropriately modified meanings
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for φ andD. The new φ contains the Hermite interpolational bases in Equation (4.3.38),
and now D is not diagonal but rather block diagonal with the transposed Jordan-like
blocks above. Both matrices are still unimodular. Again we have E(zC1 − C0)F =
diag(P (z), In, . . . , In).

For the standard triple, take in the scalar case

Y =
[
1 0 · · · 0

]T (4.3.41)

but for X take the coefficients of the expansion of the polynomial 1 in this particular
Hermite interpolational basis: it is equal to 1 at each node but has all derivatives zero
at each node. That is, put {

ρij = 1 if j = 0 ,
0 otherwise , (4.3.42)

and sort them in order:

X =
[
0 ρ0,s0−1 ρ0,s0−2 · · · ρ0,0 ρ1,s1−1 · · · ρn,0

]
. (4.3.43)

For the earlier instance (two nodes, of confluency 3 and 2, respectively,

X =
[
0 0 0 1︸ ︷︷ ︸

for τ0

0 1︸ ︷︷ ︸
for τ1

]
. (4.3.44)

Then
p−1(z) = X(zC1 −C0)−1Y . (4.3.45)

Remark 4.10. We may re-order the nodes in any fashion we like, and each ordering
generates its own linearization (both Hermite and Lagrange). We may also find a lin-
earization where the confluent data is ordered p(τi), p′(τi)/1!, p′′(τi)/2!, etc., although we
have not done so.

If there is just one node of confluency `, we recover the standard Frobenius companion
(plus two infinite roots):


0

1
. . .

1
1

 ,



0 −p`−1 −p`−2 · · · −p1 −p0
1 τ0
0 1 τ0

0 1 . . .
...

. . . τ0
0 1 τ0


. (4.3.46)

Here pk = p(k)(τ0)/k! is the ordinary coefficient in the expansion p(z) = ∑`
k=0 pk(z − τ0)k.

The numerical stability of these Hermite interpolational linearization has been studied
briefly [25] but much remains unknown. We confine ourselves in this paper to the study
of the standard triple.

To make a linearization for matrix polynomials out of these scalar linearizations, take
the Kronecker tensor product with In, and insert the appropriate matrix polynomial
values and derivative values.
Remark 4.11. The modified linearizations of [35] also have standard triples that can
be used for algebraic linearization, and arguably should be tabled here as well. They
have the advantage of including fewer eigenvalues at infinity, or no spurious eigenvalues
at infinity, which may lead to better algebraic linearizations. However, they are more
involved, and we have less numerical experience with them. In particular we do not
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understand their dependence on the ordering of the nodes, and so we leave their analysis
to a future study.

4.4 Strict Equivalence of Generalized Standard Triples
Theorem 4.12. If φk(z) for 0 ≤ k ≤ ` is one of the degree-graded polynomial bases
(e.g. Chebyshev, Newton, Jacobi) then the linearization for a polynomial p(z) expressed
in that basis is strictly equivalent to the second linearization for the same polynomial
expressed in the monomial basis. That is, there exist unimodular matrices U and V for
which C1,m = UC1,φV and C0,m = UC0,φV . The matrix U will depend on the given
polynomial p(z). Here the subscript m is short for “monomial".

Proof. Denote the change-of-bases matrix for polynomials up to degree `−1 by Φ. This
matrix is ` by `. Then we have 

φ`−1(z)
φ`−2(z)

...
φ1(z)
φ0(z)

 = Φ


z`−1

...
z2

z
1

 . (4.4.1)

In all cases considered here, the linearization for a polynomial p(z) of exact degree ` has
null vectors of the form

N =


φ`−1(λ)
φ`−2(λ)

...
φ1(λ)
φ0(λ)

 (4.4.2)

where λ is a root of p(z). That is,

(λC1,φ −C0,φ)N = 0 . (4.4.3)

Using the Φ formula above, we have V = Φ. By direct computation, we find that
U = C0,mΦ−1C−1

0,φ necessarily giving UC0,φV = C0,m. Since V = Φ is unimodular,
all that remains is to show that U is unimodular, and that it satisfies UC1,φV = C1,m
as well. Since C1,m (which corresponds to the monomial basis) is the identity matrix
except for the 1, 1 entry which is a` 6= 0, the leading coefficient of the polynomial, this last
is straightforward. Indeed, the action of premultiplying by C0,m and postmultiplying
by C−1

0,m cancels the coefficient a` in the 1, 1 entry of U , and thus by continuity this
construction works even if a` = 0, that is for polynomials of grade `. Then since
Φ is upper triangular for degree-graded matrices and lower triangular for Bernstein
matrices, and U has in that case zeros in the first column below the diagonal entry, U
is unimodular.

To make this work for regular matrix polynomials of dimension n, we must use the
tensor product Φ⊗ I.

We illustrate this proof with a four by four example in the Bernstein basis, which has
somewhat contrasting behaviour. If p(z) = a0B

4
0(z) + a1B

4
1(z) + a2B

4
2(z) + a3B

4
3(z) +
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a4B
4
4(z), then

U =


1 1

4 a0 − a1 + 3
2 a2 −1

6 a0 + 2
3 a1

1
4 a0

0 1/4 0 0
0 1/4 1/6 0
0 1/4 1/3 1/4

 (4.4.4)

and

V =


4 0 0 0
−6 6 0 0
4 −8 4 0
−1 3 −3 1

 . (4.4.5)

Direct computation shows that both matrices are nonsingular irrespective of the values
of the ak, and that these transform the Bernstein linearization

C0,Bernstein =


−a3 −a2 −a1 −a0

1 0 0 0
0 1 0 0
0 0 1 0

 (4.4.6)

and

C1,Bernstein =



a4
4 − a3 −a2 −a1 −a0

1 2/3 0 0
0 1 3/2 0
0 0 1 4

 (4.4.7)

to

C0,monomial =


−b3 −b2 −b1 −b0

1 0 0 0
0 1 0 0
0 0 1 0

 (4.4.8)

with −b3 = 4 a0− 12 a1 + 12 a2− 4 a3, −b2 = −6 a0 + 12 a1− 6 a2, −b1 = 4 a0− 4 a1, and
−b0 = −a0. Also, UC1,BernsteinV becomes the identity matrix except the 1, 1 entry is
b4 = a0−4 a1 +6 a2−4 a3 +a4. These are the correct coefficients of the same polynomial
expressed in the monomial basis.

Now, the vector N used in the second proof of Theorem 4.8 is not here composed of
Bernstein basis elements up to the index ` − 1, but rather is composed of multiples of
Bernstein basis elements of order `− 1, which happen to be some of the Bernstein basis
elements of order `, divided by 1 − z. Here, where the Bernstein basis of order three
gives elements z3, 3z2 (1− z), 3z (1− z)2, (1− z)3,

N =


4 z3

6 z2 (1− z)
4 z (1− z)2

(1− z)3

 . (4.4.9)
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The ratios of these to the lower-degree Bernstein basis are 4/1, 4/2, 4/3, and 4/4. This
gives the detail needed for the proof of our general main theorem, Theorem 4.8, in the
case of Bernstein bases.

4.4.1 The Lagrange interpolational case
As is usual we denote a Lagrange basis element on the distinct nodes [τ0, τ1, . . . , τ`] by
`k(z) = βk

∏
j 6=k(z − τj). The use of the symbol ` by itself denotes an integer, namely

the grade of the polynomial; the distinction is that ` with a subscript and a variable
`j(z) denotes a Lagrange basis polynomial. This should not cause confusion.
Remark 4.13. Many people think of “interpolation” as meaning the construction of a
monomial basis polynomial p(z) = a`z

` + · · · + a0 that fits the given data p(τk) = ρk
for 0 ≤ k ≤ `. This is naive. Interpolation truly means constructing a polynomial in
any basis that we may use to evaluate p(z) for z different to the values at the nodes.
A very stable and convenient way to do this is by the barycentric form of Lagrange
interpolants [4]. Constructing an interpolant in a Newton basis by using divided dif-
ferences or the monomial basis by using a Vandermonde matrix is changing the basis.
Changing bases can have condition number exponential in the degree, and is usually a
bad idea. In practice, we use the barycentric form [4]. For the purposes of proof of
equivalence, we here occasionally use the Vandermonde matrix, and we think about the
explicit construction of the monomial basis. This is not used in numerical practice.

Theorem 4.14. If φk(z) for 0 ≤ k ≤ ` is a Lagrange basis on distinct nodes τ0, τ1,
. . ., τ`, then the ` + 2 by ` + 2 linearization for a polynomial p(z) expressed in that
basis is strictly equivalent to what is called the second standard linearization in [17] for
same polynomial expressed in the monomial basis but regarded as having grade `+2 (i.e.
with zero coefficients padding the terms z`+2 and z`+1. That is, there exist unimodular
matrices U and V for which C1,φ = UC1,mV and C0,φ = UC0,mV , where now the
matrices in the second standard linearization have dimension larger by two than needed
for the exact degree. The matrix U will depend on the given polynomial p(z).

Proof. For the Lagrange basis linearization, the right null vector is not of the form
indicated in the proof of Theorem 4.8 but rather of the form

N =


w(λ)
`0(λ)
`1(λ)
...

``(λ)

 . (4.4.10)

Here w(z) = ∏`
k=0(z − τk) is of degree `+ 1 and all the other entries, being elements of

the Lagrange basis on `+1 nodes, are of degree `. Thus Φ is dimension `+2 by `+2 and
has first column e1; that is, 1 in the first entry and zeros below it. The rest of the first
row contains the coefficients of w(z) expanded in the monomial basis. The remaining
rows of Φ contain the coefficients of the monomial expansions of the Lagrange basis
polynomial; that is, the inverse of the transposed Vandermonde matrix, which relates
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the Lagrange interpolation basis to the monomial basis. Call that block Φ̂. Explicitly,

Φ̂−1 =


τ `0 τ `1 · · · τ ``
τ `−1

0 τ `−1
1 · · · τ `−1

`
...

...
τ0 τ1 · · · τ`
1 1 · · · 1

 . (4.4.11)

Then U is straightforwardly seen to be diag(1, Φ̂−1) and as in the degree-graded case
V = Φ. Further, UC0,φV has as its first row [0,−ρΦ̂]. But ρΦ̂ is by the Vandermonde
matrix simply the negative of the vector of monomial coefficients, −[0, a`−1, a`−2, . . . , a0].
More, the block underneath, namely Φ̂−1diag(τ0, τ1, . . . , τ`)Φ̂ turns out to be simple,
because

Φ̂−1diag(τ0, τ1, . . . , τ`) =


τ `+1

0 τ `+1
1 · · · τ `+1

`
τ `0 τ `1 · · · τ ``
...

...
τ2

0 τ2
1 · · · τ2

`
τ0 τ1 · · · τ`

 (4.4.12)

Multiplying this by Φ̂ shifts the identity matrix down one diagonal, giving the correct
form for the second standard linearization matrix C0,m.

As in the previous theorem, to construct U and V for n-dimensional regular matrix
polynomials, we must take the tensor product Φ⊗ I.

Again we illustrate this proof with an example, this time of interpolation at the four
points [−1,−1/2, 1/2, 1]. This will give rise to a polynomial of degree at most 3. If
the values this polynomial takes at these four points are ρ0, ρ1, ρ2, and ρ3, then the
equivalent polynomial expressed in the monomial basis has coefficients

a0 = −1/6 ρ0 + 2/3 ρ1 + 2/3 ρ2 − 1/6 ρ3
a1 = 1/6 ρ0 − 4/3 ρ1 + 4/3 ρ2 − 1/6 ρ3
a2 = 2/3 ρ0 − 2/3 ρ1 − 2/3 ρ2 + 2/3 ρ3
a3 = 2/3 ρ3 − 4/3 ρ2 + 4/3 ρ1 − 2/3 ρ0 . (4.4.13)

Expressing this as a polynomial of grade 5, that is p(z) = 0 · z5 + 0 · z4 + a3z
3 + a2z

2 +
a1z + a0, we get the second standard linearization

C0,monomial =



0 −a3 −a2 −a1 −a0

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


(4.4.14)
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and

C1,monomial =



0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


. (4.4.15)

The Lagrange basis linearization of [10], which admittedly has two extra infinite eigen-
values, is

C0,Lagrange =



0 −ρ3 −ρ2 −ρ1 −ρ0

2/3 1 0 0 0
−4/3 0 1/2 0 0
4/3 0 0 −1/2 0
−2/3 0 0 0 −1


(4.4.16)

and

C1,Lagrange =



0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


. (4.4.17)

For these interpolation nodes, direct computation shows

U =



1 0 0 0 0
0 1 1/8 −1/8 −1
0 1 1/4 1/4 1
0 1 1/2 −1/2 −1
0 1 1 1 1


(4.4.18)

and

V =



1 0 −5/4 0 1/4
0 2/3 2/3 −1/6 −1/6
0 −4/3 −2/3 4/3 2/3
0 4/3 −2/3 −4/3 2/3
0 −2/3 2/3 1/6 −1/6


. (4.4.19)

4.5 Schur complement-based proofs
In Section 4.2 we gave two short universal proofs of all the theorems in this section.
Each individual proof in this section is therefore redundant. We include them here both
for surety (thus giving a third proof of each theorem) and because they give insight and
may be relevant to any numerical analysis. We will use the Schur Complement, in the
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following form: assuming a matrix R is partitioned into

R =
[
A B
C D

]
(4.5.1)

where A ∈ Cr×r, B ∈ Cr×(N−r), C ∈ C(N−r)×r and D ∈ C(N−r)×(N−r) is assumed
invertible, then

R =
[
In BD−1

0 I

] [
A−BD−1C 0

C D

]
. (4.5.2)

If further the Schur Complement A−BD−1C is invertible, then

R−1 =

 (A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

 (4.5.3)

as can be verified by block multiplication byR. We will use S for the Schur Complement
S = A −BD−1C. We will take R = L(z) = zC1 − C0. We may already use this to
establish for each of the four classes of linearizations that

detR = det(zC1 −C0) = det(A−BD−1C) detD = detP (z) . (4.5.4)

Notice that the coefficients of P do not appear in the D block (in any of our lineariza-
tions). Thus the Schur Complement carries all the information particular to P (z). The
computations verifying (4.5.4) are not obvious but in each case D−1 plays an important
role. We will see that generically D−1 exists, except for isolated values of z, which we
can safely ignore and recover later by continuity.
We take each case in turn.

Theorem 4.15. If C1 = diag
[ 1
α`−1

P` In In · · · In
]
and

C0 =



β`−1
α`−1

P` − P`−1
γ`−1
α`−1

P` − P`−2 −P`−1 · · · −P0

α`−2I` β`−2In γ`−2In
α`−3In β`−3In γ`−3In

. . .
. . . γ1In
α0In β0In


(4.5.5)

and X =
[
0 0 · · · 0 In

]
and Y =

[
In 0 0 · · · 0

]
then X(zC1 − C0)−1Y =

P−1(z) where P (z) = ∑`
k=0Pkφk(z) except for such z that detP (z) = 0. As in Sec-

tion 4.3.1 the polynomials φk(z) satisfy zφk = αkφk+1 +βkφk+γkφk−1, φ−1 = 0, φ0 = 1,
φ1 = (z − β0)/α0. In this theorem, ` ≥ 2 and N = `n, and if P` 6= 0n then degree P = `.

That this is a linearization is well-known; see e.g. [3]. We only prove P−1(z) =
XR−1Y , here.

Proof. We use the first block column of Schur Complement inverse formula

R−1 =
[

S−1 ∗
−D−1CS−1 ∗

]
. (4.5.6)
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Here

D =



(z − β`−2)In −γ`−2In
−α`−3In (z − β`−3)In −γ`−3In

−α`−4In
. . .

. . .
. . . −γ1In
−α0In (z − β0)I


(4.5.7)

is block tridiagonal, and

C =


−α`−2In

0
0
...
0

 . (4.5.8)

By inspection V = −D−1C is

V = q


φ`−2(z)In

...
φ2(z)In
φ1(z)In
φ0(z)In

 (4.5.9)

for some constant q, because

−αkφk+1(z) + (z − βk)φk(z)− γkφk−1(z) = 0 (4.5.10)

for k = 0, 1, · · · , `− 3. The constant q is obtained from

q · (z − β`−2)φ`−2(z)− q · γ`−2φ`−3(z) = +α`−2 (4.5.11)

or

q · [φ`−1(z)] = +1 (4.5.12)

So

q = +1
φ`−1(z) . (4.5.13)
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It follows that

S = z − β`−1
α`−1

P` + P`−1 +
[−γ`−1
α`−1

P` + P`−2 P`−3 · · · P0

] 
φ`−2(z)
φ`−3(z)

...
φ0(z)

 · 1
φ`−1(z)

=

z − β`−1
α`−1

φ`−1(z)P` + φ`−1(z)P`−1 −
γ`−1
α`−1

φ`−2(z)P` + φ`−2(z)P`−2 + · · ·+ φ0(z)P0

φ`−1(z)

=
∑`
k=0 φk(z)Pk
φ`−1(z) = P (z)

φ`−1(z) . (4.5.14)

Thus

−D−1CS−1 =

φ`−2(z)In
...

φ0(z)In

P−1(z) (4.5.15)

because 1
φ`−1(z)S

−1 = P−1(z). Finally, φ0(z) = 1, so the bottom block is P−1(z),
establishing that

X =
[
0 0 · · · 0 In

]
(4.5.16)

Y =
[
In 0 · · · 0 0

]T (4.5.17)

will produce XR−1Y = P−1(z).

Theorem 4.16. Put

C1 =



1
`
P` − P`−1 −P`−2 · · · −P1 −P0

In
2

`− 1In

In
3

`− 2In
. . .

. . .

In
`

1In


(4.5.18)

and

C0 =


−P`−1 −P`−2 · · · −P1 −P0
In 0

In 0
. . .

. . .
In 0

 (4.5.19)
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and Y =
[
In 0 · · · 0 0

]T with X =
[

1
`
In

2
`
In

3
`
In · · · `

`
In

]
. Then X(zC1 −

C0)−1Y = P−1(z), unless z ∈ Λ(P ), and detP (z) = detR(z) = det(zC1 −C0).

Proof. This linearization is proved e.g. in [29], but for convenience we supply one here
as well. The Schur factoring is

R =
[
In BD−1

0 IN−r

] [
S 0
C D

]
(4.5.20)

where S = A−BD−1C is the Schur Complement. Here

A = z

`
P` + (1− z)P`−1 (4.5.21)

B =
[
(1− z)P`−2 (1− z)P`−3 · · · (1− z)P0

]
(4.5.22)

C =


(z − 1)In

0
0
...
0

 (4.5.23)

and

D =



2
`− 1zIn

(z − 1)In
3

`− 2zIn

(z − 1)In
. . .
. . .

(z − 1)In
`

1zIn


(4.5.24)

Therefore V = D−1C satisfies

2
`− 1zIn

(z − 1)In
3

`− 2zIn

(z − 1)In
4

`− 3zIn
. . .
. . .

(z − 1)In
`

1zIn




v1
v2
...

v`−1

 =


(z − 1)In

0
...
0

 (4.5.25)

So

v1 = `− 1
2

(
z − 1
z

)
In = −`− 1

2

(1− z
z

)
In (4.5.26)
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v2 = −`− 2
3 · v1 = −`− 2

3 · `− 1
2 ·

(1− z
z

)2
In (4.5.27)

v3 = −`− 3
4 · `− 2

3 · `− 1
2

(1− z
z

)3
In (4.5.28)

and so on; by inspection, confirmed by a formal induction not given here,

vk = − (`− 1)!
(`− k − 1)!(k + 1)!

(1− z
z

)k
In = −1

`

(
`

k + 1

)(1− z
z

)k
In (4.5.29)

for k = 1, · · · , `− 1. Thus

S = z

`
P` + (1− z)P`−1 + (1− z)

[
P`−2 P`−3 · · · P0

]


1
`

(`
2
) (1− z

z

)
In

1
`

(`
3
) (1− z

z

)2
In

...
1
`

(`
`

) (1− z
z

)`−1
In


= 1
`z`−1 ·

[
z`P` + `z`−1(1− z)P`−1 +

(
`

2

)
z`−2(1− z)2P`−2 + · · ·+

(
`

`

)
(1− z)`P0

]

= P (z)
`z`−1 . (4.5.30)

Moreover,

S−1 = `z`−1P−1(z) (4.5.31)

and the first column of R−1 is

[
S−1

−D−1CS−1

]
=



`z`−1P−1

`z`−1 · 1
`

(
`

2

)(1− z
z

)
P−1

`z`−1 · 1
`

(
`

3

)(1− z
z

)2
P−1

`z`−1 · 1
`

(
`

4

)(1− z
z

)3
P−1

...

`z`−1 · 1
`

(
`

`

)(1− z
z

)`−1
P−1



=



nzn−1P−1(`
2
)
z`−2(1− z)P−1(`

3
)
z`−3(1− z)2P−1

...(`
`

)
z0(1− z)`−1P−1

 (4.5.32)

We now notice that 1, expressed as a linear combination of(
`

1

)
z`−1,

(
`

2

)
z`−2(1− z), · · · ,

(
`

`

)
z0(1− z)`−1 (4.5.33)
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(these are the elements of the null vector used in the proof of Theorem 4.8) is

1 = 1
`
·
(
`

1

)
z`−1 + 2

`
·
(
`

2

)
z`−2(1− z) + · · ·+ `

`
·
(
`

`

)
z0(1− z)`−1

=
(
`− 1

0

)
z`−1(1− z)0 +

(
`− 1

1

)
z`−2(1− z)1 + · · ·+

(
`− 1
`− 1

)
z0(1− z)`−1

= (z + 1− z)`−1 . (4.5.34)

Indeed we use a degree-reduced Bernstein bases here,
(`−1
k

)
zk(1− z)`−1−k, to express 1.

In any case, the coefficients of 1 give us our X vector: XR−1Y = P−1(z).

Theorem 4.17 (Lagrange Basis). If P (z) ∈ Cn×n is of degree at most `, and takes the
values ρk ∈ Cn×n at the `+ 1 distinct nodes z = τk, 0 ≤ k ≤ `, i.e P (τk) = ρk ∈ Cn×n,
and the reciprocal of the node polynomial w(z) = ∏`

k=0(z − τk) has partial fraction
expansion

1
w(z) =

∑̀
k=0

βk
z − τk

(4.5.35)

then a linearization for P (z) is zC1−C0 where C1 = diag(0n, In, In, · · · , In) with `+ 2
diagonal blocks, so N = (`+ 2)r, and

C0 =



0 −ρ0 −ρ1 −ρ2 · · · −ρ`
β0In τ0In
β1In τ1In
β2In τ2In
...

. . .
β`In τ`I


. (4.5.36)

Moreover, if Y =
[
In 0 0 · · · 0

]T and X =
[
0n In In · · · In

]
then X(zC1 −

C0)−1Y = P−1(z) where z ∈ Λ(P ).

Proof. Again we use the Schur complement: S = A−BD−1C where here

A = 0n (4.5.37)
B = −

[
ρ0 ρ1 · · · ρ`

]
(4.5.38)

D−1 = diag
( 1
z − τ0

In,
1

z − τ1
In, · · · ,

1
z − τ`

In

)
(4.5.39)

C =


β0In
β1In
...

β`In

 (4.5.40)

So

S =
∑̀
k=0

βk
z − τk

ρk = w(z)−1P (z) (4.5.41)
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from the first barycentric formula [4].
Note the first column of R−1(z) is

[
S−1

−CD−1S−1

]
or



w(z)P−1(z)(
β0

z − τ0

)
w(z)P−1(z)(

β1
z − τ1

)
w(z)P−1(z)
...(

β`
z − τ`

)
w(z)P−1(z)


(4.5.42)

Note that ∑`
k=0

βk
z − τk

= 1
w(z) , so

[
0 In In · · · In

]
·R−1


In
0
...
0

 =
(∑̀
k=0

βk
z − τk

)
w(z)P−1(z) = P−1(z) (4.5.43)

Theorem 4.18. In the Hermite interpolational bases on m + 1 nodes each with coeffi-
ciency si, so the degree ` is at most ` = −1 +∑m

k=0 sk, the barycentric weights are

1
w(z) =

m∑
i=0

si−1∑
j=0

βij
(z − τi)j+1 (4.5.44)

As in the Lagrange case, C1 = diag(0, In, · · · , In). C0 is as below:

C0 =


0 −ρ̂0 −ρ̂1 · · · −ρ̂m

β0,s0−1In JT0
β0,s0−2In JT1

...
. . .

βm,sm−1 JTm

 (4.5.45)

where each block per node of data is collected in the n×m` block matrix

ρ̂i =
[
ρi,si−1 ρi,si−2 · · · ρi,0

]
. (4.5.46)

Each diagonal node block is a tensor product of a transposed Jordan block:

Ji =


τiIn
In τiIn

In τiIn
. . .

. . .
In τiIn

 . (4.5.47)

This form arises naturally on letting distinct Lagrange nodes flow together in a limit.
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Express 1 as a polynomial in this basis. Then 1 ←→ ρ00 = 1, ρ10 = 1, · · · , ρn0 = 1
and all other components are zero. Put

X =
[
0 0 · · · 0 1︸ ︷︷ ︸

s0 entries

0 · · · 0 1︸ ︷︷ ︸
s1 entries

· · · 1
]
⊗ In (4.5.48)

and Y =
[
In 0 0 · · · 0

]
.

A similar but more involved computation than in Theorem 4.17 gives

S = 1
w(z)P (z) =

m∑
i=0

si−1∑
j=0

j∑
k=0

βijρik(z − τi)k−j−1 (4.5.49)

and D−1C contains just the correct powers of (z− τi) divided into βij to make the sums
come out right; the inverse of the block

(z − τ0)In
−In (z − τ0)In

−In
. . .
. . .

−In (z − τ0)In


(4.5.50)

is 

1
z − τ0

In

1
(z − τ0)2 In

1
z − τ0

In

1
(z − τ0)3 In

1
(z − τ0)2 In

1
z − τ0

In

...
. . .

1
(z − τ0)s0

In
1

z − τ0
In


. (4.5.51)

and thus each block is reminiscent of Theorem 4.15, in fact.

Remark 4.19. In every case X = [coefficients of 1]⊗ I, Y = [1, 0, · · · , 0]⊗ I. This is in
agreement with our universal proof in Section 4.2.

4.6 Examples
In this section, we will show some experiments done in Maple 2017 to demonstrate
that the standard triples introduced in Section 4.3 work for the different bases. We
wrote our own code for constructing the linearizations rather than using Maple’s built-
in CompanionMatrix function since the result of the built-in function is the flipped and
transposed version of the linearizations compared to the structure in this paper.

For the following examples, we check the correctness of the standard triple for each
of the following examples by rearranging the resolvent form

P−1(z) = X (zC1 −C0)−1 Y

In = X (zC1 −C0)−1 Y P (z) .

Since these computations are done exactly, the result will exactly equal the identity ma-
trix. For the Lagrange basis example, since we construct our linearizations using τ and



Generalized Standard Triples 87

ρ instead of the matrix polynomial itself, P (z) is constructed using the barycentric La-
grange interpolation formula, which can be derived from Equation (4.5.41). The Hermite
interpolational basis examples are handled similarly to the Lagrange case, where P (z)
is the Hermite interpolation polynomial, which can be derived from Equation (4.5.49).

4.6.1 Bases with three-term recurrence relations
Example 4.1 (Chebyshev basis of the first kind).

P (z) =
[

1/5 7/100
−93/200 −29/200

]
T0(z) +

[
53/300 7/60
2/25 3/50

]
T1(z) (4.6.1)

+
[
−9/80 −13/80
57/400 −47/400

]
T2(z) +

[
−3/250 −31/500
−77/500 27/250

]
T3(z) .

The standard triple for Equation (4.6.1) is

C0 =


−21/200 −29/400 −107/750 −17/50 −73/200 1/25
−13/400 −1/400 −49/300 −283/750 −27/200 9/25

1/2 0 0 0 1/2 0
0 1/2 0 0 0 1/2
0 0 1 0 0 0
0 0 0 1 0 0



C1 =


−33/250 −9/25 0 0 0 0

3/25 −37/250 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



X =
[
0 0 0 0 1 0
0 0 0 0 0 1

]
Y =


1 0
0 1
0 0
0 0
0 0
0 0

 .

Then,
X (zC1 −C0)−1 Y P (z) = I2 .

which indicates that the standard triple is correct.
Example 4.2 (Newton Interpolational Basis).

τ =
[
seq

(
cos

(
π · k

3

)
, k = 0..3

)]
= [1, 1/2,−1/2,−1] (4.6.2)

P (z) =
[

6 25
−1 5

] 0∏
j=0

(z − τj) +
[
−80/3 25/3
43/3 94/3

] 1∏
j=0

(z − τj) (4.6.3)

+
[

77/4 31/4
9/4 −25/2

] 2∏
j=0

(z − τj) +
[

86/5 −61/5
4 −48/5

] 3∏
j=0

(z − τj)
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The standard triple for Equation (4.6.3) is

C0 =


−557/20 −33/20 80/3 −25/3 −6 −25
−17/4 173/10 −43/3 −94/3 1 −5

1 0 1/2 0 0 0
0 1 0 1/2 0 0
0 0 1 0 1 0
0 0 0 1 0 1

 C1 =



86
5 −61

5 0 0 0 0
4 −48

5 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



X =
[
0 0 0 0 1 0
0 0 0 0 0 1

]
Y =


1 0
0 1
0 0
0 0
0 0
0 0

 .

4.6.2 Bernstein Basis
Example 4.3 (Non-singular leading coefficient case).

P (z) =
[

4/25 99/100
9/100 3/5

]
B3

0(z) +
[
−17/25 11/50
−67/100 7/50

]
B3

1(z) (4.6.4)

+
[
−59/100 −31/50

3/25 −33/100

]
B3

2(z) +
[

41/50 21/50
18/25 9/50

]
B3

3(z) .

The standard triple for Equation (4.6.4) is

C0 =



59/100 31/50 17/25 −11/50 −4/25 −99/100
−3/25 33/100 67/100 −7/50 −9/100 −3/5

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0



C1 =



259/300 19/25 17/25 −11/50 −4/25 −99/100
3/25 39/100 67/100 −7/50 −9/100 −3/5
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 3 0
0 0 0 1 0 3



X =
[

1/3 0 2/3 0 1 0
0 1/3 0 2/3 0 1

]
Y =


1 0
0 1
0 0
0 0
0 0
0 0

 .

Then,
X (zC1 −C0)−1 Y P (z) = I2 .
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Example 4.4 (Singular leading coefficient case).

P (z) =
[

29/100 −8/25
7/10 −1/100

]
B3

0(z) +
[
−41/50 41/100
−7/10 91/100

]
B3

1(z) (4.6.5)

+
[

9/10 19/100
4/5 22/25

]
B3

2(z) +
[

1 1
9851/1980 0

]
B3

3(z) .

Expressing Equation (4.6.5) into the monomial basis, we have

P (z) =
[

29/100 −8/25
7/10 −1/100

]
+
[

29/100 −8/25
7/10 −1/100

]
z +

[
849/100 −57/20
87/10 −57/20

]
z2 +

[
−89/20 99/50
−89/396 1/10

]
z3 .

Taking the determinant of the leading coefficient

det
([
−89/20 99/50
−89/396 1/10

])
= (−89/20) (1/10)− (99/50) (−89/396) = 0 ,

we can observe that leading coefficient is singular, and thus, this matrix polynomial is
non-monic. The standard triple for Equation (4.6.5) is

C0 =


−9/10 −19/100 41/50 −41/100 −29/100 8/25
−4/5 −22/25 7/10 −91/100 −7/10 1/100

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0



C1 =


−17/30 43/300 41/50 −41/100 −29/100 8/25

5099/5940 −22/25 7/10 −91/100 −7/10 1/100
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 3 0
0 0 0 1 0 3



X =
[

1/3 0 2/3 0 1 0
0 1/3 0 2/3 0 1

]
Y =


1 0
0 1
0 0
0 0
0 0
0 0

 .

Then,
X (zC1 −C0)−1 Y P (z) = I2 .

4.6.3 Lagrange Basis
Example 4.5.

τ =
[
seq

(
cos

(
π · k

2

)
, k = 0..2

)]
= [1, 0,−1] (4.6.6)

ρ = [I2, I2, I2] =
[[

1 0
0 1

]
,

[
1 0
0 1

]
,

[
1 0
0 1

]]
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C0 =



0 0 −1 0 −1 0 −1 0
0 0 0 −1 0 −1 0 −1

1/2 0 1 0 0 0 0 0
0 1/2 0 1 0 0 0 0
−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
2 0 0 0 0 0 −1 0
0 1/2 0 0 0 0 0 −1


C1 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



X =
[
0 0 1 0 1 0 1 0
0 0 0 1 0 1 0 1

]
Y =


1 0
0 1
0 0
0 0
0 0
0 0

 .

Using the barycentric Lagrange interpolation formula, we construct our matrix polyno-
mial

P (z) =

(z − 1) z (z + 1)
(

1
2(z−1) −

1
z + 1

2(z+1)

)
0

0 (z − 1) z (z + 1)
(

1
2(z−1) −

1
z + 1

2(z+1)

)
=
[
1 0
0 1

]
that corresponds to the given τ and ρ from Equation 4.6.6. Therefore, P−1(z)

X (zC1 −C0)−1 Y = I2

4.6.4 Hermite Interpolational Basis
Example 4.6 (Polynomial case). Let

τ =
[
−1,−1

2 ,
1
2 , 1

]
(4.6.7)

and
z P (z) P ′(z) P ′′(z)

τ0 = −1 1 0 0
τ1 = −1

2 1
τ2 = 1

2 1
τ3 = 1 1 0

Note that this polynomial is identically 1: its values at all nodes are 1, and all derivatives
at all nodes are 0. This demonstrates explicitly that the degree of the polynomial is not
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necessarily revealed by the grade, which here is ` = 5. The standard triple is then

C0 =



0 0 −1 −1 −1 0 0 −1
1/6 1 0 0 0 0 0 0
−25/36 1 1 0 0 0 0 0
32/27 0 0 1/2 0 0 0 0
−32/9 0 0 0 −1/2 0 0 0

1/3 0 0 0 0 −1 0 0
11/9 0 0 0 0 1 −1 0

331/108 0 0 0 0 0 1 −1


C1 =



0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



X =
[
0 0 1 1 1 0 0 1

]
Y =



1
0
0
0
0
0
0
0


.

Using the first barycentric representation, the Hermite interpolation polynomial of the
given data is

P (z) = (z + 1)3
(
z + 1

2

)(
z − 1

2

)
(z − 1)2 ·(

331
108z + 108 + 11

9 (z + 1)2 + 1
3 (z + 1)−3 − 32

9z + 9
2

+ 32
27z − 27

2
− 25

36z − 36 + 1
6 (z − 1)−2

)
= 1 ,

as discussed. Therefore the linearization has no finite eigenvalues, in exact arithmetic.
Numerically, it can be expected to have eigenvalues around O(1/µ)1/7 where µ is the
unit roundoff; here the exponent is 7, two more than the grade even though two of the
spurious eigenvalues at infinity are detected and removed precisely [25]. Indeed that is
what occurs (calculations not shown here). Returning to the example, calculating the
resolvent form gives

X (zC1 −C0)−1 Y = 1 ,
and therefore (due to multiplying this by P (z) = 1), this shows that the standard triple
for the Hermite interpolating basis is correct.

Example 4.7 (Matrix polynomial case). Let

τ = [0, 1]

and
z P (z) P ′(z)

τ0 = 0
[
−1 0
−1 1

]
τ1 = 1

[
0 1
1 −1

] [
1 −1
−1 0

]
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Then, the standard triple is

C0 =



0 0 −1 1 0 −1 1 0
0 0 1 0 −1 1 1 −1
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
−1 0 1 0 1 0 0 0
0 −1 0 1 0 1 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0


C1 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



X =
[
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1

]
Y =



1 0
0 1
0 0
0 0
0 0
0 0
0 0
0 0


.

The Hermite interpolating polynomial is

P (z) =
[

z − 1 −2z2 + 3z
−3z2 + 5z − 1 2z2 − 4z + 1

]
and the resolvent form is

X (zC1 −C0)−1 Y =


−2z2 + 4z − 1

6z4 − 21z3 + 23z2 − 8z + 1
−2z2 + 3z

6z4 − 21z3 + 23z2 − 8z + 1
−3z2 + 5z − 1

6z4 − 21z3 + 23z2 − 8z + 1
−z + 1

6z4 − 21z3 + 23z2 − 8z + 1

 .

Then,
X (zC1 −C0)−1 Y P (z) = I2 ,

which indicates that the standard triples is correct.

4.7 Concluding remarks
The generalized standard triple (or standard quadruple, if you prefer) that we propose
in this paper for convenience in algebraic linearization may have other uses. As pointed
out on p. 28 of [19] many of the properties stated in that work for monic polynomials
are valid for non-monic polynomials with the appropriate changes made. Some caution
with the results of this paper are thus mandated.

We have here defined these generalized standard triples simply by the resolvent
representation for the matrix polynomial Equation (4.1.10), and only for linearizations,
which is all we need for algebraic linearization.

The main theorem of the paper, namely Theorem 4.8, gives a universal way to
construct this generalized standard triple in any polynomial basis. We also gave explicit
instructions for this construction using any of several polynomial bases, for convenience,
together with separate proofs using the Schur complement, which may give insight for
further work in this area.
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We have also recorded a number of smaller results. In Section 4.3.2.1 we give a new
reversal for the Bernstein linearization, one which may have slightly superior numerical
qualities. We there showed strict equivalence of the appropriate matrices, giving a new
proof that the Bernstein linearization is a strong one. In Section 4.1.3 we have sketched
an explicit construction for matrices E and F showing that algebraic linearizations are,
in fact, linearizations, with E(zDH −H)F = diag(P (z), I, . . . , I). We have also given
new constructions for matrices E and F which likewise show that the companions for
the Lagrange and Hermite interpolational bases are, in fact, linearizations (of matrix
polynomials of higher grade). A proof for Lagrange interpolational bases was given
already in [2], where indeed the linearization was proved to be strong, but the result
for Hermite interpolational bases is new to this paper. We also used Hermite Form
computations to give a new (to us) pair E and F for the ordinary monomial basis.
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Chapter 5

On Parametric Linear System
Solving

5.1 Introduction
Speaking in simple generalities, we say that symbolic computation is concerned with
mathematical equations that contain symbols; symbols are used both for variables, which
are typically to be solved for, and parameters, which are typically carried through and
appear in the solutions, which are then interpreted as formulae: that is, objects that can
be further studied, perhaps by varying the parameters. One prominent early researcher
said that the difference between symbolic and numeric computation was merely a matter
of when numerical values were inserted into the parameters: before the computation
meant you were going to do things numerically, and after the computation meant you
had done symbolic computation. The words “parameters” and “variables” are therefore
not precisely descriptive, and can often be used interchangeably. Indeed as a matter
of practice, polynomial equations can often be taken to have one subset of its symbols
taken as variables rather than any other subset in quite strategic fashion: it may be
better to solve for x as a function of y than to solve for y as a function of x.

In this paper we are concerned with systems of equations containing several symbols,
some of which we take to be variables, and all the rest as parameters. More, we restrict
our attention to problems in which the variables appear only linearly. Parameters are
allowed to appear polynomially, of whatever degree.

Parametric linear systems (PLS) arise in many contexts, for instance in the analysis
of the stability of equilibria in dynamical systems models such as occur in mathematical
biology and other areas. Understanding the different potential kinds of dynamical be-
havior can be important for model selection as well as analysis. Another important area
of interest is the role of parametric linear systems in dealing with the stability of the
equilibria of parametric autonomous system of ordinary differential equations (see [25]
and [11]). One particularly famous example is the Lotka-Volterra system which arises
naturally from predator-prey equations. See also [24] and [23]. Other examples of the
use of parametric linear system from science and engineering includes their application
in computing the characteristic solutions for differential equations [8], dealing with col-
ored Petri nets [13] and in operations research and engineering [9], [17], [21], [31]. Some
problems in robotics [2] and certain modelling problems in mathematical biology, see
e.g. [29], also can benefit from the ability to effectively solve PLS.

After some discussion of prior comprehensive solving work in Section 2, we proceed
with formal problem and solution definitions for parametric linear systems (PLS) in
section 3. Our primary tool for solving these is by way of comprehensive triangular
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Smith normal form (CTSNF), which is introduced in section 4. The following section
reduces PLS to CTSNF and section 6 describes the solution of CTSNF problems for the
case of up to three parameters.

An application that seems at first to be of only theoretical interest is the computation
of the matrix logarithm, or indeed any of several other matrix functions such as matrix
square root. We briefly discuss this example in more detail with a pair of small matrices
in Section 5.7.2. We also give other examples in section 7.

5.2 Prior Work
Interest in computation of the solution of PLS dates back to the beginning of symbolic
computation. For instance, one of the first things users have requested of computer
algebra systems is the explicit form of the inverse of a matrix containing only symbolic
entries1: the user is then typically quite dissatisfied at the complexity of the answer
if the dimension is greater than, say, 3. Of course, the determinant itself, which must
appear in such an answer, has a factorial number of terms in it, and thus growth in
the size of the answer must be more than exponential. Therefore the complexity of any
algorithm to solve PLS must be at least exponential in the number of parameters.

An interesting pair of papers addressing the case of only one parameter is [1] and [15].
These papers assume full rank of the linear system—and thus compute the “generic”
case when in fact there are isolated values of the parameter for which the rank drops—
and use rational interpolation of the numerical solutions of specialized linear systems to
recover this generic solution.

Many authors have sought comprehensive solutions—by which is meant complete
coverage of all parametric regimes—through various means. One of the first serious
methods was the matrix-minor based approach of William Sit [25], which enables prac-
tical solution of many problems of interest. Recently, the problem of computing the
Jordan form of a parametric matrix once the Frobenius form is known has been at-
tacked by using Regular Chains [4] and this has been moderately successful in practice.
Simple methods and heuristics for linear systems containing parameters continue to
generate interest, even when Regular Chains are used, such as in [3].

Other authors such as [30], [18], [20], [16], and [19] have tackled the even more
difficult problem of computing the comprehensive solution of systems of polynomial
equations containing parameters, and of course their methods can be applied to the
linear equations being considered here.

By restricting our attention in this paper to linear problems and to those of three
parameters or fewer we are able to guarantee better worst case performance (polyno-
mially many solution regimes) and hope to provide better efficiency in many instances
than is possible using those general-purpose approaches.

5.3 Definitions and Notation
Let F be a field and Y = (y1, . . . , ys) a list of parameters. Then F [Y ] is the ring
of polynomials and F (Y ) is the field of rational functions in Y . For each tuple a =
(a1, . . . , as) in F s, evaluation at a is a mapping F [Y ]→ F . We will extend this mapping
componentwise to polynomials, vectors, matrices, and sets thereof over F [Y ]. We will
use the Householder convention, typesetting matrices in upper case bold, e.g. A, and
lower case bold for vectors, e.g. ~b.

1This is merely an anecdote, but one of the present authors attests that this really has happened.
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For the most part, for such objects over F [Y ], we know Y from context and write A
rather than A(Y ), but write A(a) for the evaluation at Y = a.

For a set of polynomials, S, we will denote by V (S) the variety of the ideal generated
by S. This is the set of tuples a such that f(a) = {0}, for all f ∈ S. We will be
concerned with pairs N,Z of polynomial sets, N,Z ⊂ F [Y ], defining a semialgebraic
set in F s consisting of those tuples a that evaluate to nonzero on N and to zero on Z.
By a slight abuse of notation, we call this semialgebraic set V (N,Z) = V (Z) \ V (N).
Our inputs are polynomial in the parameters but the output coefficients in general are
rational functions. The evaluation mapping extends partially to F (Y ): For a rational
function n(Y )/d(Y ) in lowest terms (n and d relatively prime), the image n(a)/d(a) is
well defined so long as d(a) 6= 0.
Definition 5.1. The data for a parametric linear system (PLS) problem is matrix
A and right hand side vector ~b over F [Y ], together with a semialgebraic constraint,
V (N,Z), with N,Z ⊂ F [Y ]. Only of interest are those parameter value tuples in
V (N,Z), i.e., on which the polynomials in N are nonzero and the polynomials in Z are
zero.

For the PLS problem (A,~b,N, Z), a solution regime is a tuple (~u,B, N ′, Z ′), with
coefficients of ~u and B in F (Y ), such that, for all a ∈ V (N ′, Z ′), ~u(a) is a solution vector
and B(a) is a matrix whose columns form a nullspace basis for A(a).

A PLS solution is a set of solution regimes that covers V (N,Z), which means,
for PLS solution {(~ui,Bi, Ni, Zi)|i ∈ 1, . . . , k}, every parameter value assignment that
satisfies the problem semialgebraic constraint N,Z also satisfies at least one regime
semialgebraic constraint Ni, Zi. In other words V (N,Z) ⊂ ∪ki=1V (Ni, Zi).

We call entries that must occur in any Z in the solution an intrinsic restriction, or
singularity. We call the differing sets V (Ni, Zi) that may occur in covers of V (N,Z) the
ramifications of the cover.

We next give an example that illustrates the PLS definition and also sketches the
prior approach to PLS given by William Sit in [25]. If, for M of size r × r , A is[
M B
C D

]
, and conformally ~b =

[
~c ~d

]T
, then a solution u =

[
~v ~w

]T satisfies

M~v +B ~w = ~c (5.3.1)

and
C~v +D ~w = ~d . (5.3.2)

Under the condition that det(M) is nonzero and all larger minors ofA are zero, equation
(5.3.1) can be solved with specific solution ~w = 0 and ~v = M−1~c. Provided the system
is consistent (equation (5.3.2) holds), we have the regime

(
[
~v ~w

]T
,

[
−M−1B

I

]
, N, Z),

where N = {det(M)} and Z = {all (i+1)×(i+1) minors of A})). Call solution regimes
of this type minor defined regimes.

Since an n × n matrix has ∑n
k=0

(n
k

)2 =
(2n
n

)
minors, there are exponentially many

minor defined regimes. However, some of these regimes may not be solutions due to
inconsistency or it may be possible to combine several regimes into one. For instance if
det(M) is a constant, and~b = 0, then all rank r solutions are covered by this one regime.
Sit [25] has made a thorough study of minor defined regimes and their simplifications.

Another approach is to base solution regimes on the pivot choices in an LU decom-
position. The simplest thing to do is to leave it to the user, although one has to also
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inform the user through a proviso when this might be necessary [6]. That is, provide
the generic answer, but also provide a description of the set N . A more sophisticated
approach is developed in [3, 4] using the theory of regular chains and its implementation
in Maple [18] to manage the algebraic conditions. For example a given matrix entry may
be used as a pivot, with validity dependent on adding the polynomial to the non-zero
part, N , of the semialgebraic set. For a comprehensive solution the case that that entry
is zero must also be pursued. In the worst case, this leads to a tree of zero/nonzero
choices of depth n and branching factor n.

5.4 Triangular Smith forms and degree bounds
In this paper we take a different approach, with the solution regimes arising from Hermite
normal forms, of which triangular Smith forms are a special case. We give a system of
solution regimes of polynomial size in the matrix dimension, n, and polynomial degree,
d. Each regime is computed in polynomial time and the regime count is exponential
only in the number of parameters. To use Hermite forms we will need to work over a
principal ideal domain such as, for parameters x, y, F (y)[x]. We will restrict our input
matrix to be polynomial in the parameters. This first lemma shows it is not a severe
constraint.

Lemma 5.2. Let (A,~b,N, Z) be a well defined PLS over field F (Y ), for parameter
set Y , with A ∈ F (Y )m×n and ~b ∈ F (Y )m with numerator and denominator degrees
bounded by d in each parameter of Y . Well defined means that denominators of A, ~B
are in N . The problem is equivalent (same solutions) to one in which the entries of the
matrix and vector are polynomial in the parameters Y , the dimension is the same, and
the degrees are bounded by nd.

Proof. Because the PLS is well defined, it is specified by N that all denominator factors
of A(a),~b(a) are nonzero for a ∈ V (N,Z). Let L be a diagonal matrix with the i-th
diagonal entry being the least common multiple (lcm) of the denominators in row i of
A, ~b. These lcms also evaluate to nonzero on V (N,Z). It follows that L(a)A(a)~u(a) =
L(a)~b(a) if and only if A(a)~u(a) = ~b(a). Thus the PLS (LA,L~b, V (N,Z)) is equivalent
and its matrix and vector have polynomial entries of degrees bounded by nd.

We will reduce PLS to triangular Smith normal form computations. The rest of
this section concerns computation of triangular Smith normal form and bounds for the
degrees of the form and its unimodular cofactor.

Definition 5.3. Given field K and variable x, a matrix H over K[x] is in (reduced)
Hermite normal form if it is upper triangular, its diagonal entries are monic, and, for
each column in which the diagonal entry is nonzero, the off-diagonal entries are of lower
degree than the diagonal entry. If each diagonal entry of H exactly divides all those
below and to the right, thenH is column equivalent to a diagonal matrix with the same
diagonal entries (its Smith normal form). An equivalent condition is that, for each i, the
greatest common divisor of the i× i minors in the leading i columns equals the greatest
common divisor of all i × i minors. Following Storjohann[27, Section 8,Definition 8.2]
we call such a Hermite normal form a triangular Smith normal form. It will be the
central tool in our PLS solution.

For notational simplicity, we’ve left out the possibility of echelon structure in a
Hermite normal form. We will talk of Hermite normal forms only for matrices having
leading columns independent up to the rank of the matrix. Every such matrix over K[x]
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is row equivalent to a unique matrix in Hermite form as defined above. For given A we
have UA = H, with U unimodular, i.e. det(U) ∈ K∗, and H in Hermite form. If A is
nonsingular, the unimodular cofactor U is unique and has determinant 1/c, where c is
the leading coefficient of det(A). This follows since det(U) det(A) = det(H), which is
monic.

The next definition and lemma concern assurance that Hermite form computation
will yield a triangular Smith form.

Definition 5.4. Call a matrix nice if its Hermite form is a triangular Smith form (each
diagonal entry exactly divides those below and to the right). In particular, a nice matrix
has leading columns independent up to the rank.

There is always a column transform (unimodular matrix R applied from the right)
such that AR is nice. The following fact, proven in [14] shows that a random transform
over F suffices with high probability.

Fact 1. Let A be a m × n matrix over K[x] of degree in x at most d. Let R be a
unit lower triangular matrix with below diagonal elements chosen from subset S of K
uniformly at random. Then AR is nice over K[x] with probability at least 1− 4n3d/|S|.

Note that degx(AR) = degx(A) and, for K = F (y),A ∈ F [y, x]m×n and S ⊂ F we
also have degy(AR) = degy(A).

We continue with analysis of degree bounds for Hermite forms of matrices, particu-
larly degree bounds for triangular Smith forms of nice matrices. The first result needed
is the following fact from [10]. Through the remainder of this paper we will employ
“soft O" notation, where, for functions f, g ∈ Rk → R we write f = O (̃g) if and only if
f = O(g · logc |g|) for some constant c > 0.

Fact 2. Let F be a field, x, y parameters, and let A be in F [y, x]n×n, nonsingular, with
degx(A) ≤ d, degy(A) ≤ e. Over F (y)[x], letH the unique Hermite form row equivalent
to A and U be the unique unimodular cofactor such that UA = H. The coefficients of
the entries of H, U are rational functions of y. Let ∆ be the least common multiple of
the denominators of the coefficients in H, U , as expressed in lowest terms.

(a) degx(U) ≤ (n− 1)d and degx(H) ≤ nd.

(b) degy(num(H)),degy(num(U)) ≤ n2de (bounds both numerator and denominator
degrees).

(c) degy(∆) ≤ n2de.

(d) H and U can be computed in polynomial time: deterministically in O (̃n9d4e)
time and Las Vegas probabilistically (never returns incorrect result) in O (̃n7d3e)
expected time.

Proof. This is [10, Summary Theorem]. The situation there is more abstract, more
involved. We offer this tip to the reader: their ∂, z, σ, δ correspond respectively to our
x, y, identity, identity.

Item (c) is not stated explicitly in a theorem of [10] but is evident from the proofs of
Theorems 5.2 and 5.6 there. The common denominator is the determinant of a matrix
over K[z] of dimension n2d and with entries of degree in z at most e.

We will generalize this fact to nonsingular and non-square matrices in Theorem
5.5. In that case the unimodular cofactor, U , is not unique and may have arbitrarily
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large degree entries. The following algorithm is designed to produce a U with bounded
degrees.

Algorithm 6 U, H = HermiteForm(A)

Input: Nice matrix A ∈ F [y, x]m×n, for field F and parameters x, y.
Output: For K = F (y), Unimodular U ∈ K[x]m×m and H ∈ K[x]m×n in triangular

Smith form such that UA = H. The point of the specific method given here is to
be able, in Theorem 5.5, to bound degx(U ,H) and degy(U ,H) (numerators and
denominators).

1: Compute r = rank(A) and nonsingular U0 ∈ Km×m such that A = U0A has
nonsingular leading r×r minor. BecauseA is nice the first r columns are independent
and such U0 exists. U0 could be a permutation found via Gaussian elimination,
say, or a random unit upper triangular matrix. In the random case, failure to
achieve nonsingular leading minor becomes evident in the next step, so that the
randomization is Las Vegas.

2: Let U0A =
[
A1 A2
A3 A4

]
and B =

[
A1 0r×m−r
A3 Im−r

]
. B is nonsingular. Compute its

unique unimodular cofactor U1 and Hermite form T = U1B =
[
H1 ∗
0 ∗

]
.

If H1 is in triangular Smith form, let H = U1U0A =
[
H1 H2
0 0

]
.

Let U = U1U0 and return U , H.
Otherwise go back to step 1 and choose a better U0. With high probability this
repetition will not be needed; probability of success increases with each iteration.

Theorem 5.5. Let F be a field, x, y parameters, and let A be in F [y, x]m×n of rank r,
degx(A) ≤ d, and degy(A) ≤ e. Then, for the triangular Smith form form UAR = H
computed as U , H = HermiteForm(AR), we have

(a) Algorithm HermiteForm is (Las Vegas) correct and runs in expected time O(m7d3e);

(b) degx(U ,H) ≤ md;

(c) degy(U , H) = O (̃m2de).

Proof. Let R be as in Fact 1 with K = F (y) and S ⊂ F . If the field F is small, an
extension field can be used to provide large enough S.

We apply HermiteForm toAR to obtain U ,H, and use the notation of the algorithm
in this proof. We see by construction that B is nonsingular, from which it follows that
U1 and T are uniquely determined. B is nice because A is nice and all j-minors of
B for j > r are either zero or equal to detA1. It follows that the leading r columns
of H must be those of T . The lower left (m − r) × (n − r) block of H must be zero
because rank(H) = rank(A). The leading r rows are independent, and any nontrivial
linear combination of those rows would be nonzero in the lower left block. Then H is in
triangular Smith form and left equivalent to A as required. The runtime is dominated
by computation of U1 and T for B, so Fact 2 provides the bound in (a).

For the degree in x, applying Fact 2, we have degx(U1) ≤ (m− 1)d. Noting that U0
has degree zero, we have degx(U) = degx(U1) and degx(H) = degx(U) + degx(A) ≤
(m− 1)d+ d = md.

For the degree in y, note first that the bounds d, e for degrees in A apply as well
to B. We have, by Fact 2, that degy(num(U1)) = O (̃m2de) and the same bound
for degy(den(U1)). For H, note that num(H)/den(H) = num(U)A/den(U) so that
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and degy(den(H)) ≤ degy(U) = O (̃m2de), and degy(num(H)) ≤ degy(num(U)A) =
O (̃m2de) + e = O (̃m2de).

5.5 Reduction of PLS to triangular Smith forms
In this section we define the Comprehensive Triangular Smith Normal form problem
and solution and show that PLS can be reduced to it. The next section addresses the
solution of CTSNF itself.

Definition 5.6. For field F , parameters Y = (y1, . . . , ys), FY is a parameterized ex-
tension of F if FY = Fs, the top of a tower of extensions F0 = F, F1, . . . , Fs where, for
i ∈ 1, . . . , s, each Fi is either Fi−1(yi) (rational functions) or Fi−1[yi]/〈fi〉, for fi irre-
ducible in yi over Fi−1 (algebraic extension). When a solution regime to a PLS or CTSNF
problem is over a parameterized extension FY , the irreducible polynomials involved in
defining the extension tower for FY will be in the constraint set Z of polynomials that
must evaluate to zero.

A comprehensive triangular Smith normal form problem (CTSNF problem) is a
triple (A, N, Z) of a matrix A over F [Y, x] and polynomial sets N,Z ⊂ F [Y, x], so that
V (N,Z) constrains the range of desired parameter values as in the PLS problem.

For CTSNF problem (A, N, Z) over F [Y, x], a triangular Smith regime is of the
form (U ,H,R, N ′, Z ′), with U , H over FY [x], where FY is a parameterized extension
of F and any polynomials defining algebraic extensions in the tower are in Z ′, such that
on all a ∈ V (N ′, Z ′), H(a) is in triangular Smith form over F (a)[x], U(a) is unimodular
in x, R is nonsingular over F , and U(a)A(a)R = H(a).

A CTSNF solution is a list {(Ui,Hi,Ri, Ni, Zi)|i ∈ 1, . . . , k}, of triangular
Smith regimes that cover V (N,Z), which is to say V (N,Z) ⊂ ∪{V (Ni, Zi)|i ∈
1, . . . , k}.

The goal in this section is to reduce the PLS problem to the CTSNF problem. The
first step is to show it suffices to consider PLS with a matrix already in triangular Smith
form. The second step is to show each CTSNF solution regime generates a set of PLS
solution regimes.

Lemma 5.7. Given a parameterized field FY and matrix A over F [Y, x], let H be a
triangular Smith form of A over FY [x], with U unimodular over FY [x], and R nonsin-
gular over F such that UAR = H. PLS problem (A,~b,N, Z) over F [Y, x] has solution
regimes (~u1,B1, N1, Z1), . . . , (~us,Bs, Ns, Zs) if and only if PLS problem (H, U~b,N,Z)
has solution regimes (R−1~u1,R

−1B1, N1, Z1), . . . , (R−1~us,R
−1Bs, Ns, Zs).

Proof. Under evaluation at any a ∈ V (N,Z), U(a) is unimodular and R is unchanged
and nonsingular. Thus the following are equivalent.

1. A(a)~u(a) = ~b(a).

2. U(a)A(a)~u(a) = U(a)~b(a).

3. (U(a)A(a)R)(R−1~u(a)) = U(a)~b(a).

Then we have the following algorithm to solve a PLS with the matrix already in
triangular Smith form. For simplicity we assume a square matrix, the rectangular case
being a straightforward extension.
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Algorithm 7 TriangularSmithPLS

Input: PLS problem (H,~b,N, Z), with H ∈ KY [x]n×n and ~b ∈ KY [x]n, where FY is a
parameterized extension for parameter list Y and x is an additional parameter, with
N,Z ⊂ F [Y ] and H in triangular Smith form.

Output: S, the corresponding PLS solution (a list of regimes).
1: For any polynomial s(x) let sqfr(s) denote the square-free part. Let si denote the
i-th diagonal entry of H, and define s0 = 1, sn+1 = 0. Then, for i ∈ 0, . . . , n, define
fi = sqfr(si+1)/sqfr(si). Let I be the set of indices such that fi has positive degree
or is zero.

2: For each r ∈ I include in the output S the regime R = (~u,B, V ), where ~u =
(H−1

r
~br, 0n−r), with Hr the leading r × r submatrix of H and ~br = (b1, . . . , br) and

B = (~er+1, . . . , ~en). Here ~ei denotes the i-th column of the identity matrix.
3: Return S.

Lemma 5.8. Algorithm TriangularSmithPLS is correct and generates at most
√

2d
regimes, where d = deg(det(H)).

Proof. Note that, for each row k, the diagonal entry sk divides all other entries in the
row. Then H has rank r just in case sr 6= 0 and sr+1 = 0, i.e., in the cases determined
in step 1 of the algorithm. The addition of sr to N and fr to Z ensures rank r and
invertibility ofHr. For all evaluation points a ∈ V (N,Z) satisfying those two additional
conditions, the last n−r rows ofH are zero. Hence the nullspace B is correctly the last
n−r columns of In. For such evaluation points, the system will be consistent if and only
if the corresponding right hand side entries are zero, hence the addition of br+1, . . . , bn
to Z.

Algorithm 8 PLSviaCTSNF

Input: A PLS problem (A,~b,N, Z) over F [Y, x], for parameter list Y and additional
parameter x.

Output: A corresponding PLS solution S = ((~ui,Bi, Ni, Zi)|i ∈ 1, . . . , s).
1: Over the ring F (Y )[x], Let T solve the CTSNF problem (A, N, Z). T is a set of

triangular Smith regimes of form (U ,H, R,N ′, Z ′). Let S = ∅.
2: For each Hermite regime (U ,H, R,N ′, Z ′) in T , using algorithm

TriangularSmithPLS, solve the PLS problem (H, U~b,N ′, Z ′). Adjoin to S
the solution regimes, adjusted by factor R−1 as in Lemma 5.7.

3: Return S.

Theorem 5.9. Algorithm 8 is correct.

Proof. For every parameter evaluation a ∈ V (N,Z) at least one triangular Smith regime
of T in step 2 is valid. Then, by Lemmas 5.8 and 5.7, step 3 produces a PLS regime
covering a.

5.6 Solving Comprehensive Triangular Smith Normal Form
In view of the reductions of the preceding section, to solve a parametric linear system it
remains only to solve a comprehensive triangular Smith form problem. This is difficult
in general but we give a method to give a comprehensive solution with polynomially
many regimes in the bivariate and trivariate cases.
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Theorem 5.10. Let A ∈ F [y, x]m×n of degree d in x and degree e in y, and let N,Z
be polynomial sets defining a semialgebraic constraint on y. Then the CTSNF problem
(A, N, Z) has a solution of at most O(n2de) triangular Smith regimes.

Proof. If N is nonempty, then at the end of the construction below just adjoin N to the
N∗ of each solution regime. If Z is nonempty it trivializes the solution to at most one
regime: Let z(y) be the greatest common divisor of the polynomials in Z. If z is 1 or
is reducible, the condition is unsatisfiable, otherwise return the single triangular Smith
regime forA over F [y]/〈z(y)〉. Otherwise construct the solution regimes as follows where
we will assume the semialgebraic constraints are empty.

First compute triangular Smith formU0,H0,R0 over F (y)[x] such thatA = U0H0R0.
This will be valid for evaluations that don’t zero the denominators (polynomials in y)
of H0,U0. So set N0 = den(U0,H0) (or to be the set of irreducible factors that occur
in den(U0,H0). Set Z0 = ∅ to complete the first regime.

Then for each irreducible polynomial f(y) that occurs as a factor in N0 adjoin the
regime (Uf ,Hf ,Rf , Nf = N\{f}, Zf = {f}), that comes from computing the triangular
Smith form over (F [y]/〈f〉)[x]. From the bounds of Theorem 5.5 we have the specified
bound on the number of regimes.

We can proceed in a similar way when there are three parameters, but must address
an additional complication that arises.
Theorem 5.11. Let A ∈ F [z, y, x]m×n of degree d in x and degree e in y, z, and let
N,Z be polynomial sets defining a semialgebraic constraint on y and z. Then the CTSNF
problem (A, V (N,Z)) has a solution of at most O(n4d2e2) triangular Smith regimes.

Proof. As in the bivariate case above, we solve the unconstrained case and just adjoin
N,Z, if nontrivial, to the semialgebraic condition of each solution regime.

First compute triangular Smith form U0,H0,R0 over F (y, z)[x] such that A =
U0H0R0. This will be valid for evaluations that don’t zero the denominators (poly-
nomials in y, z) of H0,U0. Thus we set (N0, Z0) = ({den(U0,H0)}, ∅) to complete the
first regime.

Then for each irreducible polynomial f that occurs as a factor in N0, if y occurs in
f , adjoin the regime (Uf ,Hf ,Rf , Nf = N \{f}, Zf = {f}), that comes from computing
the triangular Smith form over (F (z)[y]/〈f〉)[x]. If y doesn’t occur in f , interchange the
roles of y, z.

In either case we get a solution valid when f is zero and the solution denominator
δf is nonzero. This denominator is of degree O(n2de) in each of y, z by Theorem 5.5.
[It is the new complicating factor arising in the trivariate case.] It is relatively prime to
f , so Bézout’s theorem [7] in the theory of algebraic curves can be applied: there are
at most deg(f) deg(δ) points that are common zeroes of f and δ. We can produce a
separate regime for each such (y, z)-point by evaluating A at the point and computing
a triangular Smith form over F [x]. Summing over the irreducible f dividing the original
denominator in N0 we have O((n2de)2) bounding the number of these denominator curve
intersection points.

Corollary 5.12. For a PLS with m×n matrix A, ~b an m-vector, and with degx(A,~b) ≤
d,degy(A,~b) ≤ e, degz(A,~b) ≤ e, we have

1. O(m1.5d0.5) regimes in the PLS solution for the univariate case (domain of A, ~b
is F [x]).

2. O(m2.5d1.5e) regimes in the PLS solution for the bivariate case (domain of A, ~b is
F [x, y]).
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3. O(m4.5d2.5e2) regimes in the PLS solution for the trivariate case (domain of A, ~b
is F [x, y, z]).

Proof. By Lemma 5.8, each CTSNF regime expands to at most
√
md PLS regimes.

5.7 Normal forms and Eigenproblems
Comprehensive Hermite Normal form and comprehensive Smith Normal form are im-
mediate corollaries of our comprehensive triangular Smith form. For Hermite form, just
take the right hand cofactor to be the identity, R = I, and drop the check for the divisi-
bility condition on the diagonal entries in Algorithm 7. For Smith form one can convert
each regime of CTSNF to a Smith regime. Where UAR = H with H a triangular
Smith form, perform column operations to obtain UAV = S with S the diagonal of
H. In H the diagonal entries divide the off diagonal entries in the same row. Subtract
multiples of the i-th column from the subsequent columns to eliminate the off diago-
nal entries. Because the diagonal entries are monic, no new denominator factors arise
and det(V ) = det(R) ∈ F . Thus when (U ,H,R, N, Z) is a valid regime in a CTSNF
solution for A, then (U ,S,V , N, Z) is a valid regime for Smith normal form.

It is well known that if A ∈ Kn×n for field K (that may involve parameters) and λ is
an additional variable, then the Smith invariants s1, . . . , sn of λI −A are the Frobenius
invariants ofA andA is similar to its Frobenius normal form, ⊕ni=1Csi , whereCs denotes
the companion matrix of polynomial s. Thus we have comprehensive Frobenius normal
form as a corollary of CTSNF, however it is without the similarity transform. It would
be interesting to develop a comprehensive Frobenius form with each regimes including
a transform.

Parametric eigenvalue problems for A correspond to PLS for λI −A with zero right
hand side. Often eigenvalue multiplicity is the concern. The geometric multiplicity
is available from the Smith invariants, as for example on the diagonal of a triangular
Smith form. Common roots of 2 or more of the invariants expose geometric multiplicity
and square-free factorization of the individual invariants exposes algebraic multiplicity.
Note that square-free factorization may impose further restrictions on the parameters.
Comprehensive treatment of square-free factorization is considered in [18].

5.7.1 Eigenvalue multiplicity example
The following matrix, due originally to a question on sci.math.num-analysis in 1990 by
Kenton K. Yee, is discussed in [5]. We change the notation used there to avoid a clash
with other notation used here. The matrix is

Y =



z−1 z−1 z−1 z−1 z−1 z−1 z−1 0
1 1 1 1 1 1 0 1
1 1 1 1 1 0 1 1
1 1 1 1 0 1 1 1
1 1 1 0 1 1 1 1
1 1 0 1 1 1 1 1
1 0 1 1 1 1 1 1
0 z z z z z z z


.

One of the original questions was to compute its eigenvectors. Since it contains a sym-
bolic parameter z, this is a parametric eigenvalue problem which we can turn into a
parametric linear system, namely to present the nullspace regimes for λI − Y .
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Over F (z)[λ], after preconditioning, we get as the triangular Smith form diagonal
(1, 1, 1, 1, 1, λ2 − 1, λ2 − 1, (λ2 − 1)f(λ)), where f(λ) = λ2 − (z + 6 + z−1)λ+ 7.
Remark 5.13. Without preconditioning, the Hermite form diagonal is instead (1, 1, 1, 1, λ−
1, λ2 − 1, (λ2 − 1), (λ+ 1)f(λ)).

The denominator of U , H is a power of z, so the only constraint is z = 0 which is
already a constraint for the input matrix. We get regimes of rank 5 for λ = ±1, rank 7
for λ being a root of f , and rank 8 for all other λ. In terms of the eigenvalue problem,
we get eigenspaces of dimension 3 for each of 1, −1 and of dimension 1 for the two roots
of f(λ).

To explore algebraic multiplicity, we can examine when f has 1 or −1 as a root.
When z is a root of z2 + 14 z+ 1, f(λ) factors as (λ− 1)(λ− 7) and when z = 1 we have
f(λ) = (λ+ 1)(λ+ 7). These factorizations may be discovered by taking resultants of f
with λ− 1 or λ+ 1.

5.7.2 Matrix Logarithm
Theorem 1.28 of [12] states conditions under which the matrix equation exp(X) = A
has so-called primary matrix logarithm solutions, and under which conditions there are
more. If the number of distinct eigenvalues s of A is strictly less than the number p
of distinct Jordan blocks of A (that is, the matrix A is derogatory), then the equation
also has so-called nonprimary solutions as well, where the branches of logarithms of an
eigenvalue λ may be chosen differently in each instance it occurs.

As a simple example of what this means, consider

A =
[
a 1
0 a

]
. (5.7.1)

When we compute its matrix logarithm (for instance using the MatrixFunction com-
mand in Maple), we find

XA =
[

ln (a) a−1

0 ln (a)

]
. (5.7.2)

This is what we expect, and taking the matrix exponential (a single-valued matrix
function) gets us back to A, as expected. However, if instead we consider the derogatory
matrix

B =
[
a 0
0 a

]
(5.7.3)

then its matrix logarithm as computed by MatrixFunction is also derogatory, namely

XB =
[

ln (a) 0
0 ln (a)

]
. (5.7.4)

Yet there are other solutions as well: if we add 2πi to the first entry and −2πi to
the second logarithm, we unsurprisingly find another matrix XC which also satisfies
exp(X) = B. But adding 2πi to the first entry of XA while adding −2πi to its second
logarithm, we get another matrix

XD =
[

ln (a) + 2 iπ a−1

0 ln (a)− 2 iπ

]
(5.7.5)
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which has the (somewhat surprising) property that exp(XD) = B, not A.
This example demonstrates in a minimal way that the detailed Jordan structure

of A strongly affects the nature of the solutions to the matrix equation exp(X) = A.
This motivates the ability of code to detect automatically the differing values of the
parameters in a matrix that make it derogatory. To explicitly connect this example to
CTSNF, consider

M =
[
a b
0 a

]
(5.7.6)

so that A above is Mb=1 and B = Mb=0. The CTSNF applied to λI −M produces
two regimes, with forms

Hb6=0 =
[1 λ/b
0 (λ− a)2

]
,Hb=0 =

[
λ− a 0

0 λ− a

]
, (5.7.7)

exposing when the logarithms will be linked or distinct. Note that in this case the
Frobenius structure equals the Jordan structure.

5.7.3 Model of infectious disease vaccine effect
Rahman and Zou [22] have made a model of vaccine effect when there are two subpop-
ulations with differing disease susceptibility and vaccination rates. Within this study
stability of the model is a function of the eigenvalues of a Jacobian J . Thus we are
interested in cases where the following matrix is singular.

A = λI − J =


λ− w 0 −a −c

0 λ− x −b −d
0 0 λ− a− y c
0 0 b λ− d− z

 .
Here w, x are vaccination rates for the two populations, y, z are death rates, a, d are
within population transmission rates, and b, c are the between population transmission
rates. We have simplified somewhat: for instance a, b, c, d are transmission rates mul-
tiplied by other parameters concerning population counts. Stability depends on the
positivity of the largest real part of an eigenvalue. For the sake of reducing expression
sizes in this example we will arbitrarily set y = z = 1/10. For the same reason we will
skip right multiplication by an R to achieve triangular Smith form. Hermite form H of
λI − J will suffice, revealing the eigenvalues that are wanted.

H =

λ+ w 0 0 −(ad− aλ− bc− a/10)/c
0 λ+ x 0 λ+ 1/10
0 0 1 (d− λ− 1/10)/c
0 0 0 λ2 + (1/5− a− d)λ+ ad− cb− (1/10)d− (1/10)a+ 1/100

 .
The discriminant of the last entry gives the desired information for the application
subject to the denominator validity: c 6= 0. When c = 0 the matrix is already in
Hermite form, so again the desired information is provided.

This example illustrates that often more than three parameters can be easily handled.
In experiments with this model not reported here, we did encounter cases demanding
solution beyond the methods of this paper. On a more positive note, we feel that
comprehensive normal form tools could help analyze models like this when larger in
scope, for instance modeling 3 or more subpopulations.
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5.7.4 The Kac-Murdock-Szegö example
In [4] we see reported times for computation of the comprehensive Jordan form for
matrices of the following form, taken from [28], of dimensions 2 to about 20:

KMSn =



1 −ρ

−ρ ρ2 + 1 −ρ
. . .

. . .
. . .

−ρ ρ2 + 1 −ρ
−ρ 1


. (5.7.8)

This is, apart from the (1, 1) entry and the (n, n) entry, a Toeplitz matrix containing
one parameter, ρ. The reported times to compute the Jordan form were plotted in [4] on
a log scale, and looked as though they were exponentially growing with the dimension,
and were reported in that paper as growing exponentially.

The theorem of this paper states instead that polynomial time is possible for this
family, because there are only two parameters (ρ and the eigenvalue parameter, say
λ). The Hermite forms for these matrices are all (as far as we have computed) trivial,
with diagonal all 1 except the final entry which contains the determinant. Thus all
the action for the Jordan form must happen with the discriminant of the determinant.
Experimentally, the discriminant with respect to λ has degree n2 + n − 4 for KMS
matrices of dimension n ≥ 2 (this formula was deduced experimentally by giving a
sequence of these degrees to the Online Encyclopedia of Integer Sequences [26]) and each
discriminant has a factor ρn(n−1), leaving a nontrivial factor of degree 2n − 4 growing
only linearly with dimension. The case ρ = 0 does indeed give a derogatory KMS matrix
(the identity matrix). The other factor has at most a linearly-growing number of roots
for each of which we expect the Jordan form of the corresponding KMS matrix to have
one block of size two and the rest of size one. We therefore see only polynomial cost
necessary to compute comprehensive Jordan forms for these matrices, in accord with
our theorem.

5.8 Conclusions
We have shown that using the CTNSF to solve parametric linear systems is of cost
polynomial in the dimension of the linear system and polynomial in parameter degree,
for problems containing up to three parameters. This shows that polynomially many
regimes suffice for problems of this type. To the best of our knowledge, this is the first
method to achieve this polynomial worst case.

It remains an open question whether, for linear systems with a fixed number of
parameters greater than three, a number of regimes suffices that is polynomial in the
input matrix dimension and polynomial degree of the parameters, being exponential
only in the number of parameters.

Through experiments with random matrices we have indication that the worst case
bounds we give are sharp, though we haven’t proven this point. As the examples in-
dicated, many problems will have fewer regimes, and sometimes substantially fewer
regimes. We have not investigated the effects of further restrictions of the type of prob-
lem, such as to sparse matrices.
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Chapter 6

Concluding Remarks

We have used common numerical and symbolic methods such as rootfinding, eigenvalue
based methods in this thesis and addressed problems related to matrices, polynomials
and matrix polynomials in multiple bases.

In order to show relations between different chapters, we present the following ex-
ample.

Consider Wilkinson polynomial 1.2.10 of degree 5 divided by its largest coefficient,
274. Our goal is to demonstrate that W5 is quite sensitive. In other words, making a
small random change in the polynomial will make it have a root in common with another
random polynomial.

Assume f and g are random polynomials of degree 5 and we divide them by their
largest coefficient. So we have

W5(z) = (z − 1) (z − 2) (z − 3) (z − 4) (z − 5)
274

f(z) = 22 z5 − 55 z4 − 94 z3 + 87 z2 − 56 z
87

g(z) = −62 z5 + 97 z4 − 73 z3 − 4 z2 − 83 z − 10
97

Find the Bézout matrix of B = W5 + t ∗ f and g with respect to z. This gives a matrix
polynomial in t:

B =



− 3725
13289 −

220 t
8439

5895
13289 + 550 t

8439 − 4805
13289 + 940 t

8439
885

13289 −
10 t
97 − 6350

13289 + 560 t
8439

16905
26578 −

1766 t
2813 −32783

26578 + 3259 t
2813

24737
26578 + 4264 t

8439
10161
26578 −

6505 t
8439

885
13289 −

10 t
97

− 6977
13289 + 5306 t

8439
19395
13289 −

13517 t
8439 −24774

13289 + 16504 t
8439

24737
26578 + 4264 t

8439 − 4805
13289 + 940 t

8439
5197
26578 −

2478 t
2813 −10552

13289 + 18439 t
8439

19395
13289 −

13517 t
8439 −32783

26578 + 3259 t
2813

5895
13289 + 550 t

8439

− 833
26578 −

44 t
291

5197
26578 −

2478 t
2813 − 6977

13289 + 5306 t
8439

16905
26578 −

1766 t
2813 − 3725

13289 −
220 t
8439


Polynomial eigenvalues of B are

− 0.022− 0.013i, −0.022 + 0.013i, 0.50− 0.64i, 0.50 + 0.64i, 6.13.

The Polynomial eigenvalues of B tells us when W5 + tf and g have common roots. The
methods of this thesis can be used: from Chapter 2 (express everything in Bernstein
basis), from Chapter 3 (express everything in Lagrange basis), or Chapter 5.

112



Concluding Remarks 113

Another example borrowed from [1, P. 68-71] is to consider

S =


130 t− 149 −390 t− 50 −154
43 t+ 537 −129 t+ 180 546
133 t− 27 −399 t− 9 −25

 .
When t = 0 this is the matrix gallery(3) in MATLAB, which is a famous example

with ill-conditioned eigenvalues (which are 1, 2, and 3). Looking at the above matrix
one can find a small value of t, namely about 10−6, for which the matrix S has multiple
eigenvalues. The PLS algorithm introduced in Chapter 5 can discover that information.

Hybrid symbolic-numeric methods are introduced in this thesis which address ap-
proximate GCD problem in Bernstein and Lagrange bases which avoids ill-conditioned
basis conversions. The algorithms use companion pencils for computing roots and then
follow Victor Pan’s algorithm with modifications. An important part of our algorithm
is clustering the roots of polynomials. We have introduced multiple deterministic and
heuristic algorithms for clustering. Improvement of clustering algorithms is a potential
interesting problem for future work. Moreover, generalizing the same ideas to multivari-
ate GCD is another open problem related to approximate GCD problem which is studied
in chapters 2 and 3. The algorithm given in Chapter 3 which computes the approximate
GCD in Lagrange bases can be trivially extended to Hermite basis. The only difference
will be the rootfinding method. In order to compute the roots one can use the companion
pencil presented in 4.3.4.

For a given parametric linear system with at most three parameters (in the entries of
the matrix), we have provided a method for finding solutions in terms of regimes. Our
method is more symbolic rather than numerical approach. The cost of our algorithm is
polynomial in the dimension of the coefficient matrix and degree of polynomials appear
in the matrix. A natural interesting generalization of the algorithm introduced in Chap-
ter 5, is to find an algorithm to solve a parametric linear system with more than three
parameters with polynomial complexity (for any fixed number of parameters).
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