11 research outputs found

    Every property is testable on a natural class of scale-free multigraphs

    Get PDF
    In this paper, we introduce a natural class of multigraphs called hierarchical-scale-free (HSF) multigraphs, and consider constant-time testability on the class. We show that a very wide subclass, specifically, that in which the power-law exponent is greater than two, of HSF is hyperfinite. Based on this result, an algorithm for a deterministic partitioning oracle can be constructed. We conclude by showing that every property is constant-time testable on the above subclass of HSF. This algorithm utilizes findings by Newman and Sohler of STOC'11. However, their algorithm is based on the bounded-degree model, while it is known that actual scale-free networks usually include hubs, which have a very large degree. HSF is based on scale-free properties and includes such hubs. This is the first universal result of constant-time testability on the general graph model, and it has the potential to be applicable on a very wide range of scale-free networks.Comment: 13 pages, one figure. Difference from ver. 1: Definitions of HSF and SF become more general. Typos were fixe

    インターネット問題のモデル化法と効率的算法の研究

    Get PDF
    平成16-17度科学研究費補助金(基盤研究(C))研究成果報告書 課題番号:16500010 研究代表者:伊藤大雄 (京都大学大学院情報学研究科

    Finding secluded places of special interest in graphs.

    Get PDF
    Finding a vertex subset in a graph that satisfies a certain property is one of the most-studied topics in algorithmic graph theory. The focus herein is often on minimizing or maximizing the size of the solution, that is, the size of the desired vertex set. In several applications, however, we also want to limit the “exposure” of the solution to the rest of the graph. This is the case, for example, when the solution represents persons that ought to deal with sensitive information or a segregated community. In this work, we thus explore the (parameterized) complexity of finding such secluded vertex subsets for a wide variety of properties that they shall fulfill. More precisely, we study the constraint that the (open or closed) neighborhood of the solution shall be bounded by a parameter and the influence of this constraint on the complexity of minimizing separators, feedback vertex sets, F-free vertex deletion sets, dominating sets, and the maximization of independent sets

    Finding secluded places of special interest in graphs

    Get PDF
    Finding a vertex subset in a graph that satisfies a certain property is one of the most-studied topics in algorithmic graph theory. The focus herein is often on minimizing or maximizing the size of the solution, that is, the size of the desired vertex set. In several applications, however, we also want to limit the “exposure” of the solution to the rest of the graph. This is the case, for example, when the solution represents persons that ought to deal with sensitive information or a segregated community. In this work, we thus explore the (parameterized) complexity of finding such secluded vertex subsets for a wide variety of properties that they shall fulfill. More precisely, we study the constraint that the (open or closed) neighborhood of the solution shall be bounded by a parameter and the influence of this constraint on the complexity of minimizing separators, feedback vertex sets, F-free vertex deletion sets, dominating sets, and the maximization of independent sets

    Concept Stability Based Isolated Maximal Cliques Detection in Dynamic Social Networks

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this recordIn: Green, Pervasive, and Cloud Computing, edited by Z. Yu, C. Becker, G. Xing. GPC 2020: International Conference on Green, Pervasive, and Cloud Computing, 13 - 15 November Xi'an, ChinaAs the network security gradually deviates from the virtual environment to the real environment, the security problems caused by abnormal users in social networks are becoming increasingly prominent. These abnormal users usually form a group which can be regarded as an isolated network. This paper aims to detect the isolated maximal cliques from a dynamic social network for identifying the abnormal users in order to cut off the source of fake information in time. By virtue of concept stability, an isolated maximal clique detection approach is proposed. Experimental results shown that the proposed algorithm has a high F-measure value for detecting the isolated maximal cliques in social network.National Natural Science Foundation of China (NSFC)Natural Science Basic Research Plan in Shaanxi Province of ChinaFund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shaanxi ProvinceEuropean Union Horizon 202

    Finding Secluded Places of Special Interest in Graphs

    Get PDF
    Finding a vertex subset in a graph that satisfies a certain property is one of the most-studied topics in algorithmic graph theory. The focus herein is often on minimizing or maximizing the size of the solution, that is, the size of the desired vertex set. In several applications, however, we also want to limit the "exposure" of the solution to the rest of the graph. This is the case, for example, when the solution represents persons that ought to deal with sensitive information or a segregated community. In this work, we thus explore the (parameterized) complexity of finding such secluded vertex subsets for a wide variety of properties that they shall fulfill. More precisely, we study the constraint that the (open or closed) neighborhood of the solution shall be bounded by a parameter and the influence of this constraint on the complexity of minimizing separators, feedback vertex sets, F-free vertex deletion sets, dominating sets, and the maximization of independent sets

    Subseries Join and Compression of Time Series Data Based on Non-uniform Segmentation

    Get PDF
    A time series is composed of a sequence of data items that are measured at uniform intervals. Many application areas generate or manipulate time series, including finance, medicine, digital audio, and motion capture. Efficiently searching a large time series database is still a challenging problem, especially when partial or subseries matches are needed. This thesis proposes a new denition of subseries join, a symmetric generalization of subseries matching, which finds similar subseries in two or more time series datasets. A solution is proposed to compute the subseries join based on a hierarchical feature representation. This hierarchical feature representation is generated by an anisotropic diffusion scale-space analysis and a non-uniform segmentation method. Each segment is represented by a minimal polynomial envelope in a reduced-dimensionality space. Based on the hierarchical feature representation, all features in a dataset are indexed in an R-tree, and candidate matching features of two datasets are found by an R-tree join operation. Given candidate matching features, a dynamic programming algorithm is developed to compute the final subseries join. To improve storage efficiency, a hierarchical compression scheme is proposed to compress features. The minimal polynomial envelope representation is transformed to a Bezier spline envelope representation. The control points of each Bezier spline are then hierarchically differenced and an arithmetic coding is used to compress these differences. To empirically evaluate their effectiveness, the proposed subseries join and compression techniques are tested on various publicly available datasets. A large motion capture database is also used to verify the techniques in a real-world application. The experiments show that the proposed subseries join technique can better tolerate noise and local scaling than previous work, and the proposed compression technique can also achieve about 85% higher compression rates than previous work with the same distortion error

    Proceedings of the 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    No full text
    International audienceThe Cologne-Twente Workshop (CTW) on Graphs and Combinatorial Optimization started off as a series of workshops organized bi-annually by either Köln University or Twente University. As its importance grew over time, it re-centered its geographical focus by including northern Italy (CTW04 in Menaggio, on the lake Como and CTW08 in Gargnano, on the Garda lake). This year, CTW (in its eighth edition) will be staged in France for the first time: more precisely in the heart of Paris, at the Conservatoire National d’Arts et Métiers (CNAM), between 2nd and 4th June 2009, by a mixed organizing committee with members from LIX, Ecole Polytechnique and CEDRIC, CNAM
    corecore