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Abstract: Sequencing-based genetic association analysis is typically performed by first generating
genotype calls from sequence data and then performing association tests on the called genotypes.
Standard approaches require accurate genotype calling (GC), which can be achieved either with
high sequencing depth (typically available in a small number of individuals) or via computationally
intensive multi-sample linkage disequilibrium (LD)-aware methods. We propose a computationally
efficient two-stage combination approach for association analysis, in which single-nucleotide poly-
morphisms (SNPs) are screened in the first stage via a rapid maximum likelihood (ML)-based method
on sequence data directly (without first calling genotypes), and then the selected SNPs are evaluated
in the second stage by performing association tests on genotypes from multi-sample LD-aware calling.
Extensive simulation- and real data-based studies show that the proposed two-stage approaches
can save 80% of the computational costs and still obtain more than 90% of the power of the classical
method to genotype all markers at various depths d ≥ 2.

Keywords: association study; next-generation sequencing; genotype; genotype likelihood function;
testing

MSC: 62P10; 92B15

1. Introduction

Next-generation sequencing (NGS) technologies are playing an increasingly important
role in genomic studies [1,2]. In recent years, NGS has extended genome-wide association
studies (GWAS) from common variants to rare variants in complex trait studies [3,4].
Raw NGS data are short reads from certain genomic regions, which are either aligned to
a reference genome or assembled [5,6]. A major challenge with the analysis of NGS data
is that it may suffer from multiple types of errors during the process of data generation,
such as base-calling and alignment errors, which can cause considerable uncertainty in
downstream analysis, especially when sequencing depth is low [5,7]. To quantify this
uncertainty, most existing methods for genotype calling from NGS data take a probabilistic
framework using the genotype likelihood function (GLF). GLFs incorporate information
regarding base calling, alignment, and assembly qualities in addition to simple allele counts
and thus take the aforementioned uncertainties into account [5,7].
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In the literature, there are mainly two categories of methods to carry out sequencing-
based genetic association studies. The methods in the first category first discover polymor-
phic sites and generate individual-level genotype calls from GLF data at these discovered
sites and then perform association testing using the called genotypes [7]. A most crucial
step in this category of methods is genotype calling at the detected loci [8–10]. When the
sequencing depth is high, accurate genotype calling can be achieved when using standard
genotype calling for each individual separately [11]. When sequencing depth is low, multi-
sample LD-aware methods can be adopted to achieve accurate genotype calling [12–15].
As individual studies are constrained by their limited budgets, low-depth sequencing with
a larger sample size has been established as a more powerful and cost-effective approach
than deep sequencing with a smaller sample size [15]. However, multi-sample LD-based
algorithms for low-coverage sequencing can be computationally intensive. The computa-
tional burden for multi-sample LD-aware genotype calling can, in theory, increase cubically
with sample size and will become prohibitive when sample size is in the thousands or tens
of thousands [5]. For example, it took one to two weeks to call genome-wide genotypes
for 60 CEU individuals sequenced by the 1000 Genomes Pilot Project [5,16]. A novel refer-
ence panel-based method, i.e., Genotype Likelihoods IMputation and PhaSing m Ethod
(GLIMPSE), has been developed recently to improve efficiency for large-sale studies and
reference panels [17]. Rubinacci et al. (2021) showed that GLIMPSE has good performance
in low-coverage sequencing data and is extremely efficient in that the computation time
mainly depends on the size of reference panel and only grows linearly with the study
sample size [17]. A major improvement of GLIMPSE, i.e., GLIMPSE2, has been proposed,
with the advantage of computational time scaling sub-linearly with both the number of
samples and markers. Rubinacci et al. (2022) used GLIMPSE2 to impute a low-coverage
genome from the UKB reference panel with a low computational cost while retaining high
accuracy, particularly for rare variants and for very low-coverage samples (0.1×–0.5×) [18].

Methods in the second category, in contrast, perform association testing via a rapid
maximum likelihood (ML)-based approach, directly incorporating GLF into the likelihood
function for association testing without the intermediate step of calling genotypes [19–23].
The ML-based approach is much faster than the genotype calling-based approach since it
avoids multiple-sample LD-aware genotype calling, which is computationally intensive [5].

In this article, we propose a computationally efficient two-stage approach for associa-
tion analysis on NGS data, which combines advantages of the two categories of methods
above. Specifically, candidate SNPs are first screened via a rapid ML-based method, and
then only a subset of SNPs with potential associations is evaluated in the second stage by
performing association testing on their called genotypes using multi-sample LD-aware
methods. In addition, we also apply the proposed two-stage approach to data based on
a real NGS dataset [24] from the population-based CoLaus study [25]. Results from simula-
tions demonstrate that our proposed two-stage method can save the considerable burden of
genotype calling while still achieving approximately the same power as when genotypes at
all SNPs genome-wide are called using multi-sample LD-aware methods. Real data-based
analyses show the consistency in reporting significant markers for the two-stage approach
with q < 1 and the full genotyping method (q = 1).

The remainder of this article is organized as follows. We propose our computationally
efficient approach for association analysis on NGS data in Section 2, conduct simulation
studies to evaluate the performance in Section 3, illustrate the use of our proposed method
in real data-based studies in Section 4, provide discussions in Section 5, and draw conclu-
sions in Section 6.

2. Materials and Methods

In this section, we will first briefly introduce existing ML-based tests and genotype calling-
based tests for association. We will then present details of our proposed two-stage approach.
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2.1. Existing Approaches

Without loss of generality, suppose that a total of n individuals are sequenced on
one region of interest. All SNPs are assumed to be bi-allelic. Let Di be the observed sequence
data for the ith individual, i = 1, . . . , n. The goal is to identify SNPs associated with some
phenotype of interest by performing single-marker association testing. The phenotype of
interest can be binary or quantitative.

In a genotype calling-based approach, individual-level genotypes are first called from
the GLF of Dis via multi-sample linkage disequilibrium (LD)-aware methods [5,7,15,26].
We subsequently perform association testing between each SNP and phenotype of interest
based on the called genotypes via standard single-marker tests, for example, classical linear
or logistic regression for quantitative or binary phenotypes, adjusting for covariates.

In contrast, in an ML-based approach, the intermediate genotype calling step is
skipped. When the phenotype is a case-control status and no covariate adjustment is
needed, we can leverage existing methods [19–21] to perform likelihood-based tests based
directly on the GLF of Dis. Details to calculate GLF from sequence data and approaches to
construct a likelihood function based on GLF can also be found in the literature [19–21].
When the phenotype is quantitative or covariate adjustment is needed (which is almost
inevitable in real data analysis) for each binary or quantitative phenotype, our previously
published UNC-combo method [23] can be used to perform ML-based association testing
for either binary or continuous phenotypic outcomes, allowing for covariate adjustment.

2.2. Our Two-Stage Combination Approach

Generally speaking, the performance of ML-based tests is less optimal than those based
on genotype calls from multi-sample LD-aware callers, especially when sequencing depth
is low. However, on the other hand, the former is computationally much more efficient
than the latter as the multi-sample LD aware genotype calling required by the latter is
computationally intensive. To combine the advantages of the two different categories of
approaches, we propose a computationally efficient two-stage approach for association
analysis, in which we employ an ML-based test in stage one to screen candidate SNPs, and
then the selected candidate SNPs are evaluated in stage two by performing association
tests on SNP genotypes called from LD-aware multi-sample callers.

Specifically, without loss of generality, let m denote the number of SNPs within
a genetic region. In stage one, we first perform ML-based single marker tests on each
of the m SNPs to obtain m p-values. Afterwards, t (t = mq, 0 < q ≤ 1) SNPs are selected
and carried over into stage two, according to their p-values in ascending order. Theoretically,
some LD information would be lost by throwing away non-candidate SNPs with large
p-values in stage one, which would in turn potentially impair the accuracy of genotype
calling in stage two. However, SNPs in LD with genuine causal SNPs are expected to show
some evidence of association with the phenotype of interest. For this reason, we anticipate
SNPs in LD with the causal SNP are less likely to be filtered out in the first stage.

Next, we need to specify the number of multiple testing k used to control family-wise
type 1 error in the Bonferroni correction in our two-stage testing. Because Stage 1 is only
for screening from m markers and Stage 2 conducts tests for mq (0 < q ≤ 1) markers, the
multiple testing k should be less than or equal to m, which is the number of stage one
markers. To be conservative, we specify k = m. We note that both Bonferroni correction
and the use of k = m is conservative.

3. Simulations
3.1. Simulation Design

We carried out extensive simulations to assess the performance of our proposed
two-stage approach. Specifically, we considered two types of designs: (1) a continuous
phenotype with covariate adjustment; (2) a binary phenotype with covariate adjustment.
We first simulated 45,000 chromosomes (haplotypes) for a 100-kb region using COSI that
mimics the LD pattern, local recombination rate, and population history of Europeans
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using a coalescent model [27]. For quantitative and binary phenotypes with covariate
adjustment, we considered two baseline covariates: a binary covariate X1 sampled from
a Bernoulli distribution with a success probability of 0.5 and a continuous covariate X2
sampled from a standard normal distribution.

Quantitative phenotypes were generated via a linear regression model:

Y = α0 + α1X1 + α2X2 + βG + ε (1)

where α0 = 1, α1 = 1, α2 = 1; ε follows a standard normal distribution; and G denotes the
genotype for the causal SNP in this region (for details, see below). Binary phenotypes were
generated via a logistic regression model:

logit(P(Y = 1)) = α0 + α1X1 + α2X2 + βG (2)

where α0 = −3.65, α1 = 1, and α2 = 1. In the design of the binary trait, each simulated
sample contained 1000 cases and 1000 controls. In the design of the continuous trait, the
quantitative phenotype with covariates, the sample size was 2000. Under the alternative
hypothesis, we assumed one causal SNP per simulated dataset and used G to denote
its genotype, as in Equations (1) and (2). We considered two scenarios of minor allele
frequencies (MAFs) for the causal SNP: 10% and 20%. The effect sizes of the causal SNPs,
measured by β in Equations (1) and (2), were selected to achieve ∼60% power, according
to the sample size and MAF of the causal SNP. We generated 1000 (genotype) datasets for
each simulation setting (i.e., design and causal SNP MAF combinations). We generated
sequencing data with a per-bp error rate of 0.5% using ShotGun [28]. ShotGun takes
a haplotype file as the input. We used COSI-generated haplotypes as the input of ShotGun.
ShotGun can generate sequencing data and true genotype data simultaneously. The users
need to specify the number of samples, average sequencing depth, other related parameter
values, and provide a haplotype file as the input. ShotGun outputs three files: a file
containing sequencing data, a file containing true genotypes, and a file containing marker
information. The webpage of ShotGun is at https://yunliweb.its.unc.edu//shotgun.html
(accessed on 7 Janurary 2023).

For each genotype dataset, we generate four sequencing datasets, with average se-
quencing depths of 2, 4, 10, and 30, respectively. Furthermore, for each dataset, we used our
proposed two-stage approach to select 20%, 40%, and 60% of the SNPs in stage one using a
likelihood ratio test [15,23]. In stage two, thunder [15] was used to perform multi-sample
LD-aware genotype calling, and SNPs of poor quality (measured by estimated information
content) were dropped.

3.2. Simulation Results
3.2.1. Concordance of Estimated Genotypes versus True Genotypes

We first evaluated the concordance between true genotypes and estimated genotypes
in the simulation for a range of sequencing depths ( d = 2, 4, 10, 30) and a range of screening
ratios ( q = 0.2, 0.4, 0.6, 1). We report the concordance in the Appendix A in Table A1.
The concordance is calculated as the number of matched genotype values divided by the
total number of genotype values at genotyped markers. We found that the concordance
increases with respect to the sequencing depth (respectively, around 86%, 94%, 99% and 99%
concordance for sequencing depths of 2×, 4×, 10× and 30×). Given the same sequencing
depth, we found that the concordance is nearly the same for different qs (q = 0.2, 0.4, 0.6, 1).

3.2.2. Consistency between Stage 1 and Stage 2 p-Values

We next evaluated the consistency between Stage 1 and Stage 2 p-values. Tables A2 and A3
present the average Pearson correlation and average Spearman correlation in our simula-
tion data. We found that both correlations increase with respect to the sequencing depth, d.
This means that when the sequencing depth increases, the p-values reported in both tests
(Stage 1 and Stage 2) become more consistent. We also found that both correlations decrease

https://yunliweb.its.unc.edu//shotgun.html
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with respect to the screen ratio q. This means that when only a proportion of markers is
a genotype, the smaller the proportion q, the less consistency between p-values reported by
both tests (Stage 1 and Stage 2). In addition, we found that nearly all correlations between
Stage 1 and Stage 2 p-values are always positive (99.3% of Pearson correlations and 99.1%
of Spearman correlations are positive).

3.2.3. Type 1 Errors without Multiple Test Adjustments

Tables 1 and 2 present the single-variant type 1 error rate without multiple test adjust-
ment for the binary phenotype and continuous phenotype. We evaluated the performance
of our two-stage estimator with screen ratios q = 0.2, 0.4, 0.6, 1 and the true genotype-based
estimator. The true genotype-based estimator is an infeasible estimator, which conducts
testing between the phenotype and true genotypes. In comparison, our two-stage esti-
mator selects a proportion (q) of m markers, i.e., qm for genotyping, and then conducts
testing between the phenotype and estimated genotypes. Although a true genotype-based
estimator is infeasible in practice, we still include it in our performance evaluation to
provide some reference values for our simulation. To be more specific, we expect that true
genotype-based estimator always have (1) single-variant Type 1 errors without multiple
test adjustments controlled, (2) family-wise error rate (Type 1 errors with multiple test
adjustment) controlled, and (3) maximal achievable testing power.

Table 1. Type 1 Errors without Multiple Test Adjustment for Binary Phenotype with Average
Sequencing Depth d = 2, 4, 10, 30 for Two-Stage Estimator and True Genotype-Based Estimator.

Estimator Screen Ratio d = 2 d = 4 d = 10 d = 30

Two-Stage 0.2 0.045 0.049 0.041 0.044
Two-Stage 0.4 0.048 0.053 0.046 0.050
Two-Stage 0.6 0.047 0.049 0.047 0.049
Two-Stage 1 0.046 0.047 0.047 0.049
True-Geno NA 1 0.052

1 The true genotype-based estimator does not involve the screening step so that there is no screen ratio.

Table 2. Type 1 Errors without Multiple Test Adjustment for Continuous Phenotype with Average
Sequencing Depth d = 2, 4, 10, 30 for Two-Stage Estimator and True Genotype-Based Estimator.

Estimator Screen Ratio d = 2 d = 4 d = 10 d = 30

Two-Stage 0.2 0.048 0.043 0.042 0.044
Two-Stage 0.4 0.052 0.050 0.050 0.050
Two-Stage 0.6 0.052 0.051 0.051 0.049
Two-Stage 1 0.050 0.052 0.051 0.050
True-Geno NA 1 0.051

1 The true genotype-based estimator does not involve the screening step so that there is no screen ratio.

Single-variant type 1 errors without multiple-test adjustments were calculated as the
average reported significance rate. This is the average rate that a marker is reported to
be significant under the null hypothesis that there is no influence on the phenotype from
the genotype. A marker is reported to be significant if (1) it is selected in Stage 1, and
(2) its Stage 2 p-value < α, where α = 0.05 is the significance level. It is the number of
reported significant genetic variables divided by total number of genetic variables. This
type 1 error, i.e., “average reported significance rate under the null hypothesis”, is expected
to be controlled at the significance level, α, theoretically. In Tables 1 and 2, we found this
type 1 error rate is controlled at a significance level of α = 0.05 for both our two-stage
estimator with screen ratios q = 0.2, 0.4, 0.6, 1 and our true genotype-based estimator for
both the binary phenotype and continuous phenotype.
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3.2.4. Type 1 Errors with Multiple Test Adjustment

We next consider the familywise error rate (FWER), i.e., Type 1 errors with multiple
test adjustments. We adopted the Bonferroni correction for multiple test adjustments with
multiple testing k = m, where m is the number of genetic markers in Stage 1. A family-
wise error occurs under the null hypothesis if any of the m markers are reported to be
significant, i.e., its p-value is less than α/m. For our two-stage testing method, suppose stage
two p-values are P1, P2, . . . , Pqm. A family-wise error occurs if min(P1, P2, . . . , Pqm) < α/m,
where α = 0.05.

Tables 3 and 4 present the type 1 error rate with multiple test adjustments, i.e., the
family-wise error rate (FWER), for the binary phenotype and continuous phenotype for
both the two-stage estimator with screen ratios q = 0.2, 0.4, 0.6, 1 and the infeasible true
genotype-based estimator. As can be seen, Type 1 errors in all settings are controlled
under 0.05, which justifies our proposed method. We found that some observed FWERs
are much smaller than 0.05. This is because both the Bonferroni correction method and
the use of multiple testing k = m are conservative. We observe that the average number
of rare variants (MAF < 0.05) increases with respect to sequencing depth d, whereas
the average number of common variants (MAF ≥ 0.05) remains nearly the same when
sequencing depth increases. We focus on the implementation of our two-stage estimator
for common variants in this manuscript. For rare variants, the implementation of our
two-stage estimator is stated in the discussion section.

The number of common variants, i.e., m, are different for each simulated dataset, with
the average number = 211.7 and standard deviation = 69.3.

Table 3. Type 1 Errors with Multiple Test Adjustments for Binary Phenotype with Average Sequencing
Depth d = 2, 4, 10, 30 for Two-Stage Estimator and True Genotype-Based Estimator.

Estimator Screen Ratio d = 2 d = 4 d = 10 d = 30

Two-Stage 0.2 0.028 0.010 0.013 0.010
Two-Stage 0.4 0.025 0.013 0.010 0.010
Two-Stage 0.6 0.015 0.010 0.013 0.007
Two-Stage 1 0.020 0.013 0.010 0.007
True-Geno NA 1 0.018

1 The true genotype-based estimator does not involve the screening step so that there is no screen ratio.

Table 4. Type 1 Errors with Multiple Test Adjustments for Continuous Phenotype with Average
Sequencing Depth d = 2, 4, 10, 30 for Two-Stage Estimator and True Genotype-Based Estimator.

Estimator Screen Ratio d = 2 d = 4 d = 10 d = 30

Two-Stage 0.2 0.035 0.028 0.021 0.019
Two-Stage 0.4 0.032 0.030 0.023 0.023
Two-Stage 0.6 0.030 0.025 0.021 0.023
Two-Stage 1 0.034 0.033 0.023 0.015
True-Geno NA 1 0.021

1 The true genotype-based estimator does not involve the screening step so that there is no screen ratio.

3.2.5. Statistical Power Analysis

Figures 1 and 2 present the testing powers of our two-stage approach under the
various scenarios. We refer to the powers corresponding to screening ratio q = 1 as full
powers as they are obtained when all the genetic regions are genotyped and evaluated via
association tests based on genotype calling. As can be seen, the power curves under almost
all settings show a fairly flat pattern. With only a proportion (q = 20%) of SNPs of a region
selected in stage one and only the selected proportion of markers (qm markers) genotyped
in Stage two, the use of q = 20% is only around 10% less powerful than the classical method
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where all SNPs in the region are genotyped (q = 1), which means a considerable saving of
computation in genotype calling. Note that the classical method of genotyping all SNPs
(q = 1) is still estimated genotype-based, which is less powerful than the infeasible true
genotype-based estimator, which, in theory, has the maximal achievable testing power.

THe sequencing depth has a strong effect on the power of association testing. For
common variants (MAF ≥ 0.05), the average number of markers remains almost the
same when sequencing depth increases from 2× to 30× in our simulated data. We found
increasing power when sequencing depth increases.
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Figure 1. Testing Powers of Binary Phenotype with Covariates Adjusted.
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Figure 2. Testing Powers of Continuous Phenotype with Covariates Adjusted.

However, in our previous study, when rare variants were included, this effect did not
always go in one direction. Counterintuitively, in some settings, powers of lower-depth
sequenced data can be higher than powers of higher-depth sequenced data. This is because
sequencing with higher depth not only makes genotype calling more accurate but may also
generate more rare-variant SNPs than lower-depth sequencing. The emergence of more
rare-variant SNPs means a heavier burden of multiple testing. These two consequences
jointly exert opposite effects on the power of multiple association testing, and the final
outcome can be in either of the two directions.
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We focus on common variants in this paper. For rare variants, the corresponding imple-
mentation of our two-stage estimator is proposed in the discussion section. One difference is
that rare variants involve group testing, whereas common variants is tested for with a single
variant each time, repeating the single-variant testing one by one for common markers.

4. Real Data-Based Studies

We applied our proposed method to a targeted sequencing dataset from the CoLaus
study, where 1956 CoLaus subjects from Lausanne (Switzerland) were sequenced at rela-
tively high depth (medium depth 27×) in the exons of 202 genes [24,25]. Seven genes on
chromosome X are excluded from the drug-related analysis. A total of 11,496 SNPs were
discovered across the 195 autosomal genes among the 1956 subjects. Three SNPs (G1, G2
and G3) on chromosomes 1, 6 and 11 were chosen to be causal with pcausal = 0.004, 0.01,
and 0.15, respectively. The quantitative trait was generated by

Y = α0 + α1X1 + α2X2 + β1G1 + β2G2 + β3G3 + ε, (3)

where X1, X2 and ε were generated in the same way as in the simulation study.
α0 = α1 = α2 = 1, β1 = 1.8, β2 = 1 and β3 = 0.16. Moreover, the data of two different
sequencing depths were simulated by (1) choosing 1 out of every 5 short reads (“Divided
by 5”) or (2) choosing 1 out of every 10 short reads (“Divided by 10”). Down-sampling of
the sequencing data (1 out of 5 reads, and 1 out of 10 reads) was performed using Samtools
software (version: 1.17) (http://www.htslib.org/ (accessed on 7 January 2023)) and AWK
linux programming (version 1.3.4).

Similar to the simulation study, 20%, 40%, and 60% of SNPs were screened out in stage
one, and the Bonferroni correction was adopted to control Type 1 error.

Manhattan plots of the different screen ratios are displayed in Figures 3 and 4. As can
be seen, genotyping only 20% SNPs in stage two yields the same three significant markers
as the method of genotyping all markers (q = 1).

Figure 3. Cont.

http://www.htslib.org/
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Figure 3. Real data-based studies when down-sample ratio is 5.

Figure 4. Real data-based studies when down-sample ratio is 10.
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5. Discussion

We propose a computationally efficient two-stage approach to reduce the burden of
the time-consuming LD-aware genotyping process in GWAS studies. In our two-stage
approach, raw sequencing data are evaluated via a rapid maximum likelihood-based
method directly (without first calling genotypes) in the first stage, and then the selected
SNPs are evaluated in the second stage by performing association tests on genotypes from
multi-sample LD-aware calling. In the process above, the LD among SNPs associated with
the phenotype of interest are well kept after stage one. This approach not only mitigates
the computationally intensive genotype calling but also preserves almost all potential
associations between SNPs and phenotypes.

In addition to the specific implementation for testing common variants, our two-stage
testing method is also proposed as a general framework that allows the selection of se-
quencing data-based methods in stage one and genotype-based methods in stage two. As
a general framework, our two-stage method can work for both common variants and rare
variants. For rare variant testing, the genotype-based methods, including burden tests
and Sequencing Kernel Association Tests (SKAT), are usually testing for all rare variants
within a group [29–31]. The group can be gene-based, pathway-based, or range-based.
Genome-wide association testing of rare variants will repeat the group testing of one group
genome-wide [29,31]. For example, a genome-wide association testing of rare variants
can repeat the single-gene rare variant test (for example, the burden test or SKAT test) for
all genes genome-wide. Our proposed two-stage testing of rare variants genome-wide
is (1) in stage one, conduct sequencing data-based single-gene rare variant tests for all
genes genome-wide; (2) in stage two, a proportion of genes (for example 20%) with the
smallest p-values in stage one are selected for genotype-based single-gene rare variant
testing. Thus, as a general framework, our proposed two-stage method can work for both
common variants and rare variants.

However, one issue hindering the implementation of our two-stage method for rare
variants is that there are no widely used sequencing data-based rare variant testing methods
available in the literature. We are currently working on developing a sequencing data-
based rare variant testing method to fill this literature gap. With a suitable sequencing
data-based rare variant testing method available, our method can be well-implemented for
rare variants. Future work should focus on (1) developing a widely accepted sequencing
data-based rare variant testing method without genotype calling, and (2) evaluating the
performance of our two-stage testing for rare variants when a widely accepted sequencing
data-based rare variant method become available to use as the method in stage one.

The performance of our proposed method depends on the group size of genetic
markers due to the use of the Bonferroni correction in our current implementation of
two-stage method. The Bonferroni correction is a conservative method in controlling the
family-wise error rate (FWER). In addition, we use the number of Stage 1 markers, i.e., m,
which is the group size of genetic markers, as the multiple testing k in Bonferroni correction.
The use of k = m is conservative. Other threshold values can also be used, such as the use
of conventional values (threshold = 5 × 10−8 or 10−4) and the Benjamini–Hochberg (BH)
procedure to control the false-positive rate (FDR) [32]. Future studies will be conducted to
evaluate the performance of our methods under various threshold values.

As a general methodology framework, the proposed two-stage approach can be
implemented with different association testing methods and software tools used in stage
one testing, stage two testing, and genotype calling. Our current implementation is to use
the thunder software to implement genotype calling, which is a multi-sample LD-based
algorithm. Its computational amount is O(qmn3), where q is the screening ratio, m is the
number of markers, and n is the number of samples. Thus, our two-stage testing can
save a computational amount of 100(1 − q)%. Future studies will be conducted on the
comparison of our current implementation using thunder versus the use of other software,
such as the recently developed GLIMPSE and GLIMPSE2 [17,18].
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It is critical to control the family-wise Type 1 error in the two-stage approach. The
current implementation of our two-stage testing uses the Bonferoni correction with the
number of multiple testing (k) equal to the number of genetic markers tested in the first
stage, i.e., m. This is because stage one is a preliminary screening procedure for m markers,
and stage two is the testing of qm markers, 0 < q ≤ 1, so that the total number of multiple
testing k ≤ q. Both the Bonferroni correction and the use of multiple testing k = m are
conservative. To improve statistical performance, other multiple-test adjustment methods,
including the Benjamini–Hochberg procedure [32] and the use of refined formulae for
multiple testing k, are under our development as an ongoing project. Intuitively, we
considered k as a weighted average between the number of genetic variables in stage one,
i.e., m, and the number of testing genetic variables in stage two, i.e., qm, 0 < q < 1. A more
mathematically rigorous derivation of k in the refined formulae is desired in the future
work. In our current implementation, we used the Bonferroni correction with multiple
testing k = m. In our study, we evaluated the performance under a range of screening
ratios. In practice, we recommend the use of a default screening ratio q = 20% according
to our study. Our current study is only on a sequencing depth d ≥ 2. In our ongoing
project, we will evaluate the performance under a scenario with a sequencing depth d < 2.
A different screening ratio will be proposed for the scenario of sequencing depth d < 2 as
part of our ongoing project.

The proposed two-stage analysis is mainly aimed at improving computational effi-
ciency by reducing the number of genetic markers in genotyping. There are also other
types of two-stage analysis in association testing and other bio-statistics areas. For example,
the cost-effective two-phase designs consider the scenario that the measurement of some
covariate variables is expensive. Inexpensive covariates and outcomes are measured on
all subjects in the first phase, and the first-phase information is used to select subjects as
measurements of expensive covariates in the second stage. When choosing a sub-sample of
subjects, there are statistical methods to minimize the variance of the resulting estimator
given budget constraints. Tao et al. (2020) derived the semi-parametric bound of two-stage
estimation to improve design efficiency [33]. Yang et al. (2022) formulated it as an opti-
mal problem with precision of selection as the objective function and used the Lagrange
multiplier method to solve it [34]. A range of bootstrap methods have been applied to
evaluate such precision, including Xu et al. (2020)’s fractional random-weight bootstrap
and Brand et al. (2019)’s method combining multiple imputation and bootstrap [35,36]. Fu-
ture studies will focus on designing and studying the theoretical properties of a two-stage
analysis in a more mathematical framework.

6. Conclusions

We propose a computationally efficient two-stage approach to reduce the burden of
the time-consuming LD-aware genotyping process in GWAS. We have conducted simula-
tion studies to evaluate the performance, and a real data-based study was carried out to
illustrate the use of our method. Our two-stage method has demonstrated the advantage
in computational efficiency for sequencing data. In addition, as a general framework, it
allows the selection of sequencing data-based methods in stage one and genotype-based
methods in stage two.
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Abbreviations
The following abbreviations are used in this manuscript:

COSI Coalescent-Based Simulator
FWER Family-Wise Error Rate
MAF Minor Allele Frequency
GC Genotype Calling
GLF Genotype Likelihood Function
LD Local Disequilibrium
ML Maximum Likelihood
NGS Next Generation Sequencing
SKAT Sequence Kernel Association Test
SNP Single-Nucleotide Polymorphism

Appendix A

Table A1. Concordance between True Genoypes and Called Genotypes in Simulation. Average
Sequencing Depth d = 2, 4, 10, 30.

Screen Ratio d = 2 d = 4 d = 10 d = 30

0.2 0.857 0.941 0.993 0.999
0.4 0.863 0.942 0.993 0.999
0.6 0.863 0.942 0.993 0.999
1 0.862 0.943 0.993 0.998

Table A2. Average Pearson Correlation Between Stage 1 and Stage 2 p-values in Simulation. Average
Sequencing Depth d = 2, 4, 10, 30.

Screen Ratio d = 2 d = 4 d = 10 d = 30

0.2 0.577 0.705 0.838 0.968
0.4 0.626 0.717 0.869 0.964
0.6 0.623 0.720 0.883 0.961
1 0.612 0.725 0.906 0.972

Table A3. Average Spearman Correlation Between Stage 1 and Stage 2 p-values in Simulation.
Average Sequencing Depth d = 2, 4, 10, 30.

Screen Ratio d = 2 d = 4 d = 10 d = 30

0.2 0.561 0.659 0.784 0.928
0.4 0.637 0.712 0.823 0.938
0.6 0.633 0.722 0.855 0.950
1 0.597 0.707 0.878 0.962

References
1. Levy, S.E.; Myers, R.M. Advancements in next-generation sequencing. Annu. Rev. Genom. Hum. Genet. 2016, 17, 95–115.

[CrossRef] [PubMed]
2. Goodwin, S.; McPherson, J.D.; McCombie, W.R. Coming of age: Ten years of next-generation sequencing technologies. Nat. Rev.

Genet. 2016, 17, 333–351. [CrossRef]
3. Maher, B. The case of the missing heritability: When scientists opened up the human genome, they expected to find the genetic

components of common traits and diseases. But they were nowhere to be seen. Brendan Maher shines a light on six places where
the missing loot could be stashed away. Nature 2008, 456, 18–22. [PubMed]

http://doi.org/10.1146/annurev-genom-083115-022413
http://www.ncbi.nlm.nih.gov/pubmed/27362342
http://dx.doi.org/10.1038/nrg.2016.49
http://www.ncbi.nlm.nih.gov/pubmed/18987709


Stats 2023, 6 480

4. Manolio, T.A.; Collins, F.S.; Cox, N.J.; Goldstein, D.B.; Hindorff, L.A.; Hunter, D.J.; McCarthy, M.I.; Ramos, E.M.; Cardon, L.R.;
Chakravarti, A.; et al. Finding the missing heritability of complex diseases. Nature 2009, 461, 747–753. [CrossRef] [PubMed]

5. Li, Y.; Chen, W.; Liu, E.Y.; Zhou, Y.H. Single nucleotide polymorphism (SNP) detection and genotype calling from massively
parallel sequencing (MPS) data. Stat. Biosci. 2013, 5, 3–25. [CrossRef]

6. Henson, J.; Tischler, G.; Ning, Z. Next-generation sequencing and large genome assemblies. Pharmacogenomics 2012, 13, 901–915.
[CrossRef]

7. Nielsen, R.; Paul, J.S.; Albrechtsen, A.; Song, Y.S. Genotype and SNP calling from next-generation sequencing data. Nat. Rev.
Genet. 2011, 12, 443–451. [CrossRef]

8. Ley, T.J.; Mardis, E.R.; Ding, L.; Fulton, B.; McLellan, M.D.; Chen, K.; Dooling, D.; Dunford-Shore, B.H.; McGrath, S.;
Hickenbotham, M.; et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 2008, 456, 66–72.
[CrossRef] [PubMed]

9. Bansal, V.; Harismendy, O.; Tewhey, R.; Murray, S.S.; Schork, N.J.; Topol, E.J.; Frazer, K.A. Accurate detection and genotyping of
SNPs utilizing population sequencing data. Genome Res. 2010, 20, 537–545. [CrossRef]

10. Li, Y.; Willer, C.J.; Ding, J.; Scheet, P.; Abecasis, G.R. MaCH: Using sequence and genotype data to estimate haplotypes and
unobserved genotypes. Genet. Epidemiol. 2010, 34, 816–834. [CrossRef]

11. Bentley, D.R.; Balasubramanian, S.; Swerdlow, H.P.; Smith, G.P.; Milton, J.; Brown, C.G.; Hall, K.P.; Evers, D.J.; Barnes, C.L.;
Bignell, H.R.; et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 2008, 456, 53–59.
[CrossRef] [PubMed]

12. Browning, B.L.; Yu, Z. Simultaneous genotype calling and haplotype phasing improves genotype accuracy and reduces
false-positive associations for genome-wide association studies. Am. J. Hum. Genet. 2009, 85, 847–861. [CrossRef]

13. Le, S.Q.; Durbin, R. SNP detection and genotyping from low-coverage sequencing data on multiple diploid samples. Genome Res.
2011, 21, 952–960. [CrossRef] [PubMed]

14. McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.;
Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data.
Genome Res. 2010, 20, 1297–1303. [CrossRef] [PubMed]

15. Li, Y.; Sidore, C.; Kang, H.M.; Boehnke, M.; Abecasis, G.R. Low-coverage sequencing: Implications for design of complex trait
association studies. Genome Res. 2011, 21, 940–951. [CrossRef]

16. The 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 2010,
467, 1061. [CrossRef]

17. Rubinacci, S.; Ribeiro, D.M.; Hofmeister, R.J.; Delaneau, O. Efficient phasing and imputation of low-coverage sequencing data
using large reference panels. Nat. Genet. 2021, 53, 120–126. [CrossRef]

18. Rubinacci, S.; Hofmeister, R.; Sousa da Mota, B.; Delaneau, O. Imputation of low-coverage sequencing data from 150,119 UK
Biobank genomes. bioRxiv 2022. [CrossRef]

19. Kim, S.Y.; Li, Y.; Guo, Y.; Li, R.; Holmkvist, J.; Hansen, T.; Pedersen, O.; Wang, J.; Nielsen, R. Design of association studies with
pooled or un-pooled next-generation sequencing data. Genet. Epidemiol. 2010, 34, 479–491. [CrossRef]

20. Kim, S.Y.; Lohmueller, K.E.; Albrechtsen, A.; Li, Y.; Korneliussen, T.; Tian, G.; Grarup, N.; Jiang, T.; Andersen, G.; Witte, D.; et al.
Estimation of allele frequency and association mapping using next-generation sequencing data. BMC Bioinform. 2011, 12, 231.
[CrossRef]

21. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter
estimation from sequencing data. Bioinformatics 2011, 27, 2987–2993. [CrossRef] [PubMed]

22. Skotte, L.; Korneliussen, T.S.; Albrechtsen, A. Association testing for next-generation sequencing data using score statistics. Genet.
Epidemiol. 2012, 36, 430–437. [CrossRef] [PubMed]

23. Yan, S.; Yuan, S.; Xu, Z.; Zhang, B.; Zhang, B.; Kang, G.; Byrnes, A.; Li, Y. Likelihood-based complex trait association testing for
arbitrary depth sequencing data. Bioinformatics 2015, 31, 2955–2962. [CrossRef]

24. Nelson, M.R.; Wegmann, D.; Ehm, M.G.; Kessner, D.; St. Jean, P.; Verzilli, C.; Shen, J.; Tang, Z.; Bacanu, S.A.; Fraser, D.; et al.
An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science 2012, 337, 100–104.
[CrossRef] [PubMed]

25. Firmann, M.; Mayor, V.; Vidal, P.M.; Bochud, M.; Pécoud, A.; Hayoz, D.; Paccaud, F.; Preisig, M.; Song, K.S.; Yuan, X.; et al. The
CoLaus study: A population-based study to investigate the epidemiology and genetic determinants of cardiovascular risk factors
and metabolic syndrome. BMC Cardiovasc. Disord. 2008, 8, 6. [CrossRef] [PubMed]

26. Wang, Y.; Lu, J.; Yu, J.; Gibbs, R.A.; Yu, F. An integrative variant analysis pipeline for accurate genotype/haplotype inference in
population NGS data. Genome Res. 2013, 23, 833–842. [CrossRef]

27. Schaffner, S.F.; Foo, C.; Gabriel, S.; Reich, D.; Daly, M.J.; Altshuler, D. Calibrating a coalescent simulation of human genome
sequence variation. Genome Res. 2005, 15, 1576–1583. [CrossRef] [PubMed]

28. Kang, J.; Huang, K.C.; Xu, Z.; Wang, Y.; Abecasis, G.R.; Li, Y. AbCD: Arbitrary coverage design for sequencing-based genetic
studies. Bioinformatics 2013, 29, 799–801. [CrossRef]

29. Wu, M.C.; Lee, S.; Cai, T.; Li, Y.; Boehnke, M.; Lin, X. Rare-variant association testing for sequencing data with the sequence
kernel association test. Am. J. Hum. Genet. 2011, 89, 82–93. [CrossRef]

http://dx.doi.org/10.1038/nature08494
http://www.ncbi.nlm.nih.gov/pubmed/19812666
http://dx.doi.org/10.1007/s12561-012-9067-4
http://dx.doi.org/10.2217/pgs.12.72
http://dx.doi.org/10.1038/nrg2986
http://dx.doi.org/10.1038/nature07485
http://www.ncbi.nlm.nih.gov/pubmed/18987736
http://dx.doi.org/10.1101/gr.100040.109
http://dx.doi.org/10.1002/gepi.20533
http://dx.doi.org/10.1038/nature07517
http://www.ncbi.nlm.nih.gov/pubmed/18987734
http://dx.doi.org/10.1016/j.ajhg.2009.11.004
http://dx.doi.org/10.1101/gr.113084.110
http://www.ncbi.nlm.nih.gov/pubmed/20980557
http://dx.doi.org/10.1101/gr.107524.110
http://www.ncbi.nlm.nih.gov/pubmed/20644199
http://dx.doi.org/10.1101/gr.117259.110
http://dx.doi.org/10.1038/nature09534
http://dx.doi.org/10.1038/s41588-020-00756-0
http://dx.doi.org/10.1101/2022.11.28.518213
http://dx.doi.org/10.1002/gepi.20501
http://dx.doi.org/10.1186/1471-2105-12-231
http://dx.doi.org/10.1093/bioinformatics/btr509
http://www.ncbi.nlm.nih.gov/pubmed/21903627
http://dx.doi.org/10.1002/gepi.21636
http://www.ncbi.nlm.nih.gov/pubmed/22570057
http://dx.doi.org/10.1093/bioinformatics/btv307
http://dx.doi.org/10.1126/science.1217876
http://www.ncbi.nlm.nih.gov/pubmed/22604722
http://dx.doi.org/10.1186/1471-2261-8-6
http://www.ncbi.nlm.nih.gov/pubmed/18366642
http://dx.doi.org/10.1101/gr.146084.112
http://dx.doi.org/10.1101/gr.3709305
http://www.ncbi.nlm.nih.gov/pubmed/16251467
http://dx.doi.org/10.1093/bioinformatics/btt041
http://dx.doi.org/10.1016/j.ajhg.2011.05.029


Stats 2023, 6 481

30. Li, B.; Leal, S.M. Methods for detecting associations with rare variants for common diseases: Application to analysis of sequence
data. Am. J. Hum. Genet. 2008, 83, 311–321. [CrossRef]

31. Madsen, B.E.; Browning, S.R. A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet. 2009,
5, e1000384. [CrossRef] [PubMed]

32. Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat.
Soc. Ser. B (Methodol.) 1995, 57, 289–300. [CrossRef]

33. Tao, R.; Zeng, D.; Lin, D.Y. Optimal designs of two-phase studies. J. Am. Stat. Assoc. 2020, 115, 1946–1959. [CrossRef] [PubMed]
34. Yang, C.; Diao, L.; Cook, R.J. Adaptive response-dependent two-phase designs: Some results on robustness and efficiency. Stat.

Med. 2022, 41, 4403–4425. [CrossRef] [PubMed]
35. Xu, L.; Gotwalt, C.; Hong, Y.; King, C.B.; Meeker, W.Q. Applications of the fractional-random-weight bootstrap. Am. Stat. 2020,

74, 345–358. [CrossRef]
36. Brand, J.; van Buuren, S.; le Cessie, S.; van den Hout, W. Combining multiple imputation and bootstrap in the analysis of

cost-effectiveness trial data. Stat. Med. 2019, 38, 210–220. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.ajhg.2008.06.024
http://dx.doi.org/10.1371/journal.pgen.1000384
http://www.ncbi.nlm.nih.gov/pubmed/19214210
http://dx.doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://dx.doi.org/10.1080/01621459.2019.1671200
http://www.ncbi.nlm.nih.gov/pubmed/33716361
http://dx.doi.org/10.1002/sim.9516
http://www.ncbi.nlm.nih.gov/pubmed/35799345
http://dx.doi.org/10.1080/00031305.2020.1731599
http://dx.doi.org/10.1002/sim.7956

	Introduction
	Materials and Methods 
	Existing Approaches
	Our Two-Stage Combination Approach

	Simulations 
	Simulation Design
	Simulation Results
	Concordance of Estimated Genotypes versus True Genotypes
	Consistency between Stage 1 and Stage 2 p-Values
	Type 1 Errors without Multiple Test Adjustments 
	Type 1 Errors with Multiple Test Adjustment
	Statistical Power Analysis


	Real Data-Based Studies 
	Discussion 
	Conclusions 
	Appendix A
	References

