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Abstract 

This paper investigates the distributed fusion estimation problem for networked systems whose 

mul- tisensor measured outputs involve uncertainties modelled by random parameter matrices. 

Each sensor transmits its measured outputs to a local processor over different communication 

channels and random failures –one-step delays and packet dropouts–are assumed to occur during 

the transmission. White sequences of Bernoulli random variables with different probabilities are 

introduced to describe the ob- servations that are used to update the estimators at each sampling 

time. Due to the transmission failures, each local processor may receive either one or two data 

packets, or even nothing and, when the current measurement does not arrive on time, its predictor 

is used in the design of the estimators to compensate the lack of updated information. By using an 

innovation approach, local least-squares linear estimators (filter and fixed-point smoother) are 

obtained at the individual local processors, without requiring the signal evolution model. From these 

local estimators, distributed fusion filtering and smoothing estimators weighted by matrices are 

obtained in a unified way, by applying the least-squares criterion. A simula- tion study is presented 

to examine the performance of the estimators and the influence that both sensor uncertainties and 

transmission failures have on the estimation accuracy.  

 



1. Introduction

Data fusion techniques are crucial to address the signal estimation prob-
lem in multi-sensor network systems (see e.g. [1], [2], [3]). Actually, by com-
bining the information (sensor outputs or local estimators) from multiple
sensors, more meaningful and precise signal estimators, with better perfor-
mance than each local estimator, are obtained. Depending on the way of
processing raw data, the centralized and distributed fusion architectures are
the most common information fusion techniques. In the centralized fusion
method, the raw data from multiple sensors are directly sent to a fusion cen-
ter, where the signal estimation is performed. Under the distributed fusion
method, first local signal estimators are obtained and, afterwards, these local
estimators are sent to a fusion center to be combined by using some optimal
or suboptimal fusion criterion. Although the centralized fusion scheme is the-
oretically optimal, the processing of all raw data at a single fusion center can
be either ineffective or unfeasible due to communication overload, especially
when the number of sensors is large. In contrast, despite not being optimal,
the distributed architecture reduces the computational burden, it is more
suitable for fault detection and isolation, and more robust in the presence of
random transmission failures, due to its parallel structure. For this reason,
distributed fusion estimation has received significant attention over the last
few decades and it has been successfully applied in many interesting fields.
The review papers [4] and [5] can be examined to get an overall view on
the evolution of the distributed fusion estimation problem for multi-sensor
network systems.

The classical estimation algorithms assume that the model parameters
are precisely known and the information is transmitted over perfect connec-
tions. However, these assumptions does not typically hold in a multi-sensor
network environment, where random perturbations usually affect both the
measurement devices and the communication resources.

On the one hand, some random phenomena (e.g. multiplicative noise
uncertainties, missing and fading measurements or sensor gain degradation)
usually lead to packet errors in the measured outputs and may potentially
deteriorate the performance of the estimators. Hence, the traditional esti-
mation problems must face new challenges to deal with these random phe-
nomena (see e.g. [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], and references
therein). A unified framework to model the random disturbances in the out-
put measurements is provided by the use of random measurement matrices.

2



For this reason, in the last years, the estimation problem in systems with
random parameter matrices has become an interesting research topic among
the scientific community (see e.g. [16], [17], [18], [19], [20], [21], [22], [23],
[24], and references therein).

On the other hand, the communication resources may be affected by
random phenomena due to different causes (e.g. imperfect communication
channels, network congestion or random failures in the transmission mecha-
nism). These uncertainties yield random failures when the sensors transmit
their measurements through the network. The main transmission uncertain-
ties are random delays and packet dropouts, which can clearly deteriorate
the performance of the estimators. For this reason, a wide variety of new
fusion estimation algorithms have been designed to incorporate the effects of
these transmission random failures (see e.g. [25], [26], [27], [28], [29], [30],
[31], [32], [33], [34], [35], [36], [37], and references therein).

In network systems subject to transmission losses, a hot issue that arises
in the estimation problem is how to compensate the packet dropouts. The
most common compensation procedures are the zero-input and the hold-
input mechanisms, where either nothing or the latest successfully transmitted
measurement is used in the estimation, respectively, if the current data is lost.
Recently, a more general compensation framework, including the zero-input
and hold-input procedures as special cases, is proposed in [38]. A different
compensation mechanism to deal with losses, developed in [39], has been
recently considered in some investigations (see e.g. [40], [41], and references
therein). In this new approach, the observation predictor (i.e., the estimator
of the lost measurement based on the information received previously) is
used as compensator; this compensation technique improves significantly the
estimator performance since, in case of loss, all the previous measurements
successfully received are considered, instead of using only the last one.

In relation with the transmission packet dropouts, in order to avoid losses
as far as possible, [25] and [26] propose transmitting each packet several
times. However, since multiple transmissions may cause network conges-
tion problems that must be also avoided, [27], [28] and, more recently, [35]
suggest transmitting the packet just once at every sampling time. The afore-
mentioned papers also assume that each packet is either received on time,
one-step delayed or lost; hence, only one packet or no packet is used to update
the estimator at each moment. However, in practice, due to one or multiple
random delays, multiple packets may arrive at each sampling time, so the
estimation performance can be improved by processing all the received pack-
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ets, instead of only one (see e.g. [42], [43], [44], [45], and references therein).
More specifically, in [42] and [43] two packets may arrive at each sampling
time, in which case both are used to update the estimation; hence, the algo-
rithms in these papers have better performance than those where one packet
is received at most. In [42] the last available measurement is used as compen-
sation when no packet is received, whereas in [43] the observation predictor
is used for compensation as long as the current measurement does not arrive
on time owing to delays or losses. Compared with [42], the computational
cost is reduced in [43] and more accurate estimators are obtained. In [44], the
results in [42] are extended to multi-sensor systems with multiplicative noise
uncertainties in the state and measurement matrices, and the distributed
fusion filtering problem is addressed under these assumptions. Finally, more
general results including multi-step delays can be found in [45].

Motivated by the above discussion, this paper considers the distributed fu-
sion estimation problem in multi-sensor network systems with measurements
perturbed by random parameter matrices subject to random transmission
failures. More precisely, the key ideas of the proposed observation model
and distributed fusion estimators are summarized as follows:

1. The current observation model considers random parameter matrices in
the measured outputs, which allows us to deal with a wide variety of real
situations, where the measured outputs present uncertainties that cannot
be described only by additive disturbances; thus, a unified framework is
provided to manage different simultaneous network-induced phenomena.

2. Besides the uncertainties in the measured outputs, random one-step de-
lays and packet dropouts with different rates at each sensor are considered
during transmission. As in [43], in order to avoid congestion problems in
the network, at each sampling time the packet is transmitted just once, so
either one packet, two packets or no packet will reach the local processor.

3. Also, as in [43], to compensate the non-punctual arrival of a packet, such
packet is replaced by its estimator based on the information received pre-
viously, thus providing better estimations than the algorithms in which
the hold-input compensation mechanism is used.

4. The distributed fusion estimation problem is addressed using covariance
information, without requiring full knowledge of the state-space model
generating the signal process, thus providing a general frame to deal
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with different kinds of signals. Actually, the proposed algorithms are also
applicable to the conventional formulation using the state-space model,
even in the presence of state-dependent multiplicative noise.

5. The innovation approach is used to obtain local estimation algorithms,
which are recursive and computationally simple; moreover, the proposed
algorithms (filtering and fixed-point smoothing) do not use the state aug-
mentation technique, thus reducing the computational cost in comparison
with most existing estimation algorithms dealing with random delays and
packet dropouts.

6. Distributed fusion estimators weighted by matrices are obtained from
the local estimators by applying the least-squares criterion, for which the
cross-correlation matrices between any two local estimators need to be
previously calculated.

The covariance-based distributed fusion problem for networked systems
whose sensor measured outputs are perturbed by random parameter matrices
and suffer random transmission delays and packet dropouts is addressed. It
is assumed that, at each instant of time, the local processor may receive
either one packet, two packets, or nothing; when the current measurement
does not arrive on time, its predictor is used as compensator. The major
contributions and novelties of this paper are highlighted as follows:

(i) Unlike previous authors’ papers concerning random measurement matri-
ces and random transmission delays and losses, where only one packet
is processed to update the estimator at each moment, this is the first
time that covariance-based estimation algorithms are obtained under the
assumption that either one packet, two packets, or nothing may arrive
to the local processors at each sampling time. As a consequence, it is
expected that the current estimators outperform those in [40] since they
use more information for estimation update (see Figure 7).

(ii) As compared with some authors’ preceding papers with packet dropouts
(e.g. [20]), where the last measurement successfully received is used to
compensate the data packets from the different sensors that do not reach
the local processors, in the current work, inspired by [43], the observation
predictor is used as compensation when the current measurement does
not arrive on time but, in contrast, multi-sensor information is considered
in the current paper.
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(iii) In contrast to [42], [43] and [44], where the state augmentation technique
is used, great efforts are devoted to obtain local estimators for each sensor
without making use of augmented systems, thus reducing the computa-
tional cost.

The remaining sections of the paper are organized as follows. Section
2 presents the assumptions on the signal process, as well as the models of
the multi-sensor measured outputs with random parameter matrices and the
measurements received by the local processors with random delays and packet
losses. Section 3 provides the main results: the derivation of the local least-
squares linear filter and fixed-point smoother is presented in Section 3.1, and
the distributed fusion estimators are obtained in Section 3.2 as a matrix-
weighted linear combination of the local estimators. A simulation study is
presented in Section 4 to show the performance of the proposed estimators,
and some concluding remarks are drawn in Section 5.

Notation: The notation throughout the paper is standard. Rn and Rm×n

denote the n-dimensional Euclidean space and the set of all m× n real ma-
trices, respectively. For a matrix A, AT and A−1 denote its transpose and
inverse, respectively. In×n and 0n×n denote the n × n identity matrix and
zero matrix, respectively. If the dimensions of a vector or a matrix are not
explicitly stated, they are assumed to be compatible with algebraic opera-
tions. For any function Gk,s, depending on the time instants k and s, we will
write Gk = Gk,k for simplicity; analogously, F (i) = F (ii) will be written for
any function F (ij), depending on the sensors i and j. Finally, δk,s denotes
the Kronecker delta function.

2. Problem formulation and observation model

This paper addresses the least-squares (LS) linear estimation problem of
a discrete-time random signal from multi-sensor noisy measurements, per-
turbed by random parameter matrices, using the distributed fusion method.
It is assumed that each sensor transmits its measured outputs to a local pro-
cessor over imperfect communication channels and random failures can occur
during transmission. Specifically, in order to avoid congestion problems in
the network, it is assumed that, at each time instant, a packet at the sensor
side is transmitted just once and the transmissions are subject to one-step
random delays and packet dropouts. The following situations can arise: on
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the one hand, when a sensor data packet is one-step delayed, it will be pro-
cessed at the next sampling time together with the current packet, provided
that this one arrives on time; on the other, if a data packet is lost, it will
never arrive at the local processor; as a consequence, at each sampling time,
either one data packet, two data packets or nothing can be received.

The design of the distributed fusion algorithms will be carried out under
a covariance-based approach; that is, the evolution model generating the
signal process is not required and only the mean and covariance functions of
the signal are necessary for the estimation. More precisely, we assume that
the signal mean function is zero and its covariance function is factorizable,
according to the following assumption:

(A1) The nx-dimensional signal process {xk}k≥1 has zero mean and its au-
tocovariance function is expressed in a separable form, E

[
xkx

T
s

]
=

AkB
T
s , s ≤ k, where Ak, Bs ∈ Rnx×n are known matrices.

Remark 1: Some important practical applications, where the signal auto-
covariance function can be obtained and factorized according to (A1), are
described in the following items:

− If the system matrix Φ in the state-space model of a stationary signal is
available, the signal autocovariance function is E[xkx

T
s ] = Φk−sE[xsx

T
s ],

for s ≤ k, and assumption (A1) is clearly satisfied taking Ak = Φk and
Bs = E[xsx

T
s ](Φ−s)T .

− Similarly, when the signal obeys a linear evolution model, xk = Φk−1xk−1+
wk−1, its covariance function can be expressed as E[xkx

T
s ] = Φk,sE[xsx

T
s ],

for s ≤ k, where Φk,s = Φk−1 · · ·Φs, so taking Ak = Φk,0 and Bs =
E[xsx

T
s ](Φ−1s,0)

T , it is clear that assumption (A1) is satisfied.

− Furthermore, (A1) even covers situations where the system matrix in the
state-space model is singular, and the above factorization, E[xkx

T
s ] =

Φk,0Φ
−1
s,0E[xsx

T
s ], s ≤ k, is not feasible, although a different factorization

must be used in such cases (see e.g. [20]).

− Processes with finite-dimensional, possibly time-variant, state-space mod-

els have semi-separable covariance functions, E[xkx
T
s ] =

r∑
l=1

alkb
lT
s , s ≤ k

(see [46]), and this structure is a particular case of that assumed, just
taking Ak =

(
a1k, a

2
k, . . . , a

r
k

)
and Bs =

(
b1s, b

2
s, . . . , b

r
s

)
.

7



− Also, uncertain systems with state-dependent multiplicative noise, as those
considered in [7], meet this assumption, as it will be shown in Section 4.

Hence, the structural assumption (A1) on the signal autocovariance function
covers both stationary and non-stationary signals, providing a unified context
to deal with a large number of different practical situations and it is not
necessary to obtain specific algorithms for each of them. Finally, note also
that, although a state-space model can be generated from covariances, when
only this kind of information is available, it is preferable to address the
estimation problem directly using covariances, thus obviating the need of
previous identification of the state-space model.

2.1. Multi-sensor measured outputs with random parameter matrices

Let us assume that the signal measurements are provided by m sensors
according to the following model:

z
(i)
k = H

(i)
k xk + v

(i)
k , k ≥ 1, i = 1, . . . ,m, (1)

where z
(i)
k ∈ Rnz is the measured output of the i-th sensor at time k, H

(i)
k ∈

Rnz×nx , and v
(i)
k ∈ Rnz is the measurement noise vector.

It is well-known that, in a wide variety of real situations, the measured
outputs z

(i)
k can be subject not only to the additive noises v

(i)
k , but also to

other stochastic disturbances from multiple sources, such as missing or fading
measurements caused by the degradation or aging of measuring instruments,
or the presence of multiplicative noise, due to different reasons, such as in-
terferences or intermittent failures, among others. Each of these situations
would require the derivation of a new and different estimation algorithm,
since the conditions necessary to implement the conventional ones are not
met. To overcome this issue, a global framework to model these random
phenomena and an estimation algorithm suitable to address all the afore-
mentioned cases are provided by assuming that the measurement matrices
H

(i)
k are random parameter matrices. Specifically, the following assumption

on the measurement matrices in (1) is considered:

(A2) {H(i)
k }k≥1, i = 1, . . . ,m, are independent sequences of independent ran-

dom parameter matrices with known means, E
[
H

(i)
k

]
= H

(i)

k . More-

over, by denoting h(i)
pq

(k) the (p, q)-th entry of H
(i)
k , the expectations

E
[
h(i)

pq
(k)h(j)

p′q′
(k)
]

are also assumed to be known, for p, p′ = 1, . . . , nz
and q, q′ = 1, . . . , nx.
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Regarding the sensor measurement noises of the different sensors, they
will be assumed to be correlated at the same time; specifically, the following
assumption is required:

(A3) The measurement noises {v(i)k }k≥1, i = 1, . . . ,m, are second-order zero-

mean white processes with E
[
v
(i)
k v

(j)T
s

]
= R

(ij)
k δk,s, i, j = 1, . . . ,m.

2.2. Measurements received by the local processors

As it has been previously indicated, at each sensor side i = 1, . . . ,m, every
data packet, z

(i)
k , is assumed to be transmitted only once and this transmis-

sion is subject to random one-step delays and losses. As a consequence, at
the sampling time k, the local processor can either receive only the current
output z

(i)
k , only the previous output z

(i)
k−1, both z

(i)
k and z

(i)
k−1, or nothing.

As in [40], when the current measurement, z
(i)
k , is not received on time, its

predictor ẑ
(i)
k/k−1 will be used for compensation. More precisely, the following

model for y
(i)
k , the measurement received from the i-th sensor, i = 1, . . . ,m,

is considered:

y
(i)
k =

(
(1− γ(i)k )z

(i)
k + γ

(i)
k ẑ

(i)
k/k−1

ψ
(i)
k z

(i)
k−1

)
, k ≥ 2; y

(i)
1 =

(
(1− γ(i)1 )z

(i)
1

0

)
,

(2)

where {γ(i)k }k≥1 and {ψ(i)
k }k≥2 denote sequences of random variables verifying

the following assumption:

(A4)
{(
γ
(i)
k , ψ

(i)
k+1

)T}
k≥1

, i = 1, . . . ,m, are independent sequences of inde-

pendent random vectors, such that:

• {γ(i)k }k≥1, i = 1, . . . ,m, are sequences of Bernoulli random variables

with known probabilities, P
(
γ
(i)
k = 1

)
= γ

(i)
k .

• {ψ(i)
k }k≥2, i = 1, . . . ,m, are sequences of Bernoulli random vari-

ables such that the conditional probabilities P
(
ψ

(i)
k = 1/γ

(i)
k−1 = 1

)
are known. From now on, we will denote ψ

(i)

k ≡ P
(
ψ

(i)
k = 1

)
=

P
(
ψ

(i)
k = 1/γ

(i)
k−1 = 1

)
γ
(i)
k−1, k ≥ 2.

Finally, the following independence hypothesis is also assumed.
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(A5) For i = 1, . . . ,m, the signal, {xk}k≥1, and the processes {H(i)
k }k≥1,

{v(i)k }k≥1 and
{(
γ
(i)
k , ψ

(i)
k+1

)T}
k≥1

are mutually independent.

Remark 2. From (2), it is clear that, for each i = 1, . . . ,m, γ
(i)
k = 0

means that the output at the current sampling time, z
(i)
k , arrives on time

to be processed for the estimation, while γ
(i)
k = 1 means that this output

is either delayed or dropped out, in which case its predictor, ẑ
(i)
k/k−1, is used

as compensator. Also, for each i = 1, . . . ,m, ψ
(i)
k = 1 means that z

(i)
k−1

is processed at the sampling time k (because it was one-step delayed) and

ψ
(i)
k = 0 means that z

(i)
k−1 is not processed at the sampling time k (because

it was either received at time k − 1 or dropped out). Since γ
(i)
k−1 = 0 implies

ψ
(i)
k = 0, it is clear that the value of ψ

(i)
k is conditioned by that of γ

(i)
k−1.

Summing up, from (2) we have that γ
(i)
k = 0 and ψ

(i)
k = 1 means that

y
(i)
k =

(
z
(i)T
k , z

(i)T
k−1

)T
; that is, the outputs of the ith-sensor at the instants

k and k − 1 are both received at time k. If γ
(i)
k = 0 and ψ

(i)
k = 0, we have

y
(i)
k =

(
z
(i)T
k , 0

)T
. When γ

(i)
k = 1, the packet z

(i)
k is not available at time k

and its predictor, ẑ
(i)
k/k−1, is then used for estimation; in this case, as above,

if ψ
(i)
k = 1, we have y

(i)
k =

(
ẑ
(i)T
k/k−1 , z

(i)T
k−1

)T
, while y

(i)
k =

(
ẑ
(i)T
k/k−1 , 0

)T
when ψ

(i)
k = 0.

In order to simplify the mathematical derivations, for i = 1, . . . ,m, the
observation model (2) is rewritten as follows:

y
(i)
k =

(
1− γ(i)k

)
C0z

(i)
k + ψ

(i)
k C1z

(i)
k−1 + γ

(i)
k C0ẑ

(i)
k/k−1, k ≥ 2;

y
(i)
1 =

(
1− γ(i)1

)
C0z

(i)
1 ,

(3)

where C0 =
(
Inz×nz , 0nz×nz

)T
and C1 =

(
0nz×nz , Inz×nz

)T
.

Remark 3: The fusion estimation algorithms require expressions of some
correlation matrices which are presented below:

(a) For i, j = 1, . . . ,m, the model assumptions guarantee the independence

between {xk, xs} and {H(i)
k , H

(j)
s }; hence, using (A1), we have:

E
[
H

(i)
k xkx

T
sH

(j)T
s

]
= E

[
H

(i)
k E[xkx

T
s ]H(j)T

s

]
= E

[
H

(i)
k AkB

T
s H

(j)T
s

]
, s ≤ k,
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for arbitrary i, j = 1, . . . ,m, where E
[
H

(i)
k AkB

T
s H

(j)T
s

]
= H

(i)

k AkB
T
s H

(j)T

s

for j 6= i or s 6= k, and the entries of E
[
H

(i)
k AkB

T
kH

(i)T
k

]
are computed

by: (
E
[
H

(i)
k AkB

T
kH

(i)T
k

])
pq

=
nx∑
a=1

nx∑
b=1

E[h(i)
pa

(k)h(i)
qb

(k)](AkB
T
k )ab,

for p, q = 1, . . . , nz.

(b) From (1), the output processes in the different sensors {z(i)k }k≥1, i =

1, . . . ,m, have zero mean, and the matrices Σz(ij)

k,s ≡ E
[
z
(i)
k z

(j)T
s

]
, are

obtained by:

Σz(ij)

k,s = E
[
H

(i)
k AkB

T
s H

(j)T
s

]
+R

(ij)
k δk,s, s ≤ k, i, j = 1, . . . ,m.

(c) Taking into account assumption (A4) and denoting

ξ
(i)
k =

(
1−γ(i)k

)
C0z

(i)
k +ψ

(i)
k C1z

(i)
k−1, k ≥ 2; ξ

(i)
1 = y

(i)
1 =

(
1−γ(i)1

)
C0z

(i)
1 ,
(4)

we obtain that, for i, j = 1, . . . ,m, the matrices Σξ(ij)

k ≡ E
[
ξ
(i)
k ξ

(j)T
k

]
are

given by:

Σξ(ij)

k = E
[
(1− γ(i)k )(1− γ(j)k )

]
C0Σ

z(ij)

k CT
0 + E

[
ψ

(i)
k ψ

(j)
k

]
C1Σ

z(ij)

k−1C
T
1

+
(
1− γ(i)k

)
ψ

(j)

k C0Σ
z(ij)

k,k−1C
T
1 + ψ

(i)

k

(
1− γ(j)k

)
C1Σ

z(ji)T

k,k−1C
T
0 , k ≥ 2;

Σξ(ij)

1 = E
[
(1− γ(i)1 )(1− γ(j)1 )

]
C0Σ

z(ij)

1 CT
0 ,

(5)
where, from the properties of the Bernoulli distribution, it is clear that

E
[
(1− γ(i)k )(1− γ(j)k )

]
=

{
1− γ(i)k , i = j,

(1− γ(i)k )(1− γ(j)k ), i 6= j,

and

E
[
ψ

(i)
k ψ

(j)
k

]
=

{
ψ

(i)

k , i = j,

ψ
(i)

k ψ
(j)

k , i 6= j.
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3. Distributed fusion estimation problem

In the distributed fusion method, each single sensor sends its measured
outputs, through an unreliable network, to a local processor where local
estimators are computed using only the measurements received from the
sensor itself; after that, all the local estimators are transmitted, over perfect
connections, to a fusion center where the distributed estimators are generated
(see Figure 1). In this section, the LS linear estimation problem from the
observations with random delays and packet dropouts defined by (1) and
(3) is addressed under the distributed fusion method. First (Section 3.1),
using an innovation approach, local LS linear estimators (including filtering
and fixed-point smoothing estimators) are obtained by recursive algorithms.
Second (Section 3.2), the proposed distributed estimators are designed as the
LS matrix-weighted linear combinations of the local linear estimators.

3.1. Derivation of the local LS linear estimators

This section is concerned with the problem of obtaining, at each local
processor i, for i = 1, . . . ,m, recursive algorithms for the local LS linear
filter and fixed-point smoothers, by using an innovation approach. These
algorithms provide also the estimation error covariance matrices, which are
used to measure the accuracy of the local estimators when the LS optimality
criterion is used.

Innovation technique (for details, see [46]). For each i = 1, . . . ,m, the inno-

vation at time k is defined as µ
(i)
k = y

(i)
k − ŷ

(i)
k/k−1, where ŷ

(i)
k/k−1 is the LS linear

estimator of y
(i)
k based on y

(i)
s , s ≤ k − 1, and ŷ

(i)
1/0 = E[y

(i)
1 ] = 0. So, each

set of innovations, {µ(i)
1 , . . . , µ

(i)
L }, is obtained by linear transformations of

the corresponding observations, {y(i)1 , . . . , y
(i)
L }, and the LS linear estimator

of any random vector wk based on the observations y
(i)
1 , . . . , y

(i)
L , which will

be denoted as ŵ
(i)
k/L, can be calculated by taking the orthogonal projection

of wk in the linear space generated by the innovations µ
(i)
1 , . . . , µ

(i)
L . Namely,

denoting Π
(i)
l = E

[
µ
(i)
l µ

(i)T
l

]
and W(i)

k,l = E
[
w

(i)
k µ

(i)T
l

]
, the following general

expression is obtained:

ŵ
(i)
k/L =

L∑
l=1

W(i)
k,lΠ

(i)−1
l µ

(i)
l , i = 1, . . . ,m. (6)

12



One-stage observation predictor. Since ψ
(i)
k and H

(i)
k−1 are correlated with

the innovation µ
(i)
k−1, to simplify the derivation of the observation predictor,

ŷ
(i)
k/k−1, the observations (3) are rewritten as follows:

y
(i)
k = (1− γ(i)k )C0z

(i)
k + γ

(i)
k C0ẑ

(i)
k/k−1 + ψ

(i)

k C1H
(i)

k−1xk−1 + V
(i)
k−1, k ≥ 2,

(7)

where V
(i)
k = ψ

(i)
k+1C1z

(i)
k − ψ

(i)

k+1C1H
(i)

k xk, k ≥ 1, i = 1, . . . ,m.

Taking into account that, for i = 1, . . . ,m, ψ
(i)
k+1 and H

(i)
k are independent

of µ
(i)
1 , . . . , µ

(i)
k−1, from the general expression (6), it is easy to see that V̂

(i)
k/k =

V(i)
k Π

(i)−1
k µ

(i)
k , k ≥ 1, where V(i)

k ≡ E
[
V

(i)
k µ

(i)T
k

]
= E

[
V

(i)
k y

(i)T
k

]
. Hence,

according to the projection theory, ŷ
(i)
k/k−1, i = 1, . . . ,m, satisfy:

ŷ
(i)
k/k−1 = C0H

(i)

k x̂
(i)
k/k−1 + ψ

(i)

k C1H
(i)

k−1x̂
(i)
k−1/k−1 + V(i)

k−1Π
(i)−1
k−1 µ

(i)
k−1, k ≥ 2.

(8)
The general expression (6) for the LS linear estimators as a linear combi-

nation of the innovations, along with (8) for the one-stage observation pre-
dictor, are the starting points to derive the recursive filtering and fixed-point
smoothing algorithms.

Note that the determination of ŷ
(i)
k/k−1 requires that of the linear predictor,

x̂
(i)
k/k−1, and filter, x̂

(i)
k−1/k−1, which are simultaneously obtained in the next

section.

3.1.1. Local filtering algorithm

For notational simplicity, for i = 1, . . . ,m, we will use the following ma-
tricial operators and they will be applied to the matrices Dk = Ak, Bk that
define the signal covariance function (see (A1)):

H(i)

Dk
≡ (1− γ(i)k )C0H

(i)

k Dk + ψ
(i)

k C1H
(i)

k−1Dk−1, k ≥ 2;

H(i)

D1
≡ (1− γ(i)1 )C0H

(i)

1 D1.
(9)

Expression for the local predictors and filter of the signal. For each i =

1, . . . ,m, we use (6) to express x̂
(i)
k/L =

L∑
l=1

X (i)
k,l Π

(i)−1
l µ

(i)
l , L ≤ k, and we

proceed to calculate the coefficients

X (i)
k,l = E

[
xkµ

(i)T
l

]
= E

[
xky

(i)T
l

]
− E

[
xkŷ

(i)T
l/l−1

]
, 1 ≤ l ≤ k.

13



The independence hypotheses and the separable form of the signal co-
variance (A1) lead to

E
[
xky

(i)T
l

]
= AkH

(i)T

Bl
+ γ

(i)
l E[xkx̂

(i)T
l/l−1]H

(i)T

l CT
0 , 2 ≤ l ≤ k;

E
[
xky

(i)T
1

]
= AkH

(i)T

B1
,

with H(i)

Bl
given in (9). Now, using (8) for ŷ

(i)
l/l−1, together with (6) for x̂

(i)
l/l−1

and x̂
(i)
l−1/l−1, the following expression for the filter coefficients is obtained:

X (i)
k,l = AkH

(i)T

Bl
−

l−1∑
j=1

X (i)
k,jΠ

(i)−1
j

(
(1− γ(i)l )C0H

(i)

l X
(i)
l,j + ψ

(i)

l C1H
(i)

l−1X
(i)
l−1,j

)T
−X (i)

k,l−1Π
(i)−1
l−1 V

(i)T
l−1 , 2 ≤ l ≤ k;

X (i)
k,1 = AkH

(i)T

B1
,

which guarantees that X (i)
k,l = AkJ

(i)
l , 1 ≤ l ≤ k, with J

(i)
l given by

J
(i)
l = H(i)T

Bl
−

l−1∑
j=1

J
(i)
j Π

(i)−1
j J

(i)T
j H(i)T

Al
−J (i)

l−1Π
(i)−1
l−1 V

(i)T
l−1 , l ≥ 2; J

(i)
1 = H(i)T

B1
.

Then, by defining

O
(i)
k ≡

k∑
l=1

J
(i)
l Π

(i)−1
l µ

(i)
l , k ≥ 1,

it is clear from (6) that the signal predictors and filter are given by

x̂
(i)
k/L = AkO

(i)
L , L ≤ k; k ≥ 1, (10)

and, from (8), the following expression for the observation predictor, ŷ
(i)
k/k−1,

is obtained,

ŷ
(i)
k/k−1 =

(
H(i)

Ak
+ γ

(i)
k C0H

(i)

k Ak
)
O

(i)
k−1 + V(i)

k−1Π
(i)−1
k−1 µ

(i)
k−1, k ≥ 2. (11)

Moreover, by defining

r
(i)
k ≡ E

[
O

(i)
k O

(i)T
k

]
=

k∑
l=1

J
(i)
l Π

(i)−1
l J

(i)T
l , k ≥ 1,

14



the following expression for the coefficients V(i)
k = E

[
V

(i)
k y

(i)T
k

]
is easily ob-

tained:

V(i)
k = −ψ(i)

k+1(1− γ
(i)
k )C1H

(i)

k Ak
(
Bk − Akr(i)k−1

)T
H

(i)T

k CT
0 , k ≥ 1. (12)

Finally, since, from the Orthogonal Projection Lemma (OPL), the esti-
mation error is uncorrelated with all the observations or, equivalently, un-
correlated with the corresponding innovations, E

[
y
(i)
k O

(i)T
k−1
]

= E
[
ŷ
(i)
k/k−1O

(i)T
k−1
]

and E
[
y
(i)
k µ

(i)T
k−1
]

= E
[
ŷ
(i)
k/k−1µ

(i)T
k−1
]
; then, using (11) for ŷ

(i)
k/k−1 and since J

(i)
k =

E[O
(i)
k µ

(i)T
k ], the following expressions for the matrices O(i)

k,k−1 ≡ E
[
y
(i)
k O

(i)T
k−1
]

and Y(i)
k,k−1 ≡ E

[
y
(i)
k µ

(i)T
k−1
]
, are also easily obtained:

O(i)
k,k−1 =

(
H(i)

Ak
+ γ

(i)
k C0H

(i)

k Ak
)
r
(i)
k−1 + V(i)

k−1Π
(i)−1
k−1 J

(i)T
k−1 , k ≥ 2.

Y(i)
k,k−1 =

(
H(i)

Ak
+ γ

(i)
k C0H

(i)

k Ak
)
J
(i)
k−1 + V(i)

k−1, k ≥ 2.
(13)

Based on the above results, the following local filtering algorithm is de-
duced.

Theorem 1. Under assumptions (A1)-(A5), for each i = 1, . . . ,m, the local

LS linear filter, x̂
(i)
k/k, and the corresponding error covariance matrix, Σ

(i)
k/k ≡

E
[
(xk − x̂(i)k/k)(xk − x̂

(i)
k/k)

T
]
, are given by

x̂
(i)
k/k = AkO

(i)
k , k ≥ 1, (14)

Σ
(i)
k/k = Ak

(
Bk − Akr(i)k

)T
, k ≥ 1,

where the vectors O
(i)
k and the matrices r

(i)
k = E[O

(i)
k O

(i)T
k ] are recursively

obtained from

O
(i)
k = O

(i)
k−1 + J

(i)
k Π

(i)−1
k µ

(i)
k , k ≥ 1; O

(i)
0 = 0, (15)

r
(i)
k = r

(i)
k−1 + J

(i)
k Π

(i)−1
k J

(i)T
k , k ≥ 1; r

(i)
0 = 0,

and the matrices J
(i)
k = E[O

(i)
k µ

(i)T
k ] satisfy

J
(i)
k = H(i)T

Bk
− r(i)k−1H

(i)T

Ak
− J (i)

k−1Π
(i)−1
k−1 V

(i)T
k−1 , k ≥ 2; J

(i)
1 = H(i)T

B1
,

with H(i)

Ak
and H(i)

Bk
given in (9).

15



The innovations, µ
(i)
k , are given by

µ
(i)
k = y

(i)
k −

(
H(i)

Ak
+γ

(i)
k C0H

(i)

k Ak
)
O

(i)
k−1−V

(i)
k−1Π

(i)−1
k−1 µ

(i)
k−1, k ≥ 2; µ

(i)
1 = y

(i)
1 ,

with V(i)
k given in (12) and, finally, their covariances, Π

(i)
k = E

[
µ
(i)
k µ

(i)T
k

]
,

are obtained by

Π
(i)
k = Σξ(i)

k + γ
(i)
k

(
O(i)
k,k−1 − C0H

(i)

k Akr
(i)
k−1
)
ATkH

(i)T

k CT
0 −H

(i)

Ak
O(i)T
k,k−1

− V(i)
k−1Π

(i)−1
k−1 Y

(i)T
k,k−1, k ≥ 2; Π

(i)
1 = Σξ(i)

1 ,

where Σξ(i)

k , O(i)
k,k−1 and Y(i)

k,k−1 are given in (5) and (13), respectively.

3.1.2. Local fixed-point smoothing algorithm

A recursive algorithm for the local LS linear smoothers, x̂
(i)
k/k+h, at the

fixed point k, for any h ≥ 1, is presented in the following theorem.

Theorem 2. Under assumptions (A1)-(A5), for each i = 1, . . . ,m, the local

LS linear fixed-point smoothers, x̂
(i)
k/k+h, are calculated by

x̂
(i)
k/k+h = x̂

(i)
k/k+h−1 + X (i)

k,k+hΠ
(i)−1
k+h µ

(i)
k+h, k ≥ 1, h ≥ 1, (16)

with initial condition given by the local filter, x̂
(i)
k/k, and X (i)

k,k+h = E
[
xkµ

(i)T
k+h

]
verifying

X (i)
k,k+h =

(
Bk − E(i)

k,k+h−1
)
H(i)T

Ak+h
−X (i)

k,k+h−1Π
(i)−1
k+h−1V

(i)T
k+h−1, h ≥ 1;

X (i)
k,k = AkJ

(i)
k .

(17)

The matrices E
(i)
k,k+h = E[xkO

(i)T
k+h] satisfy the following recursive formula

E
(i)
k,k+h = E

(i)
k,k+h−1 + X (i)

k,k+hΠ
(i)−1
k+h J

(i)T
k+h , h ≥ 1; E

(i)
k,k = Akr

(i)
k . (18)

The fixed-point smoothing error covariance matrices, Σ
(i)
k/k+h ≡ E

[
(xk −

x̂
(i)
k/k+h)(xk − x̂

(i)
k/k+h)

T
]
, are obtained by

Σ
(i)
k/k+h = Σ

(i)
k/k+h−1 −X

(i)
k,k+hΠ

(i)−1
k+h X

(i)T
k,k+h, k ≥ 1, h ≥ 1,

with initial condition given by the filtering error covariance matrix Σ
(i)
k/k.

The filter x̂
(i)
k/k, the innovations µ

(i)
k+h and their covariance matrices, Σ

(i)
k/k

and Π
(i)
k+h, and the matrices J

(i)
k+h, are obtained from Theorem 1.
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Proof. See Appendix A. �

Remark 4: As in the Kalman filter, since the signal has dimension nx, from
theorems 1 and 2, it is easily deduced that the computational cost of the pro-
posed local estimators has the order of magnitude O(n3

x). The computational
cost of the estimators in [42], [43] and [44] is clearly higher since augmented
signal vectors with greater dimension than nx are considered. Actually, as
it is indicated in [43] and [44], the computational cost of the estimators in
[42] has the order of magnitude O

(
(nx + 5nz)

3
)
, which is higher than that

of the estimators in [43] and [44] with the magnitude O
(
(nx + 3nz)

3
)

and
O
(
(nx + nz)

3
)
, respectively. Hence, in comparison to the estimators in [42],

[43] and [44], the proposed estimators provide a significant reduction of the
computational cost.

3.2. Derivation of the distributed LS fusion linear estimators

As already mentioned, once the local LS linear estimators have been ob-
tained, our next objective is to derive distributed fusion estimators x̂

(D)
k/k+h,

k ≥ 1, h ≥ 0, as matrix-weighted linear combinations of the corresponding
local estimators, x̂

(i)
k/k+h, i = 1, . . . ,m, in which the weight matrices are com-

puted by minimizing the mean squared estimation error.

For this purpose, we consider the following stacked vectors, constituted

by the local estimators: X̂k/k+h =
(
x̂
(1)T
k/k+h, . . . , x̂

(m)T
k/k+h

)T
. By applying the

LS criterion (see e.g. [20]), it is easy to prove that the proposed distributed
estimators satisfy:

= E
[
xkX̂

T
k/k+h

] (
E
[
X̂k/k+hX̂

T
k/k+h

])−1
X̂k/k+h, k ≥ 1, h ≥ 0. (19)

Since E
[
X̂k/k+hX̂

T
k/k+h

]
=
(
E
[
x̂
(i)
k/k+hx̂

(j)T
k/k+h

])
i,j=1,...,m

and, from the OPL,

E
[
xkX̂

T
k/k+h

]
=
(
E
[
x̂
(1)
k/k+hx̂

(1)T
k/k+h

]
, . . . , E

[
x̂
(m)
k/k+hx̂

(m)T
k/k+h

])
, the derivation of

the distributed estimators in (19) only requires to know the cross-covariance

matrices between the local ones E
[
x̂
(i)
k/k+hx̂

(j)T
k/k+h

]
, i, j = 1, . . . ,m, h ≥ 0,

which will be obtained in a recursive way by starting from the cross-covariance
between the local filters.

From expressions (14) and (15), the cross-covariance between any two

local filtering estimators, x̂
(i)
k/k and x̂

(j)
k/k will be obtained from a recursive

formula for r
(ij)
k ≡ E

[
O

(i)
k O

(j)
k

]
, requiring also the cross-covariance matrices

17



Π
(ij)
k ≡ E

[
µ
(i)
k µ

(j)
k

]
. Also, from expression (16) for the local smoothing es-

timators, the cross-covariance between any two local smoothers x̂
(i)
k/k+h and

x̂
(j)
k/k+h, h > 0, requires the expectations Φ

(ij)
k,k+h ≡ E

[
x̂
(i)
k/k+h−1µ

(j)T
k+h

]
which, in

turn, will be obtained from Λ
(ij)
k,k+h−1 ≡ E

[
x̂
(i)
k/k+h−1O

(j)T
k+h−1

]
.

3.2.1. Preliminary results

In this section, we present some lemmas that provide the aforementioned
expectations, which are necessary to calculate the cross-covariance matrices
between the local estimators; the assumptions and notation in these lemmas
are the same as those of the previous sections.

Lemma 1. For i, j = 1, . . . ,m, the matrices r
(ij)
k = E

[
O

(i)
k O

(j)T
k

]
are ob-

tained by

r
(ij)
k = r

(ij)
k−1 + J

(ij)
k−1,kΠ

(j)−1
k J

(j)T
k + J

(i)
k Π

(i)−1
k J

(ji)T
k , k ≥ 1; r

(ij)
0 = 0, (20)

where the matrices J
(ij)
k = E[O

(i)
k µ

(j)T
k ] are given by

J
(ij)
k = J

(ij)
k−1,k + J

(i)
k Π

(i)−1
k Π

(ij)
k , k ≥ 1, (21)

and J
(ij)
k−1,k = E[O

(i)
k−1µ

(j)T
k ] are calculated by

J
(ij)
k−1,k =

(
r
(i)
k−1 − r

(ij)
k−1
)
H(j)T

Ak
+ J

(i)
k−1Π

(i)−1
k−1 V

(ji)T
k−1

− J (ij)
k−1Π

(j)−1
k−1 V

(j)T
k−1 , k ≥ 2; J

(ij)
0,1 = 0, i 6= j.

J
(i)
k−1,k = 0, k ≥ 1,

(22)

with V(ij)
k = E

[
V

(i)
k y

(j)T
k

]
given by

V(ij)
k = ψ

(i)

k+1(1− γ
(j)
k )C1R

(ij)
k CT

0 , k ≥ 1, i 6= j. (23)

Proof. See Appendix B. �

Lemma 2. For i, j = 1, . . . ,m, i 6= j, the innovation cross-covariance ma-
trices, Π

(ij)
k = E

[
µ
(i)
k µ

(j)
k

]
, satisfy

Π
(ij)
k = Σξ(ij)

k + γ
(j)
k

(
H(i)

Ak
r
(j)
k−1 + V(ij)

k−1Π
(j)−1
k−1 J

(j)T
k−1

)
ATkH

(j)T

k CT
0

−H(i)

Ak

(
O(j)T
k,k−1 + J

(ij)
k−1,k

)
− V(ij)

k−1Π
(j)−1
k−1 Y

(j)T
k,k−1

− V(i)
k−1Π

(i)−1
L−1 Π

(ij)
k−1,k, k ≥ 2; Π

(ij)
1 = Σξ(ij)

1 ,

(24)
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where Π
(ij)
k−1,k = E

[
µ
(i)
k−1µ

(j)
k

]
is obtained by

Π
(ij)
k−1,k =

(
J
(i)
k−1 − J

(ji)
k−1
)TH(j)T

Ak
+ V(ji)T

k−1 − Π
(ij)
k−1Π

(j)−1
k−1 V

(j)T
k−1 , k ≥ 2. (25)

Proof. See Appendix C. �

Lemma 3. For i, j = 1, . . . ,m, the expectations Φ
(ij)
k,L = E

[
x̂
(i)
k/L−1µ

(j)T
L

]
sa-

tisfy

Φ
(ij)
k,L =

(
Λ

(i)
k,L−1 − Λ

(ij)
k,L−1

)
H(j)T

AL
+ X (i)

k,L−1Π
(i)−1
L−1 V

(ji)T
L−1

−
(
X (i)
k,L−1Π

(i)−1
L−1 Π

(ij)
L−1 + Φ

(ij)
k,L−1

)
Π

(j)−1
L−1 V

(j)T
L−1 , L > k ≥ 1, i 6= j;

Φ
(ij)
k = AkJ

(ij)
k−1,k, k ≥ 1, i 6= j;

Φ
(i)
k,L = 0, L ≥ k ≥ 1.

(26)

Proof. See Appendix D. �

Lemma 4. For i, j = 1, . . . ,m, the expectations Λ
(ij)
k,L = E

[
x̂
(i)
k/LO

(j)T
L

]
satisfy

Λ
(ij)
k,L = Λ

(ij)
k,L−1 + Φ

(ij)
k,LΠ

(j)−1
L J

(j)T
L + X (i)

k,LΠ
(i)−1
L J

(ji)T
L−1,L

+ X (i)
k,LΠ

(i)−1
L Π

(ij)
L Π

(j)−1
L J

(j)T
L , L > k ≥ 1; Λ

(ij)
k = Akr

(ij)
k , k ≥ 1.

Proof. See Appendix E. �

3.2.2. Distributed filtering and fixed-point smoothing estimators

Using (14) and (16), a recursive expression for the cross-covariance ma-
trices between any two local estimators, which depends on the matrices cal-
culated in the previous lemmas, is immediately obtained and the distributed
estimators, x̂

(D)
k/k+h, are calculated from (19). Also, from assumption (A1) and

expression (19), it is easy to derive a formula for the error covariance matri-

ces, Σ
(D)
k/k+h ≡ E

[
(xk − x̂(D)

k/k+h)(xk − x̂
(D)
k/k+h)

T
]
. These results are presented

in the following theorem.

Theorem 3. Let X̂k/k+h =
(
x̂
(1)T
k/k+h, . . . , x̂

(m)T
k/k+h

)T
be the vector constituted

by the local estimators calculated from the algorithms in theorems 1 and 2;
then, the distributed filtering and smoothing estimators are given by

x̂
(D)
k/k+h = Ξk/k+h

(
Kk/k+h

)−1
X̂k/k+h, k ≥ 1, h ≥ 0,
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with Kk/k+h =
(
K

(ij)
k/k+h

)
i,j=1,...,m

and Ξk/k+h =
(
K

(1)
k/k+h, . . . , K

(m)
k/k+h

)
,

where K
(ij)
k/k+h = E

[
x̂
(i)
k/k+hx̂

(j)T
k/k+h

]
, i, j = 1, . . . ,m, are obtained by

K
(ij)
k/k+h = K

(ij)
k/k+h−1 + Φ

(ij)
k,k+hΠ

(j)−1
k+h X

(j)T
k,k+h + X (i)

k,k+hΠ
(i)−1
k+h Φ

(ji)T
k,k+h

+X (i)
k,k+hΠ

(i)−1
k+h Π

(ij)
k+hΠ

(j)−1
k+h X

(j)T
k,k+h, k ≥ 1, h > 0;

K
(ij)
k/k = Akr

(ij)
k ATk ,

and the matrices r
(ij)
k , Π

(ij)
k+h and Φ

(ij)
k,k+h are obtained in lemmas 1, 2 and 3,

respectively.
The error covariance matrices of the distributed estimators are computed

by
Σ

(D)
k/k+h = AkB

T
k −Ξk/k+hK

−1
k/k+hΞ

T
k/k+h, k ≥ 1, h ≥ 0.

4. Simulation study

In this section, a numerical simulation example is presented with a dual
purpose: on the one hand, for illustrating some of the different sensor uncer-
tainties covered by the current measurement model (1) with random mea-
surement matrices and, on the other, for analyzing the performance of the
proposed distributed filtering and fixed-point smoothing algorithms and how
the estimation accuracy is influenced by the sensor uncertainties and the
random transmission delays and packet losses.

Signal process. Consider the same signal process as that in [40]; specifically,
a discrete-time scalar signal generated by the following model with state-
dependent multiplicative noise:

xk+1 =
(
0.9 + 0.01εk

)
xk + wk, k ≥ 0,

where x0 is a standard Gaussian variable and {wk}k≥0, {εk}k≥0 are zero-mean
Gaussian white processes with unit variance. Assuming that x0, {wk}k≥0 and
{εk}k≥0 are mutually independent, the signal covariance function is given by
E[xkxs] = 0.9k−sDs, s ≤ k, where Ds = E[x2s] is obtained by:

Ds = (0.92 + 0.012)Ds−1 + 1, s ≥ 1; D0 = 1;

hence, assumption (A1) is satisfied taking, for example, Ak = 0.9k y Bs =
0.9−sDs.
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Sensor measured outputs. Consider four sensors which provide scalar mea-
surements of the signal according to model (1), where the additive noises are

defined as v
(i)
k = ciηk, i = 1, 2, 3, 4, with c1 = 1, c2 = 0.5, c3 = c4 = 0.75, and

{ηk}k≥1 is a zero-mean Gaussian white process with variance 0.5. Clearly,

these noises are correlated, with R
(ij)
k = 0.5cicj, k ≥ 1; i, j = 1, 2, 3, 4. The

random measurement matrices are defined by H
(i)
k = θ

(i)
k C

(i)
k , for i = 1, 2, 3,

where C
(1)
k = 0.82, C

(2)
k = 0.75, C

(3)
k = 0.74, and H

(4)
k = θ

(4)
k

(
0.75 + 0.95ϕk

)
,

with {ϕk}k≥1 a zero-mean Gaussian white process with unit variance and

{θ(i)k }k≥1, i = 1, 2, 3, 4, white processes with the following time-invariant
probability distributions:

• {θ(1)k }k≥1 are uniformly distributed over [0.2, 0.7].

• P
(
θ
(2)
k = 0

)
= 0.3, P

(
θ
(2)
k = 0.5

)
= 0.3, P

(
θ
(2)
k = 1

)
= 0.4, k ≥ 1.

• For i = 3, 4, {θ(i)k }k≥1 are Bernoulli random variables with P
(
θ
(i)
k = 1

)
=

θ
(i)
, k ≥ 1.

Note that the random measurement parameters H
(i)
k , i = 1, 2, 3, 4, model

different sensor uncertainties; namely, continuous and discrete gain degrada-
tion in sensors 1 and 2, respectively, missing measurements in sensor 3, and
both missing measurements and multiplicative noise in sensor 4.

Observations with random packet dropouts. Now, according to the theoretical
study, we assume that the available measurements used for the estimation,
y
(i)
k , i = 1, 2, 3, 4, are modeled as in (2):

y
(i)
k =

(
(1− γ(i)k )z

(i)
k + γ

(i)
k ẑ

(i)
k/k−1

ψ
(i)
k z

(i)
k−1

)
, k ≥ 2; y

(i)
1 =

(
(1− γ(i)1 )z

(i)
1

0

)
,

where, for i = 1, 2, 3, 4, {γ(i)k }k≥1 and {ψ(i)
k }k≥2 are sequences of indepen-

dent Bernoulli random variables whose distributions are determined by the
following probabilities:

• γ(i) ≡ P
(
γ
(i)
k = 1

)
, which, for all k, is the probability that the mea-

surement z
(i)
k is delayed or lost and, hence, it is not received at time

k.
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• ψ(i)

γ ≡ P
(
ψ

(i)
k = 1/γ

(i)
k−1 = 1

)
, which, for all k, is the probability that

the measurement z
(i)
k−1 is received at the current time k, knowing that

it was not received at the previous one, k − 1.

• ψ(i) ≡ P
(
ψ

(i)
k = 1

)
= ψ

(i)

γ γ
(i), which, for all k, is the probability that

the measurement z
(i)
k−1 is received and processed at the current time k.

Finally, in order to apply the proposed algorithms, it is assumed that all
the processes involved in the observation equations satisfy the independence
hypotheses imposed on the theoretical model.

A MATLAB program has been designed to obtain the local and dis-
tributed fusion estimators, as well as the corresponding error variance matri-
ces, and fifty iterations have been run to show the feasibility and effectiveness
of the proposed filtering an fixed-point smoothing algorithms. The estima-
tion accuracy has been examined by analyzing the error variances for different
probabilities of the Bernoulli random variables which model the uncertain-

ties of the third and fourth sensors, θ
(i)
, i = 3, 4, and several values of the

probabilities γ(i), and the conditional probabilities ψ
(i)

γ , i = 1, 2, 3, 4, have
also been considered.

Performance of the distributed fusion filtering and smoothing estimators. Let

us assume that θ
(i)

= 0.5, i = 3, 4, γ(i) = 0.1i, i = 1, 2, 3, 4, and consider the

same conditional probability for the four sensors, ψ
(i)

γ = 0.5, i = 1, 2, 3, 4. In
Figure 2, the error variances of the local filtering estimators and both the
distributed filtering and smoothing error variances are displayed. Figure 2
shows, on the one hand, that the error variances of the distributed fusion
estimators are smaller than those of every local filter (that is, as expected,
the distributed fusion filtering estimators outperform all the local ones), and,
on the other, that the error variances corresponding to the distributed fusion
smoothers are quite less than those of the distributed filters. From this figure
it is also deduced that the accuracy of the smoothers at each fixed-point, k,
is better as the number of available observations, k + h, increases, although
this improvement is practically imperceptible for h > 3. Similar results are

obtained for other values of the probabilities θ
(i)

, γ(i) and ψ
(i)

γ .

Influence of the missing measurement phenomenon in sensors 3 and 4. Con-

sidering again γ(i) = 0.1i and ψ
(i)

γ = 0.5, i = 1, 2, 3, 4, and, in order to
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show the effect of the missing probabilities, 1 − θ(i), in sensors i = 3, 4, the
distributed filtering error variances are displayed in Figure 3 for different
values of these probabilities. Specifically, in Figure 3 (a), it is assumed that

θ
(3)

= θ
(4)

, with value range from 0.5 to 0.9, and, in Figure 3 (b), θ
(3)

is

varied from 0.5 to 0.9 and θ
(4)

= 0.5. From these figures, it is observed that
the performance of the distributed fusion filter is indeed influenced by the

probabilities θ
(i)
, i = 3, 4, and, as expected, it is confirmed that the dis-

tributed filtering error variances become smaller as 1− θ(i) decreases, which
means that the performance of the distributed fusion filters improves as the
probability of missing measurements decreases. Analogous results are ob-
tained for the distributed fusion smoothers and considering other values of
the probabilities.

Influence of the probabilities γ(i). For θ(i) = 0.5, i = 3, 4, ψ
(i)

γ = 0.5,
i = 1, 2, 3, 4, different values for the probabilities of measurements not arriv-
ing on time, γ(i), i = 1, 2, 3, 4, have been considered to analyze the influence
of the random delays and packet dropouts on the performance of the dis-
tributed estimators. Figure 4 shows the distributed filtering error variances
considering the same probabilities in the four sensors, γ(i) = γ, i = 1, 2, 3, 4;
specifically, the distributed filter performance is analyzed when γ is varied
from 0.1 to 0.9. From this figure it is concluded that, as γ decreases, the
distributed filtering error variances become smaller, which means that, as
expected, the smaller the probabilities of transmission failures are, the better
estimations are obtained. Analogous results are observed for the distributed
fusion smoothers.

Both, the filtering and smoothing error variances, have also been com-
pared assuming different values of the probabilities γ(i) for each sensor, ob-
taining similar results to the previous ones in all the considered situations;
consequently, analogous conclusions are deduced from these comparisons,
some of which are shown in Figure 5. Taking into account that the behavior
of the error variances is analogous in all the iterations, only the results at a
specific iteration (k = 50) are displayed in Figure 5.

Influence of the conditional probabilities. Considering, as in Figure 4, θ
(i)

=
0.5, i = 3, 4, and γ(i) = γ, i = 1, 2, 3, 4, we analyze the influence of the con-

ditional probabilities ψ
(i)

γ , i = 1, 2, 3, 4, on the performance of the proposed
distributed filtering estimators. Specifically, assuming the same conditional
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probabilities in the four sensors, ψ
(i)

γ = ψγ, i = 1, 2, 3, 4, Figure 6 displays the

distributed filtering error variances at k = 50 versus ψγ, for γ varying from
0.1 to 0.9. This figure shows that, for each value of γ, the error variances de-
crease when the conditional probability increases. This result was expected
since, fixed an arbitrary value of γ, the increasing of ψγ entails that of ψ, the
probability of processing at the current time the delayed measurement in the
previous time. Also, we observe that the decreasing of the error variances is
more evident for higher values of γ, which was also expected since ψ = ψγγ

and, hence, γ specifies the increasing rate of ψ with respect to ψγ.

Comparison of filtering error variances. Finally, the error variances of the
proposed local and distributed filtering estimators, which use one or two
data packets at each time instant, are compared with those of the estima-
tors obtained processing a single packet. Two cases are considered in this
comparison: 1) filtering estimators in [40], that use the measurement pre-
dictor as compensation in case of loss, i.e. to compensate the non-punctual
arrival of a packet, such packet is replaced by its estimator based on the
information previously received, and 2) filtering estimators in [20] which use
the hold-input compensation mechanism, i.e. estimators that use the last
measurement received when a packet is lost. More specifically, assuming as

in Figure 2 that θ
(i)

= 0.5, i = 3, 4 and γ(i) = 0.1i, i = 1, 2, 3, 4, Figure 7
displays the error variances of the local and distributed filtering estimators
for the three cases we are considering. For a better visualization of the re-
sults, only the local estimators of sensors 3 and 4 are displayed in this figure,
but analogous conclusions are obtained for the other two sensors. From this
figure it is observed that, for both local and distributed estimation, the error
variances of the proposed filters are less than those of the filters in [40] and,
consequently, the proposed algorithms provide better estimations than those
in [40]. This conclusion was expected since, although both of them use the
measurement predictor as compensator, under the observation model in the
current paper the estimator can additionally use the previous measurement.
Figure 7 also shows that both algorithms, the proposed one and that in [40],
provide better estimators than the algorithms in [20]. This fact was also
expected since, as indicated above, the filters in [20] only use the last mea-
surement received when a packet is lost, while the proposed estimators and
those in [40] use all the previous measurements successfully received when
the current one does not arrive on time.
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5. Conclusion

The main conclusions of this paper are summarized as follows:

• A solution to the distributed fusion estimation problem is provided for a
class of multi-sensor network systems with random parameter matrices.

• The measured outputs of each sensor are transmitted to a local pro-
cessor and random failures (one-step delays and packet dropouts) can
occur during such local transmissions.

• As in [43], every data packet is assumed to be transmitted just once
but, due to the random delays and packet losses, the estimator may
receive either one packet, two packets, or nothing. When the current
measurement does not arrive on time, its predictor is used as compen-
sator in the design of the estimators.

• By an innovation approach, recursive algorithms for the local filtering
and fixed-point smoothing estimators have been designed without re-
quiring full knowledge of the signal evolution model, but only the first
and second order moments of the processes involved in the observation
model.

• In contrast to most existing estimation algorithms dealing with ran-
dom delays and packet dropouts, the proposed ones do not require any
state vector augmentation technique, thus being computationally more
simple.

• A numerical example has been presented to show how uncertain sys-
tems with state-dependent multiplicative noise can be covered by the
proposed model and how the estimation accuracy is influenced by the
transmission failure probabilities.

Further research topics:

• An immediate future research could be the extension of the current
work to the case of systems with correlation in both the measurement
matrices and the additive observation noises.
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• It would be also interesting the use of the current model to deal with the
losses in the case of connected sensor networks, where each sensor node
exchanges information with some other nodes in the network according
to a given topology.

• Another important challenge to be addressed in future research is con-
sidering the case of imperfect communication also between the local
estimators and the fusion node, to cover more general and realistic
situations.

• Finally, concerning the packet dropouts modelling, more general situa-
tions where the transmission packet losses are bounded and driven by
a finite-state Markov process could be also considered.
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Appendix A. Proof of Theorem 2

Proof. Using the general expression (6), the local estimators are written as

x̂
(i)
k/k+h =

k+h∑
l=1

X (i)
k,l Π

(i)−1
l µ

(i)
l , h ≥ 1; hence, it is clear that the local smoothers

are recursively obtained by (16) from the filter, x̂
(i)
k/k. The recursive relation

(17) for X (i)
k,k+h = E

[
xky

(i)T
k+h

]
−E

[
xkŷ

(i)T
k+h/k+h−1

]
, h ≥ 1, is derived as follows:

• On the one hand, the independence assumptions, together with (A1) and
(9), lead us to

E
[
xky

(i)T
k+h

]
= BkH

(i)T

Ak+h
+ γ

(i)
k+hE

[
xkO

(i)T
k+h−1

]
ATk+hH

(i)T

k+hC
T
0 , h ≥ 1.

• On the other, using expression (11) for ŷ
(i)
k+h/k+h−1, is clear that

E
[
xkŷ

(i)T
k+h/k+h−1

]
= E

[
xkO

(i)T
k+h−1

](
H(i)

Ak+h
+ γ

(i)
k+hC0H

(i)

k+hAk+h
)T

+X (i)
k,k+h−1Π

(i)−1
k+h−1V

(i)T
k+h−1, h ≥ 1.
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Therefore, denoting E
(i)
k,k+h = E

[
xkO

(i)T
k+h

]
, expression (17) holds and, using

(15) for O
(i)
k+h, the recursive expression (18) for the matrices E

(i)
k,k+h is also

clear.

Finally, using (16) for the smoothers x̂
(i)
k/k+h, the recursive formula for

the fixed-point smoothing error covariance matrices, Σ
(i)
k/k+h, is immediately

deduced. �

Appendix B. Proof of Lemma 1

Proof. Using (15) for O
(i)
k and taking into account that J

(ij)
s,k = E[O

(i)
s µ

(j)T
k ],

for s = k− 1, k, we get (20) for r
(ij)
k . Expression (21) for J

(ij)
k = E[O

(i)
k µ

(j)T
k ]

is directly obtained using again (15).

To derive (22) for J
(ij)
k−1,k = E[O

(i)
k−1µ

(j)T
k ] = E[O

(i)
k−1y

(j)T
k ]− E[O

(i)
k−1ŷ

(j)T
k/k−1]

we proceed in the following way:

• E[O
(i)
k−1y

(j)T
k ] is obtained by using (7) for y

(j)
k and calculating the resulting

expectations as follows:

- First, by applying the OPL, E
[
O

(i)
k−1z

(j)T
k

]
= E

[
O

(i)
k−1x̂

(i)T
k/k−1

]
H

(j)T

k and

E
[
O

(i)
k−1x

T
k−1
]

= E
[
O

(i)
k−1x̂

(i)T
k−1/k−1

]
.

- Next, using (10) for the local predictor and filter of the signal, together

with the definition of r
(ij)
k−1, we otain E

[
O

(i)
k−1x̂

(i)T
s/k−1

]
= r

(i)
k−1A

T
s , for

s = k − 1, k, and E
[
O

(i)
k−1ẑ

(j)T
k/k−1

]
= r

(ij)
k−1A

T
kH

(j)T

k .

- Finally, using (15) for O
(i)
k−1 and the uncorrelation between O

(i)
k−2

and V
(j)
k−1, we get E

[
O

(i)
k−1V

(j)T
k−1

]
= J

(i)
k−1Π

(i)−1
k−1 V

(ji)T
k−1 , with V(ji)

k =

E
[
V

(j)
k µ

(i)T
k

]
= E

[
V

(j)
k y

(i)T
k

]
.

Then, from (9) for H(j)

Ak
, we conclude that

E[O
(i)
k−1y

(j)T
k ] = r

(i)
k−1H

(j)T

Ak
+ γ

(j)
k r

(ij)
k−1A

T
kH

(j)T

k CT
0 + J

(i)
k−1Π

(i)−1
k−1 V

(ji)T
k−1 . (27)

• To obtain E[O
(i)
k−1ŷ

(j)T
k/k−1] we use (11) for ŷ

(j)
k/k−1, and the definitions of r

(ij)
k

and J
(ij)
k lead us to

E[O
(i)
k−1ŷ

(j)T
k/k−1] = r

(ij)
k−1

(
H(j)

Ak
+ γ

(j)
k C0H

(j)

k Ak

)T
− J (ij)

k−1Π
(j)−1
k−1 V

(j)T
k−1 .
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From both expectations, we easily conclude that expression (22) holds for

J
(ij)
k−1,k. Finally, expression (23) for V(ji)

k is easily obtained from the definition

of V
(j)
k . �

Appendix C. Proof of Lemma 2

Proof. To obtain expression (24) for Π
(ij)
k , i 6= j, first we write

Π
(ij)
k = E

[
y
(i)
k y

(j)T
k

]
− E

[
y
(i)
k ŷ

(j)T
k/k−1

]
− E

[
ŷ
(i)
k/k−1µ

(j)T
k

]
.

• From (3) and (4), we get y
(i)
k = ξ

(i)
k +γ

(i)
k C0ẑ

(i)
k/k−1, and using that ẑ

(i)
k/k−1 =

H
(i)

k AkO
(i)
k−1, together with the definition of r

(ij)
k , we obtain

E
[
y
(i)
k y

(j)T
k

]
= Σξ(ij)

k + γ
(i)
k C0H

(i)

k AkE[O
(i)
k−1y

(j)T
k ]

+ γ
(j)
k E[y

(i)
k O

(j)T
k−1 ]ATkH

(j)T

k CT
0

− γ(i)k γ
(j)
k C0H

(i)

k Akr
(ij)
k−1A

T
kH

(j)T

k CT
0 .

• Using (7) for y
(i)
k , an analogous procedure to that used to derive (27),

leads us to

E
[
y
(i)
k ŷ

(j)T
k/k−1

]
= H(i)

Ak
O(j)T
k,k−1 − γ

(i)
k C0H

(i)

k Ak

(
E[O

(i)
k−1y

(j)T
k ]− J (ij)

k−1,k

)
− V(ij)

k−1Π
(j)−1
k−1 Y

(j)T
k,k−1,

where we have used that E
[
O

(i)
k−1ŷ

(j)T
k/k−1

]
= E

[
O

(i)
k−1y

(j)T
k

]
−E

[
O

(i)
k−1µ

(j)T
k

]
and the definition of J

(ij)
k−1,k.

• Finally, from (11) for ŷ
(i)
k/k−1 and the definitions of J

(ij)
k−1,k and Π

(ij)
k−1,k, we

obtain that

E[ŷ
(i)
k/k−1µ

(j)
k ] =

(
H(i)

Ak
+ γ

(i)
k C0H

(i)

k Ak

)
J
(ij)
k−1,k + V(i)

k−1Π
(i)−1
k−1 Π

(ij)
k−1,k.

From the above items, using (27) for E[O
(i)
k−1y

(j)T
k ] and after some manipula-

tions, expression (24) for Π
(ij)
k is obtained.
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Next, we prove expression (25) for Π
(ij)
k−1,k = E

[
µ
(i)
k−1y

(j)T
k

]
−E
[
µ
(i)
k−1ŷ

(j)T
k/k−1

]
.

Taking into account (7) for y
(j)
k and using again a similar procedure to that

used to derive (27), we obtain

E
[
µ
(i)
k−1y

(j)T
k

]
= J

(i)T
k−1H

(j)T

Ak
+ γ

(j)
k J

(ji)T
k−1 H

(j)T

k CT
0 + V(ji)T

k−1 ;

using now expression (11) for ŷ
(j)
k/k−1 and the definition of J

(ij)
k , we have

E
[
µ
(i)
k−1ŷ

(j)T
k/k−1

]
= J

(ji)T
k−1

(
H(j)

Ak
+ γ

(j)
k C0H

(j)

k Ak
)T

+ Π
(ij)
k−1Π

(j)−1
k−1 V

(j)T
k−1 .

The above relations lead us to expression (25) for Π
(ij)
k−1,k, and Lemma 2 is

proven. �

Appendix D. Proof of Lemma 3

Proof. Taking into account expression (11) for ŷ
(j)
k/k−1 and the definition of

Λ
(ij)
k,L , we have that

Φ
(ij)
k,L = E

[
x̂
(i)
k/L−1y

(j)T
L

]
− Λ

(ij)
k,L−1

(
H(j)

AL
+ γ

(j)
L C0H

(j)

L AL
)T

−E
[
x̂
(i)
k/L−1µ

(j)T
L−1
]
Π

(j)−1
L−1 V

(j)T
L−1 .

• On the one hand, using again (7) for y
(j)
k and an analogous reasoning to

that used to derive (27), we obtain

E
[
x̂
(i)
k/L−1y

(j)T
L

]
= Λ

(i)
k,L−1H

(j)T

AL
+ Λ

(ij)
k,L−1

(
γ
(j)
L C0H

(j)

L AL−1

)T
+ X (i)

k,L−1Π
(i)−1
L−1 V

(ji)T
L−1 .

• On the other, from (6), it is clear that x̂
(i)
k/L−1 = x̂

(i)
k/L−2+X

(i)
k,L−1Π

(i)−1
L−1 µ

(i)
L−1,

and, hence, E
[
x̂
(i)
k/L−1µ

(j)T
L−1
]

= Φ
(ij)
k,L−1 + X (i)

k,L−1Π
(i)−1
L−1 Π

(ij)
L−1.

Substituting the above expectations, expression (26) for Φ
(ij)
k,L , L > k ≥

1, i 6= j, is immediately derived. From (10) and the definition of J
(ij)
k−1,k, the

initial condition, Φ
(ij)
k = AkJ

(ij)
k−1,k, is clear, and, from the OPL, we have that

Φ
(i)
k,L = 0, L ≥ k ≥ 1, so Lemma 3 is proven. �
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Appendix E. Proof of Lemma 4

Proof. From (16) and (15), x̂
(i)
k/L = x̂

(i)
k/L−1 + X (i)

k,LΠ
(i)−1
L µ

(i)
L , and O

(j)
L =

O
(j)
L−1 + J

(j)
L Π

(j)−1
L µ

(j)
L , respectively, and the expression of Λ

(ij)
k,L , L > k, is

immediately deduced. The initial condition, Λ
(ij)
k = Akr

(ij)
k , is also directly

obtained from (14) and the definition of r
(ij)
k , so Lemma 4 is proven. �
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Figure 1: Conceptual diagram of distributed fusion filtering estimation.
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Figure 2: Error variance comparison of the local filters and distributed fusion filter and
smoothers.
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Figure 3: Distributed filtering error variances for different values of θ
(3)

and θ
(4)
.
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Figure 4: Distributed filtering error variances when θ
(i)

= 0.5, i = 3, 4, ψ
(i)

γ = 0.5 and

γ(i) = γ, for i = 1, 2, 3, 4, with γ varying from 0.1 to 0.9.
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Figure 5: Distributed smoothing error variances Σ
(D)
50/51 when θ

(i)
= 0.5, i = 3, 4, ψ

(i)

γ =

0.5, i = 1, 2, 3, 4, for different values of the probabilities γ(i): (a) γ(1) = γ(4) = 0.1,
γ(3) = 0.3, 0.5, 0.7, versus γ(2); (b) γ(1) = 0.1, γ(2) = 0.2, γ(4) = 0.4, 0.6, 0.8, versus γ(3);
(c) different values of γ(3) and γ(4) versus γ(1) = γ(2).
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Figure 6: Distributed filtering error variances at k = 50, versus ψγ , for γ varying from 0.1

to 0.9., when θ
(i)

= 0.5, i = 3, 4.
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Figure 7: Comparison of filtering error variances when θ
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= 0.5, i = 3, 4 and γ(i) = 0.1i,
i = 1, 2, 3, 4.
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