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Abstract 

The purpose of this paper is to design the recursive least-squares (RLS) Wiener fixed-point smoother and filter 

in linear discrete-time descriptor systems. The signal process is observed with additional observation noise. 

The observed value is randomly delayed by multiple sampling intervals or has the possibility of uncertainty 

that the observed value does not include the signal and contains the observation noise only. It is assumed that 

the probability of the observation delay and the probability that the observation does not contain the signal 

are known. The delayed or uncertain measurements are characterized by the Bernoulli random variables. The 

characteristic of this paper is that the RLS Wiener estimators are proposed from the randomly delayed, by 

multiple sampling intervals, or uncertain observations particularly for the descriptor systems in linear discrete-

time stochastic systems. 

Keywords: Discrete-time stochastic descriptor systems; RLS Wiener filter; RLS Wiener fixed-point smoother; 
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1. Introduction  

The descriptor systems have attracted attentions from the general expressions for physical models and 

structures in comparison with the conventional state-space models. The estimation problems for the 

descriptor systems have been studied ([1]-[8] and the references therein). Physical systems, e.g. a cart-

pendulum system, electrical circuits [6], etc. are formulated as the descriptor systems. In [1], the recursive 

estimation algorithms for the filtering, prediction and fixed-lag smoothing estimates are presented, based on 

the innovation approach, for the descriptor systems with multiple packet dropouts and correlated noises. In 

[2], the information filter and predictor are proposed for the discrete-time descriptor systems with uncertain 

parameters. In addition to the nominal and robust estimation algorithms, the array algorithms are proposed. 

In [3], the robust Kalman type filter is proposed for the discrete-time descriptor systems with uncertainties in 

some matrices. In [4], according to the optimization technique, the optimum prediction estimate is updated in 

linear discrete-time descriptor systems. In [5], the robust predictor is presented for the discrete-time 

descriptor systems with bounded uncertainties. In [7], the problem of 𝐻∞ filtering for descriptor systems with 

strict linear matrix inequalities (LMIs) is investigated. The necessary and sufficient conditions for the solvability 

and the expression of the solution are obtained for both continuous-time and discrete-time descriptor 

systems. In [8], the paper studies on the delay-dependent robust 𝐻∞ filtering for uncertain discrete-time 

singular systems with the time-varying delay. Usually, the network data of control system are transmitted with 

delay and packet dropout from a sensor to a controller and also from a controller to an actuator [9]. In [10], for 

discrete-time stochastic linear systems with bounded random measurement delays and packet dropouts, the 

optimal filter, predictor and smoother are proposed based on the innovation approach. The observations are 

obtained in terms of (1c) in the paper. In [11], for the discrete-time stochastic systems with multiple packet 

dropouts, the optimal filter, predictor and smoother are proposed. Also, with observations multiply and 

randomly delayed, the recursive least-squares (RLS) Wiener fixed-point smoother and filter are proposed [12]. 

Under the condition that the uncertain observations are given, the RLS estimation algorithms are proposed, 

given the probability that the signal exists in the observation. The uncertain observation, if the signal exists, is 

characterized by using the independent Bernoulli random variable [13]. Estimation technique in [13] is 

extended to the case where the uncertain random variables are correlated [14]. In addition to the probability 
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that the signal exists in the observation, the conditional probability is taken into account for the existence of 

the signal in the observation. In [15], the RLS Wiener fixed-point smoothing and filtering algorithms are 

proposed for the discrete-time stochastic system with uncertain observations. The probability that the signal 

exists in the observation and the conditional probability are required in the algorithms. With regard to 

multiple packet losses, related to the delayed observations, the optimal filter is devised in linear discrete-time 

stochastic systems over unreliable wireless sensor networks [16]. The technique is also extended to the 

extended Kalman filter in nonlinear discrete-time stochastic systems. In [17], the second order polynomial 

estimator is proposed in nonlinear systems with uncertain observations. The uncertainty in the observation 

equation is described by the Bernoulli random variables. In [18], the RLS Wiener fixed-point smoother and 

filter are proposed for the discrete-time stochastic systems with randomly delayed, by multiple sampling 

intervals, or uncertain observations. In [19], for the descriptor systems, based on the innovation theory, the RLS 

filter is proposed by using the covariance information of the state vector and the covariance information of 

the observation noise in linear discrete-time stochastic systems. Then the RLS Wiener type filter is presented 

for the descriptor systems.  

In the packet dropout of the network systems, there might happen the case where the randomly delayed 

observed value does not include the signal. The packet dropout might not correspond to the certain 

observation including the signal, and also to the delayed observation. By the uncertain observation it means 

that there exists uncertainty if the observed value includes the signal or not [13]. In the packet dropout, the 

observation not including the signal data might further delay by one or more sampling intervals. As described 

above, the estimation problems for the descriptor systems have drawn great interests from the nature of the 

generalized state-space model. From this viewpoint, this paper, based on the estimation techniques both in 

[18] and [19], examines to design the RLS Wiener fixed-point smoother and filter from randomly delayed 

observed values, by multiple sampling intervals, or uncertain observations in linear discrete-time descriptor 

systems. The signal process is observed with additional observation noise. The observed value is randomly 

delayed by multiple sampling intervals or has the possibility of uncertainty that the observed value does not 

include the signal and contains the observation noise only. It is assumed that the probability of the random 

observation delay and the probability that the observation does not contain the signal are known as a priori 

information. The randomly delayed or uncertain measurements are characterized by the Bernoulli random 

variables. The characteristic of this paper is that the RLS Wiener estimators are proposed from the randomly 

delayed, by multiple sampling intervals, or uncertain observations particularly for the descriptor systems in 

linear discrete-time stochastic systems. 

A numerical simulation example, in section 5, shows the estimation characteristics of the proposed fixed-point 

smoother and filter with the randomly delayed, by multiple sampling intervals, or uncertain observations in 

linear discrete-time descriptor systems.  

2. Least-squares smoothing problem with delayed or uncertain observations for descriptor systems 

In linear discrete-time descriptor systems, the state and observation equations are described by [1] 

( 1) ( ) ( ), [ ( ) ( )] ( ),

( ) ( ) ( ), [ ( ) ( )] ( ).

T
K

T
K

S k FS k w k E w k w s Q k s

y k CS k v k E v k v s R k s





 + = + = −

= + = −
   (1)  

Here, ( )S k  represents an n -dimensional descriptor vector, ( )w k  a q -dimensional input noise and ( )y k  an m -

dimensional certain measurement without including delays or uncertain signals.  , F ,   and C  are 

matrices with the dimensions n n , n n , n q , m n  respectively. In the descriptor systems,   is the singular 

matrix, i.e. ( )rank n  . In terms of orthogonal matrices U  and V , the singular value decomposition (SVD) of 

  is written as follows. 



Computer Reviews Journal vol 2 (2018) ISSN: 2581-6640                                               http://purkh.com/index.php/tocomp 

251 

1 1

1 2

0
, , , ,

0 0

( , ,..., ), 0, 1,2,..., , 0

T T T

l i

UDV D U U V V

diag i l   

− − 
 = = = = 

 

 =  =  

    (2) 

From the relationships 

11 12

21 22

T F F
U FV

F F

 
=  
 

, 
1

2

TU
 

 =  
 

,  1 2CV C C= , 
1

2

( )
( )

( )

S k
S k V

S k

 
=  

 
,  

the state equation in (1) is described by  

 
11 12 11 1

21 22 22 2

0 ( 1) ( )
( )

0 0 ( 1) ( )

F FS k S k
w k

F FS k S k

          +
= +       

+        
.  (3) 

From (3), it follows that 

1 1
1 1 11 12 1 12 2 1

1 1 2 1 2 2

2 2 2 2

1 1
2 1 1 2 1 22 21 2 22 2 22

( 1) ( ) ( ), ( ), ( ), 0

( ) ( ) ( ), , ( ) ( ) ( ),

[ ( ) ( )] ( ), ,

( ) ( ) ( ), , , 0.

T T T
K

S k AS k Bw k A F F B F

y k HS k v k H C C v k C w k v k

E v k v s R k s R C Q C R

S k S k w k F F F F



− −

− −

+ = + =  +  =   +  

= + = +  =  +

= − =   +

=  +  = −  = −  

   (4) 

For notational conveniences, let us put 
1( )S k  as 

1( ) ( )x k S k=  and A  as A = . Then the state equation for 

the state vector ( )x k  and its observation equation are given by 

( 1) ( ) ( ), [ ( ) ( )] ( ),

( ) ( ) ( ), ( ) ( ), [ ( ) ( )] ( ).

T
K

T
K

x k x k Bw k E w k w s Q k s

y k z k v k z k Hx k E v k v s R k s





+ =  + = −

= + = = −
   (5) 

For the discrete-time systems with measurement delays or uncertain observations, let an m-dimensional 

observation equation be described as 

01 11 00 101

0

01 01 11 11 21 21 1 1

00 00 1

( ) ( ) ( ) ( ) ( 1) ( ) ( ) ( ) ( ) ( ) ( 1)

( ) ( ),

( ) ( ) ( ), ( ) ( ),

[ ( )] ( ), [ ( )] ( ), [ ( )] ( ), , [ ( )] ( ),

[ ( )] ( ), [

N

N

N N

y k k y k k y k k y k N k v k k v k

k v k N

y k z k v k z k Hx k

E k p k E k p k E k p k E k p k

E k p k E

    



   

 

= + − + + − + + − +

+ −

= + =

= = = =

= 0 10 20 20 0 0
( )] ( ), [ ( )] ( ), , [ ( )] ( ).

N N
k p k E k p k E k p k = = =

   (6) 

Let us assume that the observation at each time 1k  can either be delayed by sampling intervals j , 

1 j N  , with known probabilities or consists of delayed measurements, which do not contain signal data. 

{ ( ),0 , 0,1; 1}ij k i N j k   =   represent a sequence of Bernoulli random variables (binary switching 

sequence taking the values 0  or 1  with [ ( ) 1] ( ),0 , 0,1ij ijP k p k i N j = =   = ). By introducing the notations 
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1 01 11 21 1

0 00 10 20 0

( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( 1) ( ) ,

( ) ( ) ( 1) ( ) ,

m m m m m m m mN

m m m m m m m mN

T

T

k k I k I k I k I

k k I k I k I k I

y k y k y k y k N

v k v k v k v k N

    

    

   

   

 =  

 =  

 = − − 

 = − − 

     (7) 

from (6), we obtain 

 1 0( ) ( ) ( ) ( ) ( )y k k y k k v k = + .                                        (8) 

1( )k  corresponds to the Bernoulli random variables for the measurement delays and 0 ( )k  for the 

observations, which consist of only observation noise data. Let ][E  represents the expectation with respect 

to the random variables }1),({ kk . The Bernoulli random variables satisfy [ ( )] ( )ij ij m mE k p k I  = , 

2[ ( )] ( )ij ij m mE k p k I  = , 0 , 0,1i N j  = . It is found that the auto-covariance function ( , )
V

K k s  of ( )v k  is 

given by 

( ) ( ),0 ,
( , )

( ) ( ),0 ,

T

V T

C k D s s k
K k s

D k C s k s

  
= 

 

                                  (9) 

( ) , ( ) ( , )k T s

V V V
C k D s K s s−=  =  . Here, the transition matrix 

V
  and the variance ( , )

V
K s s  of ( )v k  are given as 

follows. 

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 , ( , )

0 0 0

0 0 0 0 0 0

m m

m mV V

m m

R

I R

I K s s

R

I R







  
  
  
   = =
  
  
  

   

                      (10) 

By introducing  

0 0

0 0

0 0

H

H
H

H

 
 
 =
 
 
 

, 

( )

( 1)
( )

( )

x k

x k
x k

x k N

 
 

−
 =
 
 

− 

,        (11) 

from (6) and (7), the observation equation (8) is rewritten as 

1 1 0( ) ( ) ( ) ( ) ( ) ( ) ( )y k k Hx k k v k k v k  = + + ,        (12) 

since 

( ) ( )

( 1) ( 1)
( ) ( )

( ) ( )

z k Hx k

z k Hx k
z k Hx k

z k N Hx k N

   
   

− −
   = = =
   
   

− −   

.        (13) 
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Let )(),( skKskK xx −=  denote the auto-covariance function of the state vector )(kx  in wide-sense 

stationary stochastic systems [20], and let ),( skKx  be expressed by  

( ) ( ), 0 ,
( , )

( ) ( ), 0 ,

T

x T

A k B s s k
K k s

B s A k k s

  
= 

 

        (14) 

kkA =)( , ),()( ssKsB x

sT −= . Here,   represents the transition matrix of )(kx . From  

0 0 0( 1) ( ) ( )

0 0 0( ) ( 1) 0

0 0 0 0( 2) ( 1) 0

0 0 0( 1) ( ) 0

n n

n n

x k x k w k

Ix k x k

x k N x k N

Ix k N x k N





+       
      

−      
      = +
      

− + − +      
      − + −      

,

     (15) 

The system matrix   for the state vector ( )x k  is given by 

0 0 0

0 0 0

0 0 0 0

0 0 0

n n

n n

I

I





 
 
 
  =
 
 
 
 

.         (16) 

Let ),( skKx
 represent the auto-covariance function of ( )x k . Then ( , )xK k s  is given by 

( ) ( ),0 ,
( , )

( ) ( ),0 ,

T

x T

A k B s s k
K k s

B k A s k s

  
= 

 

                                            (17) 

( ) kA k = , ( ) ( , )T s
xB s K s s−= . Here, ( , ) (0)x xK s s K=  is described as 

1

2 1

1 2

( )

( 1)

( , ) ( ) ( 1) ( 1) ( )

( 1)

( )

(0) (0) (0) (0)

(0) (0) (0) (0)

(0)( ) (0)( ) (0) (0)

T T T T
x

N N
x x x x

T N N
x x x x

T N T N
x x x x

x s

x s

K s s E x s x s x s N x s N

x s N

x s N

K K K K

K K K K

K K K K

−

− −

− −

  
  

−  
   = − − + −

   
− +  

  −  

  

  

=

  

1

.

(0)( ) (0)( ) (0) (0)T N T N T
x x x xK K K K−

 
 
 
 
 
 
 
 

   

   (18) 

 Let the fixed-point smoothing estimate ),(ˆ Lkx  of )(kx  at the fixed point k  be given by 
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=

=
L

i

iyLikhLkx
1

)(),,(),(ˆ          (19) 

in terms of the observed values  Liiy 1),( . In (19), ),,( Likh  is a time-varying impulse response 

function.  We consider the estimation problem, which minimizes the mean-square value (MSV) 

]||),(ˆ)([|| 2LkxkxEJ −=           (20) 

of the fixed-point smoothing error. Based on an orthogonal projection lemma [20], 

)()(),,()(
1

syiyLikhkx
L

i

⊥−
=

, Ls 1 ,        (21) 

the optimal impulse response function satisfies the Wiener-Hopf equation 

.)]()([),,()]()([
1


=

=
L

i

TT syiyELikhsykxE        (22) 

Here ‘⊥ ’ denotes the notation of the orthogonality. By introducing 

1 01 11 11 1
( ) ( ) ( ) ( ) ( )m m m m m m m mN N

p k p k I p k I p k I p k I   −
 =   , from (7) and (12), the left hand side of (22) 

is developed as 

1 1 0[ ( ) ( )] [ ( )( ( ) ( ) ( ) ( ) ( ) ( )) ]T TE x k y s E x k s Hx s s v s s v s  = + +  

01 11 11 1
[ ( ) ( )] ( ) ( ) ( ) ( )

TT T
m m m m m m m mN N

E x k x s H p s I p s I p s I p s I   −
 =    

1( , ) ( ).T T
xK k s H p s=                                      (23) 

Also, )]()([ syiyE T
 is obtained as  

1 1 0 1 1 0[ ( ) ( )] [( ( ) ( ) ( ) ( ) ( ) ( ))( ( ) ( ) ( ) ( ) ( ) ( )) ]T TE y i y s E i Hx i i v i i v i s Hx s s v s s v s     = + + + +             

1 1 2 2[( ( ) ( , ) ( )] [ ( ) ( , ) ( )]T T T
x V

E i HK i s H s E i K i s s    = + , 

2 0 1( ) ( ) ( )s s s  = + .                                                      (24) 

Substituting (23) and (24) into (22), we have 

1 1 1 2 2

1

( , ) ( ) ( , , ){ [ ( ) ( , ) ( )] [ ( ) ( , ) ( )]}.

L
T T T T T

x x V

i

K k s H p s h k i L E i HK i s H s E i K i s s    
=

= +      (25) 

From the stochastic property of 1( )   and 2 ( )  , (25) is rewritten as 

   (26) 
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Rearranging (26) and introducing

1 1 1 2 2

1 1 2 2

1 1 2 2

( , ) ( ) ( , , ){ [ ( ) ( , ) ( )] [ ( ) ( , ) ( )]

[ ( )] ( , ) [ ( )] [ ( )] ( , ) [ ( )]}

( , , ){ [ ( )] ( , ) [ ( )] [ ( )] ( , ) [ ( )]

T T T T T
x x V

T T T
x V

T T T
x V

K k s H p s h k s L E s HK s s H s E s K s s s

E s HK s s H E s E s K s s E s

h k i L E i HK i s H E s E i K i s E s

 

   

   

   

   

   

= +

− −

+ +

1

}.

L

i=



 ( )R s , we obtain the equation 

for the optimal impulse response function ),,( Lskh  as  

1

1 1 2 2

1

( , , ) ( ) ( , ) ( )

( , , ){ ( ) ( , ) ( ) ( ) ( , ) ( )},

T T
x

L
T T T

x V

i

h k s L R s K k s H p s

h k i L p i HK i s H p s p i K i s p s

=

=

− +
      (27) 

1 1 2 2

1 1 2 2

( ) [ ( ) ( , ) ( )] [ ( ) ( , ) ( )]

[ ( )] ( , ) [ ( )] [ ( )] ( , ) [ ( )].

T T T
x V

T T T
x V

R s E s HK s s H s E s K s s s

E s HK s s H E s E s K s s E s

 

   

   

   

= +

− −
     (28) 

3. RLS Wiener estimation algorithms with delayed or uncertain measurements for descriptor systems 

Under the problem formulation in section 2 on the linear least-squares estimation for the descriptor systems 

with the randomly delayed, by multiple sampling intervals, or uncertain observations ,  Theorem 1 presents the 

RLS Wiener fixed-point smoothing and filtering algorithms of the descriptor vector ( )S k . 

Theorem 1  

Based on the optimal estimation problems in section 2, the RLS Wiener algorithms for the fixed-point 

smoothing and filtering estimates of the descriptor vector ( )S k  consist of (29)-(47) for the descriptor systems 

with randomly delayed, by multiple sampling intervals, or uncertain observations in linear discrete-time 

stochastic systems. 

Fixed-point smoothing estimate of the descriptor vector 
1

2

( )
( )

( )

S k
S k V

S k

 
=  

 
: 
ˆ( , )S k L  

1

2

ˆ
( , )ˆ( , )

ˆ
( , )

S k L
S k L V

S k L

 
 =
 
 

          (29) 

Fixed-point smoothing estimate of 
1( )S k  at the fixed point k  : 1

ˆ
( , )S k L  

1
ˆ ˆ( , ) 0 ( , )l l l l NS k L I x k L  =             (30) 

Fixed-point smoothing estimate of 
2( )S k : 2

ˆ
( , )S k L  

2 1 1

1 1 1
1 22 21

11 12
1 2

21 22

ˆ ˆ
( , ) ( , ),

0
, , , , ,

0 0

( , ,..., ), 0, 1,2,..., , 0,

T T T

T
l i

S k L S k L

F F UDV D U U V V

F F
diag i l U FV

F F
   

− − −

= 

 
 = −  = = = = 

 

 
 =  =   =  

 

     (31) 
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Filtering estimate of the descriptor vector 
1

2

( )
( )

( )

S k
S k V

S k

 
=  

 
: ˆ( , )S k k  

1

2

ˆ
( , )ˆ( , )

ˆ
( , )

S k k
S k k V

S k k

 
 =
 
 

          (32) 

Filtering estimate of 
1( )S k : 1

ˆ
( , )S k k  

1
ˆ ˆ( , ) 0 ( , )l l l l N
S k k I x k k  

 =            (33) 

Filtering estimate of 
2( )S k : 2

ˆ
( , )S k k  

2 1 1
ˆ ˆ

( , ) ( , )S k k S k k=            (34) 

Fixed-point smoothing estimate of ( )x k  at the fixed point k : ˆ ( , )x k L                                                         

1 2
ˆˆ ˆ ˆ( , ) ( , 1) ( , , )( ( ) ( ) ( 1, 1) ( ) ( 1, 1))

V
x k L x k L h k L L y L p L H x L L p L v L L= − + −  − − −  − − ,  

 

ˆ( , )

ˆ( 1, )ˆ ( , )

ˆ( , )

x k L

x k L
x k L

x k N L

 
 

− =
 
 

− 

                                                  (35) 

Smoother gain: ( , , )h k L L  

 

1 1 1 2 2

1 1 11 2 21 1

2 1 12 2 22

( , , ) [ ( , )( ) ( ) ( , 1) ( ) ( , 1) ( )]

{ ( ) [ ( ) ( , ) ( ) ( 1) ( ) ( 1) ] ( )

[ ( ) ( , ) ( ) ( 1) ( ) ( 1) ]

T L k T T T T T T T
x V

T T T T
x V

T T T

V V V V

h k L L K k k H p L q k L H p L q k L p L

R L p L HK L L p L H S L p L S L H p L

p L K L L p L H S L p L S L H

−=  − −  − − 

 + −  −  −  − 

+ −  −  −  −  1
2 ( )}Tp L −

    (36) 

1 1 1 1 11

2 21

( , ) ( , 1) ( , , )[ ( ) ( , ) ( ) ( 1)

( ) ( 1) ],

T T
x

T

V

q k L q k L h k L L p L HK L L p L H S L

p L S L

= −  + −  − 

−  − 
   (37) 

1 11( , ) ( )q k k S k=     

2 2 2 1 12

2 22

( , ) ( , 1) ( , , )[ ( ) ( , ) ( ) ( 1)

( ) ( 1) ],

T T
V VV

T
VV

q k L q k L h k L L p L K L L p L H S L

p L S L

= −  + −  − 

−  − 
   (38) 

2 12( , ) ( )q k k S k=               

Filtering estimate of ( )x L : ˆ( , )x L L   

1 1

2

ˆ ˆ ˆ( , ) ( 1, 1) ( , )( ( ) ( ) ( 1, 1)

ˆ( ) ( 1, 1)),
V

x L L x L L G L L y L p L H x L L

p L v L L

=  − − + −  − −

−  − −
   (39) 
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ˆ(0,0) 0x =                                                                 

Filtering estimate of ( )v L : 
ˆ( , )v L L   

2 1

2

ˆ ˆ ˆ( , ) ( 1, 1) ( , )( ( ) ( ) ( 1, 1)

ˆ( ) ( 1, 1)),

ˆ(0,0) 0

V

V

v L L v L L G L L y L p L H x L L

p L v L L

v

=  − − + −  − −

−  − −

=

           (40)                                                       

Auto-variance function of ˆ( , )x L L : 
11

ˆ ˆ( ) [ ( , ) ( , )]TS L E x L L x L L=  

11 11 1 1 1 11

2 21

11

( ) ( 1) ( , )[ ( ) ( , ) ( ) ( 1)

( ) ( 1) ],

(0) 0

T T
x

T

V

S L S L G L L p L HK L L p L H S L

p L S L

S

=  −  + −  − 

−  − 

=

     (41) 

Cross-variance function of ˆ( , )x L L  with ˆ ( , )v L L : 
12

ˆ ˆ( ) [ ( , ) ( , )]TS L E x L L v L L=  

12 12 1 2 1 12

2 22

12

( ) ( 1) ( , )[ ( ) ( , ) ( ) ( 1)

( ) ( 1) ],

(0) 0

T T

V V V

T

V V

S L S L G L L p L K L L p L H S L

p L S L

S

=  −  + −  − 

−  − 

=

        (42) 

21 21 2 1 1 11

2 21

21 21 12

( ) ( 1) ( , )[ ( ) ( , ) ( ) ( 1)

( ) ( 1) ],

(0) 0, ( ) ( )

T T
xV

T

V

T

S L S L G L L p L HK L L p L H S L

p L S L

S S L S L

=  −  + −  − 

−  − 

= =

    (43) 

Auto-variance function of ˆ ( , )v L L : 
22

ˆ ˆ( ) [ ( , ) ( , )]TS L E v L L v L L=  

22 22 2 2 1 12

2 22

22

( ) ( 1) ( , )[ ( ) ( , ) ( ) ( 1)

( ) ( 1) ],

(0) 0

T T

V V V V

T

V V

S L S L G L L p L K L L p L H S L

p L S L

S

=  −  + −  − 

−  − 

=

     (44) 

1 1 11 1 12 2

1 1 11 2 21 1

2 1 12 2 22 2

( , ) [ ( , ) ( ) ( 1) ( ) ( 1) ( )]

{ ( ) [ ( ) ( , ) ( ) ( 1) ( ) ( 1) ] ( )

[ ( ) ( , ) ( ) ( 1) ( ) ( 1) ] ( )}

T T T T T T T
x V

T T T T
x V

T T T T

V V V V

G L L K L L H p L S L H p L S L p L

R L p L HK L L p L H S L p L S L H p L

p L K L L p L H S L p L S L H p L −

= − −  − − 

 + −  −  −  − 

+ −  −  −  −  1

   (45) 

2 2 21 1 22 2

1 1 11 2 21 1

2 1 12 2 22 2

( , ) [ ( , ) ( ) ( 1) ( ) ( 1) ( )]

{ ( ) [ ( ) ( , ) ( ) ( 1) ( ) ( 1) ] ( )

[ ( ) ( , ) ( ) ( 1) ( ) ( 1) ] (

T T T T T T

V V V V

T T T T
x V

T T T T

V V V V

G L L K L L p L S L H p L S L p L

R L p L HK L L p L H S L p L S L H p L

p L K L L p L H S L p L S L H p L

= − −  − − 

 + −  −  −  − 

+ −  −  −  −  1)}−

   (46) 

1 1 2 2

1 1 2 2

( ) [ ( ) ( , ) ( )] [ ( ) ( , ) ( )]

[ ( )] ( , ) [ ( )] [ ( )] ( , ) [ ( )]

T T T
x V

T T T
x V

R L E L HK L L H L E L K L L L

E L HK L L H E L E L K L L E L

 

   

   

   

= +

− −
     (47) 
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Theorem 1 is proved by referring to the RLS Wiener filter and fixed-point smoother for the systems with 

randomly delayed, by multiple sampling intervals, or uncertain observations [18] and the RLS Wiener filter for 

the descriptor systems [19] in linear discrete-time stochastic systems. 

As the condition for the asymptotic stability of the filtering equation in Theorem 1 for ˆ( , )x L L , it is necessary 

that all the eigenvalues  of 
1 1( , ) ( )G L L p L H−   lie inside the unit circle. In addition, for the stability of the 

estimation algorithms, from (36), (45) and (46), the following matrix must be positive definite.  

1 1 11 2 21 1

2 1 12 2 22 2

( ) [ ( ) ( , ) ( ) ( 1) ( ) ( 1) ] ( )

[ ( ) ( , ) ( ) ( 1) ( ) ( 1) ] ( ) 0

T T T T
x V

T T T T

V V V V

R L p L HK L L p L H S L p L S L H p L

p L K L L p L H S L p L S L H p L

+ −  −  −  − 

+ −  −  −  −  
 

4. A numerical simulation example 

Let a scalar observation equation be given by 

( ) ( ) ( ), [ ( ) ( )] ( ),Ky k CS k v k E v k v s R k s= + = −     (48) 

for the descriptor system 

 
1

2
2

3

( 1) ( ) ( ), [ ( ) ( )] ( ),

( ) 1 0 0 0 1 1 0.5

( ) ( ) , 0 1 0 , 0.8 0.1 0.5 , 1 , 0.5 , 0.5 0.9 0.6 ,

( ) 0 0 0 0 0.5 1.5 0.2

KS k FS k w k E w k w s Q k s

S k

S k S k F Q C

S k

 + = + = −

       
       

=  = = − −  = = =       
             

   (49)  

in linear discrete-time stochastic systems. Here, ( )S k is the descriptor vector, ( )w k  denotes the input noise and 

( )y k  is the certain measurement without considering measurement delays or uncertain signals. Here,   is the 

singular matrix, i.e. ( ) 2 3rank  =  . With orthogonal matrices U  and V , the SVD of   is expressed by 

1 0 0
0 1 0

, , 0 1 0 , .
0 0 0 1

0 0 1

TUDV D U V

 
    

 = = = =  =    
     

   (50) 

From the relationships 

11 12

21 22

T F F
U FV

F F

 
=  
 

, 
1

2

TU
 

 =  
 

,  1 2CV C C= , 

1

1
2

2
3

( )
( )

( ) ( )
( )

( )

S k
S k

S k S k V
S k

S k

 
  

= =   
   

,  

the state equation in (49) and the observation equation in (48),  
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11 12 11 1

21 22 22 2

11 12 21 22

1 2

1

0 ( 1) ( )
( ),

0 0 ( 1) ( )

( ) ( ) ( ), [ ( ) ( )] ( ),

0 1 1
, , 0 0.5 , 1.5,

0.8 0.1 0.5

0.5
, 0.2,

1

0.5 0.

K

F FS k S k
w k

F FS k S k

y k CS k v k E v k v s R k s

F F F F

C



          +
= +       

+        

= + = −

   
= = = =   

− −   

 
 =  = 

 

=   29 , 0.6,C =

  (51) 

are transformed into  

1 1
1 1 11 12 1 12 2 1

1 1 2 1 2 2

2 2 2 2

1 1
2 1 1 2 1 22 21 2 22 2 22

( 1) ( ) ( ), ( ), ( ),

( ) ( ) ( ), , ( ) ( ) ( ),

[ ( ) ( )] ( ), ,

( ) ( ) ( ), , , 0.

T T
K

S k AS k Bw k A F F B F

y k HS k v k H C C v k C w k v k

E v k v s R k s R C Q C R

S k S k w k F F F F



− −

− −

+ = + =  +  =   +

= + = +  =  +

= − =   +

=  +  = −  = −  

   (52) 

By putting 
1( )S k  as 

1( ) ( )x k S k=  and A  as A = , the state equation for the state vector ( )x k  and its 

observation equation, without measurement delays or including uncertain observations, are as follows. 

( 1) ( ) ( ), [ ( ) ( )] ( ),

( ) ( ) ( ), ( ) ( ), [ ( ) ( )] ( )

K

K

x k x k Bw k E w k w s Q k s

y k z k v k z k Hx k E v k v s R k s





+ =  + = −

= + = = −
   (53) 

Now, let us consider the observation equation in the case of 2N =  in (6).  

1 0 1 2

1 01 11 21 0 00 10 20

2 01 00 10 11 20 21

1 01 11 21 0 00 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) , ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) , ( ) ( )

y k k y k k v k k Hx k k v k

k k k k k k k k

k k k k k k k

p k p k p k p k p k p k p

   

       

      

= + = +

= =      

= + + +  

= =  

 

 

0 20

2 01 00 10 11 20 21

( ) ( ) ,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( 1) ( 2) ,

( ) ( ) ( 1) ( 2) ,

T

T

k p k

p k p k p k p k p k p k p k

y k y k y k y k

v k v k v k v k

  

= + + +  

= − −

= − −

   (54) 

 

( ) ( ) ( )

( ) ( 1) ( 1) ( ), ( ) ( 1) ,

( 2) ( 2) ( 2)

0 0 0.5 0.7 0 0 0 0

0 0 0 0 0.5 0.7 0 0 , 0.5 0.7 .

0 0 0 0 0 0 0.5 0.7

z k Hx k x k

z k z k Hx k Hx k x k x k

z k Hx k x k

H

H H H

H

     
     

= − = − = = −
     
     − − −     

   
   

= = =   
      

                         (55) 

The values of the probabilities for the Bernoulli random variables, ( ), , 0,1,2,ij k i j =  satisfy 

2 2
01 01 01 11 11 11

2 2
21 21 21 00 00 00

2 2
10 10 10 20 20 20

Pr{ ( )} Pr{ ( ) } ,Pr{ ( )} Pr{ ( ) } ,

Pr{ ( )} Pr{ ( ) } ,Pr{ ( )} Pr{ ( ) } ,

Pr{ ( )} Pr{ ( ) } ,Pr{ ( )} Pr{ ( ) } .

k k p k k p

k k p k k p

k k p k k p

   

   

   

= = = =

= = = =

= = = =
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The probabilities 01p , 11p , 21p , 00p , 10p  and 20p  used in the simulation  are summarized in Table 1. 

The system matrix  , which is equal to A ,  is calculated in (52). Also, from the state equation for ( )x k  in 

(53),  ( , )xK k k  is evaluated as 

0  0.666667 (0) (1)
, ( , ) ,

 -0.8  -0.266667 (1) (0)

(0)  0.202121,K(1)= 0.379147.

x

K K
K k k

K K

K

   
 = =   

   

=

                                    (56) 

Table 1 Probabilities for the Bernoulli variables 01( )k , 11( )k , 21( )k , 00 ( )k , 10 ( )k  and 20 ( )k . 

Cases of delay Probability of the observation  

including both signal and 

observation noise 

Probability of the observation 

not including signal and 

consisting of only observation 

noise 

No delay 01 01Pr{ ( ) 1} ( ) 0.8820k p k = = =  00 00Pr{ ( ) 1} ( ) 0.0180k p k = = =  

One-step delay 11 11Pr{ ( ) 1} ( ) 0.0570k p k = = =  10 10Pr{ ( ) 1} ( ) 0.0030k p k = = =  

Two-steps delay 21 21Pr{ ( ) 1} ( ) 0.0360k p k = = =  20 20Pr{ ( ) 1} ( ) 0.0040k p k = = =  

     

From (16) and (18),   and (0)xK  are given by 

2

2

0 0.666667 0 0 0 0

-0.8 -0.266667 0 0 0 0
0 0

1 0 0 0 0 0
0 0 ,

0 1 0 0 0 0
0 0

0 0 1 0 0 0

0 0 0 1 0 0

(0) (0) (0)

(0) (0) (0) (0) .

(0)( ) (0) (0)

x x x

T
x x x x

T T
x x x

I

I

K K K

K K K K

K K K

 
 
  
  

 = =   
     
 
  

  
 

=   
 

   

                                 (57) 

From (10) 
V

  and ( , )
V

K L L  are given by 

0 0 0 0 0

1 0 0 , ( , ) 0 0 .

0 1 0 0 0
V V

R

K L L R

R

  
  

 = =   
     

 

( )R L  is calculated by substituting H , ( , ) (0)x xK L L K= , ( , ) (0)
V V

K L L K= , 1( )L ,  2 ( )L  with 

1 1[ ( )] ( )E L p k =  and 2 2[ ( )] ( )E L p L =  into (47). Substituting  U , V , 1 , H , 1( )p L , 2 ( )p L , , 
V

 , ( , )xK k k  

and ( , )
V

K L L  into the estimation algorithms in Theorem 1, the fixed-point smoothing estimates 1
ˆ ( , )S k k Lag+  
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of 1( )S k , 2
ˆ ( , )S k k Lag+  of 2 ( )S k  and 3

ˆ ( , )S k k Lag+  of 3 ( )S k  are calculated recursively. Here, Lag  

represents the fixed lag from k Lag+  to k . Fig.1 illustrates the fixed-point smoothing estimate 1
ˆ ( , 5)S k k +  vs. 

k  for the white Gaussian observation noise 
2(0,0.1 )N . Fig.2 illustrates the fixed-point smoothing estimate 

2
ˆ ( , 5)S k k +  vs. k  for the white Gaussian observation noise 

2(0,0.1 )N . Fig.3 illustrates the fixed-point 

smoothing estimate 3
ˆ ( , 5)S k k +  vs. k  for the white Gaussian observation noise 

2(0,0.1 )N . Fig.4 illustrates the 

mean-square values (MSVs) of the filtering errors 1 1
ˆ( ) ( , )S k S k k−  and the fixed-point smoothing errors 

1 1
ˆ( ) ( , )S k S k k Lag− +  vs. Lag , 0 10Lag  , for the white Gaussian observation noises 

2(0,0.1 )N , 
2(0,0.3 )N  

and 
2(0,0.5 )N . For 0Lag = , the MSV of the filtering errors 1 1

ˆ( ) ( , )S k S k k−  is shown. In Fig.4, for each variance 

of the observation noise, the MSV of the fixed-point smoothing errors is larger than that of the filtering errors. 

Fig.5 illustrates the MSVs of the filtering errors 2 2
ˆ( ) ( , )S k S k k−  and the fixed-point smoothing errors 

2 2
ˆ( ) ( , )S k S k k Lag− +  vs. Lag , 0 10Lag  , for the white Gaussian observation noises 

2(0,0.1 )N , 
2(0,0.3 )N  

and 
2(0,0.5 )N . Fig.6 illustrates the MSVs of the filtering errors 3 3

ˆ( ) ( , )S k S k k−  and the fixed-point smoothing 

errors 3 3
ˆ( ) ( , )S k S k k Lag− +  vs. Lag , 0 10Lag  , for the white Gaussian observation noises 

2(0,0.1 )N , 

2(0,0.3 )N  and 
2(0,0.5 )N . In Fig.5 and Fig.6, there is a tendency that the MSVs of the fixed-point smoothing 

errors decrease as Lag  increases. Also, in Fig.5 and Fig.6, the estimation accuracy of the fixed-point 

smoothing estimate is superior to the filtering estimate.  Here, the MSVs of the fixed-point smoothing and 

filtering errors are calculated by 

2000
2

1

ˆ( ( ) ( , )) / 2000i i

k

S k S k k Lag

=

− +  and 

2000
2

1

ˆ( ( ) ( , )) / 2000i i

k

S k S k k

=

− , 1,2,3,i =  

respectively.  
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Fig.1 Fixed-point smoothing estimate 1
ˆ ( , 5)S k k +  vs. k  for the white Gaussian observation noise 

2(0,0.1 )N . 

 

Fig.2 Fixed-point smoothing estimate 2
ˆ ( , 5)S k k +  vs. k  for the white Gaussian observation noise 

2(0,0.1 )N . 

 

Fig.3 Fixed-point smoothing estimate 3
ˆ ( , 5)S k k +  vs. k  for the white Gaussian observation noise 

2(0,0.1 )N . 
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Fig.4 Mean-square values of the filtering errors 1 1
ˆ( ) ( , )S k S k k−  and the fixed-point smoothing errors 

1 1
ˆ( ) ( , )S k S k k Lag− +

 vs. Lag , 

0 10Lag 

, for the 

white 

Gaussian 

observati

on noises 

2(0,0.1 )N

, 

2(0,0.3 )N  

and 

2(0,0.5 )N

.  
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Fig.5 Mean-square values of the filtering errors 2 2
ˆ( ) ( , )S k S k k−  and the fixed-point smoothing errors 

2 2
ˆ( ) ( , )S k S k k Lag− +  vs. Lag , 0 10Lag  , for the white Gaussian observation noises 

2(0,0.1 )N , 
2(0,0.3 )N  

and 

2(0,0.5 )N

. 

 

 

 

 

 

 

 

 

 

 

 

Fig.6 Mean-square values of the filtering errors 3 3
ˆ( ) ( , )S k S k k−  and the fixed-point smoothing errors 

3 3
ˆ( ) ( , )S k S k k Lag− +  vs. Lag , 0 10Lag  , for the white Gaussian observation noises 

2(0,0.1 )N , 
2(0,0.3 )N  

and 
2(0,0.5 )N . 

5. Conclusions 

In this paper, the RLS Wiener fixed-point smoother and filter are designed for the descriptor systems with 

randomly delayed, by multiple sampling intervals, or uncertain observations in linear discrete-time stochastic 

systems. In this paper, in addition to the multiply and randomly delayed observations [12], the uncertain 

observation in [13] is taken into account particularly for the linear discrete-time descriptor systems. The 

uncertain observation might correspond to the packet dropout. The packet dropout in the network systems is 

caused by the nodal delay as the sum of the processing delay, the queuing delay, the transmission delay and 

the propagation delay. Some numerical simulation results have shown that the devised estimators have 

feasible estimation characteristics. 
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Since the RLS Wiener estimators necessitate the information of the variance Q of the input noise and the 

input matrix   in the state equation (1), the estimation accuracy of the proposed RLS Wiener estimators are 

not degraded by the estimations of Q  and  . 
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