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Abstract

A time series is composed of a sequence of data items that are measured at uniform

intervals. Many application areas generate or manipulate time series, including finance,

medicine, digital audio, and motion capture. Efficiently searching a large time series

database is still a challenging problem, especially when partial or subseries matches

are needed.

This thesis proposes a new definition of subseries join, a symmetric generalization

of subseries matching, which finds similar subseries in two or more time series datasets.

A solution is proposed to compute the subseries join based on a hierarchical feature

representation. This hierarchical feature representation is generated by an anisotropic

diffusion scale-space analysis and a non-uniform segmentation method. Each segment

is represented by a minimal polynomial envelope in a reduced-dimensionality space.

Based on the hierarchical feature representation, all features in a dataset are indexed

in an R-tree, and candidate matching features of two datasets are found by an R-tree

join operation. Given candidate matching features, a dynamic programming algorithm

is developed to compute the final subseries join. To improve storage efficiency, a hierar-

chical compression scheme is proposed to compress features. The minimal polynomial

envelope representation is transformed to a Bézier spline envelope representation. The

control points of each Bézier spline are then hierarchically differenced and an arithmetic

coding is used to compress these differences.

To empirically evaluate their effectiveness, the proposed subseries join and com-

pression techniques are tested on various publicly available datasets. A large motion

capture database is also used to verify the techniques in a real-world application. The

experiments show that the proposed subseries join technique can better tolerate noise

and local scaling than previous work, and the proposed compression technique can

also achieve about 85% higher compression rates than previous work with the same

distortion error.
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Chapter 1

Introduction

Time series are ubiquitous. Many applications generate time series data, such as fi-

nance, medicine, music, and motion capture. Research into efficient methods for time

series retrieval and compression is becoming increasingly important as the volume of

data increases. The main topics in this thesis are time series retrieval, especially the

problem of subseries join, and time series compression. In this chapter, background

materials are first reviewed on time series retrieval and compression. Then an overview

of the techniques proposed in this thesis is presented and the specific contributions of

this thesis are listed. An outline of the thesis is given at the end of this chapter.

1.1 Subseries Join and Compression

Time series retrieval belongs to the area of information retrieval. The purpose of

information retrieval is to identify and to extract information that satisfies a user’s

needs from a large collection of data. A retrieval algorithm finds matching information

in a collection given a description of a need, and extracts the pieces of information

that are relevant to that need. Generally, retrieval methods can be classified into two

categories [SBNW96], pattern-based retrieval and content-based retrieval.

The first category is pattern-based retrieval , which uses some semantic analysis or
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knowledge, such as annotations or labels, to state the requirements of the needed in-

formation. The word “pattern” means a set of constraints that must be satisfied when

searching a dataset. The pattern can be in the form of a high-level language description,

such as “find all the running motions in a motion capture database”, or can contain

more detailed information, such as “find all running motions in which the left foot is

lifted 10cm higher than the right foot in two successive cycles”. No matter what the

pattern is, it has to be converted to a mathematical description that is recognizable

to the computer. To answer pattern match queries, as long as the data contain the

specified pattern, they will be retrieved, no matter where and how the pattern appears.

One example of pattern query retrieval is the use of Structured Query Language (SQL).

Pattern-based retrieval requires complete and accurate domain knowledge for pattern

extraction. This requires either intensive human-assisted annotations or extremely

(perhaps impractically so) sophisticated automatic content analysis. Sometimes, an

approximation can be used in constructing a useful index. Some examples are auto-

matic speech recognition and audio retrieval systems that recognize the words uttered

in an audio stream.

The second category is content-based retrieval (or example-based retrieval), which

uses some physical description, or comparison with examples from a similar medium,

in order to describe the needed information. For time series, content-based retrieval

finds pieces of time series data that have similar shapes to a given example time series.

For time series data, patterns are more difficult to extract or to describe than symbolic

(or text) data, because time series are samples from continuous signals. In contrast,

examples are plentiful and patterns can be built up by considering similarity to such

examples. Therefore, content-based retrieval is useful for many real-world applications.

For instance, the user may want to find companies whose stock prices move similarly,

or to find cases in the past that resemble the sale patterns in this month’s data.

To evaluate a retrieval algorithm, there are two criteria: accuracy and efficiency .

Accuracy specifies that the retrieval algorithm returns no false dismissals, relative to

2



some “gold standard”. False dismissals (also called false negatives) occur when data

that should be retrieved are not retrieved. Correspondingly, false alarms (also called

false positives) occur when data that should not be retrieved are retrieved. Accuracy

is based on the definition of similarity measure and the gold standard is usually an

exhaustive search (which is, of course, not practical) using that similarity measure.

Unfortunately, an all-purpose similarity measure for different data, domains, and tasks

can be difficult to establish.

Efficiency requires the retrieval algorithm to find the correct answer as rapidly as

possible. To search a large database, an index usually needs to be constructed, because

sequentially scanning the database using exhaustive search is too slow to be practical

for most applications. An index can narrow the search to a small set of candidates of

the database. A search mechanism can be exact (allowing no false dismissals or false

positives) or approximate (allowing some number of either). An approximate retrieval

algorithm should measure the level of user satisfaction and permit a balanced tradeoff

between accuracy and efficiency.

The problem of whole matching for time series has been studied for many years.

More recent work also studies the problem of subseries matching . Whole matching finds

time series in a dataset that are similar to a given query time series (see Definition 2.8).

Subseries matching finds similar subseries of a time series in a dataset to a given query

time series (see Definition 2.9).

Recently, the problem of subseries join has been implicitly identified [Keo06b]. The

goal of subseries join is similar to that of classic relational database join, which com-

bines all the elements of two data sources that satisfy a similarity criterion [YKM+08].

Subseries join finds similar subseries in one time series dataset to subseries of another

time series dataset (see Definition 2.10). Compared with subseries matching, which is

a one-to-many, asymmetrical operation, subseries join is a many-to-many, symmetrical

operation. This is illustrated in Figure 1.1. Subseries join is potentially useful for

many data mining applications, including clustering [Elk03], classification [XKS+06],

3



anomaly detection [WKX06], rule discovery [MRK+07], and motif discovery [YKM+07].

Figure 1.2 shows the conceptual definition of subseries join.

Previous methods based on similarity measures and indexing for whole matching

and subseries matching do not work for subseries join. This thesis proposes a solution

to subseries join based on the formalization given in Definition 2.10. Subseries join

is a generalization of subseries matching, just as the proposed definition of subseries

matching is a generalization of whole matching. Therefore, the proposed solution also

works for whole matching and subseries matching.

A representation is used for indexing that also leads to compressed storage, so the

proposed approach also allows searching compressed time series datasets. The purpose

of data compression is to convert an input representation to an output representation

that has a smaller size. A compression method encodes the same information more

compactly by removing redundancy. Basically, compression methods can be classified

into two categories: lossless and lossy . Lossless compression methods have zero error

but cannot achieve high compression rates, especially in the presence of noise. Lossy

compression methods can achieve higher compression rates but always involve a trade-

(a) Subseries matching (b) Subseries join

Figure 1.1: Subseries matching vs. subseries join.
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(a) Two time series datasets.

(b) Time series are non-uniformly segmented and candidates are generated by
matching sequences of segments using dynamic programming.

5



(c) The result is a set of pairs of matching subseries that satisfy a similarity
threshold and are maximal-length.

Figure 1.2: Conceptual definition of subseries join.

off between compression rate and error. Lossy compression methods should remove

redundancy as much as possible without discarding important information. They can-

not guarantee that the decompressed data will be identical to the original data but

attempt to avoid important differences. However, what information is “important”

can be content-dependent and domain-dependent. In some domains, such as music or

motion capture, an aspect of the data can be considered “unimportant” if its removal

is perceptually undetectable.

1.2 Research Overview

This thesis focuses on investigating content-based retrieval and lossy compression tech-

niques for time series. For time series retrieval, a novel definition is proposed for the

problem of subseries join whose definition will be presented in Section 2.1.1. Figure 1.3

gives a graphical overview of the proposed solution to solving the problem of subseries

join. The proposed solution consists of a number of stages. Specifically, the original

6



time series data are first transformed to a hierarchical feature sequence. To obtain this

hierarchy, the time series are smoothed using an anisotropic diffusion process. The

smoothed data is then segmented at discontinuities that are identified by the zero-

crossings of the second derivatives after anisotropic diffusion. One of the properties

of anisotropic diffusion is that it pins the locations of the zero-crossings of the second

derivatives across scales, resulting in a stable hierarchy of segments. A segment is

then approximated and represented by a minimal polynomial envelope (and possibly

other additional derived parameters that reflect the properties of the segment), which

is referred to as a feature in this thesis. In this way, each segment is mapped to a lower-

dimensional feature point. All the features are indexed in an R-tree in such a way that

distances between segments are equivalent to distances between feature points.

T ime ser ies
da ta sets

Smoothing &
Segmenting

F ea tur e sequences
&  R -tr ees

Differ entia l coding

Dynam ic
program m ing

Differ ences of
contol points

P a ir s of ma tching
subser ies

Index

Ar ithmetic coding

C ompr essed da ta

Segmenta tion &
Appr oxima tion

Figure 1.3: Overview of the proposed techniques.
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An R-tree join operation is then performed on the R-tree indexes of two datasets.

The result of this R-tree join is the set of all pairs of features from the two datasets that

are closer to each other than a predefined distance threshold relative to the proposed

distance metric. Once a set of such candidate pairs is found, they are joined into

maximal-length subseries using dynamic programming.

A compression scheme is developed based on the same segmentation and represen-

tation. Each segment is approximated using a Bézier spline. The spline control points

generated from the Bézier spline approximation are differentially and hierarchically

encoded. This compression scheme is based on the fact that the spline control points

in one scale can be approximated by a subdivision of the spline in a coarser scale. The

differences are then encoded using arithmetic coding.

The proposed approach requires minimum domain-related knowledge, so that few

changes are needed to apply the approach to different types of time series. The effec-

tiveness of the proposed techniques are empirically confirmed using various publicly

available datasets. In particular, to test the effectiveness of the proposed approach in

a specific application, the approach is applied to a large motion capture database.

1.3 Contributions

The major contributions of this thesis are as follows:

1. A new definition of subseries join is proposed and a novel solution is developed

to computing it. Recently, the problem of subseries join has been implicitly iden-

tified. We give a more formal definition, so that subseries join is a generalization

of subseries matching and whole matching. Solutions to subseries join can also

solve the problems of subseries matching and whole matching.

2. A new hierarchical representation is generated using an anisotropic diffusion

scale-space analysis and a non-uniform segmentation method. This non-uniform

8



segmentation method divides time series into segments based on its intrinsic

structure, which avoids cutting features as uniform segmentation methods do.

A minimal polynomial envelope and other additional parameters are used to

represent each segment in a reduced-dimensionality space, suitable for indexing

and compression. The minimal polynomial envelope can achieve tighter lower

bounds than previous lower bounding methods. The hierarchical representation

and index can automatically be adapted to fit into any memory system.

3. A dynamic programming algorithm is proposed to compare and align feature se-

quences over a scale space. Novel distance functions and gap penalty functions

are also defined to adapt to time series. This algorithm can tolerate both impul-

sive noise and additive noise, which are not tolerated well by previous distance

functions.

4. A compression scheme is proposed to compress time series data. This algorithm

can achieve higher compression rates than previous work. By using anisotropic

diffusion, data are smoothed so that the influence of noise is avoided on the

compression rate. Noise can adversely and often severely affect the compression

rate of competing schemes. At the same time, important discontinuities are

retained. A differential coding method is presented to do further compression

based on the hierarchical structure. Updating the database will not influence

the compression of unchanged data. It is convenient to evaluate the data at

any point in time directly from the compressed representation, and compressed

databases are still searchable. Finally, the decompression is fast enough for real-

time applications.

9



1.4 Outline

Background knowledge, previous work, and underlying technology are reviewed in

Chapter 2. Related definitions are also given in this chapter. In Chapter 3, a new

representation, based on a non-uniform segmentation that maps a time series into a

non-uniform feature sequence, is described. An indexing and subseries join method

based on the hierarchical feature sequences used in this representation is presented

in Chapter 4. The evaluation of the proposed approach and experimental results are

shown in Chapter 5. Experiments for subseries join and compression of a large motion

capture database are presented in Chapter 6. At the end of the thesis in Chapter 7,

main contributions and results of this thesis are summarized and possible directions

for future work are identified and discussed.
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Chapter 2

Background and Related Work

In this chapter, background information on time series, time series retrieval, and time

series compression is introduced. Specifically, for time series retrieval, this chapter

discusses on the problem of subseries join based on a new definition. Previous work

on topics related to time series retrieval is also reviewed including similarity measures,

dimensionality reduction strategies, and indexing methods.

2.1 Background

A time series is composed of a sequence of values measured from a continuous signal.

The term “time series” is often used to refer to any such sampled data set with one

independent variable, whether or not that independent variable is time. A time series

is a sequence of samples representing value(s) at specific points in time. If the sample

is a single value (a number), then the time series is called a single-channel time series .

If the sample is a vector of values (a vector of numbers), then the time series is called a

multi-channel time series . Examples of time series data include financial data, scientific

measurements, weather data, music data, and motion capture data. A multi-channel

time series has multiple data streams usually sampled at the same rate. For example, a

motion capture data records the angular values of each joint in a skeleton, and records
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each angle at moments that are with synchronized the other joints. Figure 2.1(a)

and Figure 2.1(b) show examples of a single-channel time series of stock data1 and a

multi-channel time series of motion capture data.

Note that our interpretation of time series includes the assumption that they are

sampled from a continuous signal. We assume, in particular, that these samples can

be interpolated and filtered as in other areas of signal processing, and that the samples

are an imperfect digital representation of some underlying continuous-time signal. The

formal definitions of time series and uniform time series are given in Definition 2.1

and 2.2. This thesis only considers uniform time series. The theoretical parts of the

thesis focuses on single-channel time series first. Chapter 6 will show how the proposed

techniques can be extended to multi-channel time series.

Definition 2.1 A time series X is a sequence of possibly vector-valued data that are

sampled at successive points in time, denoted by

X = ((x1, t1), . . . , (xn, tn)), (2.1)

where n is the number of sample timestamps and ti+1 > ti for all i. The element xi is

a vector of size k sampled at timestamp ti, i.e.,

xi = (xi,1, xi,2, . . . , xi,k). (2.2)

If k = 1, then X is a single-channel time series. If k > 1, then X is a multi-channel

time series.

Definition 2.2 A uniform time series X is a sequence of possibly vector-valued data

that are sampled at uniform intervals. That is, Definition 2.1 with the additional

constraint that

ti = iT + T0, (2.3)

1Stock prices are recorded at daily intervals excluding weekends and holidays.
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Figure 2.1: Examples of real-world time series.
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where T0 is the start time and T is the sampling period.

The basic notations used in this thesis are summarized in Table 2.1.

Table 2.1: The basic notations used in this thesis.

Symbol Description

X The time series, X = (x1, x2, . . . , xi, . . . , xn)

#X The number of elements in X

X[i : j] The subsection of X from the ith element to the jth element

D The dataset of time series

#D The number of time series in D

W The vector of weights for different channels, W = (w1, w2, . . . , wc)

2.1.1 Time Series Retrieval

Given a query, a retrieval method finds data sequences that satisfy the requirements

of the query. Content-based retrieval is based on a “similarity” between a query and

the data. The similarity is usually defined as a distance function that reflects how far

the data is from the query.

For many data mining applications, finding similar subsections of time series data to

a query sequence is of prime importance. Note, however, that in previous work the word

“subsequence” has been used to describe any sub-part of a time series. Unfortunately,

the term subsequence is already in wide use to describe discrete sequences of data

such as strings and DNA sequences. In contrast, time series are often interpreted as

samples from continuous signals. Therefore, to avoid confusion in this thesis the word

“subseries” will be used to describe sub-parts of time series.
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Definition 2.3 Subseries: Given a time series

X = (x1, x2, . . . , xn),

a subseries X ′ of X is

X ′ = (xi, xi+1, . . . , xi+n′−1),

where 1 ≤ i ≤ n and 1 ≤ n′ < n− i.

Note that under the definition a subseries in Definition 2.3 is a continuous segment

of a time series and does not include gaps. However, for impulsive noise immunity later

on a definition of discrete subsequences that do allow for gaps is also used.

Definition 2.4 Subsequence: Given a sequence

A = (a1, a2, . . . , an),

a subsequence A′ of A is

A′ = (aq(1), aq(2), . . . , aq(n′)),

where 1 ≤ q(i) ≤ n, 1 ≤ q(n′) ≤ n, and q : {1, . . . , n′} 7→ {1, . . . , n} is strictly

monotonic and injective.

Similarity between time series is usually defined in terms of a distance function that

reflects how far one time series (or subseries) is from another time series (or subseries):

Definition 2.5 Distance function: A function d from pairs (X, Y ) to the real num-

bers is a distance function if it satisfies the following conditions:

Non-negativity: d(X, Y ) ≥ 0.
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Identity: d(X, Y ) = 0 if and only if X = Y .

Symmetry: d(X, Y ) = d(Y,X).

Minimizing a distance function results in maximal similarity. An ε-similarity is

defined as a test relative to a threshold ε:

Definition 2.6 ε-similarity: Given any two time series X and Y , we say X is ε-

similar to Y if d(X, Y ) ≤ ε, where ε is a predefined threshold value.

We call X an ε-match to Y . Distance functions are also sometimes called similarity

measures.

A distance function should only be called a distance metric if it satisfies the triangle

inequality as well:

Definition 2.7 Distance metric: A distance function d is a distance metric if it

also satisfies the triangle inequality for all X, Y , and Z:

Triangle Inequality:

d(X,Z) ≤ d(X, Y ) + d(Y, Z). (2.4)

We can rewrite Equation 2.4 as d(X, Y ) ≥ d(X,Z) − d(Y, Z). The value d(X,Z) −

d(Y, Z) can be treated as a lower bound on d(X, Y ), if d(X,Z) and d(Y, Z) are known.

This is the basic principle that most distance-based indexing structures follow, such as

VP-trees [Uhl91], M-trees [CPZ97], SA-trees [Nav02], and OMNI-family access meth-

ods [FTJF01].

Sometimes, instead of a distance function, a scoring function is used as a similarity

measure. With a scoring function, a higher value indicates greater similarity.

The definition of the distance function (or metric) depends on the user, the domain,

and the task. There does not exist an all-purpose similarity measure. In other words,

the definition of similarity is subjective. However, the Euclidean distance metric (root-

mean-square) is often used since other metrics can often be implemented in terms
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of it using a suitable transformation of the data. Dynamic Time Warping (DTW) is

another widely used distance function that is useful when time series need to be aligned

with each other. However, neither the Euclidean distance nor DTW can be used in

subseries matching or subseries join. The Euclidean distance requires the time series

to have the same lengths, while DTW must match every element in each time series

(whole matching). For example, with both distance functions matching five heartbeats

in one cardiogram to six heartbeats in another cardiogram is meaningless.

Two kinds of time series matches are now defined, whole and subseries, in terms of

ε-similarity:

Definition 2.8 Whole series match: Given a time series X and a time series Y ,

if d(X, Y ) ≤ ε, then X is a whole match to Y .

Subseries match is a generalization of whole match:

Definition 2.9 Subseries match: Given a time series X and a set (database) of

time series Y, the subseries matchM is the set of all subseries Yi,k ⊆ Yk for all Yk ∈ Y

such that d(X, Yi,k) ≤ ε and for which there does not exist any Y ′i,k ⊃ Yi,k, where Y ′i,k is

longer than Yi,k and contains Yi,k as a proper subset and for which d(X, Y ′i,k) < ε.

The notation A ⊆ B means that A is a subseries of B. Note that multiple matches are

possible and one query may match different subseries from the same time series. This

definition also eliminates any redundant matches that are parts of longer matches.

Finally, the definition of subseries join returns all pairs of subseries drawn from two

datasets that satisfy the similarity threshold and are also maximal-length:

Definition 2.10 Subseries join: Given two sets of time series X and Y, the sub-

series join is the set of all pairs (Xi,k, Yj,`) of subseries Xi,k ⊆ Xk for Xk ∈ X and

Yj,` ⊆ Y` for Y` ∈ Y such that d(Xi,k, Yj,`) ≤ ε, and for which there does not exist any

X ′i,k ⊃ Xi,k and Y ′j,` ⊃ Yj,` where X ′i,k is longer than Xi,k and contains Xi,k as a proper

subset and where Y ′j,` is longer than Yj,` and contains Yj,` as a proper subset for which

d(X ′i,k, Y
′
j,`) < ε or for which d(Xi,k, Y

′
j,`) < ε or for which d(X ′i,k, Yj,`) < ε.
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Note that the result of a subseries join contains all subseries matches if one of the input

datasets X is defined as the singleton set {X}. However, the subseries join also includes

other partial matches from the subseries of the dataset to subseries of X. Therefore, to

obtain a subseries match result exactly as defined above from a join, these additional

partial matches should be filtered out.

When searching in a large dataset, there may exist many similar time series to

the query. Based on how the number of results is constrained, retrieval methods can

be classified into range retrieval (see Definition 2.11) and k-Nearest Neighbor (k-NN)

retrieval (see Definition 2.12). The range retrieval and the k-NN retrieval methods can

be easily converted to each other by selecting multiple ranges or different values of k.

Definition 2.11 Range retrieval: Given a query time series Q, a range retrieval

finds all the time series X in a dataset D that satisfy d(Q,X) ≤ ε.

Definition 2.12 k-Nearest Neighbor (k-NN) retrieval: Given a query time se-

ries Q, a k-Nearest Neighbor (k-NN) retrieval finds a subset D′ ⊆ D such that {#D′ =

k|∀X ∈ D′, Y ∈ D− D′, d(Q,X) ≤ d(Q, Y )}. When k = 1, k-NN retrieval returns the

best match.

2.1.2 Time Series Compression

Compression of time series data can exploit redundant information across three di-

mensions: the temporal dimension, the space/scale dimension, and the time series clip

dimension. Most compression approaches use a decorrelation step followed by a coding

step. Decorrelation removes redundancy between different data elements. Coding ex-

ploits the differences in probability between different data values to reduce the average

data rate. Specifically, high-probability data values can be coded with shorter codes

than low-probability data values. Coding algorithms are relatively standard; most

compression schemes differ primarily in their approach to decorrelation, since different

data types have different kinds of redundancy.

18



Compression techniques can be classified into two categories: lossless and lossy.

Lossless compression has zero error but cannot achieve high compression rates. Lossy

compression techniques can achieve higher compression rates but always involve a

tradeoff between compression rate and error. A lossy compression may take advan-

tage of the properties of data, in which deleting some information in the data would

not be detected by human perception. Non-symbolic time series can often be simplified

in many ways without a noticeable degradation of quality. The goal of a lossy com-

pression method is to achieve the best ratio between compression rate and error. The

compression rate (or compression ratio) is a performance measure for compression.

Definition 2.13 Given the input time series X and the reconstructed time series Y ,

compression rate = size(X)/size(Y ), (2.5)

where size is the number of bytes of storage required to contain the data.

Compression error metrics usually vary with different types of data. One basic

error metric that applies to any kind of real-valued data is the Euclidean distance

metric, which is also called the root mean square error (RMSE) metric.

Definition 2.14 Given the input time series X and the reconstructed time series Y ,

the root mean square error (RMSE) between X and Y is

RMSE(X, Y ) =
1

n

√√√√ n∑
i=1

(xi − yi)2. (2.6)

The weighted root mean square error (WRMSE) is

WRMSE(X, Y ) =
1

n

√√√√ n∑
i=1

wi(xi − yi)2, (2.7)

where wi is the weight assigned to each element.
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2.2 Similarity Measures

A similarity measure reflects how alike the query and the retrieved data are. The

similarity of two time series can be measured by a distance function. In this section,

the most common and useful distance functions for time series are reviewed, including

the Euclidean distance metric, the Dynamic Time Warping distance measure, and the

Longest Common Subsequence method. Sequence alignment algorithms that measure

distances between discrete sequences are also introduced.

2.2.1 Euclidean Distance Metric

The Euclidean distance metric is a special form of the Lp-norm distance metric. The

Lp-norm is the simplest distance metric.

Definition 2.15 Given two time series X and Y of the same length n, the Lp-norm

distance metric between X and Y is

Lp(X, Y ) = p

√√√√ n∑
i=1

|xi − yi|p. (2.8)

If X and Y are multi-channel time series with c channels, then

|xi − yi| =
c∑
j=1

wj(xi,j − yi,j). (2.9)

The value wj is the weight value assigned to the jth channel. When p = 1, the L1-norm

metric is called the Manhattan distance or the city block distance. When p = 2, the

L2-norm metric is the well-known Euclidean distance.

The Euclidean distance needs linear computational cost in terms of time series

length. However, it requires the two time series to have exactly the same length and

it cannot handle local time shifting. Local time shifting occurs when one element in
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one time series must be shifted along the time axis to match an element in the other

time series, i.e., the two matched elements appear in different positions in the time

axis. The word “local” means that not all the elements of one time series need to be

shifted and all the shifted elements do not need to have the same shifting factor. By

contrast, in global time shifting , all the elements are shifted along the time axis by a

fixed shifting factor. The shift-and-compare method shifts the shorter time series to

every possible offset of the longer time series and compares the two time series using an

Lp-norm metric. Time series that have similar shapes often require local time shifting

when they are matched. The Lp-norm cannot handle local time shifting, because it

requires the exact position-by-position correspondence of elements in two time series,

i.e., the ith element of one series must be aligned with the ith element of the other

series. This problem can be solved by Dynamic Time Warping.

2.2.2 Dynamic Time Warping

Due to misalignment, two time series may look similar but may not be considered

close in the Euclidean distance. As a solution to this, Myers and Rabiner [MR81]

introduced DTW, which has been widely used in data mining [YJF98, KP00], gesture

recognition [GD95], robotics [SOC99], speech processing [RJ93], manufacturing [GP95],

and medicine [CPB+98]. Dynamic Time Warping (DTW) is a distance measure based

on first computing an optimal alignment. It is more robust than the Euclidean distance

when sequences may have different lengths or patterns that are out of phase in the time

axis. By computing an alignment first, DTW handles these cases.

Given two time series X = (x1, . . . , xm) and Y = (y1, . . . , yn), DTW aligns each

element xi of X (1 ≤ i ≤ m) to one or more elements yj of Y (1 ≤ j ≤ n); also, every

element of Y may be aligned to one or more elements of X. DTW performs dynamic

programming on an m×n distance matrix, in which each matrix element (i, j) contains

the squared Euclidean distance dE(xi, yj) =
√

(xi − yi)2. From the distance matrix, a
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warping matrix WM is constructed by the recurrence

WM(i, j) = dE(xi, yj) + min


WM(i− 1, j − 1)

WM(i, j − 1)

WM(i− 1, j).

(2.10)

The initial conditions of this recurrence areWM(0, 0) = 0 andWM(i, 0) = WM(0, j) =

∞. The square root of WM(m,n) defines the DTW distance:

DTW (X, Y ) =
√
WM(m,n). (2.11)

The global optimal alignment is U = (u1, . . . , ui, . . . , uk), where max{m,n} ≤ k ≤

m + n− 1, gives a contiguous set of matrix elements that defines a mapping between

X and Y . The warping path is typically subject to the following constraints:

• Boundary: u1 = (1, 1) and uk = (m,n). This condition requires the warping

path to start and finish in diagonally opposite corner elements of the matrix.

• Continuity: Given ui = (a, b), then ui−1 = (a′, b′), where a − a′ ≤ 1 and

b − b′ ≤ 1. This condition restricts the allowable steps in the warping path to

connected elements.

• Monotonicity: Given ui = (a, b), then ui−1 = (a′, b′), where a − a′ ≥ 0 and

b−b′ ≥ 0. This condition forces the elements of the alignment U to be monotonic

in time.

DTW may lead to unintuitive alignments where a single element of one time series

maps onto a large subsection of another time series. This undesirable behavior is called

a singularity . Also unlike the Euclidean distance, DTW is not a metric and does not

satisfy the triangle inequality. Because of this, many spatial indexing techniques cannot

be applied to accelerate it.
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Calculating the DTW distance is also expensive and requires O(mn) computational

time. To reduce this time, a warping path constraint can be used to limit how far the

warping path may stray from the diagonal. Two well-known warping path constraints

are the Sakoe-Chiba band and the Itakura Parallelogram [RJ93, SC78]. A Sakoe-Chiba

band allows an element xi to align only with the elements yi−w/2, . . . , yi+w/2 (and vice

versa for each yi), where w is the size of the constraint window. The constraint window

can reduce the computational time of DTW to O(w ·max{m,n}). Since w is a constant

value, the computational complexity of DTW is reduced from quadratic to linear.

One final problem with DTW is that it assumes time series can be “stretched”

locally by duplicating samples. This results in gaps being filled with replicated values

and permits the formation of artificial plateaus. If the time series is generated by

sampling some underlying continuous signal, it would be more natural to interpolate

values to fill gaps.

2.2.3 Longest Common Subsequence

The longest common subsequence (LCS) is the longest sequence that is a subsequence

of all sequences in a set of sequences. The LCS method matches two sequences by

allowing them to stretch, without rearranging the sequence of the elements but by

allowing some elements to be unmatched.

Definition 2.16 Given two sequences X and Y of the length m and n respectively,

the LCS score between X and Y is:

LCS(X, Y ) =


0 if m = 0, n = 0

LCS(X[2 : m], Y [2 : n]) + 1 if d(x1, y1) ≤ ε

max{LCS(X[2 : m], Y ),LCS(X, Y [2 : n])} otherwise,

(2.12)

where ε is a threshold value to determine whether or not two elements match. In Equa-

tion 2.12, scores are used (rather than distance functions) to compare the similarity.
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The higher the score, the more similar the two time series.

The Euclidean distance metric does not allow stretching of time series. The DTW

distance measure allows stretching but must match all elements, even the noise. Be-

cause of this, both the Euclidean distance and DTW are sensitive to noise. The Eu-

clidean distance may also completely fail in the presence of noise and return a large

distance, even though this distance may be caused by only a few pairs of elements of the

two sequences. DTW in turn may produce singularities and may generate alignments

based on meaningless warping paths.

LCS can handle noise, because the matching threshold uses discrete values 1 and

0 to quantize the distance between two elements. This strategy removes the larger

distance effects caused by noise. However, LCS does not differentiate time series with

similar subsequences but various gap differences between similar subsequences, which

may lead to inaccuracies. Here the gap differences refer to subsequences between two

identified similar components of two time series. Two time series may have exactly

the same LCS distance to the query sequences, but quite different sizes of gap between

the similar subsequences. Like DTW, LCS is not a metric and does not satisfy the

triangle inequality. The computational complexity of LCS is quadratic, but as with

DTW warping path constraints can also be applied to LCS to reduce the computational

complexity.

2.2.4 Dynamic Programming for Sequence Alignment

Sequence alignment methods measure the similarity between two sequences. A se-

quence alignment method usually consists of an objective function that assigns a score

to each possible alignment of sequences. The alignment method produces a pairing of

elements from one sequence with the other sequence. The alignment method typically

either optimizes an objective function heuristically or guarantees an optimal score such

as through a dynamic programming technique. A scoring function is used to accumu-

late the influence of two matching elements, two mismatching elements, and penalties
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for gaps. In pairing elements, gaps can be inserted at any position in the sequences,

but the order of elements in each sequence must be preserved. Sequence alignment

methods attempt to maximize the alignment score by placing gaps (that are seen as

insertion/deletion evolutionary events) in either sequence so as to maximize the number

of matching elements and minimize mismatches and gaps.

There are two types of alignment: global and local . A global alignment attempts

to align sequences over their entire length, while a local alignment constructs the best

alignment of segments of the sequences that exhibit a high density of matches, ignoring

the remaining regions of the sequences. A pairwise alignment is an alignment of two

sequences and if there are more than two sequences the alignment is called multiple

sequence alignment .

Sequence alignment problems have been researched well in the area of bioinformat-

ics. Most sequence alignment methods use scoring matrices. Examples of such methods

include PAM, BLOSSUM, GONNET, BLAST, and DNA Identity Matrix [AGM+90,

Alt91, DSO78, GCB92, HH92]. It is assumed that the matching sequences should have

an evolutionary ancestral sequence in common with the query sequence. The alignment

path should be the one that requires the fewest evolutionary events. All substitutions

are not equally likely and are weighted to account for this. In particular, in genomics

insertions and deletions are less likely than substitutions and are weighted appropri-

ately. The choice of scoring matrix determines both the pattern and the extent of

substitutions in the sequences which the search is most likely to discover.

Dynamic programming algorithms were initially developed to calculate the minimal

edit distance between two sequences [NW70, Sel74]. The first dynamic programming

algorithm to compute the edit distance and to search for a pattern sequence within a

text was developed by Sellers in 1980 [Sel80]. Many variations have been rediscovered

and both theoretical and practical improvements have since been made [CL94, GP90,

Ukk85].

Dynamic programming algorithms are particularly flexible in handling different
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distance functions, although they are not the most efficient algorithms in general.

Dynamic programming routines guarantee the mathematically optimal alignment, and

can easily be generalized to optimally align k sequences. However, they take in O(nk)

time, where n is the length of the longest sequence, and hence are unsuitable for when

the number of sequences k is large.

Two dynamic programming methods, the Needleman-Wunsch algorithm [NW70],

which is a global alignment algorithm, and the Smith-Waterman algorithm [SW81],

which is a local alignment algorithm, will be introduced in the following sections.

Needleman-Wunsch Algorithm

Given two sequences X and Y of the length m and n respectively, the Needleman-

Wunsch (NW) algorithm computes the similarity H(i, j) of two sequences ending at

position i and j, where xi ∈ X and yj ∈ Y . The computation of H(i, j), for 1 ≤ i ≤ m,

1 ≤ j ≤ n, is given by the following recurrences:

H(i, j) = max


H(i− 1, j − 1) + sbt(i, j)

H(i− 1, j)− α

H(i, j − 1)− β,

(2.13)

where sbt is an element substitution cost table. Initialization of these values are given

by H(i, 1) = sbt(i, 1) and H(1, j) = sbt(1, j). Multiple gap costs are taken into account

by α and β, which are the gap penalties. The simplest gap penalties can be constants,

or have a form like α = o + `e, where ` is the length of gap, o is the gap “opening”

penalty, and e is the “extension” penalty paid per gap position. The value o should

be much larger than the value e. Some applications also use a linear gap penalty, i.e.,

α = β.

After the scoring matrix has been built, a trace-back procedure is used to find the

optimal alignment path, if it is required. This procedure starts the corner with the

maximum value, and always selects the maximum value from the outer-most column
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and row, and jumps to next maximum in the next row or column.

Smith-Waterman Algorithm

Unlike Needleman-Wunsch algorithm, which looks at each sequence in its entirety,

the Smith-Waterman (SW) algorithm compares segments of all possible lengths and

chooses whichever optimizes the similarity measure. SW therefore computes a local

alignment.

Given two sequences X and Y of the length m and n, respectively, SW computes

the similarity H(i, j) of two sequences ending at position i and j, where xi ∈ X and

yj ∈ Y . The computation of H(i, j), for 1 ≤ i ≤ m, 1 ≤ j ≤ n, is given by the following

recurrences:

H(i, j) = max{0, E(i, j), F (i, j), H(i− 1, j − 1) + sbt(i, j)},

E(i, j) = max{H(i, j − 1)− α,E(i, j − 1)− β},

F (i, j) = max{H(i− 1, j)− α, F (i− 1, j)− β}; (2.14)

where sbt is an element substitution cost table. Initialization of these values are given

by H(i, 1) = sbt(i, 1) and H(1, j) = sbt(1, j). The values α and β are the gap penalties.

The trace-back procedure starts from the element having the highest score. The

alignment path is generated as follows: If the current position is the element (i, j),

then the next position is max{H(i, j), H(i− 1, j), H(i, j − 1)}, until it reaches zero.

2.2.5 Comparison of Distance Functions

The following criteria are used to evaluate distance functions: (1) ability to handle

local time shifting, (2) ability to handle noise, (3) ability to handle different lengths,

(4) computation efficiency, (5) whether the distance function is a metric (whether it

satisfies the triangle inequality), (6) and what data types they work for, and (7) whether

they are whole matching methods or subseries matching methods. Table 2.2 compares
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the introduced distance functions according to the above criteria.

Table 2.2: Comparisons of distance functions. The values m and n are the lengths of
two time series. Without loss of generality, we assume m ≤ n.

Euclidean Shift-and-
Compare

DTW LCS NW SW

Local Time
Shifting

No No Yes Yes Yes Yes

Noise Sensi-
tivity

Yes Yes Yes No No No

Length Sen-
sitivity

Yes Yes No No No No

Time Com-
plexity

O(n) O(n(n−m)) O(mn) O(mn) O(mn) O(mn)

Is a Metric Yes Yes No No No No

Data Type Time Series Time Series Time Series Discrete
Sequence

Discrete
Sequence

Discrete
Sequence

Matching
Type

Whole Subseries Whole Subsequence Whole Subsequence

2.3 Dimension Reduction Representations

Transforming the original time series to another (often approximate) representation or

segmenting the original data is a common method for both retrieval and compression.

Simpler, functional, or lower dimensional representations approximate time series by

omitting unimportant details. In this section, dimension reduction methods for time

series are introduced.

2.3.1 Transform Methods

Transform methods are based on a change of basis, with the basis chosen to localize a

signal in frequency and/or space in order to be able to derive useful properties.
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Fourier Transform

The Fourier transform is used to transform a function between the time domain and

the frequency domain. We assume a signal g(t) is a function that varies with respect

to time t. Its corresponding transform in the frequency domain is G(f) where f stands

for the frequency of the signal. The Fourier transform G(t) of a continuous signal g(t)

is given by

G(f) =

∫ ∞
−∞

g(t)e−i2πftdt. (2.15)

The inverse Fourier transform is given by

g(t) =

∫ ∞
−∞

G(f)ei2πftdf, (2.16)

where i =
√
−1.

The discrete Fourier transform (DFT) is a dimension reduction method that has

been used to index time series data [AFS93]. DFT describes a time series by a set of

sampled sine/cosine waves. A time series of length n is decomposed into n complex

sinusoids that can be combined to reconstruct the original data. DFT coefficients can

be used to approximate the original time series by eliminating coefficients that have

low amplitudes.

Given a time series g = (g0, . . . , gn−1), its DFT is a sequence G = (G0, . . . , Gn−1),

Gj =
1√
n

n−1∑
i=0

gie
−i2πij/n. (2.17)

The inverse discrete Fourier transform (IDFT) is

gi =
1√
n

n−1∑
j=0

Gje
−i2πij/n, (2.18)
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where i, j ∈ {0, . . . , n− 1}.

According to Parseval’s Theorem [OS75], the Lp-norm distance metrics on the first

few DFT coefficients are lower bounds of the Euclidean distance in the original data

space [FRM94]. Therefore, an index that is created using the first few DFT coefficients

can be designed so that it ensures no false dismissals.

Wavelet Transform

The Fourier transform does not specify where the function f(t) (i.e., for what value of

t) has a certain frequency. Wavelet transforms can solve this problem using a set of

basis functions that are localized in both time and space. Wavelet transforms select

a mother wavelet that is nonzero in some small interval, and use it to analyze the

properties of f(t) in that interval. Then the mother wavelet is translated to another

interval of t to analyze the properties of that interval. The mother wavelet ψ(t) must

satisfy ∫ ∞
−∞

ψ(t)dt = 0, (2.19)∫ ∞
−∞
|ψ(t)|2dt < ∞. (2.20)

Once the mother wavelet has been chosen, the continuous wavelet transform (CWT)

of a signal f(t) is defined as

W (τ, s) =

∫ ∞
−∞

f(t)ψτ,s(t)dt, (2.21)

ψτ,s(t) =
1√
s
ψ

(
t− τ
s

)
. (2.22)

The parameter s is a translation parameter and τ is a scaling parameter.

The discrete wavelet transform (DWT) is based on sub-band coding and yields a

fast computation for a wavelet transform. In CWT, the signal is analyzed using a set of
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related basis functions by scaling and translation. In DWT, a time-scale representation

of a digital signal is obtained using a set of discrete filters. The signal passes through

filters with different cutoff frequencies at different scales.

DWT has been used as a dimension reduction method in previous time series in-

dexing work [CF99, PM01, WAA00]. DWT is a multi-resolution representation of time

series and approximates the time series from global sequences to local subseries. Un-

like DFT which only offers frequency information, DWT offers time-frequency location

information as well.

Compared to DFT, DWT describes a time series both at various locations and at

various time granularities. Each time granularity refers to the level of detail that can

be captured by the DWT. To measure the similarity of two time series, the Euclidean

distance can be used over transformed DWT coefficients [PM01, CF99]. Also, there

is not just one DWT but many, depending on the choice of basis. Different basis can

have different properties.

The Haar wavelet is a simple wavelet proposed by Alfréd Haar in 1910 [Chu92].

Any signal f(t) ∈ L2-norm space can be uniquely represented by the following series,

which is called the Haar wavelet transform (HWT) of function f(t),

f(t) =
∞∑

τ=−∞

aτφ(t− τ) +
∞∑

τ=−∞

∞∑
i=0

bi,τψ(2it− τ), (2.23)

where aτ and bi,τ are coefficients to be calculated. The basic scale function φ(t) is the

unit pulse:

φ(t) =

 1 0 ≤ t < 1

0 otherwise.
(2.24)
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The basic Haar wavelet ψ(t) is the following piecewise constant function:

ψ(t) =


1 0 ≤ t < 1/2

−1 1/2 ≤ t < 1

0 otherwise.

(2.25)

2.3.2 Principal Component Analysis

As a dimension reduction method, principal component analysis (PCA) has been

widely used in content-based retrieval of texts [HLB94], time series [KJF97], and im-

ages [KAS98, PC03]. PCA is based on the fact that given a set of high-dimensional

points, variations between points tend to be concentrated along a small number of

axes, on which they can be discriminated from each other. PCA is used to find these

axes and determines a transformation to map the points to a low-dimensional basis.

A set of m-dimensional data points can be represented as an n×m matrix A, where

n is the number of data points in the set. PCA first extracts the empirical mean of the

distribution. The mean value is calculated and subtracted for each dimension:

B(m) =
1

n

n∑
i=1

A(i,m) (2.26)

Ā = A−B. (2.27)

The matrix A can be factored using an singular value decomposition (SVD):

Ā = UΣV T , (2.28)

where U is a column-orthogonal n ×m matrix, Σ is a diagonal m ×m matrix of the

eigenvalues of the matrix Ā, and V is a column-orthogonal m×m matrix. The matrices

U and V are orthogonal.

The PCA transformation is given by U×Σ, which can be computed by Ā×V . The

matrix U ×Σ is a rotation and scale of the matrix Ā. The number of dimensions of the
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transformed data does not change. However, by taking only the first k (k ≤ m) largest

eigenvalues of Σ and corresponding entries in Ā, U , and V , the size of dimensions can

be reduced from m to k in the transformed space. However, the transformation ensures

that most of the variation is concentrated in these initial dimensions.

In terms of minimizing the reconstruction error, PCA is better than DFT and

DWT. However, PCA is expensive, and needs O(nm2) computational time and O(nm)

space. PCA also needs the whole database to compute the transformation2, which

assumes the database is not updated frequently. PCA also assumes the query follows

the same data distribution as the database. If this assumption is not satisfied, PCA

may introduce a loose lower bound of the distance between the data, which may lead

to many false positives.

2.3.3 Piecewise Approximations

Piecewise approximation methods divide the time series into segments and approximate

each segment using functions. In this section, various piecewise approximation methods

are surveyed.

Piecewise linear approximation (PLA) has been widely used in time series analy-

sis [Pav73] and retrieval [SZ96]. This method divides the time series into segment and

approximates each segment using a linear function that is desirable to minimize error.

Morinaka et al. [MYAU01] proposed a modified Lp-norm distance over the PLA

representation to quickly find the approximate matches without false dismissals. The

modified Lp-norm distance is corrected by the value of potential approximation error

deviation of a segment, resulting in a bound on the true distance. The computational

complexity of this distance function is linear. However, it is hard to build the index

for this distance function.

Yi and Faloutsos [YF00] and Keogh et al. [KP00] proposed a method called piece-

2The database could be sub-sampled randomly to compute the transformation on a smaller data
set, but this sample has to be representative.
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wise aggregate approximation (PAA). PAA divides a time series of length n into k

segments of equal length and approximates each segment using the average value

of the segment. In this way, a n-dimensional point (the sequence of n samples) is

mapped to a k-dimensional point (the sequence of k segment averages) where k < n.

Considering a time series X = (x1, . . . , xn), its piecewise constant representation is

SX = (sX1 , . . . , s
X
k ), where

sXi =
k

n

n
k
i∑

j=n
k
(i−1)+1

xj. (2.29)

The distance between PAA representations SX and SY of time series X and Y in the

reduced dimension can use the general Lp-norm metric, weighted Lp-norm metrics,

and Euclidean distance metrics, and these can be used as approximations to the true

distances between the original time series.

Uniform segmentation makes it difficult to perform approximation error control.

Morinaka et al. [MYAU01] used the least square approximation method to segment

a time series to lines. Each line is the longest possible segment whose accumulated

error does not exceed a predefined tolerance. An approximate distance is defined over

two segment sequences based on the linear functions that describe each segment. Two

different distances are defined, including one to deal with the case when line segments

intersect each other, and the other when they do not.

Because the approximate distance of two segment sequences may be larger than

the real distance between the original time series, a bound called worst error deviation

(WED), is used to bound the approximate error deviation of a segment. For each

line segment, its WED is computed based on difference between the values of original

data that are above and below the segment. By adding the WED to the approximate

distance, it is possible to guarantee that modified approximate distance is the lower

bound of the real distance in the original time series space.

Keogh and Smyth [KS97] proposed a probabilistic method which represents each

segment by a set of local features (such as peaks, troughs, and plateaus). These features
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are extracted from the time series to describe the properties of the original data. The

overall distance is computed based on the local features and relative positions of indi-

vidual features. Unfortunately, the computational complexity of this distance function

is exponential. Even when combined with some heuristics [KS97], the computational

cost is quadratic.

Adaptive piecewise constant approximation (APCA) proposed in [KCMP01] is an-

other non-uniform segmentation and approximation method. The intuition of this ap-

proximation is that regions with large fluctuations are represented with short segments,

and flat regions are represented with long segments. The APCA method converts the

problem into a wavelet compression problem to find a solution. Then it converts the

solution back to a PLA representation. Given a time series X = (x1, . . . , xn), its APCA

representation is

S ′X = ((xm1, xr1), . . . , (xmk, xrk)), (2.30)

where xmi is the mean value of the data points in ith segment, xri is the right endpoint

of ith segment, and k is the number of segments.

Keogh et al. [KCMP01] proposed a distance function on the APCA representation

to compute a lower bound on the Euclidean distance. Given two time series X and Y ,

their corresponding APCA representations S ′X and S ′Y are obtained by projecting the

endpoints of S ′X onto X and computing the mean value of the sections of X that fall

within the projected interval. That is,

S ′X = ((qm1, qr1), . . . , (qmk, qrk)) (2.31)

where

qri = xri,

qmi =
1

ri − ri−1 − 1

ri∑
j=ri−1+1

xj.
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The lower bounding distance is defined as

d(S ′X , S
′
Y ) =

√√√√ k∑
i=1

(xri − xri−1)(qmi − xmi)2. (2.32)

Keogh et al.’s experimental results have demonstrated that APCA outperforms

other indexable representations such as DFT and DWT in terms of efficiency.

2.3.4 Symbolic Representation

Since many distance functions, algorithms, and data structures have been developed

for indexing strings, it is intuitive to consider the possibility of converting real-valued

time series data into symbolic, string-like representations and applying string matching

techniques to time series retrieval. Agrawal et al. [APWZ95] proposed SDL that is a

language for describing and retrieving the “shape” of one dimensional time series. The

“shape” is defined based on the difference of every pair of consecutive values, which is

quantized and represented by a distinct symbol of a predefined alphabet.

Huang and Yu [HY99] proposed an interactive matching of patterns with advanced

constraints in time-series (IMPACT) method, which converts a time series to a string

by changing ratios between consecutive values. A general suffix tree is used to index

the strings. IMPACT can handle dynamic query constraints with different degrees

of accuracy and dynamically specified combinational patterns. Lin et al. [LKLP02]

proposed a symbolic representation of one dimensional time series, called SAX , by

first transforming it to a piecewise approximation. Then, the values of the piecewise

approximation are quantized and each is mapped to a symbol. Instead of mapping

values, average values, and differences between values of time series data to symbols,

some other methods convert movement slopes of time series data into symbols using

best-line fitting algorithms [QWW98, SZ96].

The distance functions for symbolic representations are either exact symbol equal-
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ity matching functions [RJ93, APWZ95, SZ96, HY99] or modified Euclidean distance

metrics [LKLP02].

The methods that convert time series data into strings offer opportunities to ap-

ply text indexing methods for similarity search over time series. Andŕe-Jönsson and

Badal [AJB97] proposed a method that used signature files to represent time series

data. First, the time series is converted into strings by quantizing amplitude differ-

ences into discrete symbols from a predefined alphabet [APWZ95]. Then, signature

files are generated by sliding a window along each string and mapping the text in the

window into a number of signature bits. Similarly, a query signature is generated from

the query. Finally, a linear scan is carried out to search signature files in the database.

The advantage of this method is that a signature file is compact and searching sig-

nature files is linear time. Because essentially this method is a hash table approach,

searching for each symbol requires constant time.

Indexing using signatures can ensure no false dismissals [LKLP02]. However, since

signatures cannot avoid false positives, the obtained results need to be verified by

conducting a similarity search on the original time series data. Because of the loss in

accuracy during the conversion from a real value to a symbol, many false positives may

be introduced.

2.4 Indexing Frameworks

For large datasets, indexing is necessary for efficient search and other data mining tasks.

The GEMINI framework, which is widely applied in indexing time series, is introduced

in this section. Several dominating lower bound strategies, which guarantee no false

dismissals during index-based search, are also reviewed.
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2.4.1 GEMINI Framework

The GEMINI framework [FRM94] has been widely used for indexing and retrieval in a

wide range of applications, but specifically in time series indexing. By framework, we

should note that this is a general approach used by a wide variety of more specific meth-

ods. As shown in Figure 2.2, an indexing method following the GEMINI framework

builds an index by first transforming the data to a lower-dimensional representation.

A time series of length n is transformed to a set of k-dimensional points, where k < n.

A bounding distance function needs to be defined on the transformed representation to

guarantee no false dismissals. These k-dimensional points can be indexed in the spa-

tial access method, such as an R-tree, using this bounding distance function. Given a

query of length m, it likewise is transformed into a k-dimensional point using the same

dimension reduction method. Each low-dimensional query point searches for its best

match in the index. If the query time series is segmented and mapped to more than

one lower-dimensional query point, for each query point, a matching point is found and

a post-processing procedure will connect all the matching points.

Basically there exist two kinds of dimension reduction techniques: exact and ap-

proximate. Exact dimension reduction techniques guarantee that no false dismissals

(false negative) occur when queries are executed on the reduced dimensional space,

although it might return false positives. To achieve this, the distance function defined

in the reduced dimensional space must be a lower bound of the “true” distance in the

original space. Approximate dimension reduction techniques do not guarantee this,

therefore, no lower bounding distance function needs to be defined. Since the “no

false dismissals” guarantees correctness of the retrieval, most methods use the exact

dimension reduction approach. False positives can be culled in a post-processing step,

although of course a large number of false positives will lead to inefficient search.

The simplest way to apply the GEMINI framework to time series indexing is to

slide a window of size w at every possible offset of the time series of length n. For

each such placement of the window, the segment in the window can be approxi-
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Figure 2.2: Overview of the GEMINI framework.
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mated in some way using k parameters. Several representations have been used with

just such an approach, including those already surveyed: Fourier transforms [AFS93],

wavelet transforms [CF99], average values in adjacent windows [KCMP01], and bound-

ing boxes [VHGK03]. In this way, the original time series is mapped to a sequence in

feature space consisting of k = n − w + 1 points. A distance metric is defined over

this approximation that underestimates the true distance between the time series. The

approximations can be indexed by a spatial data structure, such as an R-tree [Gut84],

R∗-tree [BKSS90], MVP-tree [BO99], M-tree [CPZ97], or SA-tree [Nav02].

The GEMINI framework aims to localize the search to a portion of the database

that is close to the query. The low-dimensional approximation makes coherent spatial

access methods viable for indexing the database efficiently [BBK01]. However, when

the lengths of the input segments increase, the storage requirement increases linearly

and the performance suffers while the R-tree depth increases.

Unfortunately, the sliding window approach is redundant. One improvement is

to divide the feature sequence to subseries and to represent each subseries with its

minimum bounding envelope. The subdivision criterion should try to minimize the

number of disk access. One straightforward method is a uniform subdivision according

to a pre-determined size of subseries. Another method is to use a function of lengths

for the subseries size.

To search a database, the query is first mapped to a feature sequence in the same

feature space. Then similar candidate matches are found in the hierarchical spatial

index structure. Finally the query is compared with the candidate matches in the

original space. If the length of the query is larger than w, the query is chopped into

subseries of length w. Each subquery is then processed and the candidates are merged

before the final match.

The most common approach to exact dimension reduction uses the sliding window,

i.e., indexing all possible subseries of given length w. A sliding window with fixed size

w is commonly used. There are three main algorithms in this category: FRM [FRM94],
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DualMatch [MWL01], and J-sliding windows [MWH02]. FRM divides data into sliding

windows of size w and transforms each window to a lower-dimensional point. It then

divides the query Q into bQ#/wc disjoint windows of size w. However, as noted earlier,

the search performance may become poor if the R-tree is tall. To solve this problem,

FRM stores only the minimum bounding envelopes.

DualMatch takes the opposite approach to FRM. It first divides data into bX#/wc

segments and slides a window over the query. DualMatch improves performance sig-

nificantly. However, DualMatch has the problem of having a smaller allowable window

size—approximately half that of FRM.

J-sliding windows compromise between FRM and DualMatch by dividing data into

generalized sliding windows (J-sliding windows) and the query into generalized disjoint

windows (J-disjoint windows). “J-sliding” means the sliding offset is not 1 but J , where

1 ≤ J ≤ w. Various distance functions, such as Euclidean distance [FRM94, MWH02],

DTW [WW03], and LCS [HKK07], can be used. These algorithms produce a set of

segments of equal length w.

The GEMINI framework uses a lower bound in a lower dimensional space of the

true distance in the original space to guarantee no false dismissals when the index is

used as a filter. A lower bounding function should have the following properties.

• Accuracy: It must return all the qualifying subseries as candidates. It may

produce false positives, which can however be discarded after a more expensive

exact comparison. That means the distance between each of the transformed

time series should be less than the distance between any pair of original time

series X and Y , i.e.,

dlb(X, Y ) ≤ d(X, Y ), (2.33)

where dlb is the lower bounding distance function and d is the original distance

function.

• Efficiency: The time complexity for computing the lower bound distance should
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be low. Also, to implement R-tree search, it should be possible to bound the

minimum distance between bounding volumes in lower-dimensional space. Fur-

thermore, if the lower bounding function satisfies the triangle inequality, it can

be used as a filtering function in indexing search.

• Tightness: The lower bound should be as tight as possible to avoid an excessive

number of false positives. For example, 0 is a lower bound but using this trivial

bound for all distance functions would return the entire database as a candidate

set for every query.

2.4.2 Lower Bounding Methods

There exist three dominant lower bounding methods on the Euclidean distance metric

and Dynamic Time Warping (DTW). All these methods have been proven to guarantee

no false dismissal relative to the Euclidean distance and DTW and to satisfy the triangle

inequality.

Kim et al.’s method [KPC01] extracts a 4-tuple vector,

SX = (First(X),Last(X),Greatest(X), Smallest(X)),

from each time series X. The features are the first, last, greatest and smallest elements

of X, respectively. The lower bounding function dlb−Kim for two time series X and Y

is defined as

dlb−Kim(X,Q) = max


|First(X)− First(Y )|

|Last(X)− Last(Y )|

|Greatest(X)−Greatest(Y )|

|Smallest(X)− Smallest(Y )|.

(2.34)

The lower bounding method introduced by Yi et al. [YJF98] takes advantage of the

observation that all the points in one sequence that are larger (or smaller) than the
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maximum (or minimum) of the other sequence must contribute at least the squared

difference of their value and the maximum (or minimum) value of the other sequence

to the final DTW distance.

Yi’s method [YJF98] considers three possible arrangements of the ranges, RX =

[max(X),min(X)] and RY = [max(Y ),min(Y )], of the pair of time series X and Y . Yi

et al.’s function is the following:

dlb−Y i(X, Y ) =


d1(X, Y ) if RX and RY overlap assuming max(X) ≥ max(Y )

d2(X, Y ) if RX encloses RY

d3(X, Y ) if RX and RY are disjoint assuming min(X) ≥ max(Y ),

(2.35)

d1(X, Y ) =
∑

xi>max(Y )

|xi −max(Y )|+
∑

yi<min(X)

|yi −min(X)|, (2.36)

d2(X, Y ) =
∑

xi>max(Y )

|xi −max(Y )|+
∑

xi<min(Y )

|xi −min(Y )|, (2.37)

d3(X, Y ) = max{
n∑
i=1

|xi −max(Y )|,
m∑
j=1

|yj −min(X)|}. (2.38)

Keogh [Keo02] method considers the global path constraints of DTW, i− r ≤ j ≤

i+ r. Keogh’s lower bounding method is the following:

Ui = max(Q[i− r : i+ r]),

Li = min(Q[i− r : i+ r]),

dlb−keogh =

√√√√√√√ n∑
i=1


(xi − Ui)2 if xi > Ui

(xi − Li)2 if xi < Ui

0 otherwise

. (2.39)

2.5 Summary

In this chapter, the definitions and underlying frameworks relevant to time series re-

trieval and compression, including similarity measures, dimension reduction represen-
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tations, and indexing techniques, were introduced. The properties and performance of

different methods were compared. Generally, different representations require different

similarity measures and result in different strategies, although there are some com-

mon themes. Most indexing techniques require the similarity measure to be a metric,

i.e., the similarity measure should satisfy the triangle inequality. However, common

similarity measures for subseries matching do not satisfy this requirement.

In the following chapters, a representation, a similarity measure, an indexing and

search method for subseries join of time series will be proposed. The representation is

based on a scale-space analysis and a non-uniform segmentation method. Compared to

previous work, the segmentation method is based on the intrinsic structure of the time

series. The scale-space analysis generates a hierarchical representation which includes

coarse to fine details of time series. Based on this hierarchical representation, indexing

and search methods will be proposed to solve the subseries join problem that was

defined in this chapter.
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Chapter 3

Non-uniform Segmentation and

Representation

As introduced in Section 2.4.1, for subseries matching, a sliding window is commonly

used to index all possible subseries of a certain size of the window. This framework is

based on a uniform segmentation. However, a uniform segmentation requires the user

to manually select the length of subseries, and is not sensitive to the actual behavior

of the data. This arbitrary segmentation may cause unnecessary division of important

features in the data into different subseries. Overlapping sliding windows can avoid

division of features but at the cost of a redundant representation.

In this chapter, a non-uniform segmentation method is proposed based on an

anisotropic diffusion scale-space analysis. A minimal polynomial envelope is used to

approximate each segment, and a feature tree is used to represent a time series. Based

on this representation, an indexing scheme and a compression scheme is developed to

hierarchically compress storage of features.
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3.1 Non-uniform Segmentation

This section shows how to convert the original time series into a feature sequence using

scale-space analysis (see Figure 3.1). The scale-space analysis actually gives a hierarchy

of non-uniform features but this hierarchy is encoded into a linear sequence using a

post-order traversal, as shown in Section 3.2.

......
E lements

......
F ea tur es

T ime Ser ies

F ea tur e Sequence

Figure 3.1: Convert a time series into a feature sequence using non-uniform segmenta-
tion.

3.1.1 Scale-space Smoothing

One of the first descriptions of scale-space smoothing was in the area of vision, and in

particular was applied to the problem of matching stereoscopic images introduced by

Marr and Poggio [MP79], and was also applied to the creation of primal sketches of im-

ages (Marr and Hildreth [MH80]). Witkin [Wit83] proposed a scale-space method that

generated coarser resolution images by convolving the original image with a gradually

widening Gaussian kernel.

Gaussian convolution of a signal f(x) is given by

G(x, σ) = f(x) ∗ g(x, σ) =

∫ ∞
−∞

1

σ
√

2π
f(u)e−(x−u)2/2σ2

. (3.1)

By changing the scale parameter σ in a Gaussian kernel, the signal is smoothed at

different levels. An example is shown in Figure 3.2(a).
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(a) A sequence of Gaussian smoothing in a scale
space.

(b) Contours of Gxx = 0 in a scale space.

Figure 3.2: Gaussian smoothing. (From Figure 1 and Figure 2 in Witkin’s pa-
per [Wit83].)

The extrema of slope, i.e., the inflection points, are given by a subset of the zero-

crossings of the second derivative;

∂2G

∂x2
= f ∗ ∂

2g

∂x2
= 0, (3.2)

∂3G

∂x3
6= 0. (3.3)

The contours of these inflection points over increasing scales are shown in Figure 3.2(b).

Discontinuities merge at coarser scales and this generates a hierarchy of features. The

problem with Gaussian smoothing is that the locations of discontinuities “migrate”

with scale so that the fine segmentation is not aligned with the coarse segmentation.

Tracking this movement also complicates analysis.
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Anisotropic Diffusion

Perona and Malik [PM90] proposed a noise reduction method for images using anisotropic

diffusion, which can be seen as a generalization of Gaussian smoothing but without

the discontinuity migration problem. The idea of the Perona-Malik method is a filter

defined as a modified diffusion process that encourages intra-region smoothing while

inhibiting inter-region smoothing. Their smoothing process can avoid the blurring and

localization problems of filters based on convolution. Although alternatives are possi-

ble, including bilateral filters [TM98], anisotropic diffusion filters are preferred because

they automatically generate a scale space that maintains the positions of discontinu-

ities. The term “anisotropic” generally means that the smoothing (diffusion) process is

different in different directions. In 2D, this refers to different radial directions around

a point. In 1D, it simply means that the smoothing to the left may be different from

the smoothing to the right at each point.

Given a continuous signal X(x), the continuous form of the 1D anisotropic diffusion

filter is given by the solution to

∂

∂s
X(x, s) =

∂

∂x
·
(
c(x, s)

∂

∂x
X(x, s)

)
, (3.4)

where s is scale. The function c is a conductance function that returns a value in the

range of [0, 1]. It is a function of the gradient of X and should be a monotonically

decreasing function of the gradient’s magnitude. One of the following definitions can

be chosen:

c(x, s) = exp

(
−
(
κ−1 ∂

∂x
X(x, s)

)2
)
, (3.5)

c(x, s) =
1

1 + (
∣∣ ∂
∂x
X(x, s)

∣∣ /κ)2
. (3.6)

If we discretize Equation 3.4 using the sequence X = (x1, . . . , xn) and replace the
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scale s with the number of iterations σ = λ−1s, we get the following implementation:

xσ+1
i = xσi + λc(i+ 1, σ)(xσi+1 − xσi )− λc(i− 1, σ)(xσi − xσi−1). (3.7)

The boundary conditions are x0
i = xi, x

σ
1 = x1, and xσn = xn. For stability, we must

have 0 ≤ λ ≤ 1/4. The function c is called the conductance function. The conductance

values are conceptually interdigitated with the smoothed signal with ci between xi and

xi+1. It should be computed using c(i, σ) = g(xσi+1−xσi ). The function g takes the form

given by Equation 3.5 or Equation 3.6, but with the finite difference given replacing

the gradient.

The value κ is referred to as the diffusion constant and controls the rate of con-

duction. If κ is low, small intensity gradients are able to block conduction and hence

inhibit diffusion across step edges. A large value, in contract, reduces the influence

of intensity gradients on conduction. The constant κ can be selected either by hand

or using the “noise estimator” proposed by Canny [Can86]. An overly small value of

the constant κ may cause staircases in smoothing and also greatly slows convergence;

however, the Canny noise estimator generally avoids this problem. The Canny noise

estimator computes a histogram of the absolute values of the gradient and sets κ to the

90% value of its integral at each iteration. However, the Canny noise estimator is rel-

atively slow, especially when the number of iterations is large. Since | ∂
∂x
X(x, s)| ≈ 2κ

is approximately where the value of the conductance function (Equation 3.5) drops to

zero, an alternative is to set the value of κ to

κ =
|max(X)−min(X)|

2
. (3.8)

The values max(X) and min(X) are the maximum value and minimum values of X,

respectively. This value is reset after every iteration. If κ = 0, which means all values

in X are equal, then the anisotropic diffusion process (Given by Equation 3.7) stops.

Figure 3.3(a) shows a result from an application of the anisotropic diffusion process.
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(a) The boundary points of same positions on different scales are shown. The
boundary points are lined up at the same positions in different scales, and in this
diagram are aligned by dashed lines.

(b) The hierarchical structure of the scales marked by long dashed lines and arrows
at the right side of (a).

Figure 3.3: The scale space generated by anisotropic diffusion and the hierarchical
structure generated by tracking the locations of zero crossings of the second derivative
across scales.
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3.1.2 Segmentation at Discontinuities

Anisotropic diffusion smoothes the curve over a scale space. To extract the boundary

points of a series at a particular scale, the 1D Canny edge detector [Can86] is applied

to the smoothed curve. The theory of edge detection was introduced by Marr and

Hildreth in their early paper [MH80]. The Canny edge detector detects boundaries at

the zero-crossings of the second derivative of data and the gradient magnitude is also

above some threshold εb > 0, i.e.,

∂2

∂x2
X(x, s) = 0, (3.9)∣∣∣∣ ∂∂xX(x, s)

∣∣∣∣ ≥ εb. (3.10)

The positions of the zero crossings of the second derivative are invariant under anisotropic

diffusion and so can be aligned across scales. Coarser scales simply eliminate weaker

boundary points (see Figure 3.3(a)).

There is a slight paradox here: smoothing across edges identified by large values

of the second derivative is inhibited but edges with zero values of the magnitude of

the second derivative are identified as edges by the edge detectors. This paradox

can be resolved by realizing that step edges are associated with both a large positive

spike and a large negative spike in the second derivative. It should be noted this

definition of boundary points also segments the curve into regions of positive and

negative acceleration, which is consistent with a categorization of segments into concave

and convex regions.

In summary, the anisotropic diffusion process generates a scale-space analysis of

a signal and segmentation of this scale space produces a hierarchical representation

(Figure 3.3(a)). Moving from fine to coarse, two or more segments may be merged into

a single segment at each iteration because of the erosion of boundary points. As shown

in Figure 3.3(b), this structure can be represented as a tree.
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3.2 Feature Representation

The hierarchical representation generated by scale-space analysis and non-uniform seg-

mentation can now be used to generate an index for each element of the time series

dataset. This index can be used to accelerate both subseries matching and subseries

join.

This section describes how each segment is approximated with a feature. This

feature has a finite number of parameters and can be used to compute distance bounds

between segments.

3.2.1 Minimum Polynomial Envelope

Given a segment A = X[i : j], parameters of length and shape (based on a fitting

polynomial) are used to characterize it. Such a representation is called a feature. The

length parameter gives the number of elements in this segment, specifically, |A| =

j − i+ 1. Inclusive indices for i and j are used, so when interpreted in the continuous

domain, this is the same as if the segments are split halfway between samples, consistent

with the interpretation of time series as samples of a continuous function.

A polynomial P (A, t) is then used to approximate the shape of each segment A,

with t being a real value varying over [i − 1/2, j + 1/2]. The linear mapping ti:j =

τ(j− i+1)+(i+1/2) reparameterizes the polynomial over [0, 1]. This reparameterized

polynomial is represented as P (A, τ) = P (A, ti:j(τ)). To derive minimal envelopes, the

constant part of this polynomial can be replaced with an interval to bound the original

fine-scale data. Polynomial approximations and minimal envelopes of different orders

are shown in Figure 3.4.

Now we will show how distances between polynomial approximations can be com-

puted and distances between functions enclosed with minimal polynomial envelopes

can be bounded. Given two polynomials A and B, the distance between them can be
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(a) Constant envelopes (b) Linear envelopes

(c) Quadratic envelopes (d) Cubic envelopes

Figure 3.4: The dashed curves are fitting polynomials of various orders. The thick
curves are the minimal polynomial envelope (MPE).
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defined as

d2
u(A,B) =

∫ 1

0

(P (A, τ)− P (B, τ))2 + θ(|A| − |B|)2 dτ, (3.11)

du(A,B) =
√
d2
u(A,B), (3.12)

where P (A, τ) and P (B, τ) are the rescaled polynomials fitting segments A and B

respectively (representing the shape) and θ is a weight that penalizes the difference in

lengths.

This distance can be computed analytically from the coefficients of the polynomials

and the lengths of the segments. In fact, the polynomial coefficients and the segment

lengths can be placed in a single vector and mapped through a linear transformation so

that ordinary Euclidean distances on the transformed coefficients correspond exactly

to du as defined above.

Consider the specific case of quadratic polynomials. Then the two rescaled polyno-

mials are given by

P (A, τ) = a2τ
2 + a1τ + a0,

P (B, τ) = b2τ
2 + b1τ + b0.

Defining ci = ai − bi the difference P (A, τ)− P (B, τ) is given by

P (A, τ)− P (B, τ) = c2τ
2 + c1τ + c0. (3.13)
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Also define cd = |A| − |B|. Now substitute cd and Equation 3.13 to Equation 3.11.

d2
u(A,B) =

∫ 1

0

[(c2τ
2 + c1τ + c0)

2 + θc2d] dτ

=

∫ 1

0

[
c22τ

4 + c1c2τ
3 + c0c2τ

2 + c1c2τ
3 + c21τ

2+

c0c1τ + c0c2τ
2 + c0c1τ + c20 + θc2d

]
dτ

=
[
1/5c22τ

5 + 1/4c1c2τ
4 + 1/3c0c2τ

3 + 1/4c1c2τ
4 + 1/3c21τ

3+

1/2c0c1τ
2 + 1/3c0c2τ

3 + 1/2c0c1τ
2 + c20τ + θc2dτ

]1
0

= 1/5c22 + 1/4c1c2 + 1/3c0c2 + 1/4c1c2 + 1/3c21 +

1/2c0c1 + 1/3c0c2 + 1/2c0c1 + c20 + θc2d

This can be reorganized so d2
u(A,B) can be computed in terms of these coefficients

as a quadratic form. The quadratic form can then be decomposed using a Cholesky

factorization of the upper-left submatrix:

d2
u(A,B) = cTQc

=


c2

c1

c0

cd



T 
1/5 1/4 1/3 0

1/4 1/3 1/2 0

1/3 1/2 1 0

0 0 0 θ




c2

c1

c0

cd


= cTLLTc

= (a− b)TLLT (a− b)

= (LTa− LTb)T · (LTa− LTb)

= d2
E(LTa, LTb).

where d2
E is the square of the ordinary Euclidean distance on 4D points, with the

55



Cholesky decomposition given exactly by

LT =


√

5/5
√

5/4
√

5/3 0

0
√

3/12
√

3/3 0

0 0 1/3 0

0 0 0
√
θ


and with

a = [a2, a1, a0, |A|]T ,

b = [b2, b1, b0, |B|]T .

The definition of du is similar to the uniform Euclidean distance introduced in [Keo03],

but is defined over continuous rather than discrete space, and includes a quadratic

penalty term for differences in the lengths of segments.

Now consider further a minimal polynomial envelope (MPE) where the constant

coefficients of the polynomial approximations are replaced by an interval, for instance

aI0 = [a0, a0] = [a0 − h/2, a0 + h/2], where h is called the radius of the interval.

The intent here is that the MPE bounds the actual data and that we can compute

a distance function between features that is a lower (or upper) bound on the actual

distance between the data.

Consider the mapping LTaI = [a2, a1, a
I
0, |A|]. Looking at the form of the matrix

LT , we see that LTaI is a line segment in 4D space oriented along the axis given by

the vector [
√

5/3,
√

3/3, 1/3, 0]T . Suppose R is a rotation matrix that maps this vector

onto one of the axes of the 4D target space, say the x axis. This representation is

convenient to use with R-trees and other axis-aligned spatial data structures. Note

that RT = R−1, so RTR = I, and also note that rotations preserve the Euclidean

distance. We can also set up this rotation so the last coordinate (related to the length
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penalty) is unchanged. The mapping is now

aIR = [aIx, ay, az, aw]T (3.14)

= [[ax, ax], ay, az, aw]T (3.15)

= RLTaI , (3.16)

where aIx = [ax, ax] is an interval and aIR is a line segment aligned with the x axis.

To compute a lower bound on the distance between two quadratic MPEs a and b,

we first map them both into 4D space using aIR = RLTa and bIR = RLTb. We then

consider whether these line segments overlap in x, that is if aIx∩bIx 6= ∅. If their x ranges

intersect then we compute the distance between the two line segments by computing

the (n−1)-distance between their other coordinates. If their x ranges do not intersect,

then we compute the n-D distance between the closest two endpoints. The result will

be a lower bound on the distance between any data curves enclosed by the MPEs. It

should be obvious how to extend this analysis to MPEs of any order. In Chapter 4, we

will show how to compute upper bounds.

3.2.2 Feature Sequence Representation

Moving from coarse to fine in the scale space, segments may be subdivided into two

or more segments because of the appearance of new boundary points. This naturally

creates a hierarchical structure as shown in Figure 3.3(b), and this structure can be

represented as a tree that is called a feature tree.

A feature tree can be a general tree in which each node may have n children where

n ≥ 0. We convert this general tree to a canonical binary tree in which each node

can have at most two children (see Algorithm 3.1 and Figure 3.6). We also would like

to shorten long unitary branches in which each interval node has only one child and

the height of the branch is greater than two. To convert a tree, we use the method

ConvertToBinaryTree(root node) given in Algorithm 3.1, where root node is the root of
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the tree. An example of a unitary branch is shown in Figure 3.5. The branch a-b-e is

shortened to a-e by deleting the node b.

Algorithm 3.1 ConvertToBinaryTree: Convert a general tree to a binary tree without
unitary branches.

void ConvertToBinaryTree(current node) {
n← #children of current node;
if n > 2 then

TiltChildren(current node); // convert to binary branches
end if

child node ←GetChild(current node, 1); // GetChild(current node, i) returns the

ith child in a post-order traverse

nc←#children of child node;
if n = 1 and nc = 1 then

delete child node; // remove long unitary branches
end if

for all 1 ≤ i ≤ n and n > 0 do
ConvertToBinaryTree(GetChild(current node, i))

end for
}

We also represent the nodes of the binary tree in a linear sequence by traversing the

binary tree sets in a postfix order. We call such a sequence a feature sequence. Each

element of the sequence is a data structure called a Node (see Table 3.1). The index of

the parent, the left child, and the right child of the current node can be computed by

i−parent, i− lchild, and i− rchild, respectively. If parent = 0, then the current node

is the root. If lchild = rchild = 0, then the current node is a leaf. This data structure

requires space for 4 integers and n+2 floats for a single feature. If we limit each integer

to 16 bits and represent each float with 32 bits, a feature requires 32n+ 128 bits.

When storing a feature sequence in the database, we can use the more compact data

structure as shown in Table 3.2. Instead of saving offsets to the indices to the parent

and the children as shown in Table 3.1, we only need a binary mark to remember if the
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Figure 3.5: The hierarchical features of a time series is represented as a feature tree.
The feature tree is converted to a binary tree using Algorithm 3.1. The nodes are
represented in a linear sequence by traversing the binary tree in a postfix order. The
filled circles are the leaf nodes.
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Figure 3.6: Internal nodes are added to convert a two-level subtree with more than
two children into a binary subtree. The internal node is the concatenation of both of
its leaf nodes.

Table 3.1: The data structure of a node in a feature binary tree. The index of the
parent, the left child, and the right child of the current node can be computed by
i− parent, i− lchild, and i− rhild, respectively. If parent = 0, then the current node
is the root. If lchild = rchild = 0, then the current node is a leaf.

struct Node {
int parent; // the offset to the index of the parent
int lchild; // the offset to the index of the left child
int rchild; // the offset to the index to the right child
int length; // the length of the segment
float a[n+ 1]; // the coefficients of n-degree polynomials
float h; // the radius of the interval

};
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Table 3.2: A more compact data structure of a node in a feature binary tree. Instead
of saving offsets to the indices of the parent and the children as shown in Table 3.1,
only a binary mark is used to remember if the node is a leaf. A stack can be used to
reconstruct the binary tree.

typedef struct Node {
boolean is leaf ; // a mark to determine whether the node is a leaf
int length; // the length of the segment in samples
float a[n+ 1]; // the coefficients of n-degree polynomials
float h; // the radius of the interval

};

node is a leaf. We can then use a stack to reconstruct the binary tree using the fact

that the nodes are stored in postfix order and the tree is binary. If the current node is

a leaf, we push it into the stack. If the current node is a non-leaf, we pop up two nodes

from the stack and associate these two nodes as the children of the current non-leaf

node. We push this current non-leaf node into the stack. We scan the sequence from

head to tail until the stack is empty. If we again limit each integer to 16 bits and

represent each float to 32 bits, using this compact data structure a feature requires

32(n+ 2) + 16 + 2 = 32n+ 82 bits.

3.2.3 Index Construction

To build the index, we select a finest scale (see Figure 3.3) and insert all features at

every scale of up to this scale into an R-tree index for each time series dataset (see

Figure 3.7). Every segment in scale space is represented as an n-D polynomial that

can be mapped to an (n+ 1)D line segment in an abstract “feature space”1. Euclidean

distances in this feature space are then equivalent to distances between polynomials

as defined in Equation 3.11. The number of nodes in the R-tree can be increased or

decreased by modifying the choice of the finest scale. This flexibility can be used to

fit the index into a specific amount of storage space. However, note that a binary tree

1Details can be found in Section 3.2.1
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only has 2n− 1 nodes in total if it has n leaves, so inserting all scales only doubles the

number of nodes that need to be stored. As we will see, storing parent features in the

R-tree enables strong noise immunity.

Each time series in a dataset is represented as a feature sequence (encoding the tree

in a postfix order). We can associate the R-tree leaves with the features in the feature

sequences instead of saving feature representations redundantly. Both the feature se-

quences of all time series and the R-tree of the dataset are saved as files in secondary

storage devices. When the subseries join of two datasets needs to be computed, we

load (maybe only the coarser-scale parts of) feature trees of all features in the two

datasets and the two R-trees of the two datasets into the main memory (RAM). We

then compute the R-tree join and extract parts of the feature sequences as the input

to a dynamic programming algorithm (which will be introduced in Section 4.2) to find

the subseries join.

3.3 Hierarchical Compression

Based on the hierarchical structure generated from the anisotropic diffusion smoothing

process, we now present a lossy compression technique for feature sequences, which

includes three steps. The first step changes the power basis of the minimal polynomial

envelope to a Bézier basis using a linear transformation. The Bézier basis is chosen

because all control points of a Bézier spline require the same dynamic range and pre-

cision. The power basis requires more precision for the higher-order coefficients than

the lower-order coefficients. The second step codes the control points of the Bézier

spline using a hierarchical coding method. This method uses the control points in

coarser scales to predict the points in finer scales using the de Casteljau subdivision

algorithm [Far01]. Only the differences between this prediction and the actual values

at the coarser scales are saved. The third step uses arithmetic coding to further encode

these differences at one scale. The compression technique presented in this section is a
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(a) All features at all scales in one dataset.
Every segment in scale space is represented
as an n-D polynomial that is mapped to an
(n+1)D line segments in an abstract “feature
space”.

R1

R2 R3

R4 R5
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R7 R8

R9

R1 0
R1 1 R1 2

(b) Spatial hierarchy of an R-tree of the
dataset.

R1     R2     R3

R4     R5      R6 R7     R8      R9 R10    R11    R12

(c) Corresponding nodes in a data structure
representing the R-tree.

R-tr ee of a  da ta set

...

F eature sequence o f a time series
...

F ea tur e sequences of
tim e ser ies in  the da ta set

(d) The R-tree leaves associated with the
features in feature sequences.

Figure 3.7: Insert all features at all scales in one dataset into an R-tree. Euclidean
distance in feature space are equivalent to distances between polynomials as defined in
Equation 3.11. For storage, the R-tree leaves are associated with the features in the
feature sequences, instead of saving feature representations redundantly.
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generalization of the author’s previous work [LM07] that only focused on compression

of motion capture data.

A n-degree polynomial

P (t) =
n∑
i=0

ait
i (3.17)

can be linearly transformed to a Bézier spline

B(t) =
n∑
i=0

biB
n
i (t),

Bn
i (t) =

 n

i

 (1− t)n−iti, (3.18)

where 0 ≤ t ≤ 1. Consider the specific case of cubic polynomials. Then a cubic

polynomial is given relative to the power basis

P (t) = a3t
3 + a2t

2 + a1t+ a0.

A cubic Bézier spline is given by

B(t) = b3t
3 + 3b2(1− t)t2 + 3b1(1− t)2t+ b0(1− t)3

= (b3 − 3b2 + 3b1 − b0)t3 + (3b2 − 6b1 + 3b0)t
2 + (3b1 − 3b0)t+ b0.

The transformation from the coefficients of a cubic polynomial to the control points of

a cubic Bézier spline is given by


b0

b1

b2

b3

 =


−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0



−1 
a0

a1

a2

a3

 . (3.19)
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Figure 3.8: Hierarchical differencing of control points of cubic Bézier splines. The
segment a is the parent of the segments b and c. We can compute the control points
O1, O2, O3, and O4 of the sub-section of a, that has the same length, `b, as the length
of segment b. Since the points Oi are close to the points Qi for 1 ≤ i ≤ 4, we can use
the difference Oi, δi = Qi − Oi, and the offset `b, to represent Qi. The points Oi can
be computed from the points Pi. Each value δi is small enough to be quantized in a
small fixed number of bits.
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The hierarchical coding of the control points at different levels of the feature tree

is illustrated in Figure 3.8. The segment a is the parent of the segments b and c. The

control points of the cubic Bézier spline of segment a are P1, P2, P3, and P4. The

control points of the cubic Bézier spline of segment b are Q1, Q2, Q3, and Q4. We can

compute the control points O1, O2, O3, and O4 of the sub-section of a, that has the

same length, `b, as the length of segment b. Since the points Oi are very close to the

points Qi for 1 ≤ i ≤ 4, we can use the difference Oi, δi = Qi − Oi, and the offset `b,

to represent Qi. The points Oi can be computed by the points Pi. Each value of δi

is small enough to be quantized in a small fixed number of bits (or fewer, using more

sophisticated variable-rate schemes, but this can be done in a post process). We code

segment c following the same procedure.

We use an arithmetic coding library to further encode the differences δi. Arithmetic

coding is a lossless compression technique that gives a variable-length entropy encoding.

Compared with other entropy encoding techniques that separate the input into its

component symbols and replace each symbol with a code word, such as the Huffman

method, arithmetic coding encodes the entire message into a single number, as fraction

in [0, 1). By using arithmetic coding, higher compression rates are achieved. The

compression rates on actual data will be presented in Chapter 6.

3.4 Summary

In this chapter, a non-uniform segmentation method was proposed based on a scale-

space analysis. An approximation of segments identified at each scale was presented

using a bounded polynomial approximation. The scale-space analysis is based on

anisotropic diffusion and iteratively smoothes each time series, generating a hierar-

chy of representations from fine to coarse. The smoothed time series at every scale are

segmented by the zero-crossings of their second derivatives. The minimal polynomial

envelope of each segment and other parameters are used to represent all segments at
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all scales in a reduced-dimensionality space, suitable for indexing and compression. A

distance function on this scale space was defined that bounds the distance between the

fine-scale functions bounded by the polynomial envelopes. A compact data structure

was defined to store a feature tree. A compression scheme was also proposed to hier-

archically compress feature trees. Indexing and retrieval methods based on this tree

structure will be introduced in the following chapter.
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Chapter 4

Hierarchical Indexing and Subseries

Join

Using the linear transformation derived in the previous chapter, the parameters defining

each minimal polynomial envelope can be mapped to axis-aligned line segments in a

lower-dimensional space. In particular, in the quadratic case used for the experiments

in this thesis, each segment is mapped into 4D space.

In this chapter, indexing and subseries join methods are proposed based on an

R-tree join of these axis-aligned segments. Pairs of matching features are found by

joining the R-trees of two datasets. Pairs of candidate matching feature sequences

can be obtained by counting the number of matching features. Each feature sequence

is actually a feature binary tree. A dynamic programming algorithm is developed

to calculate the distance between two feature binary trees and to find the alignment

between two feature sequences.

4.1 Indexing Using R-trees

The axis-aligned segments representing features can be inserted into an R-tree. To

perform a subseries join between two datasets X and Y , all features are compared in the
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leaf o f R-tree  X

leaf o f R-tree  Y

the  distance  thresho ld

Figure 4.1: Spatial join of the R-trees of two datasets. Note that multiple matches for
the same segment are possible. The solid line segments and the hollow line segments
are features in two datasets respectively. The polynomial representation of features is
mapped to 4D axis-aligned line segments in this abstract space using Equation 3.14.

R-tree index for X with all features in the R-tree index for Y . The result of such a join is

all pairs of features that are closer than some minimum distance from each other. There

are many algorithms for performing the spatial join of R-trees [SC03, PD96, CMTV00].

In my implementation, I used the spatial join algorithm proposed in [SC03]. The result

of this spatial join of R-trees is the set of all pairs of features from X and Y whose

minimum distance to each other (this will be defined formally in Equation 4.3) is less

than a predefined threshold.

Because the line features are axis-aligned the axis-aligned bounding volumes used

in an R-tree data structure can bound them efficiently. The result of the R-tree join

process is illustrated in Figure 4.1.

Each feature in the R-tree is represented as a 4D interval aligned with the x-axis:

a = [aIx, ay, az, aw]T ,

= [[ax, ax], ay, az, aw]T
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Figure 4.2: Compute maximum and minimum distances between two features repre-
sented as line segments.

as defined in Equation 3.14. As shown in Figure 4.2, the maximum distance between

two features a and b is given by taking the maximum of the distance between end

points

dM(a,b) = max{dE(a`,bu), dE(au,b`)}, (4.1)

where

a` = [ax, ay, az, aw],

au = [ax, ay, az, aw],

b` = [bx, by, bz, bw],

bu = [bx, by, bz, bw],

and the function dE is the Euclidean distance, i.e.,

dE(a`,bu) =

√
(ax − bx)2 + (ay − by)2 + (az − bz)2 + (aw − bw)2, (4.2)
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The minimum distance between two feature points a and b can be also computed as

follows:

dm(a,b) =


√

(ay − by)2 + (az − bz)2 + (aw − bw)2 if [ax, ax] ∩ [bx, bx] 6= ∅

min{dE(a`,bu), dE(au,b`)} otherwise.
(4.3)

The minimum distance is used in the R-tree join operation as a lower bound to guar-

antee no false dismissals.

The leaves of R-tree of a dataset are associated with features in the feature sequences

of all time series in that dataset, as shown in Figure 4.3. The R-tree join associates, in

a pairwise manner, a subset of the leaves of two R-trees. Based on the associated leaves

of the R-trees, pairs of feature sequences can be found by counting the number of pairs

of matching features from each sequence. If this number is greater than a predefined

threshold, these two feature sequences are taken as a pair of candidate matching feature

sequences.
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F eature sequence o f one time series
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F ea tur e r epr esen ta tion  of da ta set A

R-tr ee of da ta set B

...

F eature sequence o f one time series
...

F ea tur e r epr esen ta tion  of da ta set B

... ...R -tree
leaves

R-tr ee join  of two da ta  sets

F eature
sequences

M atching fea tur es of two fea tur e sequences

... ...

Match features  in o ther feature sequences

Figure 4.3: The R-tree join of two datasets consists of all pairs of features whose
minimum distance is less than a predefined threshold. R-tree leaves are associated
with features in the feature sequences of all time series in a dataset. The R-tree join
associates some leaves (filled elements) of two R-trees. Based on the associated leaves
of R-trees, pairs of matching features (filled elements) can be found in two feature
sequences.
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4.2 Feature Binary Tree Dynamic Programming

As presented in the previous section, an R-tree join of two R-trees produces a set

of pairs of candidate matching feature sequences that contain a number of pairwise

feature matches whose minimum distance is below a predefined threshold. However,

over a potentially matching subseries, we observe that the minimal distance between

one feature and another may be beyond the predefined threshold, possibly due to noise,

even if it would otherwise match due to shape. Therefore, the parent of each feature

(which has less noise due to smoothing) also needs to be considered. However, such a

match of smoothed features is less conclusive than a match at a finer scale.

Since noise will be present, when two feature binary trees are compared and matched

to find an alignment we need to use an algorithm that can deal with noise and approx-

imate match appropriately. We assert that the alignment algorithm should have the

following properties:

• It should prefer matching at finer resolutions when possible.

• It should tolerate at least two kinds of noise:

– Impulsive noise. Tolerating impulsive noise (or outliners) means allowing

small gaps in the match.

– Additive noise. Tolerating additive noise means allowing matching of smoothed

data, i.e., “parent” features, but only when matching at a finer scale fails.

• It should allow subsequence match and should not have to process all data in a

sequence to do so.

• It should find the alignment with the smallest worst-case distance (min-max), if

alternative alignments are possible.

I have developed an algorithm that satisfies these goals. This algorithm uses dy-

namic programming to optimally select among multiple alternatives for alignment,
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but uses heuristics to minimize the number of choices that have to be considered, in

particular to focus the alignment on finer scales when possible. It works as follows:

1. The alignment scans from left to right, starting from the left-most matching

leaves of both feature sequences.

2. If both children match, the alignment ignores their parents.

3. If neither child matches, the alignment checks its parent.

4. If one child matches and the other child does not match,

• if the unmatched child is small enough to be considered a “gap”, the align-

ment goes through this gap and can ignore its parent.

• if the unmatched child is not small enough to be a gap, the alignment ignores

both children and checks their parent.

• Dynamic programming is used to select among other alternatives.

Rules 2-4 constitute a heuristic that favors fine-scale matches over coarse-scale

matches. To illustrate this algorithm, an example is shown in Figure 4.4. In feature

binary trees X and Y, the pairs of matching features returned by the R-tree join op-

eration are {b, b’}, {d, d’}, {e, e’}, {f, f’}, {f, h’}, {g, i’}, {h, j’}, and {i, k’}. First,

a minimal subtree is extracted that contains the features from the left-most matching

feature b to the right-most matching feature g and all their parents. This procedure

generates a feature subsequence X’. The feature subsequence Y’ is generated for the

feature sequence Y using the same procedure.

The alignment starts from the pair of matching features b and b’. The features c

and c’ do not match, but there are options that the alignment algorithm can consider.

If c and c’ are features with small lengths (small segments), which can be considered

gaps (small segments of impulsive noise), the alignment goes through {b, b’} and {c,

c’} and can ignore their parents d and d’. If either c or c’ is not small enough to be
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a gap, the alignment will check the parents d and d’, and can ignore {b, b’} and {c,

c’}. Another case shown in this figure illustrates what happens when both pairs of

children match, for example, f matches h’ and g matches i’. The alignment does not

need to consider the parents h and j’, even though the R-tree says they match. These

heuristics eliminate many choices for the alignment. However, note that many-to-one

(and many-to-many) matches are possible, such as {f, f’} and {f, h’}, which can allow

alternative alignments. Therefore, the alignment algorithm is designed as a dynamic

programming algorithm that can choose among the various alignment possibilities when

such multiple matches are present.

Dynamic programming using a warping score matrix is a classic way to solve se-

quence alignment problems and was introduced in Section 2.2.4. However, we are

matching trees rather than flat sequences so we cannot use this algorithm directly.

Based on warping matrix dynamic programming, I have developed a Feature Binary

Tree Dynamic Programming (FBTDP) algorithm. The description of FBTDP is as

follows: Given two feature sequences, A = (a1, a2, . . . , am) and B = (b1, b2, . . . , bn),

FBTDP constructs a warping distance matrix WM using a recurrence. Each option

in the recurrence represents one possible local choice for alignment. The recurrence

propagates the best alignment through the matrix by choosing the best local extension

to the alignment. The recurrence is

WM(i, j) = max


0 // no match

WM(i− p(ai), j) + α(ai) // ai is a gap

WM(i, j − p(bj)) + α(bj) // bj is a gap

WM(i− p(ai), j − p(bj)) + φ(ai, bj) // ai and bj match.

(4.4)

where the boundary conditions of this recurrence are WM(i, 0) = WM(0, j) = 0 and

p(ai) =

 nc(ai)− 2 if ai is the left child

nc(ai)− 1 if ai is the right child,
(4.5)
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Figure 4.4: Two feature binary trees and pairs of matching features (filled elements)
found by an R-tree join operation. A subtree is extracted that contains the nodes from
the left-most matching feature b to the right-most matching feature g and all their
parents. This procedure generates a feature subsequence X’. The feature subsequence
Y’ is generated for the feature sequence Y using the same procedure. Note that multiple-
to-one matches are possible, such as {f, f’} and {f, h’}.
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gap gap
Figure 4.5: The unfilled elements are gaps. The number of consecutive gaps at the
same level in a tree is at most two. In other words, at most two gaps can be adjacent.
Therefore, the bound on the maximum gap size is 2G.

likewise for p(bj) and bj. The function p(ai) returns the offset to the sibling or “cousin”

node at the same level in the tree. The function nc(ai) returns the total number of

children of ai. The function φ is a heuristic scoring function that we will discuss later.

The gap penalty function α is defined as follows:

α(g) =

 1/2 if |g| ≤ G

−∞ otherwise,
(4.6)

where 2G is the maximum length of a gap that can be tolerated. A larger value of

G increases the tolerance of the algorithm to impulsive noise. A gap is only allowed

for features that do not match any other feature. Note that gaps are only allowed if a

sibling matches. The bound on the maximum gap size is thus 2G since the situation

in Figure 4.5 is possible.

Every element WM(i, j) is an accumulative warping score that reflects the align-

ment cost up to position (i, j). The element WM(m,n) is the total accumulative

warping score of the alignment of two feature subsequences. Both the space complex-

ity and the computational complexity of FBTDP are O(mn).

We will now discuss the heuristic scoring function φ. Since each feature sequence

is a binary tree, if an internal node has only one child, then this internal node must be
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the root. This occurs only in a feature binary tree with two nodes. Note that this is

rare since it can only occur when the original time series data is constant. We therefore

treat this as a special case and eliminate it from further discussion. For any feature

binary tree with more than two nodes, each internal node has two children. Therefore,

to define the scoring function φ(i, j), the following cases need to be considered. Note

that the scoring function is only ever called on matching features.

1. If both ai and bj are leaves, then these two nodes are compared directly using

the following function:

φ(ai, bj) = score(ai, bj), (4.7)

score(ai, bj) =

 1 if dm(ai, bj) ≤ εf

−∞ otherwise.
(4.8)

Note that this just accepts the matches already identified by the R-tree. Also, the

score is independent of the length of the feature or the distance between them,

for reasons we will discuss later.

2. If ai is an internal node and bj is a leaf, the children of ai need to be considered

by the alignment algorithm too, in case one is a gap:

φ(ai, bj) = max


score(ai, bj)

score(ai−ai.lchild, bj) + α(ai−ai.rchild)

score(ai−ai.rchild, bj) + α(ai−ai.lchild).

(4.9)

3. Likewise, if ai is a leaf and bj is an internal node, the children of bj need to be

considered:

φ(ai, bj) = max


score(ai, bj)

score(ai, bj−bj .lchild) + α(bj−bj .rchild)

score(ai, bj−bj .rchild) + α(bj−bj .lchild).

(4.10)
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4. If both ai and bj are internal nodes, the children of both ai and bj need to be

considered by the alignment algorithm:

φ(ai, bj) = max

 score(ai, bj)

score(ai−ai.lchild, bj−bj .lchild) + score(ai−ai.rchild, bj−bj .rchild).

(4.11)

The indices lchild and rchild were defined in Table 3.1 and are stored in the data

structure representing feature.

Each element WM(i, j) in WM is an accumulative warping score that reflects

the alignment cost up to this position (i, j). The element WM(m,n) is the total

accumulative warping score of the alignment of two feature sequences. As noted, the

per-feature score is intentionally independent of length or minimum distance so that

the warping score will be higher for matching many children rather than one parent.

This algorithm causes the algorithm to prefer an alignment at a finer scale if one can

be found. Likewise, a smoothed parent tends to have a lower minimum distance than

a more precise fine-scale feature, so we do not include this in our score to avoid a bias

towards smoothed features.

If the value of WM(m,n) is above a predefined threshold, a trace-back step is taken

to find the best alignment based on the heuristic scoring function. For each pair of

elements {ai, bj} in the alignment we compute the accumulative maximal distance

dAM(A,B) =
∑
{dM(ai, bj)|{ai, bj} in the alignment}, (4.12)

using the maximal distance bound dM that was defined in Equation 4.1. The distance

function dAM computes the min-max accumulative distance heuristically, and it is this

distance that I used in my experimental results to compare the similarity of two feature

sequences A and B. The accuracy of the FBTDP algorithm will be shown empirically

in the following chapters.

FBTDP is not guaranteed to return the optimal answer. The results computed by
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thresholding dAM do not contain false positives, but may contain false dismissals. We

can compute the accumulative minimal distance

dAm(A,B) =
∑
{dm(ai, bj)|{ai, bj} in the alignment}, (4.13)

using the minimal distance bound dm that was defined in Equation 4.3. The results

computed by thresholding dAm do not contain false dismissals, but may contain false

positives. The optimal answer should be some value in between the results returned by

dAM and dAm. Therefore, although FBTDP does not compute the optimum it does

bound it.

The computational complexity of FBTDP is quadratic. However, in my prototype

system implementation, I constrained the alignment along the levels of the tree to be at

most three. In other words, if three levels of nodes do not match, then FBTDP returns

the current alignment as a subseries join result, and starts to find a new alignment in

the remaining subtrees. This constraint improves the computational complexity to be

linear.

4.3 Summary

This chapter presented an indexing and alignment scheme for binary feature trees.

The features at all scales are indexed in an R-tree. Pairs of candidate matching feature

sequences are obtained by the matching features returned from spatially joining the

R-trees of two datasets. A dynamic programming algorithm was proposed to compute

the min-max and max-min matching distance between binary feature trees.
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Chapter 5

Experimental Evaluations

To validate the proposed approach in the previous chapters, accuracy and performance

relative to other approaches needs to be determined. However, accuracy is based on

the definition of similarity. As discussed before, the definition of similarity is ambigu-

ous and subjective, varying with different data formats, tasks, and domains. Also, the

bound on this metric using our proposed algorithm is not exact, so we have to evalu-

ate the impact of this approximation. Several recent approaches for subseries matching

have been selected as baseline approaches. The proposed approach is compared against

them to evaluate effectiveness. To guarantee that the baseline approaches produce cor-

rect results, synthesized data are generated from a real dataset [Keo06a] in such a way

that the “correct” matches are known in advance. However, it should be emphasized

that none of the selected baselines is a gold standard. Also, only the accuracy of

“match” can be compared, since the proposed definition of “join” is new.

5.1 Experimental Setup

All time series data are extracted or synthesized from the UCR Time Series Data Min-

ing Archive [Keo06a]. This archive contains different datasets, such as stock prices,

audio, and trajectories. The experiments were run using a PC with Linux Kernel 2.6,
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Table 5.1: Time series selected from the UCR Time Series Data Mining
Archive [Keo06a] as testing datasets.

NO. Name Length NO. Name Length

1 attas 1023 21 network 180000

2 ballbeam 1000 22 ocean shear 4095

3 balloon 2001 23 packet 360000

4 buoy sensor 13990 24 pHdata 2001

5 burst 9382 25 power data 35040

6 burstin 50000 26 powerplant 2400

7 chaotic 1800 27 random walk 65536

8 cstr 7500 28 realitycheck 1000

9 darwin 1400 29 robot arm 1024

10 earthquake 4095 30 shuttle 1000

11 EEG heart rate 7200 31 soiltemp 2305

12 evaporator 6305 32 speech 1019

13 fluid dynamics 10000 33 spot extrates 2567

14 flutter 1024 34 steamgen 9600

15 foetal ecg 2500 35 sunspot 2899

16 glassfurnace 1247 36 tickwise 279113

17 infrasound beamed 8191 37 tide 8745

18 koski ecg 144002 38 water 2192

19 leleccum 4320 39 wind 6574

20 memory 6874 40 winding 2500
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Table 5.2: The parameters used in the experiments.

Parameter Value Description

εb 0.01 Threshold used in the segmentation (see Equation 3.10)

θ 0.1 Weight used in the distance metric (see Equation 3.11)

G 5 Threshold for gaps (see Equation 4.6)

εf 2 Threshold for minimum distances (see Equation 4.7)

1GB of RAM, and a Pentium IV 3.0GHz CPU. The prototype systems were imple-

mented in C++ and the RapidMind Development Platform [Rap]. To fit a constrained

amount of memory, the finest scale at τ = 500 was selected for indexing. Although

this database is relatively small, it has the advantage of being a standard test case for

which results from other algorithms are available in the literature, and is publically

available, allowing future work to build comparisons with our results.

A set of 40 time series (see Table 5.1) were extracted from the UCR Time Series

Data Mining Archive. This dataset will be called D. The total number of samples in

D is 1, 091, 465. The average number of samples per time series in D is 27, 287. The

dataset D is used to generate other synthetic testing datasets. The synthetic data is

used to guarantee that the baseline approaches produce correct results. Table 5.2 lists

the parameters used in the experiments.

5.2 Accuracy Evaluation for Subseries Matching

For accuracy evaluation, the proposed approach (called NSDP1 in the rest of the thesis)

is compared against two baseline approaches, shift-and-compare scanning using the

Euclidean distance (called SSE) and shift-and-compare scanning using DTW (called

SSD).

1The name of the proposed approach NSDP is formed from the key words Non-uniform Segmen-
tation and Dynamic Programming
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From each original time series in D, 50 subseries are randomly extracted with their

length ranging from 100 to 1000 samples. For each element x in each subseries X ′, i.e.,

x ∈ X ′, uniform random noise was added to generate a query time series Q with each

element q ∈ Q and

q = x+ µ(max(X ′)−min(X ′)), (5.1)

where µ is a uniform random value with −0.3 ≤ µ ≤ 0.3. This generates 40 query

datasets each of which contains 50 short query time series. These datasets, called

Qe = (Qe
1, Q

e
2, . . . , Q

e
40), are used in experiments to compare NSDP against SSE.

Each time series Qe
i belonging to the query dataset Qe is also uniformly scaled using

nearest-neighbor interpolation to get 40 new query datasets Qd = (Qd
1, Q

d
2, . . . , Q

d
40),

i.e., for each element qj ∈ Qe
i ,

q′j = qdj/(γ)e, (5.2)

where q′j ∈ Qd
i ∈ Qd and γ is a random value with 1 ≤ |γ| ≤ 1.2. We used nearest-

neighbor interpolation (rather than linear interpolation) to be consistent with previous

work. Note that since nearest-neighbor interpolation duplicates samples upon expan-

sion, it is consistent with the alignment generated by SSD. This actually favors SSD

over NSDP. These datasets Qd are used for comparing NSDP against SSD.

Given an element q ∈ Qo or a scaled element q′ ∈ Qs, let Sb ⊆ X ∈ D be the

best matching time series returned by the baseline approach (SSE or SSD), and let

So ⊆ X ∈ D be the best matching time series returned by NSDP. Two metrics are used

to measure the empirical accuracy:

e =

 1 if Sb ∩ So = ∅

0 otherwise,
(5.3)

and

p =
|Sb \ So|
|Sb|

. (5.4)
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The metric e returns 1 if the subseries found by NSDP does not overlap that found by

the baseline; otherwise, it returns 0. In other words, e counts disagreements between

two approaches. The metric p computes the percentage of number of items in each

subseries that are found by the baseline but not found by NSDP.

The experimental results for all 40 datasets are shown in Figure 5.1. The values of

p and e are average values over 50 queries for each time series in D using the baseline

approaches SSE and SSD respectively. In the experiments, all the values of e are 0.

This empirically demonstrates that NSDP produces no false dismissals when comparing

against the baselines, at least for this data. This is reassuring, but since the similarity

measure is different, in general we cannot guarantee this result.

The high percentages of the overlaps of the results found by NSDP and the baselines

also demonstrates that NSDP finds similar matching subseries when comparing against

the baselines. Some subseries matching results returned by SSE, SSD, and NSDP are

shown in Figure 5.2.

In the above description, the results returned by SSE and SSD are assumed to be

the “correct” matches. However, this assumption is not always the case. Counter-

examples are shown in Figure 5.3. Perceptually, the time series Q is more similar to

the time series X than the time series Y , because X is a uniformly scaled version of

Q. However, both SSE and SSD approaches match Q against Y . These examples

show that SSE and SSD are sensitive to large length differences and impulsive noise.

In contrast, NSDP can tolerate both large length differences and both additive and

impulsive noise. To better evaluate the proposed approach, therefore, we need a better

baseline.

In next section, a more robust approach, an approximation of the information

distance, will be introduced as a baseline approach to evaluate the effectiveness of the

proposed approach in the context of classification.
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(a) NSDP compares with SSE.
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(b) NSDP compares with SSD.

Figure 5.1: Accuracy evaluation for subseries matching. The metric e returns 1 if the
subseries is found by the proposed approach but is not found by the baseline; otherwise,
it returns 0. The metric p computes the percentage of number of items in each subseries
that is found by the proposed approach but is not found by the baseline. The values
of p and e are the average values over 50 queries for each time series in D using the
baseline approaches SSE and SSD respectively. In the experiments, all the values of e
are 0.
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(a) Subseries matching results returned by SSE and NSDP.

Query
Data found by SSD
Data found by NSDP

(b) Subseries matching results returned by SSE and NSDP.

Figure 5.2: Subseries matching results returned by SSE, SSD, and NSDP.
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(a) Given three time series Q, X, and Y , the dis-
tances between two time series returned by SSE, SSD and
NSDP satisfy: SSE(Q,X) > SSE(Q,Y ), SSD(Q,X) >
SSD(Q,Y ), NSDP (Q,X) < NSDP (Q,Y ).

Q
X
Y

(b) Given three time series Q′, X ′, and Y ′, the distances
between two time series returned by SSE, SSD and NSDP
satisfy: SSE(Q′, X ′) > SSE(Q′, Y ′), SSD(Q′, X ′) >
SSD(Q′, Y ′), NSDP (Q′, X ′) < NSDP (Q′, Y ′).

Figure 5.3: The functions SSE(X, Y ) and SSD(X, Y ) compute the distances using
SSE and SSD respectively. The results computed by SSE and SSD are opposite to
intuition.
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5.3 Accuracy Evaluation for Classification

In this section, background on information distance will be introduced first. The

experimental results of classification of time series using a baseline approach based on

information distance and compared with the NSDP approach are then reported.

5.3.1 Information Distance Metric

Similarity measures determine if one dataset is like another dataset. A dataset com-

monly belongs to a certain type: music data, financial data, genomic data, etc. Feature-

based measures exploit special features of the data related to the specific domain. For

example, the features of music data can be extracted, related to pitch, rhythm, har-

mony etc. However, feature-based measures require domain-related knowledge and are

sensitive to the accuracy of feature abstraction. Some non-domain specific measures

exist, such as Hamming distance, Euclidean distance, edit distance, and alignment dis-

tance. These are non-feature measures and work well in many different domains, but

they only account for the differences between datasets, not for their commonalities.

Information distance is a universal similarity distance that does not use subject-

specific features or require domain-specific background knowledge. The normalized

information distance that is based on the Kolmogorov complexity has been proven to

be optimal [LV97]. The idea behind Kolmogorov complexity is that if two datasets

are more similar, then one can be more succinctly described if we are given the other.

The Kolmogorov complexity is a measure of absolute information distance. A brief

introduction to the Kolmogorov complexity will be given in this section. For more

details, the reader can refer to the paper [Li07] by Li and the paper [ZHZL07] by

Zhang et al.

The “energy” to convert between two datasets x and y is defined as the shortest
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program converting x to y and vice versa. The cost of conversion between x and y is

E(x, y) = min{|p| : U(x, p) = y, U(y, p) = x}, (5.5)

where p is any binary program executed on U , a universal Turing machine. The

Kolmogorov complexity of x conditioned on y is the length of the shortest program

that outputs x with input y,

K(x|y) = min
p
{|p| : U(p, y) = x}. (5.6)

The Kolmogorov complexity of x is the length of the shortest program that outputs x,

K(x) = min
p
{|p| : U(p) = x}. (5.7)

The max information distance [BGL+98] between two objects x and y is

Dmax(x, y) = E(x, y) = max{K(x|y), K(y|x)}. (5.8)

This distance function is a metric since it satisfies positivity, symmetry, and the triangle

inequality [BGL+98]. The max distance is also an optimal distance. The normalized

information distance was introduced by Li et. al [LCL+04]:

dmax(x, y) =
max{K(x|y), K(y|x)}

max{K(x), K(y)}
. (5.9)

It has been proven that the normalized information distance is also a metric that

satisfies the triangle inequality [LCL+04]. The normalized information distance has

the following properties:

1. It is a non-trivial metric. That is, it is nonnegative, symmetric, satisfies the

triangle inequality, and is zero if and only if the objects are identical.
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2. It is universal. That is, if x and y are close in any computable sense then they

are close under dmax(x, y).

3. Unfortunately, it is also not computable, because of the non-computability of

K(x).

Also, the normalized information distance involves the impact of irrelevant informa-

tion [Li07]. That is to say, two time series that have the same relevant part to a query

may have different dmax values because of differences in irrelevant parts. Therefore, the

normalized minimum distance was proposed by Li [Li07]:

dmin(x, y) =
min{K(x|y), K(y|x)}

min{K(x), K(y)}
. (5.10)

It has been proven that the distance dmin is also universal and dmin ≤ dmax. Unfortu-

nately, like dmax, the distance dmin is also not computable. Unlike dmax, the distance

dmin computes the similarity of local matching. However, since dmin does not satisfy

the triangle inequality, the distance dmin is not a metric.

The fact that dmax and dmin are non-computable is frustrating, but fortunately there

exists reasonable approximations. Cilibrasi and Vitányi [CV05] presented an approxi-

mate normalized information distance (ANID) that approximates the optimality of the

Kolmogorov complexity. ANID is based on the fact that two objects are deemed close if

one can be significantly “compressed” given the information in the other. In particular,

the compressed size of the data C(x) can used as an approximation to K(x) [CV05].

Common compressors used to evaluate this metric are bzip2 and gzip. Replacing K(x)

with C(x), Equation 5.9 turns into the normalized compression distance:

ANID(x, y) =
max{C(x|y), C(y|x)}

max{C(x), C(y)}
, (5.11)

where C(x|y) compresses x given y.
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5.3.2 Classification Results

From the dataset D in Table 5.1, three groups of datasets are generated by uniformly

scaling, adding additive noise to, and adding impulsive noise to the original time series.

These three groups of datasets are used to test the robustness of NSDP, ANID, and

DTW to different uniform length scaling, additive noise, and impulsive noise.

Robustness to Uniform Scale

For each time series X ∈ D, 50 variations are generated from X by uniformly scaling

them by γ times the original length of X. Given xi ∈ X, define a variation x′ ∈ X ′

computed by:

x′i = xdi/(γ)e, (5.12)

where γ is a random value with γ ≥ 1 and ranges to be given later for each experiment.

This gives a dataset of 440 (= (1 + 50) × 40) time series with 51 time series in every

datasets. There are in total 40 datasets: C1, C2, . . . , C40.

Given this synthetic construction of the testing datasets, the correct classification

and ranking results can be easily computed in advance. The correct classification result

is that each of the 50 synthetic time series should be classified into the same set with

its seed time series. The correct ranking result is that each of the 50 synthetic time

series should be ranked according to the distance to its seed time series. Two metrics

are used to evaluate the error of the search results, where ec is called the classification

error and er is called the rank error.

ec =
the number of time series that should be in Ci but are not

the number of time series in Ci
, (5.13)

er =
the number of time series in Ci that are in the wrong rank

the number of time series in Ci
. (5.14)

The rank is defined as the order in a sequence sorted according to the Euclidean

distance metric in one classification.

92



The values of ec and er of DTW, ANID, and NSDP are shown in Figure 5.4,

when using different values of γ. The statistics of the errors are shown in Table 5.3.

Figure 5.5, Figure 5.6 and Figure 5.7 show classification results returned by NSDP,

ANID, and DTW, given two seed time series and two variations (two from each seed

time series) that are computed from Equation 5.12.

The experimental results show that DTW produces more both classification errors

and sequence errors than ANID and NSDP when the differences of lengths of time series

are large (γ > 1.2). When the differences of lengths become larger (γ > 2.0), NSDP

produces fewer errors than ANID. This shows that NSDP has a greater tolerance to

time scaling than DTW and ANID.

Table 5.3: Classification errors of DTW, ANID, and NSDP from applying uniform
scaling.

Approach

Classification error ec
1.2 < γ ≤ 1.5 1.5 < γ ≤ 2.0 2.0 < γ ≤ 2.5

Mean Max Mean Max Mean Max

DTW 0.021569 0.039216 0.144118 0.215686 0.252941 0.411765

ANID 0 0 0.062255 0.117647 0.178922 0.274510

NSDP 0 0 0.033333 0.058824 0.154902 0.235294

Approach

Sequence error er
1.2 < γ ≤ 1.5 1.5 < γ ≤ 2.0 2.0 < γ ≤ 2.5

Mean Max Mean Max Mean Max

DTW 0.075490 0.137255 0.235784 0.372549 0.385784 0.568627

ANID 0.043627 0.078431 0.134314 0.215686 0.294608 0.470588

NSDP 0.031863 0.058824 0.094608 0.176471 0.256373 0.411765

93



5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Dataset

C
la

ss
ifi

ca
tio

n 
er

ro
r

DTW
ANID
NSDP

(a) Classification errors. 1.2 < γ ≤ 1.5.
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(b) Rank errors. 1.2 < γ ≤ 1.5
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(c) Classification errors. 1.5 < γ ≤ 2.0.
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(d) Rank errors. 1.5 < γ ≤ 2.0.
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(e) Classification errors. 2.0 < γ ≤ 2.5.
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(f) Rank errors. 2.0 < γ ≤ 2.5.

Figure 5.4: Classification errors ec and er produced by DTW, ANID and NSDP with
different values of γ. The value ec specifies the fraction of the number of time series
that should be in a dataset Ci but are not over the number of time series in Ci. The
value er specifies the fraction of the number of time series in a dataset Ci that are in
wrong ranks relative to the number of time series in Ci.
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(a) Time series X and Y and two variations of
each X1, X2, Y 1, and Y 2 when 1.2 ≤ γ ≤ 1.5.

C orrec t answer
X    X1     X2     Y    Y1 Y2

ANID result
X    X1     X2     Y    Y1 Y2

NS DP  result
X    X1     X2     Y    Y1 Y2

DT W  result
X    X1     X2     Y    Y1 Y2

(b) Classification results. The result of DTW
has rank errors.

Figure 5.5: Classification results returned by NSDP, ANID, and DTW when 1.2 < γ ≤
1.5.
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(a) Time series X and Y and two variations of
each X1, X2, Y 1, and Y 2 when 1.5 < γ ≤ 2.0.

C orrec t answer
X    X1     X2     Y    Y1 Y2

ANID result
X    X1     X2     Y    Y1 Y2

NS DP  result
X    X1     X2     Y    Y1 Y2

DT W  result
X    X1     X2     Y    Y1 Y2

(b) Classification results. The results of
ANID and DTW have classification errors and
rank errors.

Figure 5.6: Classification results returned by NSDP, ANID, and DTW when 1.5 < γ ≤
2.0.
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(a) Time series X and Y and two variations of
each X1, X2, Y 1, and Y 2 when 2.0 ≤ γ ≤ 2.5.

C orrec t answer
X    X1     X2     Y    Y1 Y2

ANID result
X    X1     X2     Y    Y1 Y2

NS DP  result
X    X1     X2     Y    Y1 Y2

DT W  result
X    X1     X2     Y    Y1 Y2

(b) Classification results. The results of all
approaches have classification errors and rank
errors. But the result of NSDP is closer to the
correct answer than that of ANID and DTW.

Figure 5.7: Classification results returned by NSDP, ANID, and DTW when 2.0 < γ ≤
2.5.

Robustness to Additive Noise

For each time series X ∈ D, 50 variations were generated from X by adding a factor µ

of additive noise. Given xi ∈ X, define a variation x′ ∈ X ′ computed by:

x′i = xi + µ(max(X)−min(X)), (5.15)

where µ is a uniform random value over various ranges to be defined.

The values of ec and er of DTW, ANID, and NSDP are shown in Figure 5.8, when

using different values of µ. The statistics of the errors is shown in Table 5.4. Figure 5.9,

Figure 5.10, and Figure 5.11 show classification results returned by NSDP, ANID, and

DTW, given two seed time series and four variations (two from each seed time series)

that are computed from Equation 5.15.

The experimental results show that DTW produces more both classification errors

and sequence errors than ANID and NSDP when the additive noise values are large
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(|µ| > 0.3). When the additive noise values become larger (|µ| > 0.6), NSDP produces

fewer errors than ANID. This shows that NSDP has a greater tolerance to additive

noise than either DTW or ANID.

Table 5.4: Classification errors of DTW, ANID, and NSDP from additive noise.

Approach

Classification error ec
|µ| ≤ 0.3 0.3 < |µ| ≤ 0.6 0.6 < |µ| ≤ 1.0

Mean Max Mean Max Mean Max

DTW 0.011756 0.019608 0.044118 0.078431 0.115196 0.196078

ANID 0 0 0.032843 0.058824 0.071569 0.117647

NSDP 0 0 0.021569 0.039216 0.051471 0.098039

Approach

Sequence error er
|µ| ≤ 0.3 0.3 < |µ| ≤ 0.6 0.6 < |µ| ≤ 1.0

Mean Max Mean Max Mean Max

DTW 0.022549 0.039216 0.097549 0.196078 0.193627 0.294118

ANID 0.011765 0.019608 0.078431 0.156863 0.157843 0.235294

NSDP 0.011765 0.019608 0.058824 0.117647 0.139216 0.215686
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(a) Classification errors. |µ| ≤ 0.3.

0 5 10 15 20 25 30 35 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Dataset

R
an

k 
er

ro
r

DTW
ANID
NSDP

(b) Rank errors. |µ| ≤ 0.3
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(c) Classification errors. 0.3 < |µ| ≤ 0.6.

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Dataset

R
an

k 
er

ro
r

DTW
ANID
NSDP

(d) Rank errors. 0.3 < |µ| ≤ 0.6.
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(e) Classification errors. 0.6 < |µ| ≤ 1.0.
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(f) Rank errors. 0.6 < |µ| ≤ 1.0.

Figure 5.8: Classification errors ec and er produced by DTW, ANID and NSDP with
different values of µ. The value ec specifies the fraction of the number of time series
that should be in a dataset Ci but are not over the number of time series in Ci. The
value er specifies the fraction of the number of time series in a dataset Ci are in wrong
ranks relative to the number of time series in Ci.
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(a) Time series X and Y and two variations
of each X1, X2, Y 1, and Y 2 when |µ| ≤ 0.3.

C orrec t answer
X    X1     X2     Y    Y1 Y2

ANID result
X    X1     X2     Y    Y1 Y2

NS DP  result
X    X1     X2     Y    Y1 Y2

DT W  result
X    X1     X2     Y    Y1 Y2

(b) Classification results. All results are cor-
rect.

Figure 5.9: Classification results returned by NSDP, ANID, and DTW when |µ| ≤ 0.3.
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(a) Time series X and Y and two variations
of each X1, X2, Y 1, and Y 2 when 0.3 < |µ| ≤
0.6.

C orrec t answer
X    X1     X2     Y    Y1 Y2

ANID result
X    X1     X2     Y    Y1 Y2

NS DP  result
X    X1     X2     Y    Y1 Y2

DT W  result
X    X1     X2     Y    Y1 Y2

(b) Classification results. The result of DTW
has classification errors and rank errors.

Figure 5.10: Classification results returned by NSDP, ANID, and DTW when 0.3 <
|µ| ≤ 0.6.
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(a) Time series X and Y and two variations
of each X1, X2, Y 1, and Y 2 when 0.6 < |µ| ≤
1.0.

C orrec t answer
X    X1     X2     Y    Y1 Y2

ANID result
X    X1     X2     Y    Y1 Y2

NS DP  result
X    X1     X2     Y    Y1 Y2

DT W  result
X    X1     X2     Y    Y1 Y2

(b) Classification results. The results of
ANID and DTW have classification errors and
rank errors.

Figure 5.11: Classification results returned by NSDP, ANID, and DTW when 0.6 <
|µ| ≤ 1.0.

Robustness to Impulsive Noise

For each time series X ∈ D, 50 variations were generated by adding impulsive noise to

some elements of X, i.e., for random xi ∈ X,

x′i = xi + ρ(max(X)−min(X)), (5.16)

where ρ is a random value with ρ > 0.

The values of ec and er of DTW, ANID, and NSDP are shown in Figure 5.12,

when using different values of ρ. The statistics of the errors are shown in Table 5.5.

Figure 5.13 and Figure 5.14 show classification results returned by NSDP, ANID, and

DTW, given two seed time series and four variations (two from each seed time series)

computed from Equation 5.16.

The experimental results show that DTW and ANID produce more both classifi-

cation errors and more rank errors than NSDP when the data has impulsive noise. In

fact, both DTW and ANID simply fail in the presence of such noise. In real data, such
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outliners are common.

Table 5.5: Classification errors of DTW, ANID, and NSDP from adding impulsive
noise.

Approach

Classification error ec
0.2 ≤ ρ ≤ 0.7 0.7 < ρ ≤ 1.5

Mean Max Mean Max

DTW 0.611765 0.722549 0.619412 0.722549

ANID 0.572059 0.722549 0.571471 0.722549

NSDP 0 0 0 0

Approach

Sequence error er
0.2 ≤ ρ ≤ 0.7 0.7 < ρ ≤ 1.5

Mean Max Mean Max

DTW 0.623039 0.850980 0.631373 0.870588

ANID 0.611275 0.850980 0.618824 0.850980

NSDP 0.023529 0.039216 0.025157 0.039216
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(a) Classification errors. 0.2 ≤ ρ ≤ 0.7.
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(b) Rank errors. 0.2 ≤ ρ ≤ 0.7.

106



0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dataset

C
la

ss
ifi

ca
tio

n 
er

ro
r

DTW
ANID
NSDP

(c) Classification errors. 0.7 < ρ ≤ 1.5.
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(d) Rank errors. 0.7 < ρ ≤ 1.5.

Figure 5.12: Classification errors ec and er produced by DTW, ANID and NSDP with
different values of ρ for impulsive noise. The value ec specifies the fraction of the
number of time series that should be in a dataset Ci but are not over the number of
time series in Ci. The value er specifies the fraction of the number of time series in a
dataset Ci are in wrong ranks over the number of time series in Ci.
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(a) Time series X and Y and two variations of
each X1, X2, Y 1, and Y 2 when 0.2 ≤ ρ ≤ 0.7.

C orrec t answer
X    X1     X2     Y    Y1 Y2

ANID result
X    X1     X2     Y    Y1 Y2

NS DP  result
X    X1     X2     Y    Y1 Y2

DT W  result
X    X1     X2     Y    Y1 Y2

(b) Classification results. The results of
ANID and DTW have classification errors and
rank errors.

Figure 5.13: Classification results returned by NSDP, ANID, and DTW for impulsive
noise when 0.2 ≤ ρ ≤ 0.7.
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(a) Time series X and Y and two variations of
each X1, X2, Y 1, and Y 2 when 0.7 < ρ ≤ 1.5.

C orrec t answer
X    X1     X2     Y    Y1 Y2

ANID result
X    X1     X2     Y    Y1 Y2

NS DP  result
X    X1     X2     Y    Y1 Y2

DT W  result
X    X1     X2     Y    Y1 Y2

(b) Classification results. The results of
ANID and DTW have classification errors and
rank errors.

Figure 5.14: Classification results returned by NSDP, ANID, and DTW for impulsive
noise when 0.7 < ρ ≤ 1.5.
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5.4 Performance Evaluation

To evaluate the pruning power of the polynomial lower bounding method proposed

in Section 3.2, several baseline lower bounding methods were selected for comparison,

including Kim et al.’s method [KPC01], Yi et al.’s method [YJF98], and Keogh’s

method [Keo02]. All these methods were introduced in Section 2.4.2. To make the

comparisons fair, all the lower bounding methods were used in the same C++ prototype

system that implemented the NSDP approach. The prototype system ran on the same

datasets for subseries matching.

The following parameter is used for the comparison of the pruning power of different

lower bounding methods:

fp =
number of false positives

total number of features
. (5.17)

The pruning power of different methods is shown in Figure 5.15. The values of fp are

the average values over 50 queries. The smaller the values of fp, the better the pruning

power. The total computational time of different methods is also show in Figure 5.16.

The statistics of the results are shown in Table 5.6. The experimental results show that

the proposed lower bounding method has both higher pruning power (i.e., produces

fewer false positives) and because of this computing the final matches using NSDP

requires less computational time overall than any of the baseline methods.
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Figure 5.15: The pruning power of different lower bounding methods. The parameter
of fp indicates the pruning power, which is defined as the fraction of the number of
false positives over the total number of features. The fp values are the average values
over 50 queries. The smaller the values of fp, the better the pruning power. The
author’s last name is used as the method’s name, so Lin represents the results of the
proposed lower bounding method used in NSDP.

Table 5.6: Statistics of the pruning power and overall computational time of different
lower bounding methods. The author’s last name is used as the method’s name. So
Lin represents the results of the proposed lower bounding method.

Approach
fp Time (Seconds)

Mean Max Mean Max Mean Max

Kim 0.3946 0.4961 0.3027 0.7054 0.7973 0.6039

Yi 0.3052 0.4410 0.1240 0.6485 0.7846 0.5472

Keogh 0.2523 0.4112 0.1076 0.5928 0.7207 0.4608

Lin 0.2013 0.4024 0.0403 0.4891 0.6221 0.3494
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Figure 5.16: Overall computational time required by different lower bounding methods.
The time values are the average values over 50 queries. The smaller the time values,
the better the performance efficiency. The author’s last name is used as the method’s
name, so Lin represents the results of the proposed lower bounding method used in
NSDP.
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5.5 Summary

In this chapter, the accuracy and efficiency of the proposed approach was evaluated

using several baseline approaches for subseries matching and classification. However,

since the sizes of the testing datasets are small, they can fit into main memory. This

is not good enough for efficiency analysis, since in practice large databases need to be

searched efficiently. Such large databases cannot fit into main memory. Therefore, in

the following chapter, the performance of the proposed approach will be demonstrated

on a larger database of motion capture data.
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Chapter 6

Applications in Motion Capture

Databases

To test the usefulness of the techniques discussed so far in an actual application area,

in this chapter they are applied to various operations using a large motion capture

database.

6.1 Introduction

Animated humans are an important part of computer animation, and they are com-

monplace in entertainment, training, and visualization applications. At present they

are used as characters in games and for special effects in movies; they are part of simu-

lations used by the military to prepare soldiers and by industry to instruct workers in

using equipment; and they are used as visualization aids for medical analysis (study-

ing an injured person’s gait) and equipment design (determining if controls can be

comfortably accessed). Moreover, there is every reason to believe that the demand for

animated humans will grow in the future. Because much of our lives are spent observ-

ing and interacting with other people, animated humans are a natural and essential

part of any visual medium designed to tell stories or simulate real world events.
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However, producing animated humans is labor intensive. The most primitive

method is keyframed animation, in which the animator specifies the important poses

and lets the computer interpolate the in-between frames. This method originates from

techniques of hand-made animation, in which humans, not computers, drew the in-

betweens. Computers have saved people a lot of tedious work in animation production

by automating significant portions of this process. However, realistic motions follow

physical rules in the real world, and keyframing does not ensure these rules are obeyed.

Also, keyframing is only as good as the animator’s perception, understanding, and

diligence in creating the desired motion.

These limitations have led to the idea of physical simulation, which generates motion

following specified physical rules, such as Newton’s Law. Compared with keyframing,

physical simulation is a completely automatic method. However, this automaticity

prohibits user interaction and makes motion editing difficult. In addition, its compu-

tational requirements are an obstacle for complex characters and high-performance or

real-time projects.

It is hard for both keyframing and physical simulation to create natural human

motions with realistic nuances. Fortunately, a third option is available. The swift

development of hardware devices has enabled people to record the motion of a live

person (or many other biological life forms). Sensors are placed on a person’s body, and

data describing the way an actual person moves can be sensed, digitized and stored in

a computer. Alternatively, vision systems are being developed that can recover motion

directly from images. These classes of techniques are called motion capture.

As its technology improves and its cost decreases, motion capture is attracting

more and more research and commercial interest. Besides the use of motion capture

to generate new animations directly, motion capture data can also be mapped onto

different characters, with different shapes, a process called motion retargeting . This

data can also be added to or mixed with keyframing or physical simulation to produce

new motions, which is called example-based synthesis . Of course, there are more ways
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to use motion capture data than those listed here.

Unfortunately, digitized motion data is expensive to create and manipulate. Its

creation requires either the talents of a skilled animator using specialized software,

or finicky motion capture hardware that may produce noisy data, or both. Also,

some motions are hard to capture given the limits of the hardware or may require

the expensive cooperation of an actor or athlete. The motion data that goes into

the production of a feature animation, game, or other similar projects represents an

investment of millions of dollars. As a studio accumulates more and more such data,

it is in its best interest to leverage this investment.

Recently, large motion capture databases have become commonplace due to real-

world projects requiring expressive character motions. These databases contain many

different kinds of actions and any given kind of action can have many variants. The-

oretically, it seems that we do not need to capture motions redundantly and that we

could create realistic motions simply by connecting the appropriate motions (or sub-

motions) in the database [LWS02]. This is feasible only if users can find appropriate

motions fast enough. To do so, we need an efficient way to search and cluster the data.

Motion capture data are multi-channel time series. Therefore, searching for motion

of the same style as an example motion is actually a problem of matching for time

series, and clustering motions of the same style is actually a problem of subseries join

for time series. To apply the generic results in time series indexing and compression

presented in previous chapters to motion capture data, a few domain-specific extensions

should be included. These extensions include both dealing with multiple channels, but

also some adjustments for dealing with perceptual effects specific to animation.

6.2 Motion Capture Data Representation

To represent motion capture data, a skeleton representation is combined with sequential

pose data for each degree of freedom (DOF). A skeleton is a tree-like structure that
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records the structure of the rigid bones of the character. A weight is assumed to

be available at each joint proportional to its importance. One DOF gives the root

position and the other DOFs typically give joint angles. In motion capture databases,

commonly-used file formats for motion capture data include BVH, ASF, and AMC.

A character motion cannot be represented without a character skeleton since the

parameters in the time series are given relative to it. Different skeletons have differ-

ent motion representations and parameterizations. Section 6.2.1 will introduce some

techniques used to represent the human skeleton and relate it to the time series repre-

sentation. A motion is a chain of frames (or poses) in a time sequence. Section 6.2.2

will describe what parameters are used to represent a frame. This chapter will focus on

human animation specifically, although the results can be extended to motion capture

databases containing data for of other kinds of skeletal structures.

6.2.1 Representing Skeletons

A skeleton is a collection of bones that are connected in a specific way. A human

skeleton is a tree structure (see Figure 6.1). Generally, in motion capture databases,

a skeleton representation only records the configurations of the rigid bones of the

character.

There are two ways to represent a skeleton. One is the non-hierarchical represen-

tation. Each bone’s configuration is independent from others. The advantage of this

representation is that changing the configuration of one bone will not influence those of

others. However, with this approach preserving the connectivity between bones requires

extra constraints. This drawback makes most people use another representation—the

hierarchical representation. In a hierarchical representation the motion parameters of

each bone relative to its upper-level bone (its parent node in the tree) are recorded.

Changing one parameter will not destroy the connectivity between bones. This rep-

resentation also has problems: it can suffer from interlock due to the difficulties in

representing rotation angles and it is not intuitive to directly specify the positions of
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Figure 6.1: A typical hierarchical structure of a simple human skeleton from an ASF
file.

117



endpoints such as hands and feet.

6.2.2 Representing Frames

A frame of a motion records the body position and orientation and the orientations of

all bones. The body position is usually represented as coordinates in a world coordinate

system. The world coordinate system is a global Cartesian reference space. The body

orientation is a rotation with respect to X−Y −Z axes in the world coordinate system.

A bone orientation is a rotation relative to its parent’s local coordinate system.

There are several ways to represent a 3D rotation, such as Euler angles, quaternions,

and rotation matrices. Each of them has advantages and disadvantages. Current

common motion file formats, such as BVH or AMC, use Euler angles to represent

orientation. Euler angles use three real numbers to represent a sequence of three

individual rotations around the coordinate axes. Although these numbers are not

independent, i.e., changing one of the angles alters the meaning of the subsequent

angles, this disadvantage does not matter to motion retrieval and clustering, since

motion data for searching is not modified. However, for the search to be meaningful

a representation is needed for both the query and the data using a common set of

conventions.

One complication relative to the previous work discussed in this thesis is that motion

capture data often includes rotations in 3D space, which can be difficult to parameterize

in a way that makes computing the distance between them uniform. Computing the

Euclidean distance between Euler angles, in particular, is not uniform. Therefore, the

distances between bone endpoints are used in my prototype system. These are in turn

computed from Euler angles.

118



6.2.3 Pose Similarity

Given two poses (frames):

mi = (mi,1,mi,2, . . . ,mi,k)

mj = (mj,1,mj,2, . . . ,mj,k),

a typical distance metric used for pose (frame) comparison is the weighted Euclidean

distance:

dp(mi −mj) =

√√√√ c∑
r=1

wr(mi,r −mj,r)2, (6.1)

where c is the degrees of freedom and wr is the rth weight for the degree of freedom.

There are some variations to Equation 6.1, for example see Lee et al. [LCR+02].

However, Equation 6.1 has become the basic universal distance metric of frame com-

parison for motion capture data. What is not agreed on is how the weights wi should

be set. It is obvious that some bones are more important than others, but how to

specify or derive the weights is still under discussion.

For example, Zordan et al. [ZMCF05] have assigned high weights to the trunk

parts and lower ones for the limbs. However, to avoid sliding ground contact, they also

computed the center of mass and assigned high weights to the closest ground-support

body.

Wang and Bodenheimer [WB03] further optimized the weights in the metric func-

tion given by Lee et al. [LCR+02]’s metric function. They took a set of different motion

segments, which consist of a variety of motions including walking, running, jogging,

dancing, and gesturing, in different styles. Their distance metric computes transition

points between segments. The optimal transition points are selected by experienced

animators. They defined a good transition as one showing invisible visual discontinuity

and a bad transition as one showing obvious visual discontinuity. Then they optimized

weights using a constrained least-squares minimization: minw ||Dw − o||22, where w is
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a vector of weights, D is a matrix of the similarity distances of Equation 6.1, and o is

a vector of ones and zeros—the human-made optimal transition vector. The optimiza-

tion is constrained in a way that the weights are non-negative and body-symmetric,

for example, the weight for the left shoulder should normally be identical to the right

shoulder.

The drawback of a distance function such as a Lp-norm based on the entire set

of data is its low efficiency. For example a full body skeleton usually has about 30

bones, each bone has 3 rotation parameters, and plus 6 body move parameters (3 for

translation and 3 for rotation) there are about 100 parameters for each frame. This

is the amount in data of one frame recorded in common motion file formats, such as

AMC [Acc].

Numerical comparisons of motion capture data using a Lp-norm distance function

also may not reflect perceptual similarity. In practice, a set of found motions can be

used as new queries to find similar motions [KG04]. In this way perceptually similar

motions can be found iteratively. Obviously, this method requires more computation

time and often user interaction to select the best matches at each step.

6.3 Related Work

This section introduces related work on retrieval and compression in the areas of motion

capture and animation.

6.3.1 Retrieval of Motion Capture Data

Motions can be retrieved on two semantic levels. One is query by a textual metadata

description. Most existing motion capture databases depend on human generated an-

notations or decisions, such as labeled motions with texts of “walk”, “run”, or “dance”,

and these can of course be retrieved by a textual query. The other approach is query-

by-example, which uses a short motion (or a sub-motion), to retrieve all motions in the
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database containing parts or aspects similar to the query. Most current prototypical

systems (and the prototype system for this work) target the latter query mode.

The typical distance function for comparing motion capture data is the Euclidean

distance given by the sum of the distances between each bone parameter. The distance

functions might vary with different applications, as do the actual values that are com-

pared. For example, Arikan and Forsyth [AF02] defined frame distance as a weighted

sum of the Euclidean distance between joint positions and velocities, measured rela-

tive to the root’s coordinate frame. Lee et al. [LCR+02] defined the distance between

frames as a weighted sum of the great-arc distance between joint orientations and the

Euclidean distance between joints. In the literature, joint data is usually either repre-

sented in the global coordinate frame (to preserve interactions with stationary objects)

or relative to the root’s local coordinate frame. Usually, a weight parameter is also

given to each bone to specify influence of the bone on the whole pose. As we have

mentioned, Wang and Bodenheimer [WB03] optimized the weights based on the cost

metric used in Lee et al.’s work [LCR+02].

Motion capture data is an example of multi-channel time series data. The typical

indexing methods either follow the GEMINI framework as in Cardle et al. [CVB+03],

or build similarity graphs (or matrices). The similarity graphs (or matrices) build a

compact representation of all possibly similar motion segments by comparing each pair

of motions. To automatically construct transitions, several recent research efforts have

identified locally similar regions in a motion capture dataset [AFO03, KGP02, WB03].

Liu et al. [LZWP03] automatically extracted keyframes for each motion in a database

and used these keyframes to construct a hierarchical tree of clusters of motions, with

deeper levels of the tree corresponding to joints deeper in the skeletal hierarchy. To

process a query, the closest leaf cluster is found and its motions are directly compared

against the query. This algorithm also uses a direct numerical comparison to deter-

mine similarity, and it is designed to compare entire motions against a query. For other

motions, such as rhythmic motion, Kim et al. [KPS03] automatically identified similar
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motions using beat analysis to segment a motion dataset and then clustering motions

based upon a similarity metric. The approach proposed in this thesis applies to more

general datasets and is geared toward content-based search and clustering.

Recently, researchers begin to consider derived discrete geometric features as dis-

tance metrics directly. One example is Muller et al. [MRG05] who presented a system

in which such user-specified geometric features are a part of the query with the motion

itself. Their indexing strategy is also based on these features. One drawback of this

system is that it has to reindex the whole database from scratch whenever the features

used for query are modified. It also needs the user to do more work compared with

other systems. To overcome of drawbacks of Muller et al.’s approach, the author’s

previous work [Lin06] used a group of general geometric features, which reflect the re-

lationships between perceptually important joints, to index the database. This method

does not require the user to input the geometric features. However, the accuracy of the

method is sensitive to joint selection and the method is not guaranteed to find the best

matches. Although these drawbacks make geometric feature based methods unsuitable

for searching large databases, these methods do provide the user with a high degree of

flexibility.

For large databases, a brute-force search that examines every frame in the database

sequentially demonstrates extremely poor performance. Many indexing strategies have

therefore been developed to partition the database and/or to cluster motion segments

into hierarchical structures. There also exist several methods for motion segmentation.

Probabilistic PCA, as an extension of the classic PCA surveyed in Section 2.3.2, models

the residual variance discarded by PCA [TB99]. Safonova et al. used the probabilistic

PCA method to divide a motion sequence into segments of distinct behaviors [SHP04].

Switching Linear Dynamic (SLD) models are used in human motion synthesis, clas-

sification, and visual tracking. Since exact inference in the SLD model is intractable,

approximate algorithms are usually used. Pavlović et al. proposed a variational infer-

ence algorithm which casts the SLD model as a Dynamic Bayesian Network [PRM00].
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Li et al. modeled a motion texton using a linear dynamic system and represented

the texton distribution by a transition matrix indicating the likelihood of transitions

between textons [LWS02].

6.3.2 Compression of Motion Capture Data

Motion database compression exploits redundant data across three dimensions: the

temporal dimension, the DOF dimension, and the motion clip dimension [Ari06]. Most

compression approaches use a decorrelation step followed by a coding step. Decorrela-

tion removes the redundancy between different data elements and coding exploits the

differences in probability between different data values to reduce the data rate. High-

probability data values can be coded with shorter codes than low-probability data

values, reducing the average bit rate. Coding algorithms are relatively standard; most

compression schemes differ primarily in their approach to decorrelation, since different

data types have different kinds of redundancy.

Decorrelation of Temporal Redundancy

For motion capture data, decorrelation of temporal redundancy can be done by change

of basis, and wavelet transformations are especially useful. Guskov and Andrei [GK04]

encoded differential wavelet coefficients to compress an animation sequence. Beaudoin

et al. proposed a modified wavelet technique [BPvdP07] with properties well-suited to

motion data. They worked directly with joint angles and used a cubic interpolating

spline wavelet basis.

Liu and McMillan [LM06] segmented the motion sequences using the probabilistic

PCA method. Temporal redundancy is then exploited by adaptively fitting cubic

splines to the reduced-basis coefficients and only storing the keyframes for the resulting

cubic splines.

Other temporal simplifications have been used to extract key poses in an anima-

tion sequence [ACCO05, KM04], space-time optimization [LGC94], and motion edit-
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ing [LS00, LS99]. Ibarria and Rossignac [IR03] proposed a predictor/corrector method

to exploit temporal coherence between frame meshes.

Decorrelation of Redundancy between Degrees of Freedom

Compression can also exploit redundancy between DOFs. Often the behavior of a

large number of DOFs can be expressed relative to the behavior of a lower-dimensional

set of data. Safonova et al. [SHP04] used a low-dimensional space to represent high-

dimensional dynamic human behaviors. Their work showed that 10 to 20 DOFs can

accurately represent a motion of 40 to 60 DOFs for a typical human skeleton model.

Representations of poses in a reduced dimensional space have been proposed for ap-

plications other than compression, including animation retrieval [FF05], motion edit-

ing [BSP+04, GMHP04], and motion synthesis and texturing [CH05, GBT04, PB02,

RCB98].

PCA can also compress motions by exploiting inter-DOF redundancy. Liu and

McMillan [LM06] used PCA to extract a reduced marker set that can represent a full

body pose. PCA can also be used to compress meshing shapes. PCA compresses

shapes by finding portions of the mesh that move rigidly and only encoding the rigid

transformation and residuals [Len99, GSK87].

Compressing in both temporal and DOF spaces can achieve better compression

rate than temporal compression only [Ari06]. However, compressing individual DOFs

makes reuse of the motion data and update of the database easier.

Decorrelation of Redundancy Between Motion Clips

Compression over the motion clip dimension is useful when the database has many

related motion clips. Arikan [Ari06] applied clustered PCA to compress linearly related

motion clips. They connected all motion clips in the database into a long sequence.

They uniformly divided this sequence into segments of same length, then exploited

both joint correlations and time coherence by using PCA for each segment. Instead of
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using joint angles directly, virtual markers computed from joint angles are used as an

internal representation in their work. Since joint angles are required by current game

and simulation engines, extra time and storage are needed for conversion back from

this representation, however.

This method has a good compression rate but requires a complicated and expensive

compression procedure. If the database contains too many linearly unrelated motions,

which is a common case, then clustered PCA among motion clips may also produce

artifacts. The efficiency of this method also depends on the settings of some heuristic

parameters. Their uniform segmentation strategy might also require recompression of

the entire database when it is updated.

Relative to previous work, the proposed compression approach is most comparable

with the wavelet approaches, since only temporal redundancy is exploited. However,

this has advantages since it makes database update and access easier. To compare with

methods suitable to similar use cases, the performance of the compression approach for

motion capture data proposed in Section 3.3 will be compared with the best previous

wavelet approach [BPvdP07] as well as with a Haar wavelet approach, in Section 6.6.2.

6.4 Search and Join of Motion Capture Data

A motion can be regarded as a c-channel time series of length n. The value c specifies

the number of degrees of freedom, including the translation and rotation of the root

and rotations for each joint. The value n specifies the number of frames. The motion is

assumed to be sampled at regular intervals and the number of DOFs does not change

from frame to frame or between motion clips. The data for each DOF can be modeled

as a series M = (m1,m2, . . . ,mn), which can be interpreted as a sampled curve. The

anisotropic diffusion analysis and the non-uniform segmentation method proposed in

Section 3.3 can be applied to break this curve into variable-length segments at its own

natural discontinuities. Motion databases often have a great deal of noise. Fortunately,
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the anisotropic diffusion scale-space analysis and the proposed subseries join approach

can effectively deal with this noise, as will be shown.

The skeleton structure of the character indicates the importance of the bones. For

most motions, only some bones dominate the pose, such as the back, the arms and

the legs. In my prototype system the weights are used to reflect this in the distance

function. The system also allows the user to select the bones of interest and ignore

other bones. The bones of interest are called the featured joints . The featured joints

in the proposed implementation are the trunk (combining the joints of the lower back,

the upper back and the thorax), the left and right upper arms (combining the joints of

the clavicle and the humerus), the left and right lower arms, the left and right femurs,

and the left and right tibias. These bones are chosen because they influence the visual

similarity most. In this way, the number of channels can be reduced. An application

can easily select feature bones and weights based on the user’s input. It would also be

possible to use PCA [FF05] to reduce the dimensionality of the data.

Using the feature representation introduced in Section 3.2, a hierarchical feature

structure is created for each channel of a motion time series. The approach to search

and cluster motion capture data uses the approach introduced in Chapter 4, except

that motion capture data are multi-channel time series. The result of motion subseries

is the minimum subseries join that contains all matching subseries of all channels of the

featured bones. Note that this “merging” method used in my implementation works

well for searching as will be shown in Section 6.6, but it is not a good alignment method

for multi-channel alignments. More discussions will be given in the conclusion of this

chapter. If we assume si is score of the ith channel returned by the similarity measure

and wi is the weight value assigned for this channel, then the distance is
∑c

i=1wisi,

where c is the number of channels.

My prototype system can flexibly deal with the tradeoff between accuracy, efficiency,

and memory usage by choosing feature bones and selecting scales of the anisotropic

diffusion process. When there are fewer channels of interest, finer scales of the index
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can be used for better feature matching.

6.5 Compression of Motion Capture Data

This section shows how to apply the compression approach introduced in Section 3.3 to

motion capture data. Motion data at each DOF is first divided into segments at feature

discontinuities. Every segment at each DOF is approximated by a cubic Bézier spline.

the control points of cubic Bézier splines are hierarchically differenced. An arithmetic

coding algorithm is finally used to further encode the differences. Decompression is

the inverse process of compression.

For human motion, the major post-processing step deals with the footskate prob-

lem. Footskate occurs when a character’s foot slides on the ground when it should

be planted firmly. As mentioned in [BPvdP07], visible artifacts will appear when the

compression error is larger than a certain percentage. A motion capture compression

scheme has to minimize footskate. There exist sophisticated methods to solve the

footskate problem [KGP02, Ari06, BPvdP07]. The method proposed in [BPvdP07] is

used in the my prototype system, which compresses the foot joints separately with a

tighter error tolerance than the remaining data and uses inverse kinematics to correct

the motion of other joints.

Dealing with the footskate problem may not be necessary for all applications. For

example, a game engine synthesizes generated keyframes to combine them with motion

capture data and a motion smoothing process will be performed. Compressing the

foot joints separately with greater accuracy does not influence the overall compression

performance greatly [BPvdP07].
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6.6 Experimental Results

My prototype system was tested on a 3.15GB motion capture database [Gra] containing

4 million frames (about 18.61 hours sampled at 60Hz). This database contains 2493

AMC files ranging in length from about 300 to 23000 frames. The skeleton used for

this data has 30 degrees of freedom (channels of featured joints). All the experiments

were run on Linux Kernel 2.6 PC with 512MB RAM and Pentium IV 3.0GHz CPU.

The database contains various kinds of motions, including walking, running, kicking,

jumping, boxing, dancing, and gymnastics. The total and average numbers of features

generated at different scales by my prototype system are shown in Figure 6.2.

6.6.1 Subseries Matching and Join

My prototype system needs about 3.5 hours for index construction for the whole

database when the finest scale τ = 500 is manually selected. Indexing is a pre-

processing step and does not influence the retrieval speed. Also, it is possible to add

new sequences to the database without recomputing the index from scratch, so it can

be built incrementally.

To test searching performance, 100 random motion subseries were selected as test

queries out of the database with lengths ranging from 59 to 376 frames. During the

test searches, the queries are removed from the database (if they are left in, they are

always found as their own best match). Table 6.1 shows performance of my prototype

system for subseries matching.

We also attempted to join the whole database with itself using the proposed sub-

series join approach to cluster motion subseries of different styles. Figures from 6.3

to 6.9 show some results of this subseries join. Motions for running, jumping, and

kicking were accurately paired with other similar motions.
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Figure 6.2: Numbers of features at each channel at different scales.
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Table 6.1: Performance of the prototype system for a test case involving 100 randomly
selected queries, and a whole match of the original database with itself.

Database Parameters

Number of frames in the database 3,962,581

Number of frames in the query set 20,398

Number of features in the database 101,397

Number of features in the query set 4,879

Computational Time for Matching

Overall time (min) 3.5

Time per query time series (sec) 2.6

Computational Time for Join

Overall time (min) 27.8

Time per time series (sec) 0.67

(a) A running motion of 91 frames.

(b) A running motion of 85 frames.

Figure 6.3: Two similar running motions found by the subseries join approach.
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(a) A running motion of 91 frames.

(b) A running motion of 109 frames.

Figure 6.4: Two similar running motions found by the subseries join approach.

(a) A jumping motion of 148 frames.

(b) A jumping motion of 126 frames.

Figure 6.5: Two similar jumping motions found by the subseries join approach.
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(a) A jumping motion of 143 frames.

(b) A jumping motion of 126 frames.

Figure 6.6: Two similar jumping motions found by the subseries join approach.

(a) A jumping motion of 148 frames.

(b) A jumping motion of 143 frames.

Figure 6.7: Two similar jumping motions found by the subseries join approach.
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(a) A kicking motion of 119 frames.

(b) A kicking motion of 127 frames.

Figure 6.8: Two similar kicking motions found by the subseries join approach.

(a) A kicking motion of 127 frames.

(b) A kicking motion of 153 frames.

Figure 6.9: Two similar kicking motions found by the subseries join approach.
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6.6.2 Compression

Two baseline methods are used for performance comparisons. The first baseline is

the cubic interpolating bi-orthogonal wavelet compression (BWC) method [BPvdP07].

BWC is the a reasonable baseline method because it is recent work and has the best

results for a temporal coherence scheme to date.

The wavelet coefficient selection in BWC determines how to quantize coefficients

optimally. More details can be found in the original paper. The distortion error

proposed in [BPvdP07] is used to control the number of iterations. The distortion

error metric is defined as

εx =

√√√√ 1

n

b∑
j=1

n∑
i=1

(xi − x′i)2
`j
`
. (6.2)

The value xi is the 3D position of the endpoint of each bone and x′i is the 3D position

of each such endpoint reconstructed from the compressed data. The value b is the

number of bones. The value `j is the length of the bone j, and ` =
∑p

j=1 `j. In other

words, this is a weighted error metric where longer bones are given more weight.

The 3D position values are used represented by the x−y−z coordinate of each joint

ends relative to the world space. It is computed from a series of matrix multiplications.

The iterations for all DOFs are performed simultaneously since the error metric applies

to the whole model. For each joint j, the compression error is computed as follows:

εj =
1

n

n∑
i=1

(xi − x′i)2 `j
`
. (6.3)

When εj > wjE
2/p, the iterations for joint j are halted. The value E is the upper

bound on the reconstruction error, which indicates εx ≤ E. The values wj are the

weights assigned to each joint. The values 0 ≤ wj ≤ 1 and
∑b

j=1wj = 1.

Unfortunately, the paper [BPvdP07] did not present many examples suitable for
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direct comparison. Therefore, another baseline method, Haar Wavelet compression

(HWC), which is similar to BWC, was also used. HWC transforms the original motion

data using the simpler Haar wavelet basis but uses the same coefficient selection method

as BWC.

The same motion examples as Beaudoin et al. [BPvdP07] were used to compare the

proposed compression algorithm (called NSC1) with BWC. All compressed results are

further coded using gzip, which yields an additional 1.1:1 compression ratio. Table 6.2

shows that on average, over the various error rates chosen, NSC achieves 90% and 96%

higher compression rates than BWC, for the running motion and the jumping motion,

respectively. In other words, NSC nearly doubled the compression rate.

Table 6.2: Compressed size (KB) and compression rates of the baseline method BWC
and the proposed method NSC. The uncompressed running motion takes 35.8KB of
storage (148 frames). The uncompressed jumping motion takes 505KB of storage (2085
frames).

F
il
e Method BWC NSC

Error Metric Size Rate Size Rate

R
u

n
n

in
g

1.40 0.75 48 0.42 85

0.96 0.94 38 0.52 69

0.58 1.24 29 0.62 58

0.26 2.18 16 1.02 35

0.08 5.08 7.0 2.34 15.3

Ju
m

p
in

g

0.67 9.97 51 5.15 98

0.45 13.5 37 7.54 67

0.29 18.4 27 9.90 51

0.14 32.9 15 14.03 36

0.05 79.2 6.4 32.17 15.7

To broaden the evaluation, the whole database was also compressed. The compari-

son results are shown in Figure 6.10. NSC is slower than BWC and HWC in compres-

1The name “NSC” is derived from Non-uniform Segmentation Based Compression.

136



sion time due to the iterative nature of anisotropic diffusion. However, compression

time is not as important as decompression time, which does not involve anisotropic

diffusion. The average compression time per frame (using 62 channels) for NSC was

about 1 ms. However, the average decompression time for NSC was about 115µs per

frame, which is much faster than real time.
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Figure 6.10: The average compression rate of the whole database for each error using
baseline method HWC and the proposed method NSC.
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6.7 Summary

This chapter experimentally tested the proposed techniques of subseries matching,

join, and compression of a large human motion database. The experiments showed the

performance results when applying the proposed subseries matching and join approach

to a real-world motion capture database. Note that the subseries join approach can also

automatically produce clustering results. For example, Figures from 6.3 to 6.5 show

a clique where each of the three motions joins the other. The proposed compression

approach was compared with the latest related work and an optimized Haar wavelet

method. The experiments showed that the proposed approach can achieve about an

average 85% higher compression rate than previous work with the same distortion

error, and that the compression improvement increases for lower error tolerances. The

proposed compression approach is easy to implement and has a fast decompression

speed which makes it suitable for game and animation engines.

As mentioned in Section 6.4, the merging method for multi-channel alignment used

in my current implementation is not good for multi-channel alignment, although it has

found correct results for motion capture data as shown in Section 6.6.1. In my future

work, the features should be subdivided according to the discontinuities at all channels

so that the discontinuities are alignment along all channels. In this way, each feature is

a multi-channel feature. In one feature, the properties of the segments at all channels

are taken into account.
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Chapter 7

Conclusions and Future Work

This chapter summarizes the main contributions of this thesis and discusses some

avenues for future work.

7.1 Summary of Contributions

This thesis investigates using a scale-space analysis to index feature segments of time

series datasets for subseries matching and join. The main contributions of this thesis

are a new definition of subseries join, which is a generalization of subseries matching

and whole matching, and an algorithmic approach to efficiently and accurately solve

this problem.

In the proposed techniques, time series data is smoothed and non-uniformly seg-

mented over a scale space by an anisotropic diffusion process. The scale-space analysis

generates a hierarchical representation that includes coarse to fine details of the time

series. The segments vary in duration but are bounded by significant discontinuities de-

tected by the Canny edge detector. Unlike previous work, the proposed segmentation

method is based on the intrinsic structure of time series. Each segment is approxi-

mated using a minimal polynomial envelope and other additional parameters, which

maps the original data into a reduced-dimensionality space suitable for indexing and
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compression. The subseries join approach does not find the exact answer, but it does

provide upper and lower bounds of the exact answer.

Experiments have demonstrate the effectiveness and efficiency of the proposed sub-

series matching, join, and compression techniques by testing on both a set of hybrid

time series and their variations and a large motion capture database. When applying

the proposed techniques to a real-world motion capture database, the prototype system

can efficiently search and cluster similar subsequence of motions with a high accuracy

rate. Experiments also have demonstrate noise immunity of the proposed techniques

compared with previous work. The prototype system can also exploit temporal coher-

ence in the data and achieve a significantly higher compression rate at the same error

level than previous work.

7.2 Future Work

The proposed subseries join approach is useful for many data mining applications, in-

cluding motif detection and anomaly detection. This section introduces the problems of

motif detection and anomaly detection and presents some ideas based on the proposed

approach to solve these problems.

7.2.1 Motif Detection

Motif detection finds approximately repeated patterns in a time series data. One ex-

ample is shown in Figure 7.1(a). Yankov et al. proposed a motif detection method

that uses a uniform scaling Euclidean distance and a symbolic representation based

on thresholding [YKM+07]. The thresholds for converting a time series to a sym-

bolic sequence are heuristically determined. However, the threshold selections may

be different with different kinds of data. More importantly, this method is also only

semi-automatic, because the user also needs to specify the length of the motif segments

manually. Generally, a better definition of a “motif” is needed that does not depend

on a priori knowledge of its shape or length.
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(a) Motif detection. The approximate re-
peated subseries that are underlined are the
motif of this time series.

(b) Anomaly detection. The unusual subseries
is underlined.

Figure 7.1: Simulated examples of motif detection and anomaly detection.

Based on the proposed definition of subseries join, we can define motif detec-

tion graph-theoretic terms. For example, we can define motif detection as finding

k-connected components in the graph given by the subseries join of the time series

itself. This is illustrated in Figure 7.2(a). Every vertex represents a subseries. Every

edge between two vertices represents a distance between these two subseries that is

no greater than a predefined threshold. The proposed approach will always find the

subseries itself as one ε-similar match. The resulting self-loops from the graph are

removed. There may also exist overlapped subseries, for example, A and B. These

overlapped subseries are merged by collapsing the associated edges. After this process-

ing, Figure 7.2(a) turns into Figure 7.2(b).

Some alternative graph-theoretic definitions of a motif can also be considered. One

possible definition is based on the maximal cliques in a graph. A clique in an undi-

rected graph is a subgraph in which every vertex is connected to every other vertex

in the subgraph. A maximal clique is a complete subgraph that is not contained in

any other complete subgraph. Unfortunately, the maximal clique problem is one of
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(a) The graph of subseries join results.

A
(B)

C

D

E F
G

H

I J

(b) Remove the self-loops and merges the over-
lapped vertices A and B.

Figure 7.2: Motif detection and anomaly detection using graph algorithms. The max-
imal cliques (framed by dashed circles) in the graph of subseries join results give the
motifs. The isolated vertex E is an anomaly.

the basic NP-complete problems, and the clique enumeration problem is NP-hard.

However, there exist many heuristic algorithms to approximately solve the clique enu-

meration problem [Akk73, Bys03], including parallel algorithms [DK88, DWX+06] and

polynomial-time approximation algorithms [BT00, IIO05].

7.2.2 Anomaly Detection

Anomaly detection finds unusual patterns in a time series data that contains approx-

imately periodic patterns. For example, in Figure 7.1(b), the underlined part is quite

different from the other parts of the data that is sine-like.

Based on the proposed definition of subseries join, we can define anomaly detection

as finding the isolated vertices in the graph of subseries join results. For example, in

Figure 7.2, the vertex E is an isolated vertex. Finding isolated vertices is simpler than

finding k-connected components in a graph, because it requires only linear computa-

tional time.
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7.3 Conclusion

This thesis proposed a new definition of subseries join that finds similar subseries in

two or more time series datasets, and a solution to compute the subseries join based on

a hierarchical feature representation. This thesis also proposed a compression scheme

based on the same hierarchical feature representation.

Subseries join is useful for many data mining applications, including clustering,

classification, anomaly detection, rule discovery, and motif detection in many domains,

such as finance, medicine, music, and motion capture. Chapter 6 has shown some

results of using the proposed techniques to cluster motion capture data. This chapter

also has discussed using the proposed techniques to solve the problems of motif de-

tection and anomaly detection. In my future work, I will investigate usefulness of the

proposed techniques to other applications and other domains.
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[BBK01] C. Böhm, S. Berchtold, and D. Keim. Searching in high-dimensional spaces:

index structures for improving the performance of multimedia databases. ACM

Computing Surveys, 33(3):322–373, 2001.

[BGL+98] C. H. Bennett, P Gacs, M Li, P Vitanyi, and W Zurek. Information distance.

IEEE Transactions on Information Theory, 44(4):1407–1423, 1998.

[BKSS90] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R∗-tree: an efficient

and robust access method for points and rectangles. In Proceedings of ACM SIG-

MOD International Conference on Management of Data, pages 322–331, 1990.

[BO99] T. Bozkaya and M. Ozsoyoglu. Indexing large metric spaces for similarity search

queries. ACM Transactions on Database Systems, 24(3):361–404, 1999.

[BPvdP07] P. Beaudoin, P. Poulin, and M. van de Panne. Adapting wavelet compression to

human motion capture clips. In Proceedings of Graphics Interface 2007, pages

643–648, 2007.

[BSP+04] J. Barbic̈, A. Safonova, J. Pan, C. Faloutsos, J. Hodgins, and N. Pollard. Seg-

menting motion capture data into distinct behaviors. In Proceedings of Graphics

Interface 2004, pages 185–194, 2004.
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Transaction Information Thoery, 50:3250–3264, 2004.

[LCR+02] J. Lee, J. Chai, P. Reitsma, J. Hodgins, and N. Pollard. Interactive control of

avatars animated with human motion data. In Proceedings of ACM SIGGRAPH

2002, pages 491–500, 2002.

[Len99] J. E. Lengyel. Compression of time-dependent geometry. In Proceedings of the

Symposium on Interactive 3D Graphics, pages 89–95, 1999.

[LGC94] Z. Liu, S. Gortler, and M. Cohen. Hierarchical spacetime control. In Proceedings

of ACM SIGGRAPH 1994, pages 35–42, 1994.

150



[Li07] M. Li. Information distance and its applications. International Journal of Foun-

dations of Computer Science, 4094:1–9, 2007.

[Lin06] Y. Lin. Efficient motion search in large motion capture databases. In Proceedings

of the 2nd International Symposium on Visual Computing (ISVC ’06), pages 151–

160. LNCS 4291, 2006.

[LKLP02] J. Lin, E. Keogh, S. Lonardi, and P. Patel. Finding motifs in time series. In

Proceedings of the 2nd International Workshop Temporal Data Mining, pages

370–377, 2002.

[LM06] G. Liu and L. McMillan. Segment-based human motion compression. In Pro-

ceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer

Animation, pages 127–135, 2006.

[LM07] Y. Lin and M. D. McCool. Nonuniform segment-based compression of motion

capture data. In Proceedings of the 3rd International Symposium on Visual Com-

puting (ISVC ’0y), pages 56–65, 2007.

[LS99] J. Lee and S. Shin. A hierarchical approach to interactive motion editing for

human-like figures. In Proceedings of ACM SIGGRAPH 1999, pages 39–48, 1999.

[LS00] J. Lee and S. Shin. Multiresolution motion analysis with applications. In Inter-

national Workshop on Human Modeling and Animation, pages 131–143, 2000.

[LV97] M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and Its Appli-

cations. Springer-Verlag, 2nd edition, 1997.

[LWS02] Y. Li, T. Wang, and H. Y. Shum. Motion texture: a two level statistical model

for character motion synthesis. In Proceedings of ACM SIGGRAPH 2002, pages

465–472, 2002.

[LZWP03] F. Liu, Y. Zhuan, F. Wu, and Y. Pan. 3D motion retrieval with motion index

tree. Computer Vision and Image Understanding, 92(2-3):265–284, 2003.

[MH80] D. Marr and E. Hildreth. Theory of edge detection. In Proceedings of the Royal

Society, pages 287–217, 1980.

151



[MP79] D. Marr and T. Poggio. A computational theory of human stereo vision. Proceed-

ings of the Royal Society of London. Series B, Biological Sciences, 204(1156):301–

328, 1979.

[MR81] C. Myers and L. Rabiner. A level building programming dynamic time warp-

ing algorithm for connected word recognition. IEEE Transactions on Acoustics,

Speech, and Signal Processing, ASSP-29(2):284–297, 1981.
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