5,915 research outputs found

    Likelihood-based complex trait association testing for arbitrary depth sequencing data

    Get PDF
    Summary: In next generation sequencing (NGS)-based genetic studies, researchers typically perform genotype calling first and then apply standard genotype-based methods for association testing. However, such a two-step approach ignores genotype calling uncertainty in the association testing step and may incur power loss and/or inflated type-I error. In the recent literature, a few robust and efficient likelihood based methods including both likelihood ratio test (LRT) and score test have been proposed to carry out association testing without intermediate genotype calling. These methods take genotype calling uncertainty into account by directly incorporating genotype likelihood function (GLF) of NGS data into association analysis. However, existing LRT methods are computationally demanding or do not allow covariate adjustment; while existing score tests are not applicable to markers with low minor allele frequency (MAF). We provide an LRT allowing flexible covariate adjustment, develop a statistically more powerful score test and propose a combination strategy (UNC combo) to leverage the advantages of both tests. We have carried out extensive simulations to evaluate the performance of our proposed LRT and score test. Simulations and real data analysis demonstrate the advantages of our proposed combination strategy: it offers a satisfactory trade-off in terms of computational efficiency, applicability (accommodating both common variants and variants with low MAF) and statistical power, particularly for the analysis of quantitative trait where the power gain can be up to ∼60% when the causal variant is of low frequency (MAF < 0.01)

    Privacy in the Genomic Era

    Get PDF
    Genome sequencing technology has advanced at a rapid pace and it is now possible to generate highly-detailed genotypes inexpensively. The collection and analysis of such data has the potential to support various applications, including personalized medical services. While the benefits of the genomics revolution are trumpeted by the biomedical community, the increased availability of such data has major implications for personal privacy; notably because the genome has certain essential features, which include (but are not limited to) (i) an association with traits and certain diseases, (ii) identification capability (e.g., forensics), and (iii) revelation of family relationships. Moreover, direct-to-consumer DNA testing increases the likelihood that genome data will be made available in less regulated environments, such as the Internet and for-profit companies. The problem of genome data privacy thus resides at the crossroads of computer science, medicine, and public policy. While the computer scientists have addressed data privacy for various data types, there has been less attention dedicated to genomic data. Thus, the goal of this paper is to provide a systematization of knowledge for the computer science community. In doing so, we address some of the (sometimes erroneous) beliefs of this field and we report on a survey we conducted about genome data privacy with biomedical specialists. Then, after characterizing the genome privacy problem, we review the state-of-the-art regarding privacy attacks on genomic data and strategies for mitigating such attacks, as well as contextualizing these attacks from the perspective of medicine and public policy. This paper concludes with an enumeration of the challenges for genome data privacy and presents a framework to systematize the analysis of threats and the design of countermeasures as the field moves forward

    Learning mutational graphs of individual tumour evolution from single-cell and multi-region sequencing data

    Full text link
    Background. A large number of algorithms is being developed to reconstruct evolutionary models of individual tumours from genome sequencing data. Most methods can analyze multiple samples collected either through bulk multi-region sequencing experiments or the sequencing of individual cancer cells. However, rarely the same method can support both data types. Results. We introduce TRaIT, a computational framework to infer mutational graphs that model the accumulation of multiple types of somatic alterations driving tumour evolution. Compared to other tools, TRaIT supports multi-region and single-cell sequencing data within the same statistical framework, and delivers expressive models that capture many complex evolutionary phenomena. TRaIT improves accuracy, robustness to data-specific errors and computational complexity compared to competing methods. Conclusions. We show that the application of TRaIT to single-cell and multi-region cancer datasets can produce accurate and reliable models of single-tumour evolution, quantify the extent of intra-tumour heterogeneity and generate new testable experimental hypotheses

    Fear and Foxes: An Educational Primer for Use with "Anterior Pituitary Transcriptome Suggests Differences in ACTH Release in Tame and Aggressive Foxes".

    Get PDF
    The way genes contribute to behavior is complicated. Although there are some single genes with large contributions, most behavioral differences are due to small effects from many interacting genes. This makes it hard to identify the genes that cause behavioral differences. Mutagenesis screens in model organisms, selective breeding experiments in animals, comparisons between related populations with different behaviors, and genome-wide association studies in humans are promising and complementary approaches to understanding the heritable aspects of complex behaviors. To connect genes to behaviors requires measuring behavioral differences, locating correlated genetic changes, determining when, where, and how these candidate genes act, and designing causative confirmatory experiments. This area of research has implications from basic discovery science to human mental health

    Domestication and divergence of Saccharomyces cerevisiae beer yeasts

    Get PDF
    Whereas domestication of livestock, pets, and crops is well documented, it is still unclear to what extent microbes associated with the production of food have also undergone human selection and where the plethora of industrial strains originates from. Here, we present the genomes and phenomes of 157 industrial Saccharomyces cerevisiae yeasts. Our analyses reveal that today's industrial yeasts can be divided into five sublineages that are genetically and phenotypically separated from wild strains and originate from only a few ancestors through complex patterns of domestication and local divergence. Large-scale phenotyping and genome analysis further show strong industry-specific selection for stress tolerance, sugar utilization, and flavor production, while the sexual cycle and other phenotypes related to survival in nature show decay, particularly in beer yeasts. Together, these results shed light on the origins, evolutionary history, and phenotypic diversity of industrial yeasts and provide a resource for further selection of superior strains

    Efficient Two-Stage Analysis for Complex Trait Association with Arbitrary Depth Sequencing Data

    Get PDF
    Sequencing-based genetic association analysis is typically performed by first generating genotype calls from sequence data and then performing association tests on the called genotypes. Standard approaches require accurate genotype calling (GC), which can be achieved either with high sequencing depth (typically available in a small number of individuals) or via computationally intensive multi-sample linkage disequilibrium (LD)-aware methods. We propose a computationally efficient two-stage combination approach for association analysis, in which single-nucleotide polymorphisms (SNPs) are screened in the first stage via a rapid maximum likelihood (ML)-based method on sequence data directly (without first calling genotypes), and then the selected SNPs are evaluated in the second stage by performing association tests on genotypes from multi-sample LD-aware calling. Extensive simulation- and real data-based studies show that the proposed two-stage approaches can save 80% of the computational costs and still obtain more than 90% of the power of the classical method to genotype all markers at various depths d≥2
    corecore