10,093 research outputs found

    Morphology and Dynamics of the Low Solar Chromosphere

    Full text link
    The Interferometric Bidimensional Spectrometer (IBIS) installed at the Dunn Solar Telescope of the NSO/SP is used to investigate the morphology and dynamics of the lower chromosphere and the virtually non-magnetic fluctosphere below. The study addresses in particular the structure of magnetic elements that extend into these layers. We choose different quiet Sun regions in and outside coronal holes. In inter-network regions with no significant magnetic flux contributions above the detection limit of IBIS, we find intensity structures with the characteristics of a shock wave pattern. The magnetic flux elements in the network are long lived and seem to resemble the spatially extended counterparts to the underlying photospheric magnetic elements. We suggest a modification to common methods to derive the line-of-sight magnetic field strength and explain some of the difficulties in deriving the magnetic field vector from observations of the fluctosphere.Comment: accepted by ApJ, 16 pages, 8 figure

    A scene model of exosolar systems for use in planetary detection and characterisation simulations

    Full text link
    Instrumental projects that will improve the direct optical finding and characterisation of exoplanets have advanced sufficiently to trigger organized investigation and development of corresponding signal processing algorithms. The first step is the availability of field-of-view (FOV) models. These can then be submitted to various instrumental models, which in turn produce simulated data, enabling the testing of processing algorithms. We aim to set the specifications of a physical model for typical FOVs of these instruments. The dynamic in resolution and flux between the various sources present in such a FOV imposes a multiscale, independent layer approach. From review of current literature and through extrapolations from currently available data and models, we derive the features of each source-type in the field of view likely to pass the instrumental filter at exo-Earth level. Stellar limb darkening is shown to cause bias in leakage calibration if unaccounted for. Occurrence of perturbing background stars or galaxies in the typical FOV is unlikely. We extract galactic interstellar medium background emissions for current target lists. Galactic background can be considered uniform over the FOV, and it should show no significant drift with parallax. Our model specifications have been embedded into a Java simulator, soon to be made open-source. We have also designed an associated FITS input/output format standard that we present here.Comment: 9 pages (+5 of appendices), 7 figures, accepted for publication in Astronomy & Astrophysic

    The Primordial Inflation Explorer (PIXIE): A Nulling Polarimeter for Cosmic Microwave Background Observations

    Get PDF
    The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. The instrument consists of a polarizing Michelson interferometer configured as a nulling polarimeter to measure the difference spectrum between orthogonal linear polarizations from two co-aligned beams. Either input can view the sky or a temperature-controlled absolute reference blackbody calibrator. PIXIE will map the absolute intensity and linear polarization (Stokes I, Q, and U parameters) over the full sky in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 um wavelength). Multi-moded optics provide background-limited sensitivity using only 4 detectors, while the highly symmetric design and multiple signal modulations provide robust rejection of potential systematic errors. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10^{-3} at 5 standard deviations. The rich PIXIE data set will also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy.Comment: 37 pages including 17 figures. Submitted to the Journal of Cosmology and Astroparticle Physic

    13CO Cores in Taurus Molecular Cloud

    Full text link
    Young stars form in molecular cores, which are dense condensations within molecular clouds. We have searched for molecular cores traced by 13^{13}CO J=10J=1\to 0 emission in the Taurus molecular cloud and studied their properties. Our data set has a spatial dynamic range (the ratio of linear map size to the pixel size) of about 1000 and spectrally resolved velocity information, which together allow a systematic examination of the distribution and dynamic state of 13^{13}CO cores in a large contiguous region. We use empirical fit to the CO and CO2_2 ice to correct for depletion of gas-phase CO. The 13^{13}CO core mass function (13^{13}CO CMF) can be fitted better with a log-normal function than with a power law function. We also extract cores and calculate the 13^{13}CO CMF based on the integrated intensity of 13^{13}CO and the CMF from 2MASS. We demonstrate that there exists core blending, i.e.\ combined structures that are incoherent in velocity but continuous in column density. The core velocity dispersion (CVD), which is the variance of the core velocity difference δv\delta v, exhibits a power-law behavior as a function of the apparent separation LL:\ CVD (km/s) L(pc)0.7\propto L ({\rm pc})^{0.7}. This is similar to Larson's law for the velocity dispersion of the gas. The peak velocities of 13^{13}CO cores do not deviate from the centroid velocities of the ambient 12^{12}CO gas by more than half of the line width. The low velocity dispersion among cores, the close similarity between CVD and Larson's law, and the small separation between core centroid velocities and the ambient gas all suggest that molecular cores condense out of the diffuse gas without additional energy from star formation or significant impact from converging flows.Comment: 46 pages, 23 figures, accepted by Ap

    Kepler's First Rocky Planet: Kepler-10b

    Get PDF
    NASA's Kepler Mission uses transit photometry to determine the frequency of Earth-size planets in or near the habitable zone of Sun-like stars. The mission reached a milestone toward meeting that goal: the discovery of its first rocky planet, Kepler-10b. Two distinct sets of transit events were detected: (1) a 152 ± 4 ppm dimming lasting 1.811 ± 0.024 hr with ephemeris T [BJD] = 2454964.57375^(+0.00060)_(–0.00082) + N * 0.837495^(+0.000004)_(–0.000005) days and (2) a 376 ± 9 ppm dimming lasting 6.86 ± 0.07 hr with ephemeris T [BJD] = 2454971.6761^(+0.0020)_(–0.0023) + N * 45.29485^(+0.00065) _(–0.00076) days. Statistical tests on the photometric and pixel flux time series established the viability of the planet candidates triggering ground-based follow-up observations. Forty precision Doppler measurements were used to confirm that the short-period transit event is due to a planetary companion. The parent star is bright enough for asteroseismic analysis. Photometry was collected at 1 minute cadence for >4 months from which we detected 19 distinct pulsation frequencies. Modeling the frequencies resulted in precise knowledge of the fundamental stellar properties. Kepler-10 is a relatively old (11.9 ± 4.5 Gyr) but otherwise Sun-like main-sequence star with T_(eff) = 5627 ± 44 K, M_⋆ = 0.895 ± 0.060 M_⊙ , and R_⋆ = 1.056 ± 0.021 R_⊙. Physical models simultaneously fit to the transit light curves and the precision Doppler measurements yielded tight constraints on the properties of Kepler-10b that speak to its rocky composition: M_P = 4.56^9+1.17)_(–1.29) M_⊕, R_P = 1.416^(+0.033)_(–0.036) R_⊕, and ρ_P = 8.8^(+2.1)_(–2.9) g cm^(–3). Kepler-10b is the smallest transiting exoplanet discovered to date

    Droplets I: Pressure-Dominated Sub-0.1 pc Coherent Structures in L1688 and B18

    Full text link
    We present the observation and analysis of newly discovered coherent structures in the L1688 region of Ophiuchus and the B18 region of Taurus. Using data from the Green Bank Ammonia Survey (GAS), we identify regions of high density and near-constant, almost-thermal, velocity dispersion. Eighteen coherent structures are revealed, twelve in L1688 and six in B18, each of which shows a sharp "transition to coherence" in velocity dispersion around its periphery. The identification of these structures provides a chance to study the coherent structures in molecular clouds statistically. The identified coherent structures have a typical radius of 0.04 pc and a typical mass of 0.4 Msun, generally smaller than previously known coherent cores identified by Goodman et al. (1998), Caselli et al. (2002), and Pineda et al. (2010). We call these structures "droplets." We find that unlike previously known coherent cores, these structures are not virially bound by self-gravity and are instead predominantly confined by ambient pressure. The droplets have density profiles shallower than a critical Bonnor-Ebert sphere, and they have a velocity (VLSR) distribution consistent with the dense gas motions traced by NH3 emission. These results point to a potential formation mechanism through pressure compression and turbulent processes in the dense gas. We present a comparison with a magnetohydrodynamic simulation of a star-forming region, and we speculate on the relationship of droplets with larger, gravitationally bound coherent cores, as well as on the role that droplets and other coherent structures play in the star formation process.Comment: Accepted by ApJ in April, 201

    Radial Velocities as an Exoplanet Discovery Method

    Full text link
    The precise radial velocity technique is a cornerstone of exoplanetary astronomy. Astronomers measure Doppler shifts in the star's spectral features, which track the line-of/sight gravitational accelerations of a star caused by the planets orbiting it. The method has its roots in binary star astronomy, and exoplanet detection represents the low-companion-mass limit of that application. This limit requires control of several effects of much greater magnitude than the signal sought: the motion of the telescope must be subtracted, the instrument must be calibrated, and spurious Doppler shifts "jitter" must be mitigated or corrected. Two primary forms of instrumental calibration are the stable spectrograph and absorption cell methods, the former being the path taken for the next generation of spectrographs. Spurious, apparent Doppler shifts due to non-center-of-mass motion (jitter) can be the result of stellar magnetic activity or photospheric motions and granulation. Several avoidance, mitigation, and correction strategies exist, including careful analysis of line shapes and radial velocity wavelength dependence.Comment: Invited review chapter. 13pp. v2 includes corrections to Eqs 3-6, updated references, and minor edit

    Spicule Dynamics over Plage Region

    Full text link
    We studied spicular jets over a plage area and derived their dynamic characteristics using Hinode Solar Optical Telescope (SOT) high-resolution images. The target plage region was near the west limb of the solar disk. This location permitted us to study the dynamics of spicular jets without the overlapping effect of spicular structures along the line of sight. In this work, to increase the ease with which we can identify spicules on the disk, we applied the image processing method `MadMax' developed by Koutchmy et al. (1989). It enhances fine, slender structures (like jets), over a diffuse background. We identified 169 spicules over the target plage. This sample permits us to derive statistically reliable results regarding spicular dynamics. The properties of plage spicules can be summarized as follows: (1) In a plage area, we clearly identified spicular jet features. (2) They were shorter in length than the quiet region limb spicules, and followed ballistic motion under constant deceleration. (3) The majority (80%) of the plage spicules showed the cycle of rise and retreat, while 10% of them faded out without a complete retreat phase. (4) The deceleration of the spicule was proportional to the velocity of ejection (i.e. the initial velocity).Comment: 12 pages, 9 figures, accepted for publication in PAS
    corecore