5 research outputs found

    Cautiously Optimistic Program Analyses for Secure and Reliable Software

    Full text link
    Modern computer systems still have various security and reliability vulnerabilities. Well-known dynamic analyses solutions can mitigate them using runtime monitors that serve as lifeguards. But the additional work in enforcing these security and safety properties incurs exorbitant performance costs, and such tools are rarely used in practice. Our work addresses this problem by constructing a novel technique- Cautiously Optimistic Program Analysis (COPA). COPA is optimistic- it infers likely program invariants from dynamic observations, and assumes them in its static reasoning to precisely identify and elide wasteful runtime monitors. The resulting system is fast, but also ensures soundness by recovering to a conservatively optimized analysis when a likely invariant rarely fails at runtime. COPA is also cautious- by carefully restricting optimizations to only safe elisions, the recovery is greatly simplified. It avoids unbounded rollbacks upon recovery, thereby enabling analysis for live production software. We demonstrate the effectiveness of Cautiously Optimistic Program Analyses in three areas: Information-Flow Tracking (IFT) can help prevent security breaches and information leaks. But they are rarely used in practice due to their high performance overhead (>500% for web/email servers). COPA dramatically reduces this cost by eliding wasteful IFT monitors to make it practical (9% overhead, 4x speedup). Automatic Garbage Collection (GC) in managed languages (e.g. Java) simplifies programming tasks while ensuring memory safety. However, there is no correct GC for weakly-typed languages (e.g. C/C++), and manual memory management is prone to errors that have been exploited in high profile attacks. We develop the first sound GC for C/C++, and use COPA to optimize its performance (16% overhead). Sequential Consistency (SC) provides intuitive semantics to concurrent programs that simplifies reasoning for their correctness. However, ensuring SC behavior on commodity hardware remains expensive. We use COPA to ensure SC for Java at the language-level efficiently, and significantly reduce its cost (from 24% down to 5% on x86). COPA provides a way to realize strong software security, reliability and semantic guarantees at practical costs.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/170027/1/subarno_1.pd

    Observable dynamic compilation

    Get PDF
    Managed language platforms such as the Java Virtual Machine rely on a dynamic compiler to achieve high performance. Despite the benefits that dynamic compilation provides, it also introduces some challenges to program profiling. Firstly, profilers based on bytecode instrumentation may yield wrong results in the presence of an optimizing dynamic compiler, either due to not being aware of optimizations, or because the inserted instrumentation code disrupts such optimizations. To avoid such perturbations, we present a technique to make profilers based on bytecode instrumentation aware of the optimizations performed by the dynamic compiler, and make the dynamic compiler aware of the inserted code. We implement our technique for separating inserted instrumentation code from base-program code in Oracle's Graal compiler, integrating our extension into the OpenJDK Graal project. We demonstrate its significance with concrete profilers. On the one hand, we improve accuracy of existing profiling techniques, for example, to quantify the impact of escape analysis on bytecode-level allocation profiling, to analyze object life-times, and to evaluate the impact of method inlining when profiling method invocations. On the other hand, we also illustrate how our technique enables new kinds of profilers, such as a profiler for non-inlined callsites, and a testing framework for locating performance bugs in dynamic compiler implementations. Secondly, the lack of profiling support at the intermediate representation (IR) level complicates the understanding of program behavior in the compiled code. This issue cannot be addressed by bytecode instrumentation because it cannot precisely capture the occurrence of IR-level operations. Binary instrumentation is not suited either, as it lacks a mapping from the collected low-level metrics to higher-level operations of the observed program. To fill this gap, we present an easy-to-use event-based framework for profiling operations at the IR level. We integrate the IR profiling framework in the Graal compiler, together with our instrumentation-separation technique. We illustrate our approach with a profiler that tracks the execution of memory barriers within compiled code. In addition, using a deoptimization profiler based on our IR profiling framework, we conduct an empirical study on deoptimization in the Graal compiler. We focus on situations which cause program execution to switch from machine code to the interpreter, and compare application performance using three different deoptimization strategies which influence the amount of extra compilation work done by Graal. Using an adaptive deoptimization strategy, we manage to improve the average start-up performance of benchmarks from the DaCapo, ScalaBench, and Octane suites by avoiding wasted compilation work. We also find that different deoptimization strategies have little impact on steady- state performance

    Run-time Variability with First-class Contexts

    Get PDF
    Software must be regularly updated to keep up with changing requirements. Unfortunately, to install an update, the system must usually be restarted, which is inconvenient and costly. In this dissertation, we aim at overcoming the need for restart by enabling run-time changes at the programming language level. We argue that the best way to achieve this goal is to improve the support for encapsulation, information hiding and late binding by contextualizing behavior. In our approach, behavioral variations are encapsulated into context objects that alter the behavior of other objects locally. We present three contextual language features that demonstrate our approach. First, we present a feature to evolve software by scoping variations to threads. This way, arbitrary objects can be substituted over time without compromising safety. Second, we present a variant of dynamic proxies that operate by delegation instead of forwarding. The proxies can be used as building blocks to implement contextualization mechanisms from within the language. Third, we contextualize the behavior of objects to intercept exchanges of references between objects. This approach scales information hiding from objects to aggregates. The three language features are supported by formalizations and case studies, showing their soundness and practicality. With these three complementary language features, developers can easily design applications that can accommodate run-time changes

    HW-SW co-design techniques for modern programming languages

    Get PDF
    Modern programming languages raise the level of abstraction, hide the details of computer systems from programmers, and provide many convenient features. Such strong abstraction from the details of computer systems with runtime support of many convenient features increases the productivity of programmers. Such benefits, however, come with performance overheads. First, many of modern programming languages use a dynamic type system which incurs overheads of profiling program execution and generating specialized codes in the middle of execution. Second, such specialized codes constantly add overheads of dynamic type checks. Third, most of modern programming languages use automatic memory management which incurs memory overheads due to metadata and delayed reclamation as well as execution time overheads due to garbage collection operations. This thesis makes three contributions to address the overheads of modern programming languages. First, it describes the enhancements to the compiler of dynamic scripting languages necessary to enable sharing of compilation results across executions. These compilers have been developed with little consideration for reusing optimization efforts across executions since it is considered difficult due to dynamic nature of the languages. As a first step toward enabling the reuse of compilation results of dynamic scripting languages, it focuses on inline caching (IC) which is one of the fundamental optimization techniques for dynamic type systems. Second, it describes a HW-SW co-design technique to further improve IC operations. While the first proposal focuses on expensive IC miss handling during JavaScript initialization, the second proposal accelerates IC hit operations to improve the overall performance. Lastly, it describes how to exploit common sharing patterns of programs to reduce overheads of reference counting for garbage collection. It minimizes atomic operations in reference counting by biasing each object to a specific thread

    The OCaml system release 5.0: Documentation and user's manual

    Get PDF
    This manual documents the release 5.0 of the OCaml system. It is organized as follows. Part I, "An introduction to OCaml", gives an overview of the language. Part II, "The OCaml language", is the reference description of the language. Part III, "The OCaml tools", documents the compilers, toplevel system, and programming utilities. Part IV, "The OCaml library", describes the modules provided in the standard library. Part V, “Indexes”, contains an index of all identifiers defined in the standard library, and an index of keywords
    corecore