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In this paper, centralized and distributed fusion estimation problems in linear discrete-
time stochastic systems with missing observations coming from multiple sensors are
addressed. At each sensor, the Bernoulli random variables describing the phenomenon of
missing observations are assumed to be correlated at instants that differ m units of time.
By using an innovation approach, recursive linear filtering and fixed-point smoothing algo-
rithms for the centralized fusion problem are derived in the least-squares sense. The dis-
tributed fusion estimation problem is addressed based on the distributed fusion criterion
weighted by matrices in the linear minimum variance sense. For each sensor subsystem,
local least-squares linear filtering and fixed-point smoothing estimators are given and
the estimation error cross-covariance matrices between any two sensors are derived to
obtain the distributed fusion estimators.

The performance of the proposed estimators is illustrated by numerical simulation
examples where scalar and two-dimensional signals are estimated from missing observa-
tions coming from two sensors, and the estimation accuracy is analyzed for different miss-
ing probabilities and different values of m.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

During the past decades, the estimation problem in multi-sensor systems has motivated a significant amount of research
due to its increasing application in many engineering fields (for example, in the fields of computer and communication)
where sensor networks are used to obtain the whole available information on the system state and its estimation must
be carried out from the observations provided by all the sensors (see for example [1] and references therein).

Although the use of sensor networks offers several advantages such as easier installation, simpler maintenance and re-
duced cost, since the measured data are sent to a processing center via a communication network, the unreliable network
characteristics usually leads to other problems such as missing measurements (i.e. measured outputs containing noise only,
also called uncertain observations), random communication packet losses and/or delays. These problems may occur in prac-
tical applications for many different reasons, such as random failures in the transmission mechanism, accidental loss of some
measurements or data inaccessibility at certain times, etc.

The estimation problems in systems with only one or several of the aforementioned uncertainties has attracted consid-
erable research attention (see e.g. [2–10] and references therein). To be more specific, the estimation problem in discrete-
time nonlinear systems with uncertain observations has been studied in [2,3]; the estimation problem from measurements
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subject to random delay which does not exceed one sampling period is addressed in [4,5]; modifications of conventional lin-
ear estimation algorithms for systems with packet dropouts have been proposed in [6,7]; the optimal linear estimation prob-
lem for systems with random delays and packet dropouts has been considered in [8], and for systems including the three
sources of uncertainty in [9,10].

All the above papers consider a single sensor or multiple sensors with the same uncertainty characteristics. However, this
is not a realistic assumption in several application fields, for instance, in networked communication systems involving het-
erogeneous measurement devices, and hence multiple-sensor systems whose statistical properties are not necessarily the
same for all the sensors require the derivation of new estimation algorithms, as the conventional ones cannot be applied
directly. A basic matter in systems with multiple sensors is how to fuse the measurement data from the different sensors
to address the estimation problem. Mainly two methods are used to process the measured sensor data in estimation prob-
lems with sensor networks: centralized and distributed fusion methods.

In the centralized fusion method, all the measured data from sensors are communicated to the fusion center for being
processed; specifically, the observations from multiple sensors are stacked as one sensor measurement (with greater dimen-
sion) and, hence, it does not require a particular fusion rule. In [11,12] centralized linear minimum variance estimators are
derived considering multiple sensors with different failure rates, and different delay rates are considered in [13,14]. The opti-
mal centralized problem, also in linear minimum variance sense, is investigated in [15,16] for systems with multiple sensors
of different packet dropout rates.

Nevertheless, as it is known, the centralized approach has several drawbacks due to augmentation, such as poor surviv-
ability, reliability, heavy communication and expensive computational cost, and various distributed fusion algorithms have
been proposed to reduce these drawbacks. In the distributed fusion method, each sensor estimates the state based on its own
measurement data, and then it sends such estimate to the fusion center for fusion according to a certain information fusion
criterion. For example, under the assumption of normal distribution, a distributed fusion estimator is proposed in [17] based
in maximum likelihood criterion, and the distributed fusion criterion weighted by matrices in the linear minimum variance
sense is established in [18], which is equivalent to the maximum likelihood fusion criterion under normality assumption.

Recently, more attention has been paid to the distributed fusion estimation in networked systems with unreliable net-
work transmission (see e.g. [19–23] and references therein). Distributed fusion estimators for multi-sensor systems with
random delays were presented in [19,20], and for systems with packet dropouts in [15,21]. Simultaneous packet delays
and dropouts are considered in [22,23].

Compared with the number of papers about multi-sensor systems with random communication packet delays and/or
dropouts, to the best of the authors knowledge, the literature regarding distributed fusion estimation in multi-sensor sys-
tems with missing measurements is relatively scarcer, and most existing papers use independent Bernoulli variables to mod-
el the missing measurements [24–26].

In [12] centralized linear minimum variance estimators are obtained removing the assumption of independence of the
Bernoulli variables describing the phenomenon of missing measurements. Specifically, different sequences of Bernoulli ran-
dom variables correlated at consecutive sampling times are considered to model the uncertainty at each sensor. This form of
correlation covers practical situations where the state cannot be missing in two successive observations and hence, trans-
mission models with stand-by sensors, which are immediately substituted when a failure occurs, are appropriately managed
with this model. However, the failed sensor may not be replaced immediately but after m instants of time; in such situations,
correlation among the random variables modeling the missing measurements at times k and kþm must be considered and
new algorithms must be deduced.

In response to the above considerations, this paper deals with the centralized and distributed fusion estimation problems
in multi-sensor systems with missing measurements when, at each sensor, the random variables modeling the missing mea-
surements are correlated at instants that differ m units of time. The main contributions can be summarized as follows: (i)
centralized fusion filtering and fixed-point smoothing algorithms are proposed in multi-sensor systems with correlated
missing measurements and the correlation form considered covers certain models in which the state cannot be missing
in mþ 1 consecutive observations, thus generalizing the results in [12]; (ii) the distributed fusion filtering and fixed-point
smoothing problems are addressed in multi-sensor systems with missing measurements.

The paper is organized as follows: in Section 2 the problem formulation is described; more specifically, we introduce the
linear state transition model perturbed by white noise, and the measurement model affected by additive white noise and
multiplicative noise describing the phenomenon of missing measurements. Also, the pertinent assumptions to address
the least-squares linear estimation problem are established. In Section 3, by using an innovation analysis approach and
the orthogonal projection Lemma, recursive algorithms for the centralized fusion filter and fixed-point smoothers are pre-
sented (the derivation has been deferred to Appendices A and B). Next, in Section 4, the local least-squares linear estimators
and the error cross-covariance matrices between any two local estimates are derived, then distributed fusion estimators are
obtained based on the optimal fusion criterion weighted by matrices in the linear minimum variance sense. The performance
of the proposed estimators is illustrated in Section 5 by two numerical simulation examples where local, distributed and cen-
tralized fusion estimators are compared. The paper ends with some concluding remarks in Section 6.

Notation: The notation used is standard. AT represents the transpose of A; Rn denotes the n-dimensional Euclidean space,
Rm�n is the set of all real matrices of dimension m� n, and I and 0 represent the identity matrix and zero matrix of appro-
priate dimension, respectively. The shorthand DiagðM1; . . . ;MrÞ denotes a block diagonal matrix whose diagonal blocks are
the matrices M1; . . . ;Mr . If the dimension of a matrix is not explicitly stated, it is assumed to be compatible for algebraic
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operations. For time-varying matrices Fk; k P 0, the product Fk�1; . . . ; Fi is denoted by Fk;i. The Hadamard product of matrices
C and D is denoted by � (½C � D�ij ¼ CijDij).

Also, for arbitrary random vectors a and b, the following notation is used throughout the paper:

Cov½a; b� ¼ E a� E½a�ð Þ b� E½b�ð ÞT
h i

and Cov½a� ¼ Cov½a;a�, where E½�� stands for the mathematical expectation operator. ba de-

notes the estimator of a and ea ¼ a� ba the estimation error.

2. Problem formulation

The problem at hand is to determine the least-squares (LS) linear filtering and fixed-point smoothing estimators of the
state in linear discrete-time stochastic systems with missing measurements coming from multiple sensors. In this section,
we present the system model and the hypotheses about the state and noise processes involved.

Consider a class of discrete-time linear stochastic systems with missing measurements coming from r sensors; the phe-
nomenon of missing measurements (that is, observations containing only noise) occurs randomly and, for each sensor, a dif-
ferent sequence of Bernoulli random variables is used to model this phenomenon. Specifically, the following system is
considered
xk ¼ Fk�1xk�1 þwk�1; k P 1; ð1Þ

yi
k ¼ hi

kHi
kxk þ v i

k; k P 1; i ¼ 1;2; . . . ; r; ð2Þ
where xk 2 Rn is the state, yi
k 2 R; i ¼ 1;2; . . . ; r, is the measurement collected by sensor i at sampling time k; fwk; k P 0g

and fv i
k; k P 1g; i ¼ 1;2; . . . ; r, are noise sequences, and fhi

k; k P 1g; i ¼ 1;2; . . . ; r, are Bernoulli random variables whose
values – one or zero – indicate whether the state is present or missing in the corresponding measure. Fk and
Hi

k; i ¼ 1;2; . . . ; r, are known time-varying matrices with compatible dimensions, superscript i denotes the ith sensor, and
r is the number of sensors.

As is known, to address the LS linear estimation problem the state and the observations are required to have finite sec-
ond-order moments; the following assumptions specify the first- and second-order moments required in the study of this
problem, as well as the statistical properties assumed about the initial state and noise processes.

Assumption 1. The initial state x0 is a random vector with E½x0� ¼ x0 and Cov½x0� ¼ P0.
Assumption 2. The additive noises fwk; k P 0g and fv i
k; k P 1g, i ¼ 1;2; . . . ; r, are zero-mean white sequences with covar-

iances Cov ½wk� ¼ Q k and Cov½v i
k� ¼ Ri

k, respectively.
Assumption 3. The multiplicative noises fhi
k; k P 1g; i ¼ 1;2; . . . ; r, are sequences of Bernoulli random variables with

P½hi
k ¼ 1� ¼ hi

k. For i ¼ 1;2; . . . ; r, the variables hi
k and hi

s are independent for jk� sj– 0; m, and Cov ½hi
k; h

i
s� ¼ Khi

k;s are known
for jk� sj ¼ 0; m.
Assumption 4. The initial state x0 and the noise processes fwk; k P 0g, fv i
k; k P 1g and fhi

k; k P 1g, for i ¼ 1;2; . . . ; r, are
mutually independent.
Remark 1. Note that, when hi
k ¼ 1, which occurs with known probability hi

k, the state xk is present in the measure yi
k coming

from the ith sensor at time k, whereas if hi
k ¼ 0 the state is missing in the measured data at time k, which means that such

observation only contains additive noise v i
k with probability 1� hi

k. To model the phenomenon of missing measurements at
each sensor, different sequences of Bernoulli random variables correlated at instants that differ m units of time are consid-
ered. This special form of correlation allows us to consider certain class of systems in which the state cannot be missing in
mþ 1 consecutive observations; specifically, sensor networks where sensor failures may happen and a failed sensor is
substituted not immediately, but m sampling times after having failed. For instance, consider that, as in Section 5,
hi

k ¼ 1� ci
kþmð1� ci

kÞ, with fci
k; k P 1g sequences of independent Bernoulli random variables. Hence, if hi

k ¼ 0, then
ci

kþm ¼ 1 and ci
k ¼ 0, and consequently hi

kþm ¼ 1; this fact guarantees that, if the state is missing at time k, the output mea-
surement at time kþm necessarily contains the state. Therefore, there cannot be more than m consecutive measured data
consisting of noise only.
Remark 2. From Assumption 3, hi
k and hi

s are independent for jk� sj– 0; m, and hence Khi

k;s ¼ 0 for jk� sj– 0; m. Also, it is
immediate that Khi

k;k ¼ hi
kð1� hi

kÞ and Khi

k;k�m ¼ E½hi
kh

i
k�m� � hi

kh
i
k�m.
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Remark 3. From Assumption 4, the Bernoulli sequences as well as the observation noises are independent from sensor to
sensor. This condition is not necessary to deduce the centralized estimators and clearly it is not involved in the derivation
of the local estimators. Such condition is just used to obtain the cross-covariance matrices of the local estimation errors,
which are necessary to determine the matrix weights of the distributed fusion estimators.

Our aim is to solve the LS estimation problem of the state xk based on the received measurements
yi

1; y
i
2; . . . ; yi

k; . . . ; yi
kþN

� �
; N P 0; i ¼ 1;2; . . . ; r, by using centralized and distributed fusion methods to process the measured

sensor data. More specifically, our aim can be stated as follows:

(i) Centralized fusion estimation problem. Consider that all measurement data coming from r sensors are transmitted to a
fusion center for being processed, and our aim is to obtain the LS linear filter, bxk=k, and fixed-point smoother,bxk=kþN; N P 1, by recursive algorithms.

(ii) Distributed fusion estimation problem. Firstly, recursive algorithms to obtain local LS linear filters, bxi
k=k, and fixed-point

smoothers, bxi
k=kþN; N P 1, for i ¼ 1;2; . . . ; r, are derived. Secondly, distributed matrix-weighted fusion estimatorsbx0

k=kþN; N P 0, are established by applying the optimal information fusion criterion weighted by matrices in the linear
minimum variance sense [18].
Remark 4. In both cases, recursive algorithms for the LS linear estimators will be established using an innovation approach
and the orthogonal projection Lemma (OPL). Since the observations are generally nonorthogonal vectors, through the
Gram-Schmidt orthogonalization procedure, the set of observations is transformed into an equivalent set of orthogonal vectors,
innovations, defined as the differences between each observation and the one-stage observation predictor. The fact that the
innovation process is uniquely determined by the observations allows us to state that the LS linear estimator of the state based
on the observations is equal to the LS linear estimator of the state based on the innovations. The advantage of this approach
comes from the fact that the innovations constitute a white process, and the expression of the estimators as linear combina-
tion of the innovations provide the starting point to derive the recursive filtering and fixed-point smoothing algorithms.

3. Centralized fusion estimation

In this section, our aim is to obtain the optimal (under the LS criterion) linear estimator by the centralized fusion method,
in which all the measurement data coming from r sensors are transmitted to a central site for being processed.

For this purpose, denoting yk ¼ ðy1
k ; . . . ; yr

kÞ
T
; vk ¼ ðv1

k ; . . . ;v r
kÞ

T
; Hk ¼ ðH1T

k ; . . . ;HrT
k Þ

T
and Hk ¼ Diagðh1

k ; . . . ; hr
kÞ, Eq. (2) is

equivalent to the following stacked measurement equation
yk ¼ HkHkxk þ vk; k P 1: ð3Þ
Remark 5. The following properties of the noises in (3) are easily inferred from the model assumptions stated in the
previous Section 2:

– The additive noise fvk; k P 1g is a zero-mean white process with covariance matrix Rk ¼ DiagðR1
k ; . . . ;Rr

kÞ; 8k P 1.
– The random matrices fHk; k P 1g satisfy
E½Hk� ¼ Hk ¼ Diagðh1
k ; . . . ; hr

kÞ;

E½ðHk �HkÞ
2� ¼ HkðI �HkÞ;

E½ðHk �HkÞðHk�m �Hk�mÞ� ¼ DiagðKh1

k;k�m; . . . ;Khr

k;k�mÞ:
– The initial state x0 and the noise processes fwk; k P 0g; fvk; k P 1g and fHk; k P 1g are mutually independent.
Remark 6. By denoting hk ¼ ðh1
k ; . . . ; hr

kÞ
T
, it is clear that Cov½hk� ¼ Kh

k;k ¼ HkðI �HkÞ and Cov ½hk; hk�m� ¼
Kh

k;k�m ¼ DiagðKh1

k;k�m; . . . ;Khr

k;k�mÞ. Moreover, for any random matrix G independent of fHk; k P 1g, using the Hadamard prod-

uct, it is easily deduced [11] that E½HkGHs� ¼ E½hkh
T
s � � E½G�. Particularly, the next property (which will be needed later) is

immediately clear
E½ðHk �HkÞGðHk�m �Hk�mÞ� ¼ Kh
k;k�m � E½G�: ð4Þ
In the following theorems, using an innovation approach and the OPL, recursive algorithms for the linear filter, bxk=k, (The-
orem 1) and the fixed-point smoother, bxk=kþN , for fixed k and N P 1, (Theorem 2) are derived.
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Theorem 1. For the system model (1) and measurement model (3), under Assumptions 1–4, the LS linear filter bxk=k is obtained as
bxk=k ¼ bxk=k�1 þ Sk;kP
�1
k mk; k P 1; bx0=0 ¼ x0; ð5Þ
where the state predictor, bxk=k�1, is given by
bxk=k�1 ¼ Fk�1bxk�1=k�1; k P 1: ð6Þ
The innovation, mk, satisfies
mk ¼ yk �HkHkbxk=k�1; k 6 m;

mk ¼ yk �HkHkbxk=k�1 þWk;k�m mk�m �
Xm�1

i¼1

TT
k�i;k�mP�1

k�imk�i

 !
; k > m;

ð7Þ
where Wk;k�m ¼ Kh
k;k�m � HkFk;k�mDk�mHT

k�m

� �
P�1

k�m, with Dk ¼ E½xkxT
k � recursively calculated from
Dk ¼ Fk�1Dk�1FT
k�1 þ Q k�1; k P 1; D0 ¼ P0 þ x0xT

0: ð8Þ
The matrices Tk;k�i are determined by
Tk;k�i ¼ HkHkFk;k�iSk�i;k�i; 2 6 k 6 m; 1 6 i 6 k� 1;

Tk;k�i ¼ HkHkFk;k�iSk�i;k�i �Wk;k�mTT
k�i;k�m; k > m; 1 6 i 6 m� 1:

ð9Þ
The matrix Sk;k is calculated by
Sk;k ¼ Pk=k�1HT
kHk; k 6 m;

Sk;k ¼ Pk=k�1HT
kHk � Fk;k�mSk�m;k�m �

Xm�1

i¼1

Fk;k�iSk�i;k�iP
�1
k�iTk�i;k�m

 !
WT

k;k�m; k > m;
ð10Þ
where Pk=k�1, the prediction error covariance matrix, is obtained by
Pk=k�1 ¼ Fk�1Pk�1=k�1FT
k�1 þ Q k�1; k P 1;
with Pk=k, the filtering error covariance matrix, given by
Pk=k ¼ Pk=k�1 � Sk;kP
�1
k ST

k;k; k P 1; P0=0 ¼ P0:
The innovation covariance matrix, Pk, satisfies
Pk ¼ Kh
k;k � HkDkHT

k

� �
þ Rk þHkHkSk;k; k 6 m;

Pk ¼ Kh
k;k � HkDkHT

k

� �
þ Rk þHkHkSk;k þ ST

k;kHT
kHk �HkHkPk=k�1HT

kHk

�Wk;k�m Pk�m þ
Xm�1

i¼1

TT
k�i;k�mP�1

k�iTk�i;k�m

 !
WT

k;k�m; k > m:

ð11Þ
Proof. See Appendix A. h
Theorem 2. For the system model (1) and measurement model (3), under Assumptions 1–4, the fixed-point smoothers,bxk=kþN; N P 1 are recursively obtained by
bxk=kþN ¼ bxk=kþN�1 þ Sk;kþNP�1
kþNmkþN; N P 1; ð12Þ
whose initial condition is the filter, bxk=k, given in Theorem 1.
The matrices Sk;kþN are determined by
Sk;kþN ¼ DkF
T
kþN;k�Mk;kþN�1FT

kþN�1

� �
HT

kþNHkþN ; k6m�N;

Sk;kþN ¼ DkF
T
kþN;k�Mk;kþN�1FT

kþN�1

� �
HT

kþNHkþN� Sk;kþN�m�
Xm�1

i¼1

Sk;kþN�iP
�1
kþN�iTkþN�i;kþN�m

 !
WT

kþN;kþN�m; k>m�N:
ð13Þ
where the matrices Mk;kþN are recursively obtained from
Mk;kþN ¼ Mk;kþN�1FT
kþN�1 þ Sk;kþNP�1

kþNST
kþN;kþN;

Mk;k ¼ Dk � Pk=k:
ð14Þ
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The fixed-point smoothing error covariance matrix, Pk=kþN, satisfies
Pk=kþN ¼ Pk=kþN�1 � Sk;kþNP�1
kþNST

k;kþN; N P 1; ð15Þ
with initial condition Pk=k, the filtering error covariance matrix.
The innovations mkþN, their covariance matrices PkþN, the matrices TkþN;kþN�i; WkþN;kþN�m; Dk and Pk=k are given in Theorem

1.
Proof. See Appendix B. h
Remark 7. As indicated in Remark 3, the assumption that the Bernoulli sequences and the observation noises are indepen-
dent from sensor to sensor is not required to obtain the centralized estimators. If this assumption is suppressed, one should
take into account that, in Theorem 1, the covariance matrices Kh

k;k; Kh
k;k�m and Rk would not be necessarily diagonal, and

clearly Kh
k;k – HkðI �HkÞ.
4. Distributed fusion estimation

Our aim in this section is to find optimal distributed fusion estimators, in the linear minimum variance sense, based on
the information provided by local LS linear estimators.

This estimation problem is tackled in two-stage fusion structure. In the first fusion stage, each sensor provides its local
estimator based on its own measurement data along with their estimation error covariance matrices. In the second fusion
stage, the cross-covariance matrix of the estimation errors between any two sensors from the first fusion stage are deter-
mined, and then, these covariances along with the estimates and error covariance matrices of all local subsystems are fused
to determine the optimal matrix weights and the optimal fusion estimators in the linear minimum variance sense.

4.1. Local LS linear estimators

This section is concerned with the problem of obtaining, for each sensor subsystem of system (1) and (2), the local LS lin-
ear filter, bxi

k=k, and fixed-point smoothers, bxi
k=kþN , N P 1, along with their corresponding error covariance matrices from

recursive algorithms. By using an innovation approach, these algorithms are established in the following theorems.
Theorem 3. For the ith sensor subsystem of system (1) and (2) under Assumptions 1–4, the local LS linear filter, bxi
k=k, is calculated

by
bxi
k=k ¼ bxi

k=k�1 þ Si
k;k Pii

k;k

� ��1
mi

k; k P 1; bxi
0=0 ¼ x0; ð16Þ
where the local state predictor, bxi
k=k�1, satisfies
bxi
k=k�1 ¼ Fk�1bxi

k�1=k�1; k P 1: ð17Þ
The innovation, mi
k, is given by
mi
k ¼ yi

k � hi
kHi

k
bxi

k=k�1; k 6 m;

mi
k ¼ yi

k � hi
kHi

k
bxi

k=k�1 �Wi
k;k�m mi

k�m �
Xm�1

l¼1

TiT
k�l;k�m Pii

k�l;k�l

� ��1
mi

k�l

 !
; k > m;

ð18Þ
where Wi
k;k�m ¼ Khi

k;k�mHi
kFk;k�mDk�mHiT

k�m Pii
k�m;k�m

� ��1
, with Dk�m given in Theorem 1.

The matrices Ti
k;k�l are determined by
Ti
k;k�l ¼ hi

kHi
kFk;k�lS

i
k�l;k�l; 2 6 k 6 m; 1 6 l 6 k� 1;

Ti
k;k�l ¼ hi

kHi
kFk;k�lS

i
k�l;k�l �Wi

k;k�mTiT
k�l;k�m; k > m; 1 6 l 6 m� 1:
The innovation covariance matrix, Pii
k;k, satisfies
Pii
k;k ¼ hi

k 1� hi
k

� �
Hi

kDkHiT
k þ Ri

k þ hi
kHi

kSi
k;k; k 6 m;

Pii
k;k ¼ hi

k 1� hi
k

� �
Hi

kDkHiT
k þ Ri

k þ hi
kHi

kSi
k;k þ hi

kSiT
k;kHiT

k

� ðhi
kÞ

2
Hi

kPii
k=k�1HiT

k �Wi
k;k�m Pii

k�m;k�m þ
Xm�1

l¼1

TiT
k�l;k�m Pii

k�l;k�l

� ��1
Ti

k�l;k�m

 !
WiT

k;k�m; k > m:
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The matrix Si
k;k is derived by the following expression
Si
k;k ¼ hi

kPii
k=k�1HiT

k ; k 6 m;

Si
k;k ¼ hi

kPii
k=k�1HiT

k � Fk;k�mSi
k�m;k�m �

Xm�1

l¼1

Fk;k�lS
i
k�l;k�l Pii

k�l;k�l

� ��1
Ti

k�l;k�m

 !
WiT

k;k�m; k > m;
where Pii
k=k�1, the prediction error covariance matrix, is obtained by
Pii
k=k�1 ¼ Fk�1Pii

k�1=k�1FT
k�1 þ Q k�1; k P 1;
with Pii
k=k, the filtering error covariance matrix, satisfying
Pii
k=k ¼ Pii

k=k�1 � Si
k;k Pii

k;k

� ��1
SiT

k;k; k P 1; Pii
0=0 ¼ P0:
Proof. This proof is analogous to that of Theorem 1 and hence it is omitted. h
Theorem 4. For the ith sensor subsystem of system (1) and (2) under Assumptions 1–4, the local LS linear fixed-point smoothersbxi
k=kþN; N P 1, are recursively calculated by
bxi
k=kþN ¼ bxi

k=kþN�1 þ Si
k;kþN Pii

kþN;kþN

� ��1
mi

kþN ; N P 1; ð19Þ
whose initial condition is the local filter, bxi
k=k, given in Theorem 3.

The matrices Si
k;kþN satisfy the following expressions
Si
k;kþN ¼ hi

kþN DkF
T
kþN;k�Mi

k;kþN�1FT
kþN�1

� �
HiT

kþN ; k6m�N;

Si
k;kþN ¼ hi

kþN DkF
T
kþN;k�Mi

k;kþN�1FT
kþN�1

� �
HiT

kþN� Si
k;kþN�m�

Xm�1

l¼1

Si
k;kþN�l Pii

kþN�l;kþN�l

� ��1
Ti

kþN�l;kþN�m

 !
WiT

kþN;kþN�m; k>m�N;
where the matrices Mi
k;kþN are recursively obtained by
Mi
k;kþN ¼ Mi

k;kþN�1FT
kþN�1 þ Si

k;kþN Pii
kþN;kþN

� ��1
SiT

kþN;kþN;

Mi
k;k ¼ Dk � Pii

k=k:
The fixed-point smoothing error covariance matrices, Pii
k=kþN, are given by
Pii
k=kþN ¼ Pii

k=kþN�1 � Si
k;kþN Pii

kþN;kþN

� ��1
SiT

k;kþN ; N P 1;
with initial condition the filtering error covariance matrix, Pii
k=k.

The innovations mi
kþN, their covariance matrices Pii

kþN;kþN, the matrices Ti
kþN;kþN�l, Wi

kþN;kþN�m; Dk and Pii
k=k are given in

Theorem 3.
Proof. This proof is analogous to that of Theorem 2 and hence it is omitted. h
4.2. Distributed fusion estimators

Once the local LS linear filtering and fixed-point smoothing estimators given in Theorems 3 and 4 are available, we can
easily obtain the distributed optimal weighted fusion estimators and their error covariance matrices, by applying the optimal
information fusion criterion weighted by matrices in the linear minimum variance sense [18].

Theorem 5. For the system model (1) and measurement model (2), under Assumptions 1–4, the distributed optimal fusion filter,bx0
k=k, and fixed-point smoother, bx0

k=kþN; N P 1, are given by
bx0
k=kþN ¼ A1

k;kþN
bx1

k=kþN þ � � � þ Ar
k;kþN

bxr
k=kþN; N P 0;
where bxi
k=kþN; N P 0 ði ¼ 1;2 . . . ; rÞ are calculated by the recursive algorithms established in Theorems 3 and 4.

The optimal matrix weights Ai
k;kþN ði ¼ 1;2; . . . ; rÞ are computed by
Ak;kþN ¼ R�1
k=kþNe eTR�1

k=kþNe
� ��1

;
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where the matrices Ak;kþN ¼ A1
k;kþN; . . . ;Ar

k;kþN

h iT
and e ¼ ½I; . . . ; I�T are both nr � n matrices, and
Rk=kþN ¼ E ex1
k=kþN; . . . ; exr

k=kþN

� � ex1
k=kþN ; . . . ; exr

k=kþN

� �T
� 	

¼ ðPij
k=kþNÞ
is a symmetric positive definite matrix of dimension nr � nr.
The error covariance matrices of the distributed weighted fusion estimators are computed by
P0
k=kþN ¼ eTR�1

k=kþNe
� ��1

; N P 0
and the following inequality holds: P0
k=kþN 6 Pii

k=kþN; i ¼ 1;2; . . . ; r.
Proof. The proof follows directly from the optimal information criterion weighted by matrices in the linear minimum var-
iance sense [18] and therefore it is omitted. h

To apply the above Theorem 5, besides the local estimators, bxi
k=kþN; N P 0 ði ¼ 1;2 . . . ; rÞ, and their error covariance matri-

ces, Pii
k=kþN , given in Theorems 3 and 4, we need to calculate the cross-covariance matrices, Pij

k=kþN , between any two subsystems.
Next, computation procedures for the cross-covariance matrices, Pij

k=kþN; N P 0; i – j; i; j ¼ 1;2 . . . ; r, will be presented, before
which some useful lemmas will be given. The assumptions and notation in these lemmas are those of Theorems 3 and 4.

Lemma 1. For i – j; i; j ¼ 1;2 . . . ; r; Lij
k;k ¼ E bxi

k=k�1m
jT
k

h i
, is calculated by
Lij
k;k ¼ hj

k Pjj
k=k�1 � Pij

k=k�1

� �
HjT

k ; k 6 m;

Lij
k;k ¼ hj

k Pjj
k=k�1 � Pij

k=k�1

� �
HjT

k � Lij
k;k�m �

Xm�1

l¼1

Lij
k;k�lðP

jj
k�l;k�lÞ

�1
Tj

k�l;k�m

 !
WjT

k;k�m; k > m;
ð20Þ
where Lij
k;s ¼ E bxi

k=k�1m
jT
s

h i
; s < k, is recursively obtained by
Lij
k;s ¼ Fk�1Lij

k�1;s þ Fk�1Si
k�1;k�1ðP

ii
k�1;k�1Þ

�1
Pij

k�1;s; s < k: ð21Þ
Proof. Taking into account expression (18) for the innovation mj
k, to obtain (20) for Lij

k;k it is enough to prove that
E bxi
k=k�1yjT

k

h i
� hj

kE bxi
k=k�1bxjT

k=k�1

h i
HjT

k ¼ hj
k Pjj

k=k�1 � Pij
k=k�1

� �
HjT

k : ð22Þ
Using (2) for yj
k and the OPL, we have
E bxi
k=k�1yjT

k

h i
¼ hj

kE bxi
k=k�1bxiT

k=k�1

h i
HjT

k :
Now, since
E bxi
k=k�1bxjT

k=k�1

h i
¼ Pij

k=k�1 � Dk þ E bxi
k=k�1bxiT

k=k�1

h i
þ E bxj

k=k�1
bxjT

k=k�1

h i
;

E bxj
k=k�1

bxjT
k=k�1

h i
¼ Dk � Pjj

k=k�1;
we have that E bxi
k=k�1

bxiT
k=k�1

h i
� E bxi

k=k�1
bxjT

k=k�1

h i
¼ Pjj

k=k�1 � Pij
k=k�1 and (22) is easily derived.

Finally, from (17) for bxi
k=k�1 and (16) for bxi

k�1=k�1, expression (21) is immediately obtained. h

Lemma 2. For i – j; i; j ¼ 1;2 . . . ; r, the innovation cross-covariance matrix Pij
k;s ¼ E mi

km
jT
s

h i
satisfies
Pij
k;s ¼ hi

kHi
k Fk;sS

j
s;s � Lij

k;s

� �
; k 6 m; 1 6 s 6 k;

Pij
k;s ¼ hi

kHi
k Fk;sS

j
s;s � Lij

k;s

� �
�Wi

k;k�m Pij
k�m;s �

Xm�1

l¼1

TiT
k�l;k�mðP

ii
k�l;k�lÞ

�1
Pij

k�l;s

 !
; k > m; k�m 6 s 6 k:

ð23Þ
Proof. By using (18) for the innovation mi
k, and taking into account that, from (2),
E yi
km

jT
s


 �
¼ hi

kHi
kE xkmjT

s


 �
¼ hi

kHi
kFk;sS

j
s;s;
expression (23) is obtained. h
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Lemma 3. For i – j; i; j ¼ 1;2 . . . ; r; Jij
k=kþN�1;kþN ¼ E bxi

k=kþN�1m
jT
kþN

h i
satisfies
Jij
k=kþN�1;kþN ¼ hj

kþN Eii
k;kþN�1�Eij

k;kþN�1

� �
FT

kþN�1HjT
kþN ; k6m�N;

Jij
k=kþN�1;kþN ¼ hj

kþN Eii
k;kþN�1�Eij

k;kþN�1

� �
FT

kþN�1HjT
kþN� Jij

k=kþN�1;kþN�m�
Xm�1

l¼1

Jij
k=kþN�1;kþN�lðP

jj
kþN�l;kþN�lÞ

�1
Tj

kþN�l;kþN�m

 !
WjT

kþN;kþN�m; k>m�N;

ð24Þ
where, for i; j ¼ 1;2 . . . ; r; Eij
k;kþN ¼ E bxi

k=kþN
bxjT

kþN=kþN

h i
is recursively computed by
Eij
k;kþN ¼ Eij

k;kþN�1FT
kþN�1 þ Jij

k=kþN�1;kþNðP
jj
kþN;kþNÞ

�1
SjT

kþN;kþN þ Si
k;kþN Pii

kþN;kþN

� ��1
ðLji

kþN;kþNÞ
T

þ Si
k;kþN Pii

kþN;kþN

� ��1
Pij

kþN;kþN Pjj
kþN;kþN

� ��1
SjT

kþN;kþN ; N P 1; ð25Þ
with initial condition Eij
k;k ¼ Dk þ Pij

k=k � Pii
k=k � Pjj

k=k.

For l ¼ 1;2 . . . ;m; Jij
k=kþN�1;kþN�l ¼ E bxi

k=kþN�1m
jT
kþN�l

h i
satisfies
Jij
k=kþN�1;kþN�l ¼ Jij

k=kþN�2;kþN�l þ Si
k;kþN�1 Pii

kþN�1;kþN�1

� ��1
Pij

kþN�1;kþN�l: ð26Þ
Proof. From (18) for the innovation mj
kþN , in order to obtain (24) we just need to prove that
E bxi
kþN=kþN�1yjT

kþN

h i
� hj

kþNE bxi
k=kþN�1bxjT

kþN=kþN�1

h i
HjT

kþN ¼ hj
kþN Eii

k;kþN�1 � Eij
k;kþN�1

� �
FT

kþN�1HjT
kþN : ð27Þ
Using (2) for yj
kþN and the OPL, we have
E bxi
k=kþN�1yjT

kþN

h i
¼ hj

kþNE bxi
k=kþN�1bxiT

kþN=kþN�1

h i
HjT

kþN
and since, from (17), bxj
kþN=kþN�1 ¼ FkþN�1bxj

kþN�1=kþN�1, expression (27) is easily obtained.
On the other hand, by using (19) for bxi

k=kþN and (16) for bxj
kþN=kþN , recursive expression (25) for Eij

k;kþN is immediately

derived; its initial condition Eij
k;k is also easily obtained.

Finally, by using again (19) for bxi
k=kþN�1, recursive expression (26) is also immediately clear and the proof is

completed. h
Remark 8. For i ¼ j, since the innovation is a white process, it is clear that Lii
k;k ¼ E bxi

k=k�1miT
k

h i
¼ 0 and

Jii
k=kþN�1;kþN ¼ E bxi

k=kþN�1miT
kþN

h i
¼ 0.

A set of recursive formulas to calculate the filtering and fixed-point smoothing error cross-covariance matrices
Pij

k=kþN; i – j; i; j ¼ 1;2 . . . ; r; N P 0, is now derived in the following theorem based on Lemmas 1–4.

Theorem 6. The cross-covariance matrices, Pij
k=kþN; N P 1, of the fixed-point smoothing errors between the ith and the jth sensor

subsystems are recursively computed by
Pij
k=kþN ¼ Pij

k=kþN�1 þ Si
k;kþNðP

ii
kþN;kþNÞ

�1
Pij

kþN;kþNðP
jj
kþN;kþNÞ

�1
SjT

k;kþN � Sj
k;kþN � Jij

k=kþN�1;kþN

� �
ðPjj

kþN;kþNÞ
�1

SjT
k;kþN

� Si
k;kþNðP

ii
kþN;kþNÞ

�1
Si

k;kþN � Jji
k=kþN�1;kþN

� �T
; N P 1: ð28Þ
The initial condition, Pij
k=k, the cross-covariance matrix of the filtering error between the ith and the jth sensor subsystems, satisfies
Pij
k=k ¼ Pij

k=k�1 þ Si
k;kðP

ii
k;kÞ
�1

Pij
k;kðP

jj
k;kÞ
�1

SjT
k;k � Sj

k;k � Lij
k;k

� �
ðPjj

k;kÞ
�1

SjT
k;k � Si

k;kðP
ii
k;kÞ
�1

Si
k;k � Lji

k;k

� �T
; k P 1;

Pij
k=k�1 ¼ Fk�1Pij

k�1=k�1FT
k�1 þ Q k�1; k P 1; Pij

0=0 ¼ P0: ð29Þ
Proof. By using (19) for bxi
k=kþN and bxj

k=kþN , we have
Pij
k=kþN ¼ Pij

k=kþN�1 � E xk � bxi
k=kþN�1

� �
mjT

kþN

h i
ðPjj

kþN;kþNÞ
�1

SjT
k;kþN � Si

k;kþNðP
ii
kþN;kþNÞ

�1
E mi

kþN xk � bxj
kþN=kþN�1

� �T
� 	

þ Si
k;kþNðP

ii
kþN;kþNÞ

�1
Pij

kþN;kþNðP
jj
kþN;kþNÞ

�1
SjT

k;kþN :
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Taking into account that E xkmjT
kþN

h i
¼ Sj

k;kþN , E bxi
k=kþN�1m

jT
kþN

h i
¼ Jij

k=kþN�1;kþN , E mi
kþNxT

k


 �
¼ SiT

k;kþN and E mi
kþN
bxjT

k=kþN�1

h i
¼ JjiT

k=kþN�1;kþN ,

recursive expression (28), for the cross-covariance matrices of the local fixed-point smoothing errors, is obtained.
Finally, by using (16), and following an analogous reasoning, it is easy to get (29) for the cross-covariance matrices of the

local filtering errors. h
5. Numerical simulation examples

In this section, two numerical examples are presented to show the effectiveness of the proposed estimation algorithms.
To test and compare the performance of the proposed estimators, we ran a program in MATLAB, simulating at each iteration
the state and the measured values and providing the centralized and distributed fusion filter and fixed-point smoothers, as
well as the corresponding error covariance matrices.

5.1. Example 1

In this example, for the simulation, we consider that the system state is given by a scalar process, fxk; k P 0g, generated
by the following first-order autoregressive model,
xk ¼ 0:95xk�1 þwk�1; k P 1;
where the initial state is a zero-mean Gaussian variable with Var½x0� ¼ 1 and fwk; k P 0g is a zero-mean white Gaussian
noise with Var½wk� ¼ 0:1, for all k.

Consider missing measurements coming from two sensors and perturbed by independent sequences of Bernoulli random
variables fhi

k; k P 1g; i ¼ 1;2, and by independent additive white noises, fv i
k; k P 1g; i ¼ 1;2, with zero-mean and vari-

ances Var½v1
k � ¼ 1 and Var½v2

k � ¼ 1:5, for all k.
yi
k ¼ hi

kxk þ v i
k; k P 1; i ¼ 1;2:
According to our theoretical model, it is assumed that, for each sensor, the uncertainty at any sampling time k P 1 de-
pends only on the uncertainty at the previous time k�m. The variables hi

k modeling this type of uncertainty correlation
in the output measurements are defined based on two independent sequences of independent Bernoulli random variables,
fci

k; k P 1g; i ¼ 1;2, with constant probabilities P½ci
k ¼ 1� ¼ ci. Specifically, the variables hi

k are defined as follows
hi
k ¼ 1� ci

kþmð1� ci
kÞ; i ¼ 1;2:
Thus, if hi
k ¼ 0, then ci

kþm ¼ 1 and ci
k ¼ 0, and hence, hi

kþm ¼ 1; this fact guarantees that, if the state is missing at time k, the
output measurement at time kþm necessarily contains the state. Therefore, there cannot be more than m consecutive mea-
sured data consisting of noise only.

Since the variables ci
k and ci

s are independent, hi
k and hi

s are also independent for jk� sj– 0; m. The mean of these variables
is hi ¼ 1� cið1� ciÞ and its covariance function is given by
Kh
k;s ¼ E½ðhi

k � hiÞðhi
s � hiÞ� ¼

0; jk� sj – 0; m;

�ð1� hiÞ2; jk� sj ¼ m;

hið1� hiÞ; jk� sj ¼ 0:

8><>:

To compare the effectiveness of the proposed estimators, fifty iterations of the proposed algorithms have been performed

and the results obtained for different values of the uncertainty probability and several values of m have been analyzed.
Let us observe that the means, hi, for i ¼ 1;2, of the variables hi

k, are the same if 1� ci is used instead of ci; for this reason,
only the case ci 6 0:5 will be considered here.

Assuming that the Bernoulli variables hi
k, for i ¼ 1;2, of the measurement outputs are correlated at sampling times that

differ three units of time (m ¼ 3), the error variances of local, centralized and distributed fusion filters will be compared con-
sidering fixed values of the probabilities c1 and c2; specifically, c1 ¼ 0:1; c2 ¼ 0:2. In Fig. 1, as mentioned in Theorem 5, we
can see that the error variances of each local filter are higher than that of the distributed fusion filter. Although the distrib-
uted fusion filter has lower accuracy than the centralized one, this difference is slight. Besides, this is compensated by the
fact that the distributed fusion structure is in general more robust, reduces the computational cost and improves the reli-
ability due to its parallel structure.

Fig. 2 displays the filtering and fixed-point smoothing error variances (N ¼ 2; 5) for the centralized and distributed fusion
methods. It can be seen that the error variances corresponding to the fixed-point smoothers are less than those of the filters
and, consequently, the fixed-point smoothing estimates are more accurate. It is also verified that centralized and distributed
fusion filter and smoothers have a similar accuracy. If we compare the smoothing error variances at each fixed-point k for
N ¼ 2 and N ¼ 5, we observe that these estimators become more accurate as the number of available observations increases.

Finally, in order to show more precisely the dependence of the error variances on the values c1 and c2, Fig. 3 displays the
filtering error variances, at a fixed iteration (namely, k ¼ 50) for m ¼ 3, when both c1 and c2 are varied from 0.1 to 0.5, which
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Fig. 1. Filtering error variances for the centralized and distributed fusion methods for c1 ¼ 0:1; c2 ¼ 0:2, when m ¼ 3.
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Fig. 2. Filtering and smoothing error variances for the centralized and distributed fusion methods for c1 ¼ 0:1; c2 ¼ 0:2, when m ¼ 3.
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provide different values of the probabilities h1 and h2. More specifically, we have considered the values
ci ¼ 0:1; 0:2; 0:3; 0:4; 0:5, which lead to the probabilities hi ¼ 0:91; 0:84; 0:78; 0:76; 0:75, respectively.

In this figure, both graphs (corresponding to the centralized and distributed fusion filters, respectively) show that the per-
formance of the filter diminishes as hi becomes lower, due to the fact that the probability of observations containing the state
decreases. Also, this figure confirms that both methods, centralized and distributed, have approximately the same accuracy,
corroborating the previous results.
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Fig. 3. Filtering error variances for the centralized and distributed fusion methods at k ¼ 50 versus c1, with c2 varying from 0.1 to 0.5 when m ¼ 3.
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Fig. 4. Filtering error variances for the centralized and distributed fusion methods for the first state component for c1 ¼ 0:1; c2 ¼ 0:2, when m ¼ 3.
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5.2. Example 2

In this example, the following discrete-time system with missing measurements has been considered
xk ¼ 1þ 0:2 sin
ðk� 1Þp

50

� � 
0:8 0
0:9 0:2

� 
xk�1 þwk�1; k P 1

yi
k ¼ hi

k 1 1ð Þxk þ v i
k; k P 1; i ¼ 1;2
where the initial state, x0, is a zero-mean Gaussian vector with covariance matrix given by Cov ½x0� ¼
0:1 0
0 0:1

� 
, the pro-

cesses fwk; k P 0g and fv i
k; k P 1g; i ¼ 1;2 are zero-mean white Gaussian noises with



Table 1
Filtering error variances for the centralized and distributed fusion methods for c1 ¼ 0:2; c2 ¼ 0:4 at k ¼ 30 when m ¼ 2; 3; 4; 5.

Component Filtering error variances m ¼ 2 m ¼ 3 m ¼ 4 m ¼ 5

First Centralized 0.3310 0.3483 0.3628 0.3744
Distributed 0.3561 0.3717 0.3827 0.3906

Second Centralized 0.4014 0.4451 0.4835 0.5151
Distributed 0.4340 0.4722 0.5007 0.5218
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Cov ½wk� ¼
0:36 0:3
0:3 0:25

� 
; Var½v1

k � ¼ 0:5 and Var½v2
k � ¼ 0:9; 8k, and the multiplicative noises fhi

k; k P 1g; i ¼ 1;2 are defined

as in Example 1.
Firstly, our aim is to check that the accuracy of the optimal distributed fusion filter is higher than that of any local filter,

but lower than that of the centralized fusion filter. For this, two hundred iterations of the proposed algorithms have been
carried out and the results corresponding to the first state component for m ¼ 3 and probabilities c1 ¼ 0:1 and c2 ¼ 0:2
are shown graphically in Fig. 4. As in Fig. 1, the error variances of each local filter are higher than that of the distributed fu-
sion filter and the centralized and distributed filters have a similar accuracy. Analogous results for the second state compo-
nent are obtained.

Also, analogous comments and conclusions to those made from Figs. 2 and 3 in Example 1 are deduced for the first and
second components of the state in this example. For this reason, the corresponding figures have not been included.

Finally, for c1 ¼ 0:2; c2 ¼ 0:4 the performance of the estimators is compared for different values of m at a fixed iteration;
specifically, for m ¼ 2; 3; 4; 5 at k ¼ 30, the filtering error variances of both state components are shown in Table 1. From this
table it is gathered that the estimators are more accurate as the values of m are lower. In other words, a greater distance
between the instants at which the variables are correlated (which means that the state can be missing in more consecutive
observations) yields worse estimators. As expected, this table also shows that the estimators obtained by the centralized and
distributed fusion methods have a very rough precision. It must be noticed that an analogous comparison has been per-
formed in Example 1 and the results obtained are completely similar, so they have been omitted.

6. Conclusions

For multi-sensor linear discrete-time systems with missing measurements, the LS linear estimation problem has been ad-
dressed. The main contributions of the current paper can be summarized as follows:

1. Using both centralized and distributed fusion methods to process the measurement data from the different sensors,
recursive filtering and fixed-point smoothing algorithms are derived by an innovation approach.

2. At each sensor, the possibility of missing measurements or uncertain observations (that is, observations containing no
information about the state but only noise) is modeled by binary variables taking the values one or zero (Bernoulli vari-
ables), depending on whether the state is present or missing in the corresponding observation. Such variables are
assumed to be correlated at instants that differ m units of time.

3. The basic model in which the Bernoulli variables describing the uncertainty in the observations at each sensor are inde-
pendent is a particular case of the proposed model, just making Khi

k;s ¼ 0 for jk� sj ¼ m. Also, the model with correlation in
consecutive sampling times is covered by the current study when m ¼ 1. However, theses two assumptions can be unre-
alistic in many practical situations, and the estimation algorithms must be modified to incorporate the effect of different
types of correlation. Specifically, the form of correlation considered in this paper is appropriate, in particular, to model
situations where the state cannot be missing in mþ 1 consecutive observations, as occurs, for instance, in sensor net-
works where sensor failures may happen and a failed sensor is substituted not immediately, but after m sampling times.

4. The multi-sensor system model considered in the current paper covers those situations where the additive observation
noises and the Bernoulli variables involved are independent from sensor to sensor. This independence assumption sim-
plifies the mathematical expression considerably and it is valid in a wide spectrum of applications, for example in wire-
less sensor networks which are characterized by sensor independence, limited storage capacity, lack of physical
infrastructure and limited energy. Nevertheless, if such assumption is omitted, a similar technique to that used in this
paper would allow us to extend the current study to this more general case with no difficulty, except for a greater com-
plexity in the mathematical expressions.

5. Two numerical simulation examples illustrate the applicability of the current results to estimate a scalar state process
generated by an AR model and a two-dimensional state, respectively, from uncertain observations coming from two sen-
sors featuring correlation in the uncertainty. The results confirm that centralized and distributed fusion estimators have
approximately the same accuracy. For different uncertainty probabilities and different values of m, both examples con-
firm the greater effectiveness of the fixed-point smoothing estimators in contrast to the filtering ones and conclude that
more accurate estimations are obtained as the values of m are lower.
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Appendix A. Proof of Theorem 1

From the OPL, the LS linear estimators, bxk=L, expressed as combination linear of the innovations, are given by
bxk=L ¼
XL

i¼1

Sk;iP
�1
i mi; ðA:1Þ
where mi ¼ yi � byi=i�1 are the innovation vectors, with byi=i�1 the one-stage observation predictor, Pi ¼ E½mimT
i �, and

Sk;i ¼ E½xkmT
i �.

Using (A.1) with L ¼ k; k� 1, expression (5) for the filter is immediately derived. From (1) and OPL, expression (6) for the
state predictor is easily obtained.

Now we show expression (7) for the innovation, mk ¼ yk � byk=k�1, for which it is enough to obtain an expression for byk=k�1.
From the OPL, it follows that byk=k�1 is given by
byk=k�1 ¼
Xk�1

i¼1

Tk;iP
�1
i mi; k P 2; Tk;i ¼ E ykmT

i


 �
:

Hence, we start by calculating Tk;i, for i 6 k� 1. From the observation Eq. (3) and the model assumptions, it is clear that
Tk;i ¼ E HkHkxkmT

i


 �
, for i 6 k� 1, and Tk;i ¼ HkHkSk;i, for k 6 m or k > m and i < k�m. So, after some manipulations, we

obtain:

(a) For k 6 m, using (A.1) for L ¼ k� 1, we have byk=k�1 ¼ HkHkbxk=k�1.
(b) For k > m, the following equality is easily deduced
byk=k�1 ¼ HkHk

Xk�1

i¼1

Sk;iP
�1
i mi þ

Xm

i¼1

ðTk;k�i �HkHkSk;k�iÞP�1
k�imk�i; ðA:2Þ
where
Tk;k�i �HkHkSk;k�i ¼ E ðHk �HkÞHkxkmT
k�i

h i
; 1 6 i 6 m ðA:3Þ
or equivalently,
Tk;k�i �HkHkSk;k�i ¼ E ðHk �HkÞHkxkyT
k�i

h i
� E ðHk �HkÞHkxkbyT

k�i=k�ðiþ1Þ

h i
:

Using again (3) for yk�i, property (4), and since from (1), E½xkxT
k�i� ¼ Fk;k�iDk�i, it is concluded that
E ðHk �HkÞHkxkyT
k�i

h i
¼ Kh

k;k�i � HkFk;k�iDk�iH
T
k�i

� �
;

where Dk ¼ E½xkxT
k � can be clearly obtained by the recursive formula (8).

Summarizing, we have that
Tk;k�i �HkHkSk;k�i ¼ Kh
k;k�i � HkFk;k�iDk�iH

T
k�i

� �
� E ðHk �HkÞHkxkbyT

k�i=k�ðiþ1Þ

h i
; 1 6 i 6 m: ðA:4Þ
On the one hand, for i ¼ m, since Hk is independent of the innovations mi, for i < k�m, we have that
E ðHk �HkÞHkxkbyT

k�m=k�ðmþ1Þ

h i
¼ 0, and from (A.4)
Tk;k�m �HkHkSk;k�m ¼ Kh
k;k�m � HkFk;k�mDk�mHT

k�m

� �
: ðA:5Þ
On the other hand, for i < m; Kh
k;k�i ¼ 0 and, hence, from (A.4)
Tk;k�i �HkHkSk;k�i ¼ �E ðHk �HkÞHkxkbyT
k�i=k�ðiþ1Þ

h i
:

Now, using again that Hk is independent of mi, for i – k�m, it is deduced that
Tk;k�i �HkHkSk;k�i ¼ �E½ Hk �Hk

� �
HkxkmT

k�m�P
�1
k�mTT

k�i;k�m
or, equivalently, from (A.3) for i ¼ m, (A.5) and denoting
Wk;k�m ¼ Kh
k;k�m � HkFk;k�mDk�mHT

k�m

� �
P�1

k�m;
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we have that
Tk;k�i �HkHkSk;k�i ¼ �Wk;k�mTT
k�i;k�m; i < m: ðA:6Þ
Next, substituting this expression into (A.2) and using (A.1) for bxk=k�1, expression (7) is deduced. Moreover, using (3) and
(A.6) and taking into account that, from (1), Sk;k�i ¼ Fk;k�iSk�i;k�i, the matrices (9) are obtained.

Now, expression (10) for the matrix Sk;k ¼ E½xkyT
k � � E½xkbyT

k=k�1� is derived. From (3) and the independence assumption, it is
clear that E½xkyT

k � ¼ DkHT
kHk; 8k P 1. To calculate E½xkbyT

k=k�1�, the correlation assumption of the random variables hk must be
taken into account and hence two cases must be considered:

– For k 6 m, from (7) we obtain E½xkbyT
k=k�1� ¼ E½xkbxT

k=k�1�H
T
kHk. From the OPL, E½xkbxT

k=k�1� ¼ Dk � Pk=k�1 where Pk=k�1 is the pre-
diction error covariance matrix, and hence
E½xkbyT
k=k�1� ¼ Dk � Pk=k�1

� �
HT

kHk; k 6 m:
– For k > m, from (7) it follows that
E½xkbyT
k=k�1� ¼ E½xkbxT

k=k�1�H
T
kHk þ E½xkmT

k�m�W
T
k;k�m � E xk

Xm�1

i¼1

TT
k�i;k�mP�1

k�imk�i

 !T
24 35WT

k;k�m;
hence, using again the OPL and taking into account that E½xkmT
k�i� ¼ Sk;k�i, for 1 6 i 6 m, it is deduced that
E½xkbyT
k=k�1� ¼ Dk � Pk=k�1

� �
HT

kHk þ Sk;k�mWT
k;k�m �

Xm�1

i¼1

Sk;k�iP
�1
k�iTk�i;k�mWT

k;k�m; k > m:
From the above expectations, expression (10) for Sk;k is clear.

From (1), the expression for the prediction error covariance matrix, Pk=k�1 is immediately clear and, from (5), the expres-
sion for the filtering error covariance matrix, Pk=k, is also obvious.

Finally, we prove expression (11) for the innovation covariance matrix Pk ¼ E½ykyT
k � � E½byk=k�1byT

k=k�1�. From (3) and using
(4), we have that
E½ykyT
k � ¼ E½hkh

T
k � � HkDkHT

k

� �
þ Rk; k P 1:
Due to the correlation hypothesis of the Bernoulli variables hk, we need to distinguish two cases to calculate
E½byk=k�1byT

k=k�1�. For k 6 m, from (7), (4) and the OPL, we have
E½byk=k�1byT
k=k�1� ¼ hkh

T
k

� �
� HkðDk � Pk=k�1ÞHT

k

� �
:

For k > m, using an analogous reasoning, applying the OPL and after some manipulations, we deduce that
E½byk=k�1byT
k=k�1� ¼ hkh

T
k

� �
� HkðDk � Pk=k�1ÞHT

k

� �
þWk;k�mPk�mWT

k;k�m þWk;k�m

Xm�1

i¼1

TT
k�i;k�mP�1

k�iTk�i;k�mWT
k;k�m

�HkHk Sk;k � Pk=k�1HT
kHk

� �
� ST

k;k �HkHkPk=k�1

� �
HT

kHk:
So, from the above expectations, expression (11) for the innovation covariance matrix Pk is obtained. h

Appendix B. Proof of Theorem 2

From the general expression (A.1), for each fixed k P 1, the recursive relation (12) is immediately clear.
Next, to prove (13) for Sk;kþN ¼ E½xkyT

kþN� � E½xkbyT
kþN=kþN�1�, it is necessary to calculate both expectations.

On the one hand, from Eq. (3), taking into account that E½xkxT
kþN� ¼ DkF

T
kþN;k and using that HkþN and vkþN are independent

of xk, we obtain
E½xkyT
kþN � ¼ DkF

T
kþN;kHT

kþNHkþN ; N P 1:
On the other hand, based on expression (7) for mkþN , which is different depending on wether kþ N 6 m or kþ N > m, two
options must be considered:

– From (7) for k 6 m� N, using (6) for bxkþN=kþN�1, we have that
E xkbyT
kþN=kþN�1

h i
¼ Mk;kþN�1FT

kþN�1HT
kþNHkþN ;
where Mk;kþN�1 ¼ E xkbxT
kþN�1=kþN�1

h i
.
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– A similar reasoning to the above one, but starting from (7) for k > m� N, yields
E½xkbyT
kþN=kþN�1� ¼ Mk;kþN�1FT

kþN�1HT
kþNHkþN þ Sk;kþN�m �

Xm�1

i¼1

Sk;kþN�iP
�1
kþN�iTkþN�i;kþN�m

 !
WT

kþN;kþN�m:
Then, the replacement of the above expectations in Sk;kþN leads to expression (13).
The recursive relation (14) for Mk;kþN ¼ E xkbxT

kþN=kþN

h i
is immediately clear from (5) for bxkþN=kþN and its initial condition

Mk;k ¼ E½xkbxk=k� is calculated taking into account that, from the orthogonality, E½xkbxT
k=k� ¼ E½bxk=kbxT

k=k� ¼ Dk � Pk=k.
Finally, since Pk=kþN ¼ E xkxT

k


 �
� E bxk=kþNbxT

k=kþN

h i
, using (12) and taking into account that bxk=kþN�1 is uncorrelated with mkþN ,

expression (15) is deduced. h
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