150 research outputs found

    A new estimation algorithm from measurements with multiple-step random delays and packet dropouts

    Get PDF
    The least-squares linear estimation problem using covariance information is addressed in discrete-time linear stochastic systems with bounded random observation delays which can lead to bounded packet dropouts. A recursive algorithm, including the computation of predictor, filter, and fixed-point smoother, is obtained by an innovation approach. The random delays are modeled by introducing some Bernoulli random variables with known distributions in the system description. The derivation of the proposed estimation algorithm does not require full knowledge of the state-space model generating the signal to be estimated, but only the delay probabilities and the covariance functions of the processes involved in the observation equation.This research is supported by Ministerio de Educación y Ciencia (Grant no. MTM2008-05567) and Junta de Andalucía (Grant no. P07-FQM-02701)

    Recent advances on filtering and control for nonlinear stochastic complex systems with incomplete information: A survey

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2012 Hindawi PublishingSome recent advances on the filtering and control problems for nonlinear stochastic complex systems with incomplete information are surveyed. The incomplete information under consideration mainly includes missing measurements, randomly varying sensor delays, signal quantization, sensor saturations, and signal sampling. With such incomplete information, the developments on various filtering and control issues are reviewed in great detail. In particular, the addressed nonlinear stochastic complex systems are so comprehensive that they include conventional nonlinear stochastic systems, different kinds of complex networks, and a large class of sensor networks. The corresponding filtering and control technologies for such nonlinear stochastic complex systems are then discussed. Subsequently, some latest results on the filtering and control problems for the complex systems with incomplete information are given. Finally, conclusions are drawn and several possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61104125, 61028008, 61174136, 60974030, and 61074129, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council EPSRC of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Optimal Fusion Estimation with Multi-Step Random Delays and Losses in Transmission

    Get PDF
    This paper is concerned with the optimal fusion estimation problem in networked stochastic systems with bounded random delays and packet dropouts, which unavoidably occur during the data transmission in the network. The measured outputs from each sensor are perturbed by random parameter matrices and white additive noises, which are cross-correlated between the different sensors. Least-squares fusion linear estimators including filter, predictor and fixed-point smoother, as well as the corresponding estimation error covariance matrices are designed via the innovation analysis approach. The proposed recursive algorithms depend on the delay probabilities at each sampling time, but do not to need to know if a particular measurement is delayed or not. Moreover, the knowledge of the signal evolution model is not required, as the algorithms need only the first and second order moments of the processes involved. Some of the practical situations covered by the proposed system model with random parameter matrices are analyzed and the influence of the delays in the estimation accuracy are examined in a numerical example.This research is supported by the “Ministerio de Economía y Competitividad” and “Fondo Europeo de Desarrollo Regional” FEDER (Grant No. MTM2014-52291-P)

    Recent advances on recursive filtering and sliding mode design for networked nonlinear stochastic systems: A survey

    Get PDF
    Copyright © 2013 Jun Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Some recent advances on the recursive filtering and sliding mode design problems for nonlinear stochastic systems with network-induced phenomena are surveyed. The network-induced phenomena under consideration mainly include missing measurements, fading measurements, signal quantization, probabilistic sensor delays, sensor saturations, randomly occurring nonlinearities, and randomly occurring uncertainties. With respect to these network-induced phenomena, the developments on filtering and sliding mode design problems are systematically reviewed. In particular, concerning the network-induced phenomena, some recent results on the recursive filtering for time-varying nonlinear stochastic systems and sliding mode design for time-invariant nonlinear stochastic systems are given, respectively. Finally, conclusions are proposed and some potential future research works are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61329301, 61333012, 61374127 and 11301118, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant no. GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Networked distributed fusion estimation under uncertain outputs with random transmission delays, packet losses and multi-packet processing

    Get PDF
    This paper investigates the distributed fusion estimation problem for networked systems whose mul- tisensor measured outputs involve uncertainties modelled by random parameter matrices. Each sensor transmits its measured outputs to a local processor over different communication channels and random failures –one-step delays and packet dropouts–are assumed to occur during the transmission. White sequences of Bernoulli random variables with different probabilities are introduced to describe the ob- servations that are used to update the estimators at each sampling time. Due to the transmission failures, each local processor may receive either one or two data packets, or even nothing and, when the current measurement does not arrive on time, its predictor is used in the design of the estimators to compensate the lack of updated information. By using an innovation approach, local least-squares linear estimators (filter and fixed-point smoother) are obtained at the individual local processors, without requiring the signal evolution model. From these local estimators, distributed fusion filtering and smoothing estimators weighted by matrices are obtained in a unified way, by applying the least-squares criterion. A simula- tion study is presented to examine the performance of the estimators and the influence that both sensor uncertainties and transmission failures have on the estimation accuracy.This research is supported by Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigación and Fondo Europeo de Desarrollo Regional FEDER (grant no. MTM2017-84199-P)

    A review on analysis and synthesis of nonlinear stochastic systems with randomly occurring incomplete information

    Get PDF
    Copyright q 2012 Hongli Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In the context of systems and control, incomplete information refers to a dynamical system in which knowledge about the system states is limited due to the difficulties in modeling complexity in a quantitative way. The well-known types of incomplete information include parameter uncertainties and norm-bounded nonlinearities. Recently, in response to the development of network technologies, the phenomenon of randomly occurring incomplete information has become more and more prevalent. Such a phenomenon typically appears in a networked environment. Examples include, but are not limited to, randomly occurring uncertainties, randomly occurring nonlinearities, randomly occurring saturation, randomly missing measurements and randomly occurring quantization. Randomly occurring incomplete information, if not properly handled, would seriously deteriorate the performance of a control system. In this paper, we aim to survey some recent advances on the analysis and synthesis problems for nonlinear stochastic systems with randomly occurring incomplete information. The developments of the filtering, control and fault detection problems are systematically reviewed. Latest results on analysis and synthesis of nonlinear stochastic systems are discussed in great detail. In addition, various distributed filtering technologies over sensor networks are highlighted. Finally, some concluding remarks are given and some possible future research directions are pointed out. © 2012 Hongli Dong et al.This work was supported in part by the National Natural Science Foundation of China under Grants 61273156, 61134009, 61273201, 61021002, and 61004067, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, the National Science Foundation of the USA under Grant No. HRD-1137732, and the Alexander von Humboldt Foundation of German

    Information fusion algorithms for state estimation in multi-sensor systems with correlated missing measurements

    Get PDF
    In this paper, centralized and distributed fusion estimation problems in linear discrete-time stochastic systems with missing observations coming from multiple sensors are addressed. At each sensor, the Bernoulli random variables describing the phenomenon of missing observations are assumed to be correlated at instants that differ m units of time. By using an innovation approach, recursive linear filtering and fixed-point smoothing algorithms for the centralized fusion problem are derived in the least-squares sense. The distributed fusion estimation problem is addressed based on the distributed fusion criterion weighted by matrices in the linear minimum variance sense. For each sensor subsystem, local least-squares linear filtering and fixed-point smoothing estimators are given and the estimation error cross-covariance matrices between any two sensors are derived to obtain the distributed fusion estimators. The performance of the proposed estimators is illustrated by numerical simulation examples where scalar and two-dimensional signals are estimated from missing observations coming from two sensors, and the estimation accuracy is analyzed for different missing probabilities and different values of m.Ministerio de Ciencia e Innovación (Programa FPU and Grant No. MTM2011-24718

    Optimal Filters with Multiple Packet Losses and its Application in Wireless Sensor Networks

    Get PDF
    This paper is concerned with the filtering problem for both discrete-time stochastic linear (DTSL) systems and discrete-time stochastic nonlinear (DTSN) systems. In DTSL systems, an linear optimal filter with multiple packet losses is designed based on the orthogonal principle analysis approach over unreliable wireless sensor networks (WSNs), and the experience result verifies feasibility and effectiveness of the proposed linear filter; in DTSN systems, an extended minimum variance filter with multiple packet losses is derived, and the filter is extended to the nonlinear case by the first order Taylor series approximation, which is successfully applied to unreliable WSNs. An application example is given and the corresponding simulation results show that, compared with extended Kalman filter (EKF), the proposed extended minimum variance filter is feasible and effective in WSNs

    RLS Wiener Fixed-Point Smoother and Filter with Randomly Delayed or Uncertain Observations in Linear Discrete-Time Stochastic Descriptor Systems

    Get PDF
    The purpose of this paper is to design the recursive least-squares (RLS) Wiener fixed-point smoother and filter in linear discrete-time descriptor systems. The signal process is observed with additional observation noise. The observed value is randomly delayed by multiple sampling intervals or has the possibility of uncertainty that the observed value does not include the signal and contains the observation noise only. It is assumed that the probability of the observation delay and the probability that the observation does not contain the signal are known. The delayed or uncertain measurements are characterized by the Bernoulli random variables. The characteristic of this paper is that the RLS Wiener estimators are proposed from the randomly delayed, by multiple sampling intervals, or uncertain observations particularly for the descriptor systems in linear discrete-time stochastic systems

    Estimation, filtering and fusion for networked systems with network-induced phenomena: New progress and prospects

    Get PDF
    In this paper, some recent advances on the estimation, filtering and fusion for networked systems are reviewed. Firstly, the network-induced phenomena under consideration are briefly recalled including missing/fading measurements, signal quantization, sensor saturations, communication delays, and randomly occurring incomplete information. Secondly, the developments of the estimation, filtering and fusion for networked systems from four aspects (linear networked systems, nonlinear networked systems, complex networks and sensor networks) are reviewed comprehensively. Subsequently, some recent results on the estimation, filtering and fusion for systems with the network-induced phenomena are reviewed in great detail. In particular, some latest results on the multi-objective filtering problems for time-varying nonlinear networked systems are summarized. Finally, conclusions are given and several possible research directions concerning the estimation, filtering, and fusion for networked systems are highlighted
    corecore