
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
2
4
4
4
2
/
b
o
r
i
s
t
h
e
s
e
s
.
9
9
5

|

d
o
w
n
l
o
a
d
e
d
:

2
7
.
9
.
2
0
2
1

Run-time Variability with
First-class Contexts

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Erwann Wernli
von Zürich

Leiter der Arbeit:
Prof. Dr. O. Nierstrasz

Institut für Informatik und angewandte Mathematik

Run-time Variability with
First-class Contexts

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Erwann Wernli
von Zürich

Leiter der Arbeit:
Prof. Dr. O. Nierstrasz

Institut für Informatik und angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Bern, 31.10.2013
Der Dekan:
Prof. Dr. S. Decurtins

This dissertation can be downloaded from scg.unibe.ch.

Copyright ©2013 by Erwann Wernli

This work is licensed under the terms of the Creative Commons Attribution
– Noncommercial-No Derivative Works 2.5 Switzerland license. The license is
available at http://creativecommons.org/licenses/by-sa/2.5/ch/

Attribution–ShareAlike

scg.unibe.ch
http://creativecommons.org/licenses/by-sa/2.5/ch/

Acknowledgments

I warmly thank the following persons who directly, or indirectly, contributed
to this work:

First, I express my gratitude to Oscar for his support throughout the
years. His expertise in articulating ideas has been invaluable.

I am very thankful to Manuel for his interest in my research. This was
motivational. I also thank him for accepting to be the external reviewer.

I thank my friends Niko, for his cheerful enthusiasm and deep love of
puzzles, Fabrizio, for bringing fun to any discussion, Jorge, for many useful
reflections, and Mircea, for many whimsical discussions about research and
life.

I am grateful to Toon, for his compelling low-tech known-how, Lukas,
for his impressive involvement in the community, Doru, for his tips about
research and presenting, Adrian K., for his thought-provoking nature, and
Adrian L., for early help with my research.

I am indebted to David and Pascal for their contributions to the tech-
nical implementations. I am also grateful to Camille and Stéphane for dis-
cussions about proxies.

Thanks to Jan, Andrea, Boris, Andrei, Haidar, and Nevena, for reading
drafts of my work and bringing fresh energy to the group during the last
stage of my thesis.

I am grateful to Iris for her flawless organization and administrative
support.

Special thanks to Slavisa, for encouraging me to take this academic
detour, Maxime, for early guidance during the application process, and
Gwenaëlle, Heinz, Jacqueline, for cheering me up when it was needed.

Above all, I want to thank Lilith for sharing with me the many adven-
tures of life.

i

ii

Abstract

Software must be regularly updated to keep up with changing require-
ments. Unfortunately, to install an update, the system must usually be
restarted, which is inconvenient and costly. In this dissertation, we aim
at overcoming the need for restart by enabling run-time changes at the pro-
gramming language level.

We argue that the best way to achieve this goal is to improve the sup-
port for encapsulation, information hiding and late binding by contextualiz-
ing behavior. In our approach, behavioral variations are encapsulated into
context objects that alter the behavior of other objects locally.

We present three contextual language features that demonstrate our ap-
proach. First, we present a feature to evolve software by scoping variations
to threads. This way, arbitrary objects can be substituted over time without
compromising safety. Second, we present a variant of dynamic proxies that
operate by delegation instead of forwarding. The proxies can be used as
building blocks to implement contextualization mechanisms from within
the language. Third, we contextualize the behavior of objects to intercept
exchanges of references between objects. This approach scales information
hiding from objects to aggregates. The three language features are sup-
ported by formalizations and case studies, showing their soundness and
practicality. With these three complementary language features, develop-
ers can easily design applications that can accommodate run-time changes.

iii

iv

Contents

1 Introduction 1
1.1 First-class Contexts . 3
1.2 Thesis . 4
1.3 Contributions . 4

1.3.1 Active Context . 4
1.3.2 Delegation Proxies . 5
1.3.3 Dynamic Ownership 5

1.4 Outline . 6

2 Related Work 7
2.1 Temporal Variability . 7
2.2 Active Variability . 11
2.3 Structural Variability . 15
2.4 A Taxonomy of Complexity 18
2.5 Goals and Roadmap . 22
2.6 Conclusions . 23

3 Dynamically Updating Software with Active Context 25
3.1 Introduction . 25
3.2 Running Example . 26

3.2.1 The Problem with Updates 27
3.2.2 Lifecycle of an Incremental Update 28

3.3 First-class Context . 30
3.3.1 User-defined Update Strategy 30
3.3.2 Object Representations 32
3.3.3 First-class Classes . 33
3.3.4 Threads and Contexts 34

3.4 Implementation . 35
3.4.1 Concurrency and Garbage Collection 36
3.4.2 State Relocation . 39
3.4.3 Special Language Constructs 39
3.4.4 Further Details . 41

3.5 Validation . 42
3.5.1 Evolution . 42
3.5.2 Run-time Characteristics 43

v

3.6 Discussion . 47
3.6.1 Portability . 47
3.6.2 Performance . 47
3.6.3 Development Effort 48
3.6.4 Type Safety . 48

3.7 Related Work . 49
3.7.1 Class Redefinition . 49
3.7.2 Layers . 50
3.7.3 Additional Related Work 50

3.8 Conclusions . 51

4 Contextualizing Behavior with Delegation Proxies 53
4.1 Introduction . 53
4.2 Delegation Proxies . 54

4.2.1 Propagation . 56
4.2.2 Closures . 58
4.2.3 Forwarding . 60
4.2.4 Transparency . 60

4.3 Examples . 61
4.3.1 Lazy Values . 61
4.3.2 Membranes . 62
4.3.3 Layers ⋆ . 63
4.3.4 Interceptors ⋆ . 64
4.3.5 Object Versioning ⋆ . 65
4.3.6 Read-only Execution ⋆ 65
4.3.7 Dynamic Scoping ⋆ . 66

4.4 Semantics . 67
4.4.1 Identity Proxy . 70
4.4.2 Propagating Identity Proxy 72

4.5 Implementation . 73
4.5.1 Performance . 75
4.5.2 Static Typing . 75

4.6 Related Work . 76
4.7 Conclusions . 78

5 Scaling Information Hiding with Dynamic Ownership 81
5.1 Introduction . 81
5.2 Filters and Crossing Handlers 82

5.2.1 Default Policy . 85
5.3 Using Filters . 86

5.3.1 Iterators . 86
5.3.2 Read-only References 87
5.3.3 Access Modifiers . 88
5.3.4 Sandboxing . 89

vi

5.3.5 First-class State . 89
5.4 Using Crossing Handlers . 91

5.4.1 Defensive Copying . 91
5.4.2 Remoting . 92
5.4.3 Synchronization . 93

5.5 Security . 93
5.5.1 Ownership Transfer 93
5.5.2 Reflection . 94

5.6 Semantics . 95
5.6.1 Ownership and References 95
5.6.2 Topics and Filters . 96
5.6.3 Paths . 96
5.6.4 Accessibility . 97
5.6.5 Validity of References 97
5.6.6 Instantiation . 98
5.6.7 Aliasing . 98
5.6.8 Ownership Transfer 99

5.7 Implementation . 100
5.7.1 Closures and self . 100
5.7.2 Primitive Types . 100
5.7.3 Control Flow . 101
5.7.4 Ownership Transfer 101
5.7.5 First-class Classes . 101

5.8 Experiments . 101
5.8.1 Adapting the Web Server 102
5.8.2 Performance . 104

5.9 Discussion . 106
5.10 Related work . 107
5.11 Conclusions . 109

6 Conclusions 111
6.1 An Extended Toolbox . 111
6.2 Strengths and Weaknesses . 113
6.3 Open Questions . 114

vii

viii

1
Introduction

Software systems must regularly modify their behavior to adapt to chang-
ing requirements or changing configurations. Such changes frequently en-
tail the restart of the software system, which is both inconvenient and costly.
Instead, we aim in this dissertation at supporting run-time changes, i.e.,
changes without a restart. The term run-time change covers both unantic-
ipated changes like new requirements, and anticipated changes like config-
uration changes. When the distinction is necessary, we speak of run-time
evolution for the former category and run-time adaptation for the latter.

The support for run-time changes is closely related to the modularity of
the software system, and the underlying support for modularity by the lan-
guage: in a modular software system, units make few assumptions about
each other [130] and can be easily replaced without entailing global modi-
fications. This makes the overall system easier to change.

The following modularity principles are particularly relevant to enable
run-time changes:

Encapsulation. A programming language with support for encapsulation
enables elements that belong together to be bundled into cohesive
units. A common example of encapsulation is the concept of class in
most object-oriented languages. A class is a unit that encapsulates
both behavior and state. Other mechanisms for encapsulation exist.
For instance, some languages enable classes to nest within others [29],
some rely on the concept of package [71], or some provide the concept
of trait to encapsulate pure behavior [144].

Information hiding. A programming language with support for informa-
tion hiding enables units to hide their implementation details. This

1

prevents units from depending too much on each others. Instead,
they communicate via stable interfaces that expose clear abstractions.
A common example of information hiding is the use of access mod-
ifiers to restrict the visibility of methods. Another common example
is the policy regarding state accesses. Some languages make the state
of an object accessible only to the object itself, while others are more
permissive.

Late binding. A programming language with support for late binding re-
solves symbolic names between units as late as possible. For instance,
if a unit depends on another unit named “engine”, this dependency
should be resolved only when the “engine” is actually accessed. A
common example of late binding is dynamic dispatch: the method
that will be executed is resolved dynamically at invocation time. The
more late bound a language is, the easier it is to change applications.
For instance, if class names are resolved to actual classes when first
used, it isn’t necessary to recompile the whole system to change a sin-
gle class and the change can take effect upon the next restart. If class
names are resolved each time the symbol is used, the software system
gains in dynamism and classes can be changed at run time.

Together, these three principles favor an organization of code where it is
easy to change design decisions [130]. Unfortunately, the actual support for
encapsulation, information hiding and late binding found in mainstream
programming languages is still insufficient to make run-time changes prac-
tical:

On one hand, statically-typed languages have a type discipline that
supports strong information hiding, but that restricts the ability for late
binding. The behavior of an object can be changed only if it preserves the
type signature. On the other hand, dynamically-typed languages support
advanced forms of late binding, but the lack of static types restricts their
ability to enforce information hiding. The behavior of an object can change
over time, but this can compromise safety. In both categories of languages,
the unit that encapsulate behavior is the class. Coordinating changes be-
low the class level, e.g., individual methods, or above the class level, e.g.,
behavior crosscutting multiple classes, is challenging.

Faced with these difficulties, developers must rely on convoluted de-
sign strategies to make software changeable at run time. They must de-
vise ad hoc approaches to detect, load and activate changes using various
programming languages features (e.g., Java class loaders or proxies) and
programming idioms (e.g., strategy or visitor design patterns).

2

1.1 First-class Contexts

The main obstacle towards run-time changeability is the lack of support for
encapsulating behavioral variations and activating them. When it exists,
the support for behavioral variations affects whole classes of objects, and
variations are activated permanently and globally. We argue that the best
way to enable run-time changes is instead to contextualize variations.

In our approach, behavioral variations are encapsulated into context ob-
jects that alter the behavior of other objects locally in time and space: a
context object can either scope variations to dynamic extents or structural
extents. In the first case, the behavioral variation will affect only objects ac-
cessed during the evaluation of method on the context object. In the second
case, the behavioral variation will affect a certain set of objects reachable
from the context object. We call these two forms of scoping active variability
and structural variability.

A context object is a regular object and can implement business logic.
If the context object is used solely to contextualize variations and does not
contain any business logic, it is called a first-class context.

Figure 1.1 and Figure 1.2 depict the two forms of variability. In Fig-
ure 1.1, the context object varies the behavior of the object that is accessed
during the evaluation of the method switch; in Figure 1.2, the context ob-
ject varies the behavior of the object it references.

invocation

context object

object with a variation

objectm()

switch()

m()

Figure 1.1: Active variability.

context object

object with a variation

relationship

object

Figure 1.2: Structural variability.

3

1.2 Thesis

We formally state our thesis as follows:

First-class context objects implementing active and structural variability en-
able run-time changes by improving the support for encapsulation, informa-
tion hiding and late binding.

1.3 Contributions

In the next chapters, we show how first-class contexts implementing active
and structural variability improve the support for encapsulation, informa-
tion hiding and late binding in the following ways:

Encapsulation Context objects enable the encapsulation of behavioral vari-
ations spanning multiple objects into first-class entities.

Information hiding Context objects can make existing methods fail de-
pending on the caller, thus preventing illegal invocations.

Late binding Context objects provide a fine level of control to rebind
behaviors locally in time and space, instead of globally and perma-
nently.

The discussion is organized around three language features — active
context, delegation proxies, and dynamic ownership — that form the core
contributions of the thesis. Below is a brief overview of the design, imple-
mentation and validation of each feature. Figure 1.3 presents an overview
of their respective benefits from the modularity point of view.

1.3.1 Active Context

Active context is an approach to unanticipated run-time evolution. Behav-
ioral variations that are immediate and global are a threat to type safety.
Instead, we introduce first-class contexts to represent versions of the soft-
ware and enable existing behaviors to be overridden on a per-thread basis
rather than globally. Individual threads run in distinct contexts which re-
sults in an incremental switch from the old to the new behavior without
compromising type-safety. The state is transferred between versions using
bidirectional transformations. Active contexts avoids the need for awk-
ward patterns to support unanticipated changes.

We have used several existing web servers as case studies. We show
that run-time evolution can be achieved with an acceptable performance
penalty and an acceptable development overhead, both for dynamically-
typed and statically-typed languages.

4

The approach improves the support for encapsulation (by encapsulating
software versions into contexts) and late binding (by rebinding incremen-
tally the behaviors of the objects).

We realized a prototype for Java (github.com/ewernli/theseus) and a
full implementation for Smalltalk (http://ss3.gemstone.com/ss/Theseus.
html). This approach has been published in workshops [169, 170], a confer-
ence [168], and a journal [172].

1.3.2 Delegation Proxies

Delegation proxies are building blocks to implement contexts that encap-
sulate fine-grained crosscutting behavioral variations. They complement
active contexts, which operate at the class level and are not appropriate to
rebind the methods of an object selectively.

Delegation proxies are proxies that operate with delegation instead of
forwarding. This way, a behavioral variation can propagate in a dynamic
extent. By default, delegation proxies support homogenous variations, i.e.,
multiple methods have the same variation. Support for heterogenous vari-
ations, i.e., methods have specific variations, can be built on top of homoge-
nous variations.

We show that delegation proxies enable run-time adaptations similar
to dynamic aspects. Additionally, we show that the adaptions can help
implement recovery blocks and immutable objects, which both improve
safety.

The approach improves the support for late binding (self is late bound
to the delegation proxy) and encapsulation (crosscutting variations can be
encapsulated using delegation proxies).

We realized an implementation for Smalltalk (http://ss3.gemstone.
com/ss/Amop.html). This approach has been submitted for publication in
a conference.

1.3.3 Dynamic Ownership

To be replaceable, objects must communicate through stable interfaces. We
show with dynamic ownership that structural variability with first-class
contexts can be used to improve information hiding. With dynamic own-
ership, aggregates can hide their implementation details.

The approach structures objects in a tree and the behavior of an object
becomes dependent on the relative positions of the sender and the receiver
in the tree. The behavioral variation is executed when an incoming refer-
ence to an aggregate is established. The variation can fail, or take some
alternative actions, e.g., copy the object defensively. The owner of an object
can be changed at run time.

5

github.com/ewernli/theseus
http://ss3.gemstone.com/ss/Theseus.html
http://ss3.gemstone.com/ss/Theseus.html
http://ss3.gemstone.com/ss/Amop.html
http://ss3.gemstone.com/ss/Amop.html

Act. Context Del. Proxies Dyn. Own.
Encapsulation Encapsulate

software
versions into
contexts

Encapsulate
crosscutting
variations

Encapsulate
cross-cutting
aliasing policy

Information
Hiding

Scale infor-
mation hiding
from objects to
aggregates

Late Binding Rebind
incrementally
the behaviors of
the objects

self is late
bound to the
delegation
proxy

Figure 1.3: Improvements of the language features

We demonstrate with a case study on an existing web server that dy-
namic ownership is applicable to existing systems and can help spot un-
wanted dependencies. We also evaluate the performance overhead and
show it is acceptable.

The approach improves the support for information hiding (by scaling
information hiding from objects to aggregates) and possibly encapsulation
(by encapsulating crosscutting aliasing policy like defensive copying).

We realized a prototype for Smalltalk (http://ss3.gemstone.com/ss/
DynOwn.html). This approach has been published at a symposium [171].

1.4 Outline

The main chapters of this thesis present each one language feature. The
thesis is thus organized as follows:

Chapter 2 gives an overview of the related work under the perspective of
temporal, active and structural variability.

Chapter 3 presents Active Context, an approach to unanticipated run-time
evolution.

Chapter 4 presents Delegation Proxies, an approach to implement active vari-
ability.

Chapter 5 presents Dynamic Ownership, a flexible approach to enforce in-
formation hiding.

Chapter 6 concludes the dissertation and outlines future work.

6

http://ss3.gemstone.com/ss/DynOwn.html
http://ss3.gemstone.com/ss/DynOwn.html

2
Related Work

In this chapter, we survey the state of the art in enabling run-time changes.
First we review existing approaches depending on their mechanics in terms
of variability. In addition of active and structural variability, we introduce
the term temporal variability to refer to globally and permanent changes.
Second, we organize the existing approaches into a taxonomy that char-
acterizes the complexity of the changes they support. Finally, we identify
three levels of complexity that we aim at improving the support for.

2.1 Temporal Variability

Temporal variability refers to global and permanent variations of the be-
havior of objects over time.

Classic Objects Several of the classic design patterns [65] aim at enabling
temporal behavioral variations. This is notably the case of the following
patterns: the state design pattern, which “allows an object to alter its be-
havior when its internal state changes”; the strategy design pattern, which
“allows one of a family of algorithms to be selected on-the-fly at runtime”;
the decorator pattern, which “dynamically adds/overrides behavior in an
existing method of an object”. The popularity of these patterns is a clear
witness of the need for temporal variability.

Reclassification The ability to change the behavior of an object after it
was created is called reclassification. The ability to reclassify objects has
been explored since the early days of object-orientation, since it is common

7

for objects to have changing states or phases. In statically-typed languages,
general reclassification is however a loophole that compromises type safety.
Also, if the fields of two classes differ, the semantics of reclassification be-
come inevitably complicated. These two problems explain why the support
for general reclassification never became mainstream.

To be practical, reclassification must be constrained. In Smalltalk, ob-
jects can be reclassified using primitiveChangeClass. This operation fails
if the classes have incompatible layouts.

With Wide Classes [148], objects can be widened from a superclass to a
subclass, and later on shrunk from a subclass to a superclass. Widening and
shrinking are more disciplined than general reclassification. Still, the ability
to shrink objects makes wide classes unsuitable for static typing. Subclasses
can have additional fields that can be initialized during widening.

In the Fickle language [53, 46], a root class can be reclassified into one of
its pre-defined state subclasses. State subclasses cannot define new fields.
Object layouts are not affected by reclassification. Developers must an-
notate methods with the list of reclassifications they might perform. Type
safety is checked with a type and effect system. This guarantees type safety
from within one thread of execution. In the presence of multiple threads of
executions, type safety could still be compromised. To ensure type safety,
the type and effect system is leveraged to delay operations until when they
will provably succeed.

Typestate Reclassification can help to represent an object during the dif-
ferent phases of its lifetime. For instance, the behavior of a file that can
be either open or closed can be captured in two distinct state subclasses.
The transitions between states are however not modeled, nor constrained.
An early work that explicitly modeled state transitions was Pernici’s Ob-
jects with Roles Model [131] . The Fugue programming language [47] enables
the expression of state-related object invariants that are statically enforced.
Bierhoff and Aldrich built up on Fugue to propose a more lightweight ap-
proach to enforcing legal transitions of states [20]. The Plaid programming
language made transitions explicit, as well as the state, which are modeled
as first-class entities [154]. The language is dynamically-typed and does
not enforce legal transitions statically.

Object Swapping The ability to swap two objects (all references to the
two objects are exchanged but identity is retained) could be considered the
dual of reclassification. If an instance of the “destination” class is used
to swap an object, the object effectively appears to change its class while
retaining its identity. Inversely, reclassifying two objects and updating
their states can appear as a swap of two objects if coordinated correctly. A
principled approach to object swapping was proposed by Costanza in the

8

programming language Gilgul [43], which decouples the concepts of refer-
ence and identity. The language provides static type safety by constraining
swapping to objects of similar types or subtypes.

Swapping can be pushed to the next level by enabling whole com-
ponents/services to be swapped. COM and Enterprise Java Beans (EJB)
are two mainstream component models. Components/services are loosely
coupled and communicate via interfaces; they are hosted in an application
server and can be redeployed dynamically. In recent years, OSGi gained
traction as a stand-alone component model that enables dynamic reload-
ing. Certain approaches enable components to be manipulated program-
matically, e.g., Oriol’s LuckJ [126].

Object Specialization Rather than reclassifying objects between existing
classes, objects can have their own behavior that can be specialized per-
instance. Beck’s Scriptable Objects [14] describe a pattern to do on top of
a class-based language, namely Smalltalk. Essentially, the idea is to dy-
namically generate an anonymous class per object. The class can then be
dynamically modified to alter the behavior of its unique instance. This is
similar to eigenclasses in Ruby. The granularity of the specialization is in
this case the method.

The granularity of the specialization can be increased while retaining
the concept of per-object specialization. Ressia et al. proposed talents [140],
a technique to specialize objects using trait-like units of behavior. Bettini
et al. proposed a similar construct for Java [18, 19], building on Smith and
Drossopoulou’s earlier work [149]. In these approaches, the specialization
replaces existing behaviors.

Instead, the specialization can merely override the behavior to “deco-
rate” the original behavior. In Featherweight Wrap Java [17], objects can be
dynamically extended with decorators. Büchi and Weck proposed Generic
Wrappers [31], an extension of Java where objects can be specialized with
decorators at time of creation (but not later).

Prototype-based languages like Self [161] rely on delegation rather than
inheritance to reuse behaviors. Object specialization is at the heart of such
languages. Objects can naturally replace or override the behavior of their
prototype. Conversely, reclassification translates to a trivial change of the
prototype of an object. Dynamic proxies [162, 60, 41] can to some extent
be used to implement prototype-like specialization. However, since they
operate by forwarding instead of true delegation, this results in problems
with self-sends [78].

Class Redefinition An alternative way to change the behavior of objects
at run time is to redefine classes themselves. In Smalltalk, all changes hap-
pen reflectively via class redefinitions. Naturally, redefining classes poses

9

similar problems of type safety and object layout compatibility as reclassifi-
cation. In Smalltalk, new fields in the class definition are initialized to nil.
Since the language is dynamically typed, run-time type errors raise excep-
tions as usual. This is the common approach taken by other dynamically-
typed language as well.

Many approaches have been proposed to enable class redefinitions in
statically-typed languages like Java. They are inherently trade-offs between
type safety and flexibility. Early versions of the JVM did not support any
class redefinition facility. Dynamic class loading was however possible via
class loaders which can be used to simulate dynamic changes in a very
limited way [97]. Modern versions of the JVM enable the redefinition of a
method as long as its signature doesn’t change. Such features were first re-
searched by Dmitriev in PJama [52]. Less constraining approaches include
the Dynamic Code Evolution VM (DCEVM) [174], JRebel [87], Javaleon
[72], JVolve [153] and Javadaptor [138]. These approaches supersede older
approaches like JDrums [5], the rewriting technique of Orso et al. [127] or
the Dynamic Virtual Machine (DVM) of Malabarba [105].

The DCEVM and JVolve are custom Java virtual machines. JRebel, Java-
leon and Javadaptor use code transformation to enable class redefinitions.
These recent approaches differ along several dimensions: 1) the level of
type safety, 2) the flexibility in changes supported, 3) the constraints about
the timing of changes, 4) the flexibility in custom object conversions, 5) the
time of object conversions. With respect to the flexibility of changes sup-
ported, Gustavsson established a classification of changes in Java [73] with
their frequencies. A similar study was performed for C [117].

DCEVM. The DCEVM performs changes instantly. It supports layout
changes but no custom conversion (like Smalltalk). Run-time type er-
rors raise NoSuchMethodError. It supports arbitrary changes to the
class and interface hierarchy. When the change is installed, a full
garbage collection is forced and converts the objects eagerly.

JRebel. JRebel is a proprietary software that enables arbitrary changes, ex-
cept modifying the class hierarchy and the addition or removal of
interfaces. It operates by code rewriting. It is meant to avoid rede-
ployment during developments and thus does not support custom
object conversions.

JVolve. JVove supports arbitrary changes, except changes to the class hi-
erarchy and the addition or removal of interfaces. It converts objects
eagerly during a forced garbage collection. To be type safe, it con-
strains the timing of updates using temporal safe points. It supports
custom object conversions.

Javaleon. Javaleon supports arbitrary changes to classes, the class hierar-
chy and the interfaces. It converts objects lazily and enables custom

10

conversions. Type compatibility across versions is achieved by wrap-
ping objects with adapters. Adapters will preserve type safety, but
not necessary the semantics, if old code accesses new objects (e.g., if a
method is renamed). Javaleon is limited to NetBeans components.

JavAdaptor. JavAdapor supports similar capabilities as Javaleon, without
being limited to NetBeans components. It converts objects eagerly
using JVMTI’s referringObjects facility.

For the dynamic updates of productions systems, type safety is not
enough. A type-safe update might lead to functional errors if the logic
of collaborating objects is changed during an ongoing collaboration. The
timing of updates to guarantee update safety beyond type safety has been
the subject of intensive research. Ginseng [79, 118, 116] and Kitsune [76]
are two approaches for C systems. In these approaches, developers specify
update points when the update can be installed. Such safe points corre-
spond to quiescent program states where no method that will be changed
is currently active. UpStare [104] avoids timing constraints by enabling ac-
tive methods to be updated using stack reconstruction. No such technique
exists for object-oriented systems at the moment. POLUS [34] also avoids
quiescent update points by enabling both old and new code to coexist; the
system keeps old and new data coherent using eager bidirectional conver-
sions.

Object Migration Dynamic updates of production systems require the
use of convertors to specify the migration of objects from their old lay-
out to the new layout. Specifying such convertors is cumbersome and er-
ror prone. Transformations are usually simple (field addition, renaming,
suppression, type conversion) and complex transformations are occasional
[73].

Static analyses of the evolution of Java system classes reveal that al-
most all changes to object layouts can be automatically generated [132] to
accommodate mismatches during serialization and deserialization. Using
dynamic analysis, the heap of the old and new programs after similar sce-
narios can be compared to infer object converters automatically [103].

If the conversion of a parent object depends on a child object, the con-
versions must be orchestrated so that first the parent is converted, then the
child. If objects are converted lazily when accessed, such ordering might
be broken, leading to conversion errors. Boyapati et al. solved this problem
using ownership types [24].

11

2.2 Active Variability

Active variability refers to behavioral variations that are activated in the
dynamic extent [156] of a method invocation.

Classic Objects Active variability lets the behavior of an object depend
on the client (direct and indirect) accessing it. Without native support
for active variability, various design patterns and programming techniques
can be used to simulate it.

The visitor design pattern [65] externalizes the logic of a family of col-
laborating objects into an auxiliary object, i.e., the visitor. Clients of objects
in the family must provide a concrete visitor to use them. A client can thus
adapt the behavior of the objects in the family to its needs.

In the context of user interfaces, the model-view-controller pattern [93]
decouples the graphical presentation of objects from their states. The model
contains state, and the views contain presentation logic.

A more recent design pattern is the Ambient Context pattern [146],
which “makes a dependency available to every [object] without polluting
their [interface]”. The shared dependency is made available to all objects
via a global resolver that returns a per-thread instance of the dependency.

Nested Diagnostic Context [74] is a popular pattern (notably popular-
ized in Log4j) which uses dynamic variables to add contextual information
to diagnostic messages. This way, an object can for instance specify the
current transaction it is involved in while logging its activity.

Lastly, an object can implement active variability by inspecting the stack
and adapting its behavior depending on its direct and indirect callers. This
is for instance possible in Java using Thread.getStackTrace(. . .) or Smalltalk
using thisContext.

Roles Within an object system, objects of the same class might serve dif-
ferent roles to other objects. For instance, a person can be the assistant or
the manager of another person. The concepts of “assistant” and “manager”
are roles. They aren’t intrinsic properties of a person, but instead properties
of the relationship between two entities. Similarly, the concepts of “ado-
lescent” and “adult” are not intrinsic properties of a person but states or
phases of a person [151].

In class-based languages, it is tempting to model both entities and roles
as classes. This is the classical is-a form of inheritance. Unfortunately, roles
and entities are not subsets of each other, which inevitably leads to inco-
herences in the design. For instance, if a system has two entities Person
and Organization, and two roles Customer and Supplier, it is impossible to
correctly capture the desired relationships between the four concepts with
only classes [151].

12

Certain languages make roles explicit either as names on relationships
[61] or explicit entities [94]. Benefits of the second approach are the support
for role-specific state and the ability to dynamically acquire or lose roles;
the drawback is the possible confusion between a role and its target object,
since their identities differ. Objects may simultaneously play multiple roles
to different clients.

Coercion and Lifting A role can be seen as a wrapper around its target
object. The challenge is to transparently and consistently represent sets of
collaborating objects with their appropriate roles depending on the client
accessing them. By coordinating the application of roles to multiple objects,
roles can model cross-cutting slices of behavioral. For instance, presenta-
tion logic that cross cut multiple objects can be organized into roles.

One prominent language supporting the coordination of explicit roles
is Object Team [77]. In Object Team, an object can be played by a role,
and related roles (i.e., cross-cutting slices of behavior) are organized into
teams. The implicit representation of an object with the corresponding role
is called lifting (the opposite is called lowering). This kind of polymorphism
is called translation polymorphism [84].

A similar form of polymorphism is enabled in Scala where implicit type
conversions are called views1. Warth’s Expanders [167] enable the implicit
translation of collaborating objects to apply cross-cutting slices of behavior.
In both approaches, base objects and translated objects have distinct enti-
ties. Bergel’s Classboxes [15] enable similar client-specific adaptations, but
without resorting to distinct identities. Unlike with Expanders, the compi-
lation is not modular and all views must be known at compile time.

Context-oriented Layers The cross-cutting slice of behavior expressed with
roles, expanders and classboxes isn’t explicitly manipulable; it is applied
based on syntactic rules. In context-oriented programming [80], the slice
is explicit and can by activated dynamically. In ContextL [42], a variant of
Lisp developed by Costanza and Hirschfeld, the slice of behavior is called
a layer, and can be it can be dynamically activated in the control flow, scop-
ing variations to threads. Numerous variants of this approach were later on
explored, giving birth to ContextS (Smalltalk), ContextJ (Java), ContextPy
(Python), ContextJS (Javascript), and ContextG (Groovy) [7, 143]. These
variants differ in the way variations are encoded (layer-in-class or class-in-
layer), how layers are activated and composed, whether state can be spe-
cific to a layer, and whether layers can be reflectively accessed [7].

Other approaches enable global activations of layers. These approaches
are thus closer to temporal variability than active variability. For instance,
Löwis et al. support thread-based and global layer activations, as well as

1http://www.scala-lang.org/node/130

13

http://www.scala-lang.org/node/130

dynamic variables [165]. The Ambience programming language [68] and
Context Traits [69] similarly support global layer activations. Explicit layer
activations was shown to be useful to support non-functional requirements
like mobility and multi-tenancy [160], or the modularization of graphical
presentation logic [8].

Aspects Aspect-oriented programming [91] also aims at the encapsula-
tion of cross-cutting slices of behavior. Aspects represent generic variations
(i.e., advices) that can be applied in multiple places (i.e., join points). The
technique can be extended to support dynamic activations of aspects [135],
e.g., to enable and disable logging at run time. Dynamic aspects correspond
to temporal variability. However, dynamic aspects can also implement ac-
tive variability if join points can be conditionally activated depending on
the control flow (e.g., using AspjectJ’s cflow operator). For instance, access
permissions in Java (using doPriviledged(. . .)) can be seen as an aspect
[159] implementing active variability: accesses to sensitive resources trig-
ger a check which inspects the stack to authorize or deny the access. The
main difference between dynamic aspects and layers is that aspects best
represent generic variations to apply in multiple places, while layers em-
body specific variations to apply in unique places. Apel et al. refer to both
forms of variations as homogeneous concerns and heterogenous concerns [6]).
Both help the multi-dimensional decomposition of concerns.

Subjectivity Harrison and Ossher [75] decouple object identity from be-
havior and state. In their approach, different “subjects” can view objects
with different behaviors and states. The only intrinsic property of an object
is its identity, which is shared across subjects. Behavior and state are ex-
trinsic properties of objects, that depend on the current subject activation.

Ungar and Smith developed Us [150], an extension of the language Self
with a notion of “perspective”. Perspectives are explicit and can be com-
posed in a layered fashion to provide different views of objects. State and
behavior are unified in Self with slots. In Us, the value of a slot can be re-
defined by a layer. All message sends are parametrized with a perspective,
which by default is the here perspective.

Predicate Dispatch Predicate dispatch enables methods to be dispatched
based on arbitrary predicates [58]. Methods can be dispatched based on the
types of their arguments and based on the state of the arguments (including
the possible relationships between objects). Predicate dispatch thus gener-
alizes multi-methods [113] and pattern matching. Layers, dynamic AOP
and subjectivity can be seen as forms of predicate dispatch where methods
are dispatched based on the type of the receiver and additional dynamic
variables.

14

Environments A dynamic binding is a binding that exists only during the
evaluation of a given expression and its sub-expressions [112]. Variables
bound this way are called dynamic variables. Dynamic binding is usually
contrasted with lexical binding, which is the norm for modern languages (it
is however interesting to note that exception handling is a disguised form
of dynamic binding common to most languages). The mapping of names
to values used to resolve bindings is called the environment of an expres-
sion. How bindings “propagate” is defined by the programming language
semantics. For instance, languages can implement closures either by copy-
ing the environment at the time of creation (e.g., Java) or by referencing the
original environment (e.g., Smalltalk). The ability to control the environ-
ment and the related bindings gives a very high expressive power to a lan-
guage. Tanter extended Lisp [156] with the ability to explicitly control how
bindings propagate with user-defined policies. In Piccola [119], the envi-
ronment is explicit. This enables a very flexible form of modularity where
functions can be loaded and rebound to different names. Dependency In-
jection [136] is the most popular form of environment control. Essentially,
the configuration of the dependency injection framework represents a set
of bindings.

2.3 Structural Variability

Structural variability refers to variations of the object behaviors based on
relationships between objects.

Classic Objects The behavior of an object naturally depends on the be-
havior of its dependent objects. Objects thus inherently provide support
for structural variability. This structural variability is unidirectional: the
behavior of a parent object will depend on the behavior of the object it ref-
erences, but not the opposite. Also, this structural variability is explicit:
the mere referencing has no effect unless the referenced object is effectively
accessed. Other forms of structural variability exist, where relationships
between objects implicitly impact behavior.

Meta-objects A meta-object is an object which defines the behavior of
one or more base objects. In languages with first-class classes, a class is
a meta-object that defines the behavior of its instances [90]. In reflective
systems, base objects and meta-objects coexist in the same object space and
are causally connected. Smalltalk [67] is a reflective system with first-class
classes, meta-classes, and activation frames. CLOS [48] and Ruby [108]
are other dynamic languages with reflective architectures. Supporting a
causal connection between base and meta-objects is usually not possible

15

in statically-type languages, for the same reasons already presented in the
section about classes redefinitions.

Reflection is split into two categories of facilities: structural and behav-
ioral reflection. The difference between the two is best understood if we
consider an application running on top of an interpreter. Structural reflec-
tion enables the application to reflect on itself; behavioral reflection enables
the application to reflect on the interpreter running it, thus changing the
semantics of the language. Arguably, the distinction between the two is
blurry, since a behavioral change can be simulated with a structural change
that rewrites the sources of the application. A weaker variant of full reflec-
tion is called load-time reflection, which essentially supports changes only
when classes are initially loaded. Javassist [35] is a popular framework for
load-time structural reflection in Java.

Since reflection is costly, it is interesting to limit it in space (i.e., on which
syntactic entities reflection is enabled) and time (i.e., when reflection is en-
abled). This approach was first proposed in Reflex [158], for Java, and then
Reflectivity [49], for Smalltalk. In Ressia’s object-centric reflection [139], a
meta-object can be associated with an individual object to alter its behav-
ior. Dynamic proxies can be used to simulate meta-objects by intercepting
all accesses to a given target object. In Smalltalk, method wrappers [54]
are equally convenient to intercept messages sent to instances of a specific
class.

A meta-objects with a causal connection with its base object can be seen
as a form of structural variability (since it defines the behavior of the base
objects it relates to) and at the same time a mechanism to achieve temporal
variability (since the meta-object can be modified to change the behavior of
its based objects).

Virtual Classes A virtual class [102] is a nested class that can be overrid-
den by subclasses of the outer class. For instance, a class Graph can nest
virtual classes Edge and Node to enable the specialization of graphs with
different types of edges and nodes. A virtual class is a member of an object,
e.g., aGraph.Edge. When instantiating new objects, class names are bound
to their class definitions taking into consideration the relationship between
a class and its enclosing object. If an edge creates a node, it will create a
node that matches the definition in its enclosing graph.

Both virtual classes and parametric polymorphism enable genericity
and advanced code reuse. Pros and cons of either approach depend on
the specific design problem to solve [30].

Two classes aGraph.Edge and anotherGraph.Edge have distinct types,
unless it can be proven that aGraph and anotherGraph are instances of the
same class. Redefining Edge or Node in a subclass of Graph does not replace
the previous definition, but rather enhances it with furtherbinding [57].

16

The ability to virtualize superclasses provides mixin-like capabilities to
the language. For instance, if graphs must be specialized into weighted
graphs (with weighted edges and weighted nodes), there are two possibil-
ities: the specialization of classes Edge and Node with an additional weight
attribute, or the rebinding of the superclass of Edge and Node, usually Object,
to a class WeightedObject which defines a common weight attribute.

With virtual classes, an object like aGraph acts as a repository of com-
patible classes. A set of compatible classes is called a family and virtual
classes enable family polymorphism [56]. Furthermore, if virtual classes can
inherit from other virtual classes, this enables class hierarchy inheritance [57],
essentially solving the problem of parallel class hierarchies.

With hierarchy inheritance, classes in two inheritance hierarchies do not
need necessary to map one-to-one. Classes can be added in the second
inheritance hierarchy as long as they don’t break the original inheritance
hierarchy. Taking the example of a compiler, if the class PlusOp inherits
from Expr in the original hierarchy, the new hierarchy can introduce an
intermediate class BinaryOp between Expr and PlusOp [57].

Several mainstream languages support various flavors of virtual classes
and class hierarchy inheritance:

BETA. The most recent incarnation of the language, gbeta [102, 57, 56],
supports family polymorphism and class hierarchy inheritance. It
defines combinators to compose hierarchies. For instance, the Graph
family could be specialized into WeightedGraph and ColouredGraph
and both specializations can be combined into a class ColouredWeight-
edGraph. The language is statically-typed.

Newspeak. Newspeak [29] is a language inspired by Smalltalk, Self and
BETA. It supports family polymorphism and class hierarchy inheri-
tance. Unlike BETA, a virtual class redefined in a subclass does not
enhance the corresponding class in the superclass (i.e., it does not nec-
essary furtherbind it). Instead, developers can control whether they
want to replace or enhance the base virtual class. The module sys-
tem of Newspeak unfolds entirely from the use of virtual classes. The
language is dynamically-typed.

J&. J& [123] supports virtual classes that are bound to classes, not ob-
jects. This facilities type checking but enables limited family poly-
morphism only. For instance, a structure that must contain a list of
edges and a list of nodes of compatibles types can not be parametrized
with a graph object that acts as a repository, as in Newspeak and
gbeta. The approach also limits cross-family inheritance.

Scala. Scala does not support virtual classes nor class hierarchy inher-
itance. Instead, Scala has virtual types and self types [124]. With

17

these, it is possible to simulate virtual classes in certain cases. The
class Graph could for instance be specialized into WeightedGraph 2.
Virtual types do not support the trivial addition of methods or fields
as is the case with virtual classes.

Java. Java does not support virtual classes nor class hierarchy inheritance.
It supports inner classes and static nested classes [71]. Instances of the
former are bound to an enclosing object whereas instances of the lat-
ter are just like instances of regular classes. Static nesting serves only
as namespacing.

Delegation Layer In Ostermann’s Delegation Layers [128], objects are or-
ganized in a tree (using class nesting) and can be wrapped with an ex-
plicit slice of behavior. When a wrapped object accesses one of its chil-
dren, the child is wrapped as well. A wrapped object represents thus
a consistent “view” of the original object, including its nested children.
For instance, wrapping aGraph with a coloring layer produces the object
aCouloredGraph; when the object aColouredGraph is manipulated, the vari-
ation propagates to the nodes and its edges. Unlike context-oriented layers,
delegation layers do not activate the variation based on the control flow, but
based on the relationships between objects in the tree.

Ownership Objects must expose interfaces that hide their internals. To
prevent accesses to an internal object, developers must design interfaces
with care. Such a syntactic approach is limited in the face or reflection (any
object can be accessed) and developer mistakes (such as exposing a getter
by mistake). To enforce the encapsulation of a system of objects, objects can
be structured in a ownership tree which captures semantically the desired
accessibility. Accessibility restrictions can then be enforced statically [39,
121, 23] or dynamically [70] at the language level. The restriction to apply
depends on the relative positions of the caller and callee in the ownership
relationship.

2.4 A Taxonomy of Complexity

The mechanisms presented previously were categorized based on a very
coarse-grained taxonomy of how they work. We now refine this taxonomy
to account for a better overview of the complexity of the changes they en-
able.

2http://docs.scala-lang.org/tutorials/tour/explicitly-typed-self-references.

html

18

http://docs.scala-lang.org/tutorials/tour/explicitly-typed-self-references.html
http://docs.scala-lang.org/tutorials/tour/explicitly-typed-self-references.html

Our refined taxonomy uses the following dimensions:

1. Type-preserving vs. Type-modifying A mechanism is type-modifying if
it can change the signature of existing methods, otherwise it is type-
preserving. Accordingly, the addition of methods is considered type-
preserving.

2. Quiescent vs. Busy A mechanism is quiescent if the system must be
quiescent for changes to be safe, otherwise it is busy.

3. Anticipated vs. Unanticipated A mechanism supports anticipated vari-
ability if the the number of possible object behaviors is enumerable,
i.e., it could be computed at compile time. A mechanism supports
unanticipated variability if variations can be dynamically loaded, i.e.,
the number of variations cannot be computed at compile time.

4. Stateless vs. Stateful A mechanism is stateful if it supports changing
the state of objects as well as behavior, otherwise it is stateless.

5. Fine-grained vs. Coarse-grained A mechanism is fine-grained if it sup-
ports changing one class/object at a time, and coarse-grained if it can
impact multiple classes/objects (depending on whether it is class-
centric or object-centric).

6. Object-centric vs. Class-centric A mechanism is class-centric if it oper-
ates on classes, and object-centric if it operates on objects.

The five first dimensions of the taxonomy capture the complexity of the
changes supported by the mechanism. The last dimension about object or
class centrism helps characterize the mechanisms, but does not represent
a dimension of the complexity. For each complexity dimension in the list,
the option on the left is simpler to support than the option on the right. For
instance, supporting stateless changes is simpler than supporting stateful
changes.

The simplest changes to support are thus fine-grained, stateless, antici-
pated, quiescent, and type-preserving. This is what objects enable, without
any language extension. For instance, the strategy design pattern falls in
this category. Conversely, the most complex changes to support are coarse-
grained, stateful, unanticipated, busy, and type-modifying. This is what
advanced techniques for dynamic updates enable. These techniques are
not language features, though. In between these two extremes, there is a
gradient of techniques and mechanisms with various levels complexity.

We synthesize the related work in the following main lines of research:
Classic Objects, Aspects, Reflection, Contextual Layers, Global Layers, Roles,
Object Adaptations, Family Polymorphism. The description and position-
ing of these lines of research are as follows (see Figure 2.1):

19

O
bj

ec
ts

A
sp

ec
ts

R
efl

ec
ti

on

C
on

te
xt

ua
lL

ay
er

s

G
lo

ba
lL

ay
er

s

R
ol

es

O
bj

ec
tA

da
pt

at
io

ns

Fa
m

ily
Po

ly
m

or
ph

is
m

A
ct

iv
e

C
on

te
xt

D
el

eg
at

io
n

Pr
ox

ie
s

D
yn

am
ic

O
w

ne
rs

hi
p

Type-preserving vs. Type-modifying P/M. P P/M P P P P/M - P/M P P
Quiescent vs. Busy Q Q Q B Q B Q - B B Q
Anticipated vs. Unanticipated A/U A U A A A U - U A A/U
Stateless vs. Stateful F L F L L F F - F L L
Fine-grained vs. Coarse-grained F C F/C C C F F - C C C
Object-centric vs. Class-centric O C C C O O O - C O O

Figure 2.1: Comparison of the main lines of research.

Classic Objects. This line of research aims at understanding the expres-
siveness of objects alone, possibly with design patterns. Objects alone en-
able run-time changes by encapsulating the logic that must vary into ob-
jects that can be swapped dynamically, e.g., the strategy design pattern.
This technique is typically type-preserving, but it could be type-modifying
in dynamic languages. For the replacement to be consistently applied, the
system must usually reach quiescence. With objects alone, only anticipated
changes are possible. If the language supports dynamic class loading and
reflective instantiations, unanticipated changes are possible. State is not
transferred between objects to swap, unless developers define a contract to
do so. The unit of replacement is the object. This technique does not pro-
vide any guarantee beyond the object level. It is object-centric, and fine-
grained.

Aspects. This line of research covers static and dynamic aspects. As-
pects enable type-preserving homogenous variations applied in multiple
join points. Dynamic aspects enable global adaptions to the system at run
time. In this case, aspects are usually first-class. Some approaches enables
aspects to be loaded dynamically, and thus enable unanticipated variations
(e.g., Previtali’s approach to dynamic updates [33]). Aspects are stateless.
Using special operators, advices that consider the control flow can be de-
fined, e.g.,cflow. However, since aspects are activated globally, they can
compromise consistency in multithreaded systems that are busy. The im-
pact of aspects is coarse-grained since they can alter the behavior of multi-
ple objects and classes. Aspects are usually class-oriented.

Reflection. This line of research covers traditional class-based meta-object
protocols that reify classes as first-class entities. Classes are causally con-
nected to base objects that reflect modifications to classes. In statically-
typed languages, reflection is limited and can’t change existing method sig-
natures; in dynamically-typed languages, reflection can change the layout
and signature of classes. Reflection can be used to evolve the system dy-
namically, but it assumes that the system is somehow in a quiescent state
(this is for instance an assumption of the Smalltalk image model). Reflec-

20

tion enables unanticipated changes since arbitrary code can be compiled
dynamically. When object layouts are changed, new fields are initialized
with default values. Reflection does not support state transfer. Reflection
operates usually at the class level. The unit of change is the class and re-
flection is usually fine-grained; however, certain systems enable changes to
multiple classes at once (e.g., Java and VisualWorks).

Contextual Layers. This line of research covers context-oriented program-
ming with layers that are activated into dynamic extents [42, 143, 7, 165,
160]. Since the variation is not global, layers can be safely used in busy
multi-threaded systems. This line of research subsumes subjective pro-
gramming. Contextual layers enable type-preserving heterogenous vari-
ations, where the impact of a layer can be specified on a per-class basis
(independently of the class-in-layer or layer-in-class discipline). Layers are
first-class but cannot be usually dynamically loaded. Thus, they enable an-
ticipated variations only. They usually do not support state variations. The
effect of a layer is scoped to the dynamic extent of an expression. Layers
are coarse-grained and impact multiple objects and classes.

Global Layers. This line of research covers context-oriented program-
ming with layers that are globally activated and deactivated [69, 68]. Sim-
ilarly to contextual layers, global layers enable type-preserving heteroge-
nous, anticipated, stateless variations. Unlike contextual layers, the vari-
ation is activated globally based on events. Global layers will not com-
promise type safety in busy multi-threaded system, but could compromise
consistency nevertheless. Also, unlike contextual layers, global layers im-
pact objects rather than classes (e.g., Context Trait Gonz13a). Multiple ob-
jects can be modified at once, so the mechanism is coarse-grained.

Roles. This line of research covers techniques to adapt individual objects
based on roles. Roles resemble contextual layers, except that they provide a
view on one single object, not multiple objects. They enable heterogenous
variations. They are dynamic and the behavior of an object changes de-
pending on which object accesses it. Therefore, roles are fine-grained and
object-centric. Roles are usually known at compile time and enable thus
only anticipated variations. The variation can be stateful. The variation
is scoped to the client of the object; the role characterizes the relationship
between the two.

Object Adaptations. This line of research covers techniques to adapt indi-
vidual objects. It covers object-specific meta-objects, object specialization,

21

decorators, type states. Object adaptations are fined-grained and object-
centric. Object adaptations are stateful and both behavior and state of an
individual object can be adapted. For reflective techniques, classes can
be loaded dynamically to enable unanticipated variations. The variation
is global, which can compromise consistency in busy multithreaded sys-
tems. Usually, the variation is type-preserving, but it could be used to alter
method signatures as well.

Family Polymorphism. This line of research covers techniques to gener-
ate variants of collaborating objects, without leading to parallel class hi-
erarchies. These techniques usually leverage virtual class nesting to do so.
They enable heterogenous variations, where the behavioral variation is spe-
cific to a class of object. New fields can be introduced into existing classes.
The techniques are static in the sense that object behavior can’t change after
creation. Since these mechanisms are static, the criteria do not really apply
and the cells are marked with a dash.

2.5 Goals and Roadmap

To evolve and adapt software at run time, support for unanticipated coarse-
grained changes is required. As the classification shows, mechanisms to
enable such changes are missing. Let us consider changes combining type
or layout modifications as “advanced” changes; inversely, let us consider
changes that preserve types and layouts as “simple”. The support for unan-
ticipated, coarse grained changes is as follows:

• Advanced changes when the system is busy – Lacunary. No tech-
nique covers this complexity of changes.

• Basic changes when the system is busy – Lacunary. Contexual Layers
do not enable loading layers dynamically.

• Advanced changes when the system is quiescent – Lacunary. With
classic objects, it is hard to make guarantees when multiple objects
must be changed. Reflection does not support state transfer.

• Basic changes when the system is quiescent – Satisfying. With reflec-
tion, developers can update multiple method bodies when the system
is quiescent.

We have argued in the previous chapter that active and structural vari-
ability helps introduce run-time changes by improving encapsulation, in-
formation hiding and late binding. Our goal in the following chapters will
be to demonstrate this claim by improving the support for the three gaps

22

that we identified. We will show how different language features — namely
active contexts, delegation proxies, and dynamic ownership — help ad-
dress these gaps. Figure 2.1 positions the features in the classification.

2.6 Conclusions

We have surveyed existing mechanisms to create, replace and adapt the
behavior of objects at various levels of scale and with various levels of
dynamism. We observed that only few techniques provide the ability to
encapsulate behavioral variations into an entity that can be loaded and
activated at run time. These are necessary conditions to enable unantici-
pated run-time changes. Additionally, the need to change object layouts
is frequently ignored and unsupported. The outcome of our analysis was
the identification of three forms of run-time changes that lack support: ad-
vanced changes when the system is busy, basic changes when the system is
busy, and advanced changes when the system is quiescent.

Without proper support for run-time changes, developers must com-
bine existing mechanisms with ad hoc design strategies. Such techniques
enable changes but provide little guarantee about their correctness. For
instance, developers can combine class loaders with a careful design to en-
able the replacement of objects dynamically [97]. Without the necessary
care, this technique can lead to memory leaks though. It is hard to guaran-
tee that such leaks won’t happen.

We set out to apply our approach to the three areas of deficiencies we
identified and devise contextual language features to cover the gaps. In
the next chapter, we present a feature that addresses the first gap. We in-
troduce first-class contexts that encapsulate behavioral variations and state
migrations, enabling this way incremental changes to the system without
requiring quiescence.

23

24

3
Dynamically Updating Software with

Active Context

3.1 Introduction

Software systems must be periodically updated to keep up with changing
requirements. Without the ability to update software at run time, the soft-
ware system must be redeployed and restarted for changes to take effect,
which entails costs and might be intolerable for highly available systems.
The key challenge for dynamically updating systems like web servers is to
ensure consistency and correctness while maximizing availability.

Some form of dynamic updating can be supported at the language level
with design patterns (state, strategy, visitor), reflection and in the case of
Java, class loaders [97]. Design patterns and class loaders are however suit-
able only if developers can anticipate in advance units that can change or
not. Reflection is on the other hand inherently unsafe: running threads
might run both old and new code in an incoherent manner and old meth-
ods on the stack might presume type signatures that are no longer valid,
possibly leading to run-time type errors. Also, reflective capabilities do
not usually enable the atomic installation of multiple changes nor a precise
control of how the state is migrated. These techniques support dynamic
updates only in the small, i.e., at the object-level.

For dynamic updates in the large, i.e., involving multiple objects of dif-
ferent classes with state transfer, developers have to resort to external mech-
anisms. These mechanism interrupt the application to perform a global
update of both the code and the state of the program when the program is
quiescent. Unfortunately, quiescent global update points may be difficult to

25

reach for multi-threaded systems [116, 153]. Also, even with quiescence, a
global update might not be possible due to the nature of the change, for ex-
ample it would fail to update anonymous connections to an FTP server that
mandates authentication after the update: the missing information cannot
be provided a posteriori [118]. The problem of dynamic updates in the large,
at the language level, is thus open.

In this chapter, we propose to solve this problem by taking a contextual
approach: we represent software versions explicitly with first-class context
objects. The context encapsulates the behavioral variations to introduce.
Also, it does not activate variations globally, but instead implements ac-
tive variability and scopes the variations on a per-thread basis. Different
threads run different versions of the software, providing version consis-
tency at the thread level. Instead of a global update, the update is incremen-
tal. It progressively switches from one context to another.

The update scheme is not fixed, and can be tailored to the nature of the
application. For instance, the update of a web application can be rolled out
on a per-thread, or per-session basis. In the latter case, visitors always see
a consistent version of the application. However, different visitors might
see different versions of the application until the update completes. Such
a scheme would not be possible with a global update: one would need
to wait until all existing sessions had expired before starting new ones.
The overall consistency of the data is maintained by running bidirectional
transformations to synchronize the representations of objects shared across
contexts. We show that the number of such shared objects is significantly
smaller than the number of objects local to a context, and that this strategy
fits well with the nature of the event-based systems we are interested in.
We call our approach Active Context and its implementation Theseus1.

This chapter is organized as follows. First, we present our approach
informally with the help of a running example in Section 5.2. We present
our model in detail in Section 3.3 and our implementation in Section 5.7.
We validate our approach in Section 3.5 and demonstrate that it is practical.
We put our approach into perspective in Section 5.9 and we compare it with
related work in Section 5.10 before we conclude in Section 5.11.

3.2 Running Example

To illustrate our approach let us consider the implementation of one of
several available Smalltalk web servers2. Its architecture is simple; a web
server listens to a port, and dispatches requests to so-called services that ac-

1In reference to Theseus’ paradox: if every part of a ship is replaced, is it still the same
ship?

2See http://www.squeaksource.com/WebClient.html (The name is misleading since
the project contains both an HTTP client and server)

26

http://www.squeaksource.com/WebClient.html

cept requests and produce responses. For the sake of our running example,
let us assume that the server keeps count of the total number of requests
that have been served. Figure 5.10 illustrates the relevant classes.

3.2.1 The Problem with Updates

handle(req:Request)
HelloWorldService

Response resp :=
req.getResponse();
resp.send(200, "HelloWorld");

send(code,html)
Response start(code)

sendChunk(html)
close()

Response
Response resp :=
req.getResponse();
resp.start(200);
resp.sendChunk("Hello ");
resp.sendChunk("World");
resp.close();

handle(req:Request)
HelloWorldService

start()
stop()

port
numRequests
services

WebServer

handle(req:Request)
server

AbstractService

version 1 version 2

Figure 3.1: Design of the web server and a simple behavioral update

Let us consider the evolution of the Response API, which introduces
chunked data transfer3, also depicted in Figure 5.10. Assume that instead
of sending “Hello World” over the wire we need to produce a sensible an-
swer that takes some time. Installing such an update globally raises several
challenges. First, both the HelloWorldService and Response classes must
be installed together: How can we install multiple related classes atomically?

Second, the methods impacted by the update can be modified or added
only when no request is being served: When can we guarantee that the instal-
lation will not interfere with the processing of ongoing requests?

Rather than performing a global update, it would be more appealing
to do an incremental update, where ongoing requests continue to be pro-
cessed according to the old code, and new requests are served using the
new code. Note that the granularity of the increment might differ depend-
ing on the update. We could imagine that the modification of a check-out
process spanning multiple pages would imply that the increment be the
web session rather than the web request. Our solution to enable incremen-
tal updates is to reify the execution context into a first-class entity.

Not only the behavior but also the structure of classes can change. Fields
can be added or removed, and the type of a field can change. As a mat-
ter of fact, in a subsequent version of the project4, the developers added a

3See version 75 of the project.
4See version 82 of the project.

27

field siteUrl to the WebServer class. Unfortunately, the server is an ob-
ject shared between multiple requests, and each service holds a reference
back to the server. If the object structure is updated globally while different
versions of the code run to serve requests, old versions of methods might
access fields at the wrong index. While the problem for field addition can
be solved easily by ensuring new fields are added at the end, we need to
consider type changes as well. For instance, one could imagine that in the
future newest versions will store the siteUrl as an HttpUrl rather than a
String. Therefore, the general problem remains: How can we ensure consis-
tent access to objects whose structure (position or type of fields) has changed?

Our solution to ensure consistent access is to keep one representation of
the object per context and to synchronize the representations using bidirec-
tional transformations. Once there is no reference any longer to a context,
it is garbage-collected together with the corresponding representations of
objects in that context.

3.2.2 Lifecycle of an Incremental Update

Let us consider the addition of the field siteUrl in the WebServer class in
more detail. The following steps describe how an incremental update can be
installed with Theseus, an implementation of our approach, while avoiding
the problems presented above.

First, the application must be adapted so that we can “push” an update
to the system and activate it. Here is how one would typically adapt an
event-based server system, such as a web server.

0. Preparation. First, a global variable latestContext is added to track
the latest execution context to be used. Second, an administrative
page is added to the web server where an administrator can push
updates to the system; the uploaded code will be loaded dynamically.
Third, the main loop that listens to incoming requests is modified so
that when a new thread is spawned to handle the incoming request,
the latest execution context is used. Fourth, the thread that listens
to incoming connections in a loop is modified so that it is restarted
periodically in the latest context. Note that the listening socket can be
passed to the new thread without ever being closed.

After these preliminary modifications the system can be started, and
now it supports dynamic updates. The life cycle of an update would be as
follows:

1. Bootstrap. After the system bootstraps, the application runs in a de-
fault context named the Root context. The global variable latestCon-
text is initialized to refer to the Root context. At this stage only one
context exists and the system is similar to a non-contextual system.

28

2. Development. During development, the field siteUrl is added to Web-
Server and other related changes are installed.

3. Update preparation. The developer creates a class called UpdatedCon-
text, which specifies the variations in the program to be rolled out
dynamically. This is done by implementing a bidirectional transfor-
mation that converts the program state between the Root context and
the Updated context. Objects will be transformed one at a time. By
default, the identity transformation is assumed, and only a custom
transformation for the WebServer class is necessary in our case.

4. Update push. Using the administrative web interface, the developer
uploads the class UpdatedContext as well as the other classes that will
be required by the context. The application loads the code dynami-
cally. It detects that one class is a context and instantiates it. Contexts
are related to each other by a ancestor-successor relationship. The an-
cestor of the newly created context is the active context at the time of
code loading. The global variable latestContext is updated to refer
to the newly created instance of the Updated context.

5. Update activation. When a new incoming request is accepted, the ap-
plication spawns a new thread to serve the request in the latest-
Context (which is now the Updated context) while existing threads
terminate in the Root context.

6. Incremental update. When the web server is accessed in the Updated
context for the first time, the new version of the class is dynamically
loaded, and the instance is migrated. Migration is triggered when the
object is accessed from a different context for the first time. In our
case, this results in the fields port and services being copied, and
the field siteUrl being initialized with a default value. Fields can
be accessed safely from either the Root or Updated context, as each
context has its own representation of the object. To ensure that the
count of requests processed so far, numRequests, remains consistent
in both contexts, bidirectional transformations between the represen-
tations are used. They are executed lazily: writing a new value in a
field in one context only invalidates the representation of the object
in the other context. The representation in the other context will be
synchronized only when it is accessed again. Synchronization is per-
formed lazily when changes happen to objects that have already been
migrated.

7. Garbage collection. Eventually the listener thread is restarted, and all
requests in the old context terminate. A context only holds weakly
onto its ancestor so when no code runs in the old context any longer,
the context is finalized. The finalization forces the migration of all

29

Class resolve(String:className)
Object migrateTo(Object:newState)
Object migrateFrom(Object:oldState)
synchronizeTo(Object:newState,Object:oldState)
synchronizeFrom(Object:newState,Object:oldState)

ancestor
Context

Figure 3.2: The Context class.

objects in the old context that have not been migrated yet. The old
context and its object representations can then be garbage-collected.
It must be noted that at the conceptual level, all objects in memory are
migrated. In practice, only objects that are shared between contexts
need to be migrated.

3.3 First-class Context

In our approach, a context is an object that represents a specific software
version. The approach relies on a simple, yet fundamental, language change:
the state of an object is contextual. We now describe the approach in more
details. For the sake a clarity, we assume throughout the rest of this chap-
ter that at most two contexts exist at a time, which we refer to as the “old”
and “new” contexts. The model can be easily generalized to support any
number of co-existing contexts, but the implementation would need to be
revised since it takes advantage of this assumption.

3.3.1 User-defined Update Strategy

Contexts are first-class entities in our system. Programmers have com-
plete control over the dynamic update of objects and classes. Contexts
are ordinary instances of the class Context, shown in Figure 3.2. A con-
text is responsible for maintaining the consistency of the representations
of the objects belonging to it. Methods Context.migrate{To|From} and
Context.synchronize{To|From} define the update strategy.

An object is initially local to the context it was created. When the object
is first accessed in the “other” context (the context that isn’t the one it was
created in), the system triggers the migration of the object, after which the
object is shared (see Figure 3.3). The migration creates the initial represen-
tation of the object in the “other” context. It is implemented in methods
Context.migrate{To|From}. In our case, the migration of the web server
from the old context to the new context would copy the existing fields as
is and initialize the new field siteUrl with a predefined value (see Fig-
ure 3.4). By construction, either migrateTo or migrateFrom will be fired for

30

Old Local Shared New Local

new access

old access /
new access

reclaim

reclaim

Shared New Local

old access /
new access

old access

reclaim

Figure 3.3: Objects are originally local to a context. Depending on its access
patterns, the object might become shared between contexts. Eventually, the
object is reclaimed when the update completes and the object is local again.

port
nbRequests
services

old
port
nbRequests
siteUrl
services

new

migrate From

port
nbRequests
services

old
port
nbRequests
siteUrl
services

new

migrate To

port
nbRequests
services

old
port
nbRequests
siteUrl
services

new

synchronize From

port
nbRequests
services

old
port
nbRequests
siteUrl
services

new

synchronize To

"localhost"

Figure 3.4: The effects of the various methods that class Context mandates.
Note that the arrow means a field copy operation and the method always
applies to the new context.

an object, depending on whether it was originally created in the old or new
context.

Methods Context.synchronize{To|From} are responsible for subsequent
updates of the state when the object is shared. In the case of our example,
the field siteUrl must not be initialized again. Both methods synchro-
nize{To|From} can be fired multiple times for a given object depending on
its access patterns from the old and new contexts. In the rest of the chapter,
we use the term “transformations” for both migrations and synchroniza-
tions.

Each context has an ancestor. Since the contexts are loaded dynamically
in an unanticipated fashion the update strategy is encoded in the newest
context and expressed in terms of its ancestor, never in terms of its succes-
sor: methods Context.*From use the old representation to update or create
the new representation (new from old), and methods Context.*To use the
new representation to create or update the old representation (old to new).
The Root context is the only context that does not encode any transforma-
tion and has no ancestor.

31

3.3.2 Object Representations

Let us explain the semantics of our approach by considering how it could
be implemented with a meta-circular interpreter. At the application level,
an object has a unique identity and its state differs depending on the active
context. An application thread will implicitly impact either the old or the
new representation of an object, but cannot explicitly refer to either one. At
the interpreter level, an application object is implemented by several repre-
sentations. Transformations are reflective hooks that run at the interpreter
level outside of any context. They can access simultaneously the old and
new representations of an application object. From within a transforma-
tion, arbitrary messages cannot be sent to representations since the absence
of context makes their behavior ill-defined. Representations must be ma-
nipulated with reflective state accesses that operate correctly. Listing 3.1
shows for instance the identity transformation.

Context>>synchronize: newState from: oldState
newState instVarsDo: [:idx |

newState instVarAt: idx put:
(oldState instVarAt: idx) other

]

Listing 3.1: Identity Transformation

The message other returns the representation in the “other” context.
Certain objects in the system are primitive. They have a unique state in the
system. This is notably the case for contexts, scalar values (string, numbers,
etc.), and semaphores. Primitive objects can be used from the application
and from the interpreter (i.e., within transformations). If two strings must
be concatenated during a transformation, the following code works since
strings are primitive:

| address domain |
address ← newState instVar: #address.
domain ← newState instVar: #domain.
oldState instVar: #email put: (address , '@' , domain)

Listing 3.2: Concatenation of two fields

The inverse transformation would need to split the string into two parts.
The method split returns an array, which isn’t a primitive object. The ma-
nipulation of an array from within a transformation is possible with an
explicit context switch which restores the existence of a context. Within a
transformation, self represents the new context, and self ancestor the
old context.

32

| address domain |
self ancestor do: [
| email |
email ← oldState instVar: #email.
address ← (email split: '@') first.
domain ← (email split: '@') second.

].
newState instVar: #address put: address.
newState instVar: #domain put: domain.

Listing 3.3: Splitting a field into two

3.3.3 First-class Classes

Application

Implementation

a

a1 a2

Object

A1

A

A2 Class Object

Class

Instance of
Representation of
Subclass of

Figure 3.5: Object a is an instance of class A. Both a and A are contextual ob-
jects since classes are first-class. At the interpreter level, contextual objects
have multiple representations. Classes Object and Class are primitive and
have a unique representation.

Classes are also objects in our approach. At the application level, a con-
textual object a is an instance of the contextual class A. At the interpreter
level, contextual objects and classes have multiple representations, as de-
picted in Figure 3.5. A representation of a contextual object is an instance
of the representation of the corresponding contextual class. For example,
the object representation a1 is an instance of the class representation A1.

When an object is migrated, its original representation is passed as a
parameter to migrate{To|From}. The method creates and returns a sec-
ond representation for the given context. For instance, the migration of a1,
which is an instance of A1, results in a2, which is an instance of A2. The class

33

can change only during migration. Indeed, methods synchronize{From|to}
take as arguments two representations, but are not able to change the class
they correspond to.

Classes are migrated similarly to regular objects. A specific representa-
tion of a class is passed as parameter to migrate{To|From}, which must re-
turn a second representation. For instance, the migration of A1, which is an
instance of Class, returns A2, which is also an instance of Class. Note that
Class is a primitive in the system. Names of classes are literals in the source
that resolve at run-time to first-class classes. This binding is also contextual
to support class renaming. Contexts are responsible for class name resolu-
tion and must implement the method Context.resolve(String).

Similarly to reflective state accesses with instVar: and instVar:put,
the method class can be used from within transformations to obtain the
class of a representation. Methods Context.migrate{To|From} and Con-
text.synchronize{To|From} can thus apply custom transformations for
specific objects and default to the identity transformation for objects with-
out structural changes. The code below applies a custom transformation to
instances of the Contact class:

UpdatedContext>>synchronize: newState to: oldState
(newState class instVar: #name) = #Contact ifTrue: [

| address domain |
address ← newState instVar: #address.
domain ← newState instVar: #domain.
oldState instVar: #email put: (address, '@' ,domain).
↑ self.

]
↑ super synchronize: newState to: oldState.

Listing 3.4: Custom transformation

3.3.4 Threads and Contexts

A thread can have one active context at a time. A predefined context exists,
called the Root, which is the default context after startup. The runtime must
be extended with a mechanism to query the active context, and to switch
the current context. When a thread is forked, it will inherit the context of
its parent thread. For convenience, a thread can be forked and change its
context right after. This way, code executed by the thread runs entirely in
the given target context.

34

shared & clean

shared & dirtyb2

a2

b1

a1

new
old

new
old

localc1

b2

a2

b1

a1

new
old

new
old

c1 c2new
old

d1 d1

new
context

old
context

Object b is
accessed in the
new context.

b

a

c

d

Application View Implementation View

new
context

old
context

Figure 3.6: From the application view, four contextual objects a,b,c,d and
form a list. From the implementation view, shared objects have one rep-
resentation per context, which can be either “clean” or “dirty”. Objects
are migrated lazily. When object b is accessed in the new context for the
first time, the representation b2 is synchronized. Since b refers to c, this
triggers the migration of c and the representation c2 is created, originally
considered “dirty”. An access to c in the new context would create the rep-
resentation d2, etc., Dashed lines represent relationships visible only to the
implementation, not the application.

3.4 Implementation

We have implemented our approach in Pharo Smalltalk5 using bytecode
transformation to avoid changes to the virtual machine. A unique aspect of
our implementation is that it does not rely on proxies or wrappers, which
do not properly support self-reference, do not support adding or changing
public method signature, and break reflection [137, 127].

During an incremental update, a contextual object corresponds con-
cretely to two objects in memory, one per context. To maintain the illusion
that the old and new representations of an object have the same identity,
we adapt the references when necessary: for instance, if b1 is assigned to
a field of a1 in the old context, this results in b2 being assigned to the cor-
responding field of a2 in the newest context. Figure 5.12 depicts such a
setting.

Objects are migrated lazily, and can be either flagged as “clean” or
“dirty”. Dirty objects are out-of-date, and need to be synchronized upon
the next access. Figure 5.12 shows the effect of an access to the dirty rep-
resentation b2, which triggers the migration of the representation c2 it ref-
erences directly. After the synchronization, the two representations b1 and
b2 of object b are clean. Subsequent writes to either representation would

5http://www.pharo-project.org

35

http://www.pharo-project.org

if self is dirty and global then
// synchronization
for field← fields of self do

// migration
if self.other.field is local then

migrate(self.other.field) ;
end
// synchronization
self.field = self.other.field.other;

end
mark self as clean;

end
read field self.name;

Algorithm 1: Pseudo-code for state reads in the case of the identity trans-
formation

however result in the other one to be flagged as dirty. In the case of Fig-
ure 5.12, if b2 is modified, b1 would be marked as dirty.

We use bytecode rewriting to alter accesses to state and the way classes
are resolved. Concretely, an extra check is added before each state read and
state write to determine whether the object is shared between contexts. For
state reads, if the object is shared and “dirty” it is first synchronized and
then marked as “clean”. Algorithm 1 shows in pseudo code what happens
upon state reads in case of the identity transformation. For state writes,
the new value is written and the other representation is invalidated and
flagged as “dirty”. We maintain the correspondence between representa-
tions using synthetic fields added during the program transformation.

We must ensure that all objects reachable from the old context have
been migrated and are up-to-date before old representations are garbage-
collected. Therefore, when the old context becomes eligible for garbage
collection, the system traverses the object graph and forces the migration
or synchronization of objects if necessary. This corresponds to the transi-
tions labelled “reclaim” in Figure 3.3. In the case of Figure 5.12, the system
would force the migration of d1 before garbage collection. If the graph of
reachable objects is big, the traversal can take long but can be conducted in
the background with low priority.

3.4.1 Concurrency and Garbage Collection

We assume that the system has a coherent memory, as is the case for the
Cog VM for Pharo. With a coherent memory, state reads and writes are
atomic and side-effects are immediately visibile to all threads.

Since our implementation instruments state accesses with additional

36

logic, it does not automatically preserve thread safety. A trivial way to
preserve it would be to acquire a per-object lock for each state access. Mi-
grations and synchronizations of an object would therefore never conflict.
This would however lead to an unacceptable performance penalty.

if self is local then
read field self.name;

else
acquire self.lock do

if self is not local then
if self.name is dirty then

// migration
if self.other.name is local then

acquire self.other.name.lock do
if self.other.name is local then

migrate(self.other.name) ;
end

release
end
// synchronization
self.name = self.other.name.other;
mark self.name as clean;

end
end
read field self.name;

release
end

Algorithm 2: Pseudo-code for state reads using a per-field dirty flag and
locks for mutual exclusion.

Instead, we use a relaxed locking scheme where state accesses to objects
that are local to a context do not require the acquisition of a lock. This
scheme relies on the use of per-field dirty flags instead of per-object dirty
flags. It also assumes that the original program is correctly synchronized
and that reads and writes to a given field never happen concurrently. This
should be the case for any program, since developers should never rely on
the atomicity of state reads and writes even if memory is coherent.

Algorithm 2 adapts the pseudo code of the previous section to reflect
this strategy. It assumes that two representations of a contextual object
have the same lock, i.e., self.lock = self.other.lock. An object is originally
local to the context that created it. The object might later become shared
between contexts. The object does not become shared at the moment it is
accessed from another context, but when a reference to it is obtained (lines
7-13 in 2). For instance, in Figure 5.12, the old state b1 is migrated when

37

a new thread accesses a2.f and obtains a reference to b2. After migration,
the migrated state is considered dirty. This corresponds to the mechanism
of lazy propagation explained in the previous section.

Before we discuss the validity of our strategy, let us introduce some ter-
minology: we use the term old threads for threads running in the old context,
and new threads for threads running in the new context. Similarly, we use
the terminology old local object and new local object for local objects created
originally in the old or new context. The synthetic thread that forces the up-
date of the reachable objects before garbage collection is referred to as the
background thread. We assume that before it forces the update of an object,
it acquires first its lock. As stated previously, concurrent reads and writes
to the same field are excluded, since we assume the program is correctly
synchronized. Let us use the variables f and g to refer to distinct fields of
an object.

We can informally list all possible cases and show that the strategy ef-
fectively prevents lost updates:

Let us consider first the case where an old thread reads field f of an old
local object. We consider three sub-cases: 1) Concurrent reads and writes to
g by old threads. This doesn’t lead to conflicts since fields are independent.
2) Concurrent reads and writes to g by new threads. This will trigger the
migration of the object. After the migration, all fields of the new represen-
tation are considered dirty, except g. If it was a read, g holds the value of the
old context; if it was a write it holds the updated value and the field in the
old context is marked as dirty. In both cases, there is no conflict. 3) Forced
updates by the background thread. By definition, this thread runs when
there are no old threads any longer, so this case is not possible.

Let us consider now the case where an old thread writes into field f of
an old local object. We consider three sub-cases: 1) Concurrent reads and
writes to g by old threads. This doesn’t lead to conflicts since fields are
independent. 2) Concurrent reads and writes to g by new threads. This
will trigger the migration of the object. If it is a read, all fields of the new
representation expect g will be dirty. The update to f is not lost and will be
reflected if it is later accessed in the new context. The situation is identical
for a write. 3) Forced updates by the background thread. By definition, this
thread runs when there are no old threads any longer, so this case is not
possible.

Let us now consider the case where old and new threads access an
object shared between contexts. We consider two sub-cases: 1) The back-
ground thread isn’t running. If the background thread is not running, there
is no way for a shared object to become local again. All accesses will be mu-
tually exclusive. 2) The background thread is running. If only new threads
exist, the background thread can force the update of an object after which
it will be local again. Lock acquisitions follow an idiom similar to double-
checked locking [13] where the condition is local/is not local is tested twice.

38

If an object transitions from context-shared to context-local when a thread
awaits for a lock, this change will be detected when the lock is acquired
and won’t lead to conflicts.

Let us now consider the case where a new thread reads field f of a new
local object. We consider three sub-cases: 1) Concurrent reads and writes
to g by new threads. This doesn’t lead to conflicts since fields are indepen-
dent. 2) Concurrent reads and writes to g by old threads. This will trigger
the migration of the object. After the migration, all fields of the old repre-
sentation are considered dirty, except g. If it was a read, g holds the value
of the new context; if it was a write it holds the updated value and the field
in the new context is marked as dirty. In both cases, there is no conflict. 3)
Forced updates by the background thread. By definition, this thread does
not mutate any data so it cannot lead to lost updates.

Let us now consider the case where a new thread writes into field f of
a new local object. We consider three sub-cases: 1) Concurrent reads and
writes to g by new threads. This doesn’t lead to conflicts since fields are
independent. 2) Concurrent reads and writes to g by old threads. This
will trigger the migration of the object. If it is a read, all fields of the old
representation expect g will be dirty. The update to f is not lost and will be
reflected if it is later accessed in the old context. The situation is identical
for a write. 3) Forced updates by the background thread. By definition,
the background thread skips new local objects since they are by definition
up-to-date. No update can be lost.

3.4.2 State Relocation

Transformations can be more complex than one-to-one mappings. For in-
stance, instead of keeping track of the number of requests in numRequests
using a primitive numeric type, the developer might introduce and use a
class Counter for better encapsulation6. During the transformation, the ac-
tual count would be “relocated” from the web server object to the counter
object that is now used. However, in this case, when the counter is incre-
mented, the old representation of the web server with field numRequests
needs to be invalidated. So far we have assumed that a write would inval-
idate only the representation of the object written to, which is not the case
any longer. To support such transformations, the full interface enables cus-
tom invalidation on a per-field basis with Context.invalidate{To|From}-
(Object oldState,Object newState,String field).

6This would be the refactoring “Replace Data Value with Object”. See http://www.

refactoring.com

39

http://www.refactoring.com
http://www.refactoring.com

3.4.3 Special Language Constructs

The implementation described so far assumes a uniform language where
state is accessible solely via instance variables, and object instantiation is
realized with message sends to classes. Pharo Smalltalk is very close to this
ideal language, with a few peculiarities nevertheless.

Closures Closures are first-class in Smalltak. Closures are instances of
BlockClosure and encode offsets of bytecode in the CompiledMethod they
belong to. They are treated analogously to other objects. After migration,
they reference the newest version of the corresponding CompiledMethod.
Offsets are copied as is, assuming the same syntactic position of the closure
in both versions of the sources. If this assumptions turns out wrong, it
would be possible to write a custom transformation that corrects offsets
during transformation.

Primitive Methods Our approach cannot intercept state changes from
primitive methods. Primitive methods that operate on contextual objects
must be adapted to work according to our model. Since primitive meth-
ods are specified with the primitive pragma, they can be renamed, and
a wrapper method working correctly can be provided with the original
name. The majority of primitive methods operate on primitive objects
though, and do not need to be modified.

Cloning One special primitive method used pervasively is copy (and its
variant copyFrom:). The correctly working wrapper must first ensure that
if the object is shared, it is fully up-to-date. It can then be copied to produce
a local clone.

Syntactic Sugar Pharo Smalltak has syntactic sugar for arrays {...}, lit-
eral arrays #(...), and class variables that are visible to instances of a class
and the class itself. These constructs are first desugared, then processed
through our regular transformation.

Hashcode Comparing objects based on their identity works correctly with
our approach: in Figure 5.12, code comparing a == b would consistently
compare either a1 with b1, or a2 with b2 depending on the context. The
hash code of awould however be different depending on the context, break-
ing notably the collection classes that use hash codes to position elements in
internal data structures. To ensure that different versions of an object have
the same hash code, we keep a unique identity in an additional synthetic
field.

40

Continuations The stack is a sequence of activation frames. Continua-
tions can capture context switches or ignore them. In the first case, the
continuation would be a primitive object that would not be modified when
exchanged across contexts; calling a continuation would restore the corre-
sponding context switches along the way. In the second case, the continua-
tion would be contextual and its corresponding activation frames would be
adjusted when exchanged across contexts. Activation frames could be mi-
grated similarly to closures, assuming that methods on the stack have not
been modified between versions. If activated methods would have been
modified, the adjustment of the continuation would require a mapping that
might be difficult to achieve, as shown by Makris and Bazzi [104]. We have
not implemented support for continuations.

Exceptions In our approach, threads run consistently in one context (see
subsection 3.3.4). An exception is an object that is thrown and caught
within the same context. If a thread can switch temporarily its context,
objects flowing in and out of the boundary of the temporary context must
be migrated accordingly, which includes exceptions. The migration of the
stack frames the exception refers to would lead in this case to issues similar
to those with continuations.

3.4.4 Further Details

We used a custom compiler to rewrite the bytecode of contextual classes.
We instrumented copies of kernel classes (array, dictionary, etc.) to avoid
metacircularity issues during development. Also, the Object class cannot
be extended with the necessary information for our model (namely the syn-
thetic fields to related versions with each other) and we instead extended
the subclasses of Object. Primitive classes (see subsection 3.3.2) do not re-
quire any bytecode rewriting. This design requires methods of primitive
classes like String>>split to be trapped: invoked from the environment,
an instance of the uninstrumented collection class is returned; invoked
from our application, an instance of the instrumented collection class is
returned. The complete set of such methods has not been identified and
trapped, which can lead to minor bugs.

The active context is stored in a thread-local variable and we add a new
method to fork a closure in a specific context, e.g.,[...] forkInContext:
aContext. When a closure is forked, it becomes a shared contextual ob-
ject and is migrated. As the program proceeds, objects referenced by the
closure are migrated lazily when accessed. Contexts hold only weak ref-
erences to their ancestor and implement the method Object>>#finalize,
which forces the migration of all reachable objects before the context be-
comes eligible for garbage collection.

41

3.5 Validation

3.5.1 Evolution

We conducted a first experiment whose goal was to assess whether our
model could support long-term evolution, that is, whether it could sus-
tain successive updates. We considered the small web server of Section 5.2,
which despite its simplicity cannot be updated easily with global updates.
The sever has a simple architecture and is comprised of 7 classes: WebServer,
WebRequest, WebResponse, WebMessage, WebUtils, WebCookie, WebSocket.
We selected the 4 last versions with effective changes: version 75 intro-
duced chunked data transfer, version 78 fixed a bug in the encoding of
URL, version 82 introduced siteUrl, and version 84 fixed a bug in MIME
multipart support.

To restart periodically, the listener thread executing WebServer>>run-
Listener was adapted to accept incoming connections only during 1 sec-
ond, after which a new listener thread is restarted (see Listing 3.5). It re-
quired only a couple of lines to be changed. The method WebServer>>async-
HandleConnectionFrom: spawns a new thread per connection. It was sim-
ply modified to spawn the thread in the latest context.

WebServer>>runListener
| connectionSocket startTime |
startTime ← Time now.
[(Time millisecondsSince: startTime)<1000] whileTrue: [

connectionSocket ← listenerSocket waitForAcceptFor: 5.
self asyncHandleConnectionFrom: connectionSocket.

].
[self runListener] forkInContext: CurrentContext lastest

Listing 3.5: Modified listener thread. It omits error handling code for
readability.

We implemented the hello world service of Section 5.2. Only one up-
date required us to write a custom transformation: the one that introduced
the siteUrl field, which we initialized to a default value.

UpdatedContext>>migrateFrom: oldState
(oldState class instVar: #name) = #WebServer ifTrue: [

| newState |
newState ← oldState class other new.
newState instVar: #port put: (oldState instVar: #port).
newState instVar: #nbReq

put: (oldState instVar: #nbReq).
newState instVar: #services

put: (oldState instVar: #services).

42

newState instVar: #siteUrl put: 'http//localhost'.
↑ newState.

]
↑ super migrateFrom: oldState.

Listing 3.6: Migration that initializes field siteUrl

We ran the 4 successive dynamic updates, and verified that once it was
no longer used, the old context would be garbage-collected. Since web
browsers keep one connection alive for multiple requests, we could observe
different versions of the services in two browsers.

3.5.2 Run-time Characteristics

For the second experiment, we picked a typical technology stack with two
well-known production projects: the Swazoo7 web server and the Seaside8

web framework. This corresponds to several hundred classes. Similarly
to the previous experiment, the web server was adapted to periodically
restart its listener thread and process requests in the latest context. We were
interested in the run-time characteristics and in assessing (1) whether our
assumptions about object sharing hold, (2) what is the memory overhead,
and (3) what is the time overhead.

As a case study, we considered the counter component example that
comes with the Seaside distribution. During maintenance, only few classes
change. Most objects are migrated with the identity transformation, and
only certain objects require custom transformations. The exact nature of
the transformation is not significant. Therefore, for the sake of simplicity,
we artificially updated the system and used the identity transformation for
all objects.

We were interested to assess the overhead of our implementation dur-
ing the five following phases:

(i) with only the old context when no object is shared,

(ii) during the incremental update when objects are shared and migrated
lazily,

(iii) after objects have been migrated but are still considered shared,

(iv) when the old context is finalized and the system forces the migra-
tion/update of all objects reachable in the old context, and

(v) after the old context has been garbage-collected and the system runs
as in (i).

7http://www.swazoo.org
8http://www.seaside.st

43

http://www.swazoo.org
http://www.seaside.st

Table 3.1: Read/write ratios and heap size per phase. The star (*) indicates
phases with increasing memory consumption, for which we considered the
peak.

i ii* / iii iv* v
reads 59’908 60’952 62’021 61’568
shared reads 0 29’278 29’666 0
% shared 0.00 46.80 46.63 0.00

writes 3’773 3’749 3’777 3’745
shared writes 0 174 174 0
% shared 0.00 4.64 4.61 0.00

objects 48’905 49’390 49’829 49’961
shared objects 0 1’118 36’591 0
% shared 0.00 2.26 73.43 0.00

Heap size 1’063’492 1’078’494 1’087’065 1’085’704
Shared heap size 0 30’160 858’695 0
% shared 0.00 2.80 78.99 0.00

Object Sharing and Memory Overhead

We studied object sharing and memory overhead by manually increment-
ing the counter from one browser session. We tracked the number of reads
and writes to objects shared between contexts, and to objects local to a con-
text. To account for “sharable” objects in the heap, we tracked all objects
reachable from classes and all objects reachable from variables captured by
forked closures. To account for the “local” objects in the heap, we tracked
all objects that were receivers or return values of message sends.

We measured first the memory after 5 increments of the counter, be-
fore any update. This corresponds to phase (i). We reset the tracking, in-
stalled the update, incremented the counter 5 more times and then mea-
sured memory again. This corresponds to phase (iii) which itself corre-
sponds to the peak of memory of phase (ii). We then measured the mem-
ory at the peak of consumption for phase (iv), when the complete graph of
objects has been traversed but no object has been reclaimed yet. Finally, we
reset the tracking, incremented the counter 5 times, and measured again the
memory. This corresponds to phase (v), after memory has been reclaimed.

Since our implementation uses a copy of the kernel classes, we observe
only the effects of our application in isolation from the Smalltalk environ-
ment. We track receivers and return values at call sites, which correctly

44

considers primitive objects whose classes haven’t been instrumented (see
Section 5.7). Since transient objects are tracked, they will not be garbage-
collected. Our approach does not measure the effective size of the heap,
but estimates the upper bound. This upper bound is thus the sum of the
sizes of the individual objects. The size of an object was computed with a
known algorithm that considers its structure9, then it was doubled in the
case the object is shared. When an object is shared between contexts, we
need to keep for each object representation the following information: a
semaphore (see subsection 3.4.1), a unique identifier (see subsection 3.4.3),
dirty flags (see subsection 3.4.1), and one reference to the “other” represen-
tation (see subsection 3.4.1). Table 3.1 does not account for this overhead
that is very implementation-specific.

We make the following observations from the results presented in Ta-
ble 3.1:

• There are an order of magnitude more reads than writes.

• The percentage of objects effectively shared (2.26%) during phase (iii)
is smaller than the percentage of objects that are shareable (73.43%)
and thus migrated in phase (iv).

• Shared reads represent 46% of all reads. Shared writes are mostly
neglectable (4.6% in phases (iii) and (iv)). This supports the idea that
an overhead for accesses to shared objects is tolerable.

• The heap is composed mostly of shareable objects (73.43%, phase (iv))
and only few transient, local objects. This might be related to the
stateful nature of the Seaside framework. This means however that
our approach might entail an important memory overhead in the case
study.

Time Overhead

We studied the time overhead in a multi-threaded scenario. We conducted
load tests10 with the following setting: 10 concurrent visitors connect to
the website and start a web session each. They go to the counter page.
From there, they keep incrementing the counter as quickly as possible. The
system had been modified to install updates per request. The server and
the load testing tool ran both on the same machine (a 2.3 GHz Intel Core
i7 laptop), to minimize the effect of the network. We ran the server on the
CogVM 6.0.

The results for the time overhead are presented in Figure 3.7, which
shows the quantiles in response time for the various phases. The dashed

9See Seaside’s internal memory profiler, and the method WAMemoryItem>>sizeOfObject
10http://jmeter.apache.org

45

http://jmeter.apache.org

17:33:40 17:33:50 17:34:00 17:34:10 17:34:20 17:34:30 17:34:40 17:34:50
0 ms

10 ms

20 ms

30 ms

40 ms

50 ms

60 ms

70 ms

80 ms

90 ms

100 ms

110 ms

120 ms

130 ms

75% 50% 25%

i ii iii iv v

50% original 50% baseline

Figure 3.7: Response time quantiles for a typical run of the load test. Quan-
tiles are computed using measures within a window of 1 second. The var-
ious phases (i) to (v) of the dynamic update are highlighted with different
background colors.

and dotted lines represent the median of the response time for the original
system, and the baseline system. The baseline system is the original system
with one level of indirection for state accesses that go through synthetic ac-
cessors. This helps one to compare the overhead of the approach instead
of the cost of the indirection mechanism, which could be aggressively in-
lined if necessary. We make the following observations from the results of
Figure 3.7:

• The sole use of synthetic getters and setters (without additional logic)
entails a 30% overhead, as can be seen in the difference between the
original system and the baseline (10ms vs 13ms). Other virtual ma-
chines might be able to aggressively optimize this case. The overhead
between the baseline and phases (i) and (iv) is 15% (13ms vs. 15ms),
supporting the idea that our approach is attractive at “steady state”.

• The five phases are clearly visible. Phase (ii) corresponds to a peak
when the majority of objects are first migrated. Phase (iii) corre-
sponds to a plateau where performance is degraded due to lock ac-
quisition, checks for “dirtiness” of object representations, and result-
ing synchronizations. Phase (iv) shows further degradation when
the system operates in background the synchronization of all objects
reachable in the new context. Eventually, the system reverts back to
its original performance (iv).

46

• The performance degradation between phases (i) and (iii) is of factor
2.6, which is tolerable for a short period of time.

• Giving a lower priority to the background task during phase (iv)
would make the update take longer to complete, but lower the per-
formance degradation.

Overall, the benchmark shows the expected profile, and suggest our
approach can be made practical for realistic production systems.

3.6 Discussion

We discuss in this section the applicability of our approach and its imple-
mentation from three different perspectives:

3.6.1 Portability

Our approach and implementation technique are portable to other object-
oriented languages. The approach can notably be ported to a statically
typed language. Particular language constructs of the target language might
however pose obstacles, specifically those we listed in subsection 3.4.3. Ex-
periments porting the approach to Java showed it is feasible [170] with the
following language constructs as obstacles: constructors, nested classes, ar-
rays, concurrency control in the language semantics. Our locking scheme
resembles the double-checked locking [13] idiom which is correct only for
systems with a coherent memory. Java has for instance a relaxed memory
model (JSR-133) where the double-checked locking is correct only if the
field that is tested is declared volatile [13]. Our locking scheme would
need to be revised accordingly for a full port to Java.

3.6.2 Performance

A drawback of our implementation is that shared objects need two repre-
sentations, even if they are structurally identical and will use the identity
transformation. Wrappers would make it possible to keep only one repre-
sentation in such cases, but pose problems of self-reference, do not support
adding or changing method signatures, and break reflection [137, 127, 133].
The benefit of our implementation is that it avoids such problems. Our
implementation entails a performance degradation due to internal lock-
ing when shared objects are accessed. These locks are however typically
uncontended. Their impact on performance depends on how well un-
contended locking is optimized by the virtual machine. Two directions
could be explored to reduce locking: 1) synchronize groups of fields at pre-
cise locations, instead of each individual field (e.g., synchronize all fields

47

a method uses at once at the beginning and end of the method), and 2)
emulate safepoints and run the pre-garbage collection thread exclusively
from application threads, making migration the only operation that re-
quires locking.

3.6.3 Development Effort

The impact on development is small. Developers must modify the applica-
tion’s thread management to make the application updatable. Essentially,
long-running loops must be modified to restart periodically and requests
must be processed in the desired context. Threads executing long-running
loops can usually be aborted and restarted without problem. Adapting re-
quest dispatching is also usually easy and entails only few local changes.
In our first experiment, these changes represent about 10 lines of code. The
use of thread pools might complicate the adaptation of the application in
which case the pool must be adapted to renew its threads periodically [170].
Reflective code doesn’t need to be adapted since object representations are
really instances of their respective classes and reflective code works cor-
rectly.

Writing transformations to transfer the application state requires addi-
tional effort. Compared to other dynamic update mechanisms, there must
exist a state mapping only for shared entities (not all entities), but the map-
ping must be bidirectional (not unidirectional). Transformations are usu-
ally simple (field addition, renaming, suppression, type conversion) and
complex transformations are very occasional [153, 105, 24]. In our first ex-
periment, only one update required a transformation, which was simple.
Recent works showed that static [132] and dynamic analysis [103] can gen-
erate most of the needed transformations automatically. It would be inter-
esting to assess whether we can extend these techniques for bidirectional
transformations as well.

3.6.4 Type Safety

Our approach guarantees type safety assuming that the state transforma-
tion is correct. State transformations are usually simple. Typically, a state
transformation converts the representation of objects whose classes have
changed. However, the object graph expected by the old and new versions
might be different, even without class changes. Let us imagine a program
that manipulates a list. The list in the old version might be composed of
integers, and of strings in the new version. No classes have changed. Yet,
the state transformer must transform the list of integers to a list of strings
for the update to succeed. Moreover, it must not convert all lists of integers,
but only specific lists of integers in the heap. Verifying the correctness of
the state transformation in such cases is an open challenge.

48

3.7 Related Work

Our approach is closely related to two main bodies of work presented in
Chapter 2: techniques that enable class redefinitions and techniques that
support first-class layers of behaviors. We now compare our approach in
more detail with respect to these two bodies of work.

3.7.1 Class Redefinition

The main challenge of dynamic updates to reconcile safety and practicality.
Systems that support immediate code changes are very practical but subject
to limitations or safety issues. Dynamic languages, including Smalltalk, be-
long to this category. If an object attempts to invoke a method that was sup-
pressed, an error is raised. Several approaches of this kind have also been
devised for Java [52, 127, 86, 72, 33, 174, 138], with various levels of flexibil-
ity (a good comparison can be found in [72]). To be type-safe, HotSwap [52]
imposes restrictions and only method bodies can be updated. The most re-
cent approaches (JavAdaptor [138], DCEVM [174], Javaleon [72]) overcame
most of these restrictions, and provide a similar flexibility as dynamic lan-
guages. Some approaches use bytecode transformation (JavAdaptor [138],
Javaleon [72]) or custom virtual machines (DCEVM [174]).

Systems that impose constraints on the timing of updates are safe, but
less practical since temporal update points must first be identified. Such sys-
tems have been devised for C (Ginseng [79, 118], UpStare [104], Kitsune
[76]), and Java (JVolve [153], DVM [105]). Update points might be hard to
reach, especially in multi-threaded applications [116, 153], and this com-
promises the timely installation of updates. Our approach entails the iden-
tification of context switch points, but relaxes the need for threads to reach
the points simultaneously.

Some mechanisms diverge from a global update and enable different
versions of the code or entities to coexist. In the most simple scheme, old
entities are simply not migrated at all and only new entities use the updated
type definition [81], or this burden might be left to the developer who must
request the migration explicitly [66]. The granularity of the update for such
approaches is the object; it is hard to guarantee version consistency and to
ensure that mutually compatible versions of objects will always be used.
When leveraged, transactions [24, 133] provide version consistency but im-
pede mutations of shared entities. Contexts enable mutations of shared
entities and can be long-lived, thanks to the use of bidirectional transfor-
mations. With asynchronous communication between objects, the update
of an object can wait until dependent objects have been upgraded in order
to remain type-safe [85].

To the best of our knowledge, only three approaches rely on bidirec-
tional transformations to ease dynamic updates. POLUS is a dynamic up-

49

dating system for C [34] which maintains coherence between versions by
running synchronizations on writes. We synchronize lazily on read, oper-
ate at the level of objects, and take garbage collection into account. Dug-
gan [55] formalized a type system that adapts objects back and forth: when
the run-time version tag of an object doesn’t match the version expected
statically, the system converts the object with an adapter. We do not rely on
static typing but on dynamic scoping with first-class contexts, we address
garbage collection, concurrency, and provide a working implementation.
Oracle enables a table to have two versions that are kept consistent thanks
to bidirectional “cross-edition triggers” [37].

A common technique to achieve hot updates is to use redundant hard-
ware [79], possibly using “session affinity” to ensure that the traffic of a
given client is always routed to the same server. Our approach is more
lightweight and enables the migration of the state shared across contexts,
notably persistent objects. Also, an advantage of being reflective is that the
software can “patch itself” as soon as patches become available.

3.7.2 Layers

Context-oriented programming [80] enables fine-grained variations based
on dynamic attributes, e.g., dynamically activated “layers”. The existing
approaches [42, 128, 7, 143, 165] focus mainly on behavioral changes. Cer-
tain approaches support contextual state in the form of dynamic variables
[165]. Tanter explored possibilities to contextualize the application state
with contextual values [155], which generalize dynamic variables. How-
ever, none of these approaches address changing the structure and state of
objects as is necessary for dynamic updates.

3.7.3 Additional Related Work

Schema evolution addresses the update of persistent object stores, which
closely relates to dynamic updates. To cope with the volume of data, mi-
grations should happen lazily. To be type-safe, objects should be migrated
in a valid order (e.g., points of a rectangle must be migrated before the rect-
angle itself) [24, 133]. Our approach migrates objects lazily, and avoids the
problem of ordering by keeping both versions as long as necessary.

How to keep two corresponding data structures synchronized is related
both to the view-update problem [88] and lenses [22, 62, 82, 166]. We need
in our approach to define a pair of transformations to map the source to
the view, and the view to the source. Lenses are bidirectional programs
that specify both a view definition and update policy. Lenses can be state-
based or operation-based. State-based lenses synchronize structures as a
whole, without knowing where the changes occurred, whereas operation-
based lenses propagate local changes (or edits). Using lenses to express

50

transformations would make their expression more compact and less error-
prone. Since we synchronize lazily, edits are lost and we would need to use
state-based lenses.

3.8 Conclusions

Existing approaches to dynamically update software systems entail trade-
offs in terms of safety, practicality, and timeliness. We have demonstrated
that using first-class contexts that implement active variability can over-
come this challenge and enable run-time evolution.

During an incremental update, clients might see different versions of
the system, which avoids the need for the system to reach a quiescent,
global update point. We have implemented our approach in a dynamic
language with a strong memory model and conducted experiments on two
existing web servers.

The approach improves the support of two modularity principles pre-
sented in Chapter 1:

• Encapsulation. A context represents a whole software version. It en-
capsulates all the changes from the previous version, including the
mapping of the state.

• Late Binding. The behavior is dispatched dynamically based on the
class of the object and the current version of the software that is active.
Accesses to state might trigger state transformations.

We can draw the following conclusions about the practicality of the ap-
proach:

• Flexibility. The explicit context enables the update scheme to be cus-
tomized to the nature of the application and provides a convenient
way to trigger the garbage collection of old data, since the context is
reclaimed like any other object once it isn’t used any longer.

• Effort. Only few modifications to the original web servers were re-
quired to make them updatable, and simple transformations can be
easily expressed in our approach.

• Performance. Results indicate that only a fraction of accesses concern
objects shared between contexts which makes the cost of bidirectional
transformations tolerable.

The main drawback of the approach is that is it relatively heavyweight
to introduce minor changes. If the changes are known to be type-preserving
and state-preserving, the variations could be scoped to individual threads

51

without needing the update to synchronize any state nor eventually sta-
bilize. In the next chapter, we present building blocks to implement such
kind of run-time variability in a lightweight and flexible manner.

52

4
Contextualizing Behavior with

Delegation Proxies

4.1 Introduction

When an application feature is encapsulated into an object or an aggregate,
it can be changed at run time by replacing the object or aggregate. It is
however very common for application features to crosscut multiple classes
and objects. This is typically true for features implementing non-functional
concerns, e.g., tracing [91] , but also for features implementing pervasive
business rules, e.g., game logic [9]. Modifying such behaviors at run time
is thus challenging, even if the change preserves type signatures and does
not alter object layouts.

The use of aspects is the de-facto solution to encapsulate crosscutting
code. Only few aspect frameworks support dynamic aspects, though. With
dynamic aspects, the activation of an aspect is global. In multithreaded
systems, it has the consequence that the logic of a thread could change
at arbitrary point in time. This could compromise the consistency of the
application. As was illustrated in the previous chapter (Chapter 3), imple-
menting active variability is a natural solution to this problem.

We show in this chapter how minor changes to the way dynamic prox-
ies operate make them suitable building blocks to implement active vari-
ability. By default, dynamic proxies enable homogenous variations [6]. In
that case, the same variation is applied in multiple methods. If necessary,
heterogenous variations can be implemented on top of homogenous varia-
tions. In that case, different methods have different variations. Unlike con-
textual layers, which enable anticipated heterogenous variations, delega-

53

tion proxies enable unanticipated variations since they rely only on objects
and classes that can be loaded dynamically.

The key ideas behind delegation proxies are the following: 1) rebind
self-references by using delegation [99] instead of forwarding, 2) intercept
object instantiations, and 3) intercept state accesses, including accesses to
captured variables in closures. With these changes, it becomes possible to
implement proxies that propagate to all objects accessed during the execu-
tion. All objects accessed during the evaluation of an expression, i.e., the
dynamic extent, are thus consistently represented with proxies.

In contrast to active contexts (Chapter 3), delegation proxies do not op-
erate at the level of classes, but at the level of methods. Also, they do not
synchronize state and so do not need that the update eventually stabilizes
in one unique context; multiple contexts can live forever. They are useful
complements, not competitors, to active contexts.

Delegation proxies have several positive properties. First, delegation
proxies do not lead to meta-regressions, as is the case with traditional re-
flective architectures [36, 50] or aspects [157]. The behavior of a delega-
tion proxy is defined by a separate handler object. This ensures that the
base and meta-levels do not conflict. When an operation is applied to a
proxy, the proxy reifies the operation and invokes instead a method of the
handler. Methods in handlers are referred as traps [162]. Second, varia-
tions expressed with delegation proxies compose, similarly to aspects. For
instance, profiling and tracing can be implemented with aspects and del-
egation proxies without interferences between the two concerns. Third,
delegation proxies naturally support partial reflection [158]. Only the ob-
jects effectively accessed in the dynamic extent of an execution involving a
proxy pay a performance overhead; all other objects in the system remain
unaffected, including the target.

This chapter is organized as follows. In Section 4.2 we present dele-
gation proxies and in Section 4.3 a catalog of examples; in Section 5.6 we
formalize their semantics and in Section 5.7 we report on our implementa-
tion in Smalltalk.

4.2 Delegation Proxies

We now describe how delegation proxies work and exemplify them with a
consistent implementation of tracing. Let us consider the extension method
Integer>>fib which computes the Fibonacci value of a number using re-
cursion:

54

Integer>>fib
self<2 ifTrue: [↑self].
↑ (self--1) fib +
(self--2) fib

Listing 4.1: Fibonacci computation

The computation of the Fibonacci value of 2 should produce the follow-
ing trace: 2 fib, 2 <, false ifTrue:, 2 -, 1 fib, 1 <, true ifTrue:,
2 -, 0 fib, 0 <, true ifTrue:, 1 + (Booleans are objects in Smalltalk).

Before we can trace the evaluation, we must obtain a tracing proxy of
an object. We add method Object>>tracing after which we can trace the
computation with 2 tracing fib.

Object>> tracing
| handler |
handler ← TracingHandler target: self.
↑ Proxy handler: handler.

Listing 4.2: Creation of a tracing proxy

A delegation proxy is a special object whose behavior is defined by a
separate handler object. Methods in the handlers are referred as traps. When
an operation (message send, state accesses, etc.) is applied to a proxy, the
proxy reifies the operation and instead invokes the corresponding trap in
the handler. The handler has a target. The handler takes some action and
then reflectively performs the original operation on the target.

Proxies and handlers are distinct to avoid name conflicts between ap-
plication methods and traps, i.e., between the base-level and the meta-level.
The target of a handler can be a regular object or another proxy. In the later
case, proxies form chains of delegation. Handlers are regular objects that
can be proxied as well. Figure 4.1 shows the relationships between proxy,
handler and target.

targetclient

proxy

handler

static aliases

dynamic aliases

target

Figure 4.1: A proxy with a handler and its target.

55

In our Smalltalk implementation, handlers define the following traps:

• Message Sends The trap for message sends takes as parameters the
original sender, the selector, the arguments.

• Field Reads The trap for field reads takes as parameters the field name.

• Field Writes The trap for field writes takes as parameters the field
name and the value to write.

• Literals The trap for the resolution of literals (symbols, string, num-
bers, class names, and closures) takes as parameters the resolved lit-
eral.

All traps take an additional parameter myself. When a trap is invoked,
the parameter myself refers to the proxy on which the operation was orig-
inally applied. The message trap of the tracing handler looks as follows:

TracingHandler>>message: aMessage
sender: theSender
myself: myself

Transcript show: target asString;
show: ' ';
show: aMessage selector;
cr.

↑ target perform: aMessage
sender: theSender
myself: myself.

Listing 4.3: A simple tracing handler

The reflective invocation with perform takes two additional parame-
ters, sender and myself. The parameter myself specifies how self must
be rebound. The sender can be used to distinguish between self-sends and
regular messages. We support a true delegation model where self is re-
bound to the original receiver of the message [99]. This contrasts to the
mere forwarding of operations that is usual with proxies.

Similarly, reflective methods to read and and write fields also take an
additional parameter myself. They become instVarNamed:myself: and
instVarNamed:put:myself. The possible stratification of those reflective
capabilities with mirrors [28] is orthogonal to our approach. For simplicity,
we assume they are not stratified.

56

2' 2

client client

static aliases

dynamic aliases

1

2' 2

1' 1

handler
handler

handler

target

targettarget

Figure 4.2: Illustration of transitive propagation. On the right, the proxy 2’
transitively proxies the results of operation on its base object, the number
1.

4.2.1 Propagation

The tracing handler in the previous section defines a message trap. Do-
ing so ensures that messages received by the proxy are traced, including
self-sends. However, it would fail to trace messages sent to other objects.
The evaluation of 2 tracing fib would print 2 fib, 2 <, 2 -, 2 -, but
message sends to numbers 1, 0, true, false would not be traced.

Within the evaluation of the base method, the provenance of another
object can be i) an argument, ii) the result of a state read, iii) the return
value of a message send, iv) the resolution of a literal. Tracing can be prop-
agated by transitively “proxying” the results of state reads, and the resolu-
tions of literals. State writes must unproxy the base object before the actual
state write. Arguments do not need to be proxied, except for the initial
message send. Here the initial message is 2 fib, which has no arguments.
We need to proxy the results of primitive message sends that return ref-
erences to objects ex nihilo, but do not otherwise need to proxy the return
value of message sends. Such primitive messages include explicit instanti-
ations with new and arithmetic computations with +,-,/. If the receiver of
the message, the arguments of the message, the results of state reads, and

57

the results of primitive messages are all proxies already, there is no way to
obtain a reference to a base object.

PropHandler>>literal: literal myself: myself
↑ self wrap: literal.

PropHandler>>message: msg sender: sender myself: myself
... code to trace ...
msg selector isPrimitive ifTrue: [
↑ self wrap: (target perform...).

].
↑ target perform...

PropHandler>>readField: field myself: myself
↑ self wrap: (target instVarNamed ...).

PropHandler>>writeField: field value: val myself: myself
target instVarNamed: field

put: (self unwrap: val)
myself: myself .
↑ val.

PropHandler>>wrap: anObject
| handler |
handler ← self class target: anObject.
↑ Proxy handler: handler.

PropHandler>>unwrap: aProxy
↑ (Reflect handlerOf: aProxy) target.

Listing 4.4: Tracing handler implementing the propagation technique. For
readability, we use . . . when the arguments are passed as-is to the reflective
operation, and omit the code that prints the tracing messages.

Figure 4.2 and Listing 4.4 illustrate this technique. We assume the exis-
tence of a class Reflect to unproxy objects. When the number is subtracted
(with message -) the resulting object is proxied as well since it is a primi-
tive operation. This way, tracing is consistently applied during the compu-
tation of Fibonacci numbers. Delegation proxies can be leveraged to adapt
the evaluation of an expression and its sub-expressions.

4.2.2 Closures

The evaluation of a closure created when tracing was enabled should not
activate tracing again. For instance, if the closure [self printString] is
created when tracing is enabled, its evaluation during an execution without

58

any adaption should not trace the message printString. Inversely, if the
closure [self printString] is created during an execution without any
adaption, its evaluation when tracing is enabled should trace the message
printString. For this to work correctly, closures are always created in an
unproxied form, and proxying is only applied on demand.

Let us describe first how creation works and illustrate it with the closure
[self printString] and tracing:

1. The closure is created by the runtime and captures variables as-is.
Tracing example: the closure captures self, which refers to a proxy.

2. The closure creation is intercepted by the literal trap of the creator.
Tracing example: the closure is treated like other literals and thus prox-
ied.

3. If the closure was proxied, the runtime invokes the write trap of the
closure’s proxy for all captured variables. Tracing example: the run-
time invokes the write trap of the closure’s proxy passing 0 as field
name and the self proxy as value. The trap unproxies the value
and reflectively invokes instVarNamed:put:myself: for field 0. This
overwrites the previous value in the closure with a reference to the
base object.

Unlike regular fields, captured variables in the closure are stored in
anonymous fields identified by index. Evaluation of closures follows the
inverse scheme:

1. If the closure is evaluate via a proxy, the runtime invokes the read
trap each time a captured variable is accessed. Tracing example: the
runtime invokes the read trap of the closure’s proxy passing 0 as field
name. The trap reflectively invokes instVarNamed:myself: for field
0 and wraps the result with a proxy. The message printString is sent
to the proxy.

Note that this scheme is quite natural if we consider that closures could
be encoded with regular objects, similarly to anonymous classes in Java.
In that case, captured variables are effectively stored in synthetic fields ini-
tialized in the constructor. The instantiation of the anonymous class would
trigger write traps, and evaluation would trigger read traps.

Closures provide a convenient way to activate a behavioral variation.
Adding method valueWithHandler in BlockClosure, tracing 2 fib can
also be achieved with [2 fib] valueWithHandler: TracingHandler in-
stead of 2 tracing fib. When we evaluate the closure via the proxy, the
literal trap will proxy 2 before it is used. Closures provide a convenient way
to activate a behavioral variation in the dynamic extent of expression.

59

BlockClosure>> valueWithHandler: aHandlerClass
| handler |
handler ← aHandlerClass target: self.
↑ (Proxy handler: handler) value.

Listing 4.5: Convenience method to change semantics

4.2.3 Forwarding

Since both the sender and the proxy to which the operation was originally
applied (see myself Listing 4.3) are passed as parameters when the trap is
invoked, the proxy can bypass self-sends to fall back to forwarding. The
tracing handler below would trace only messages sent from other objects:

TracingHandler>>message: aMessage
sender: theSender
myself: myself

(myself == theSender) ifFalse: [
Transcript show: target asString;

show: ' ';
show: aMessage selector;
cr.

].

↑ target perform: aMessage
sender: theSender
myself: myself.

Listing 4.6: Tracing without self-sends

Alternatively, the handler can also fall back to forwarding by not re-
binding self to the proxy when invoking the method reflectively.

4.2.4 Transparency

Traps are implemented in a separate handler and not in the proxy itself.
If an application defines an application-level method that collides with the
name of a trap, the explicit invocation of this method will be trapped cor-
rectly by the handler. It avoids conflicts between the base- and meta-levels.
The proxy exposes the exact same interface as its target.

Identity comparison is realized via message sends that are reified as
usual. The handler can either delegate the comparison to the target, or use
its own identity for comparison (handlers are regular objects). In the first
case, a proxy and its target are indistinguishable without using reflective

60

facilities. In the second case, two proxies with the same handler are still
indistinguishable. In both cases, several proxies of a given target can be
created without confusion of identity.

It is impossible to deconstruct a proxy to obtain its handler without us-
ing reflective capabilities. How reflective capabilities are provided exactly
is orthogonal to our approach. There are however essentially two ways:
additional language syntax [12] and mirrors [28]. For simplicity through-
out this chapter, we assume the existence of a class Reflect that exposes
the following methods globally:

• Reflect class>>isProxy: aProxy Returns whether the argument is
a proxy or not.

• Reflect class>>handlerOf: aProxy If the argument is a proxy, re-
turns its handler. Otherwise, it fails.

If these methods were to be stratified with mirrors, handlers would
need to be parametrized with a mirror when instantiated. Mirrors could
also be used to stratify the reflective capabilities to invoke methods, read
fields, and write fields as well (see Section 4.2).

4.3 Examples

We exemplify now the use of delegation proxies. First we show tradi-
tional examples of proxies (the examples would be supported by forward-
ing proxies as well) in order to illustrate the rationale for various design
decisions of delegation proxies.

Second, we show how the active variability enabled by delegation prox-
ies and our propagation technique enables new language extensions. These
examples are marked with a star (⋆). They all rely on the propagation tech-
nique presented earlier. For readability, we assume that handlers marked
with a star (⋆) inherit from a base class that implements the propagation
technique (see Listing 4.4) for reuse.

4.3.1 Lazy Values

The actual creation of an object can be delayed until it is really needed
with a lazy value. Since the base object doesn’t initially exist, the proxy
is created initially with nil as a target. The proxy’s handler takes a block
(i.e., a function) that creates the object upon the first access. When the base
object has been instantiated the target is replaced. This example illustrates
the motivation to have the handler refer to the target, instead of the proxy.
It can be implemented with forwarding proxies as well.

61

Below is the code to create a lazy proxy of the value 42 fib. Since the
target is initially nil, the factory method Proxy>>for: cannot infer the type
of the target. We implemented delegation proxies with code generation
and the type of the target is required and must be passed as a parameter
in this case. The creation block must succeed and return an instance of the
expected type.

| handler proxy |
handler ← LazyHandler block: [42 fib].
proxy ← Proxy for: handler class: Number.

Listing 4.7: Creation of a lazy proxy

The actual handler looks as follow:

LazyHandler>>message: aMessage
sender: theSender
myself: myself

target isNil ifTrue: [
target ← block value.

].
↑ target perform: aMessage

sender: theSender
myself: myself.

Listing 4.8: Lazy handler
4.3.2 Membranes

A membrane is a security construct for access control that transitively im-
poses revocability on all references exchanged via the membrane [110, 162,
44]. Objects that are exchanged inward or outward are wrapped in a proxy.

A membrane is a first-class object that keeps track of the proxies it man-
ages. When the membrane is revoked, it resets the target of all managed
proxies to nil, which guarantees garbage collection of objects within the
membranes. Subsequent invocations via a revoked proxy fail:

| membrane proxyArray val |
membrane ← Membrane new.
proxyArray ← membrane proxyFor: { 42 }.
val ← proxyArray at: 1. "Proxy of 42"
val printString. "42"
membrane revoke.
val printString. "fail"

Listing 4.9: Revoking a membrane

62

If proxies of a base object all have the same identity, the membrane
can create multiple proxies for objects exchanged multiple times via the
membrane. In the code snippet below, c1 and c2 are two distinct objects
that share the same identity. This illustrates the motivation for transparent
proxies discussed in subsection 4.2.4:

| membrane baseArray c1 c2 |
membrane ← Membrane new.
proxyArray ← membrane proxyFor: { 42 }.
c1 ← proxyArray at: 1. "Proxy of 42"
c2 ← proxyArray at: 1. "Proxy of 42"
c1 == c2. "true"
c1 handler == c2 handler. "false"

Listing 4.10: Transparency of revokable references

Relevant code of the membrane and membrane handler is shown below.
The handler wraps the arguments of the message send as well as its return
value. The handler forwards the invocation: it does not rebind self to the
proxy.

MembraneHandler>>message: aMessage
sender: theSender
myself: myself

| newArgs retVal newMsg |
self membrane failIfRevoked. "Fail if revoked"
newArgs ← aMessage arguments collect:

[:arg | membrane proxyFor: arg].
newMsg ← Message selector: aMessage selector

arguments: newArgs.
retVal ← target perform: newMsg

sender: theSender
myself: target.

↑ membrane proxyFor: retVal

Membrane>>proxyFor: aRef
| proxy handler |
handler ← MembraneHandler target: aRef membrane: self.
↑ self add: (Proxy handler: handler).

Listing 4.11: Membrane and membrane handler

4.3.3 Layers ⋆

Delegation proxies enable the contextualization of crosscutting behavior
like tracing. So far, we have shown how the evaluation of a closure can be

63

“parametrized” with a handler, e.g.,[2 fib] valueWithHandler: Tracing-
Handler. In this case, the handler is the entity that encapsulates the behav-
ioral variation.

This principle could be extended to implement first-class layers. Instead
of passing a handler to valueWithHandler:, the developer passes a layer to
a method valueWithLayer:. The method valueWithLayer: creates a proxy
with a handler of type LayerHandler and configures the handler with the
layer. The handler then uses the layer to decide how to intercept message
sends.

For instance, a test layer that overrides the method asString of class
Object could be defined with:

TestLayer>>asString
<target: Object>
↑ 42.

Listing 4.12: A simple layer

The handler inspects the layer’s pragmas (<target:>) to decide how to
dispatch the message send. Evaluating a piece of code with the test layer
activated is as simple as [. . .] valueWithLayer: TestLayer new.

One limitation of the approach is however that variations cannot be
introduced for super sends: once the proxy reflectively performs an oper-
ation on its target, it loses control over the evaluation until the next trap is
invoked. Also, there is no way to reflectively invoke a method and specify
at which level of the class hierarchy the lookup should start; the lookup
will always start with the class of the receiver. This is a general problem of
the use of reflection to simulate custom message lookup rules.

4.3.4 Interceptors ⋆

Previous sections already illustrated delegation proxies using tracing. The
exact same approach could be used to implement other interceptors like
profiling or code contracts. Below is the code of a profiling handler.

ProfilingHandler>>message: aMessage
sender: theSender
myself: myself

| start |
start ← Time now.
[↑ super message: aMessage

sender: theSender
myself: myself

] ensure: [Transcript show: (Time now -- start) ; cr.]

Listing 4.13: A simple profiling handler

64

Since the propagation is implemented reflectively, it can be customized.
This flexibility enables interceptors to be limited to application objects by
simply stopping the propagation for kernel objects (dictionaries, arrays,
etc.). The application and the kernel are two layers. Any application object
referenced by a kernel object must have been provided by the application.
If application objects are proxied, this guarantees that kernel objects hold
only references to proxies of application objects. Therefore, if a kernel object
sends a message to an application object, the propagation will start again.
Omitting kernel objects from the propagation can improve performance.

4.3.5 Object Versioning ⋆

To tolerate errors, developers implement recovery blocks that undo muta-
tions and leave the objects in a consistent state [134]. Typically, this requires
cloning objects to obtain snapshots. Delegation proxies enable the imple-
mentation of object versioning elegantly. Before any field is mutated, the
handler shown below records the old value into a log using a reflective
field read. The log can be used in recovery block, for instance to imple-
ment rollback. Similarly to the other examples that follow, we assume that
the handler inherits from a base handler that implements the propagation
technique.

RecordingHandler>>writeField: field
value: newVal
myself: myself

| oldValue |
oldValue ← target instVarNamed: field myself: myself.
log add: { target . field . oldValue }.
↑ super writeField: field value: newVal myself: myself

Listing 4.14: Recording handler

A convenience method can be added to enable recording with [. . .]
recordInLog: aLog. Recording can be thought of as a behavioral layer
that is activated during the evaluation of the block.

BlockClosure>>recordInLog: aLog
| res handler |
handler ← RecordingHandler target: self log: aLog.
↑ (Proxy handler: handler) value

Listing 4.15: Enabling recording

65

4.3.6 Read-only Execution ⋆

Read-only execution [11] prevents mutation of state during evaluation. Read-
only execution can dynamically guarantee that a given piece of code is side-
effect free, or that clients of an object do not mutate it by mistake.

Classical proxies could restrict the interface of a given object to the sub-
set of read-only methods. They would fail to enable read-only execution of
arbitrary functions, or to guarantee that read-only methods do not mutate
other objects. Read-only execution can be implemented trivially using the
propagation technique and a handler that fails upon state writes.

ReadOnlyHandler>>writeField: aField
value: aValue
myself: myself

ReadOnlyError signal: 'Illegal write'.

Listing 4.16: Read-only handler

Similarly to the previous example, a convenience method can be added
to turn on read only execution [. . .] evaluateReadOnly.

BlockClosure>> evaluateReadOnly
| res handler |
handler ← ReadOnlyHandler target: self.
↑ (Proxy handler: handler) value

Listing 4.17: Enabling read-only execution

4.3.7 Dynamic Scoping ⋆

In most modern programming languages, variables are lexically scoped
and can’t be dynamically scoped. Dynamic scoping is sometimes desir-
able, for instance in web frameworks to access easily the ongoing request.
Developers must use in this case alternatives like thread locals. It is for
instance the strategy taken by Java Server Faces in the static method get-
CurrentInstance() of class FacesContext1).

Dynamic scoping can be realized in Smalltalk using stack manipula-
tion [51] or by accessing the active process. Delegation proxies offer an
additional approach to implement dynamic bindings by simply sharing a
common (key,value) pair between handlers. If multiple dynamic bindings
are defined, objects will be proxied multiple times, once per binding. When
a binding value must be retrieved, a utility method locates the handler cor-
responding to the request key, and returns the corresponding value:

1http://www.webcitation.org/6FOF4DFab

66

http://www.webcitation.org/6FOF4DFab

ScopeUtils>>valueOf: aKey for: aProxy
| h p |
p ← aProxy.
[Reflect isProxy: p] whileTrue: [

h ← Reflect handlerOf: p.
(h bindingKey == aKey) ifTrue: [
↑ h bindingValue.

].
p ← h target.

].
↑nil. "Not found"

Listing 4.18: Inspection of a chain of proxies

During the evaluation of a block, a dynamic variable can be bound with
[. . .] valueWith: #currentRequest value: aRequest and accessed per-
vasively with ScopeUtils valueOf: #currentRequest for: self.

4.4 Semantics

We formalize delegation proxies by extending SMALLTALKLITE [16], a light-
weight calculus in the spirit of Featherweight Java that omits static types.
This chapter does not assume any prior knowledge of it. Our formalization
simplifies two aspects of the semantics presented in the previous sections:

1. It models neither first-class classes nor literals. Consequently, a lit-
eral trap does not make sense. Instead, we introduce a new trap that
intercepts object instantiations.

2. It models a proxy as a pair (handler, target). When a trap is invoked
on the handler, the target is passed as parameter. In the previous
examples, the handler holds its target. We make this simplification to
ease the presentation of identity proxy.

The syntax of our extended calculus, SMALLTALKPROXY, is shown in
Figure 4.3. The only addition to the original syntax is the new expression
proxy e e.

During evaluation, the abstract syntax tree of the program is annotated
with the object and class context of the ongoing evaluation, since this in-
formation is missing from the static syntax. For instance, the super call
super.m(v∗) is decorated with its object and class into super⟨c⟩.m⟨o⟩(v∗)
before being interpreted; self is translated into the value of the correspond-
ing object; message sends o.m(v∗) are decorated with the current object
context to keep track of the sender of the message. The rules for the trans-
lation of expressions into redexes are shown below.

67

P = defn∗e
defn = class c extends c { f ∗meth∗ }

meth = m(x∗) { e }
e = new c | x | self | nil | f | f = e
| e.m(e∗) | super.m(e∗) | let x = e in e
| proxy e e

Figure 4.3: Syntax of SMALLTALKPROXY

o[[new c]]c = new⟨o⟩ c
o[[x]]c = x

o[[self]]c = o
o[[nil]]c = nil
o[[f]]c = f ⟨o⟩

o[[f = e]]c = f ⟨o⟩ = o[[e]]c
o[[e.m(e∗i)]]c = o[[e]]c.m⟨o⟩(o[[ei]]

∗
c)

o[[super.m(e∗i)]]c = super⟨c⟩.m⟨o⟩(o[[ei]]
∗
c)

o[[let x = e in e′]]c = let x = o[[e]]c in o[[e′]]c
o[[proxy e e′]]c = proxy o[[e]]c o[[e′]]c o[[e]]c o[[e′]]c

Figure 4.4: Translating expressions to redexes

Redexes and their subexpressions reduce to a value, which is either an
address a, nil, or a proxy. A proxy has a handler h and a target t. A proxy is
itself a value. Both h and t can be proxies as well. Subexpressions may be
evaluated within an expression context E.

Translation from the main expression to an initial redex is carried out
by the o[[e]]c function (see Figure 4.4). This binds fields to their enclosing
object context and binds self to the value o of the receiver. The initial object
context for a program is nil. (i.e., there are no global fields accessible to the
main expression). So if e is the main expression associated to a program P,
then nil[[e]]Object is the initial redex.

P ⊢ ⟨ϵ,S⟩ ↩→ ⟨ϵ′,S ′⟩ means that we reduce an expression (redex) ϵ
in the context of a (static) program P and a (dynamic) store of objects S
to a new expression ϵ′ and (possibly) updated store S ′. The store consists
of a set of mappings from addresses a ∈ dom(S) to tuples ⟨c, { f 7→ v}⟩
representing the class c of an object and the set of its field values. The
initial value of the store is S = {}.

68

ϵ = o | new⟨o⟩ c | x | self | nil
| f ⟨o⟩ | f ⟨o⟩ = ϵ | ϵ.m⟨o⟩(ϵ∗)
| super⟨c⟩.m⟨o⟩(ϵ∗) | let x = ϵ in ϵ

E = [] | f ⟨o⟩ = E | E.m⟨o⟩(ϵ∗)
| o.m⟨o⟩(o∗ E ϵ∗) | super⟨c⟩.m⟨o⟩(o∗ E ϵ∗)
| let x = E in ϵ | proxy E ϵ

r = nil | a
o, v, t, h = r | proxy h t

Figure 4.5: Runtime redex syntax

The reductions are summarized in Figure 4.6. Predicate ∈∗P is used for
field lookup in a class, f ∈∗P c, and method lookup, ⟨c, m, x∗, e⟩ ∈∗P c′, where
c′ is the class where the method was found in the hierarchy. Predicates ≤P
and ≺P are used respectively for subclass and direct subclass.

If the object context ⟨o⟩ of an instantiation with new⟨o⟩ c is a reference
(i.e., not a proxy), the expression reduces to a fresh address a, bound in the
store to an object whose class is c and whose fields are all nil [new]. If the
object context of the instantiation is a proxy h t, the newTrap is invoked on
the handler instead [new-proxy]. The trap takes the result of the instantia-
tion new⟨t⟩ c as parameter; it can take further action or return it as-is.

The object context ⟨o⟩ of field accesses and field writes can be an object
address a or a proxy h t. A local field access in the context of an object
address [get] reduces to the value of the field. A local field access in the
context of a proxy h t [get-proxy] invokes the trap readTrap on the handler
h. A field update in the context of an object address [set] simply updates the
corresponding binding of the field in the store. A local field update in the
context of a proxy h t [set-proxy] invokes the trap writeTrap on the handler
h. The sender, proxy h t, is passed as parameter of the trap invocation.

Messages can be sent to an object address a or to a proxy h t. When
we send a message to an object address [send], we must look up the cor-
responding method body e, starting from the class c of the receiver a. The
method body is then evaluated in the context of the receiver, binding self
to the address a. Formal parameters to the method are substituted by the
actual arguments. We also pass in the actual class in which the method
is found, so that super sends have the right context to start their method
lookup. When a message is sent to a proxy h t, the trap callTrap is invoked
on the handler. The object context ⟨s⟩ that decorates the message corre-
sponds to the sender of the message. The trap takes as parameters the mes-
sage and its arguments, the sender s, and the initial receiver of the message
proxy h t.

69

P ⊢ ⟨E[new⟨r⟩ c],S⟩ ↩→ ⟨E[a],S [a 7→ ⟨c, { f 7→ nil | ∀ f , f ∈∗P c}⟩]⟩ [new]
where a ̸∈ dom(S)

P ⊢ ⟨E[new⟨proxy h t⟩ c],S⟩ ↩→ ⟨E[o],S ′⟩ [new-proxy]
where ⟨E[h.newTrap(new⟨t⟩c, proxy h t)],S⟩ ↩→∗ ⟨E[o],S ′⟩

P ⊢ ⟨E[f ⟨a⟩],S⟩ ↩→ ⟨E[o],S⟩ [get]
where S(a) = ⟨c,F⟩ and F (f) = o

P ⊢ ⟨E[f ⟨proxy h t⟩],S⟩ ↩→ ⟨E[o],S ′⟩ [get-proxy]
where ⟨E[h.readTrap(t, f , proxy h t)],S⟩ ↩→∗ ⟨E[o],S ′⟩

P ⊢ ⟨E[f ⟨a⟩ = o],S⟩ ↩→ ⟨E[o],S [a 7→ ⟨c,F [f 7→ o]⟩]⟩ [set]
where S(a) = ⟨c,F⟩

P ⊢ ⟨E[f ⟨proxy h t⟩ = o],S⟩ ↩→ ⟨E[o′],S ′⟩ [set-proxy]
where ⟨E[h.writeTrap(t, f , o, proxy h t)],S⟩ ↩→∗ ⟨E[o′],S ′⟩

P ⊢ ⟨E[a.m⟨s⟩(o∗)],S⟩ ↩→ ⟨E[a[[e[o∗/x∗]]]c′],S⟩ [call]
where S [a] = ⟨c,F⟩ and ⟨c, m, x∗, e⟩ ∈∗P c′

P ⊢ ⟨E[(proxy h t).m⟨s⟩(o∗)],S⟩ ↩→ ⟨E[o′],S ′⟩ [call-proxy]
where ⟨E[h.callTrap(t, m, o∗, s, proxy h t)],S⟩ ↩→∗ ⟨E[o′],S ′⟩

P ⊢ ⟨E[super⟨c⟩.m⟨s⟩(o∗)],S⟩ ↩→ ⟨E[s[[e[o∗/x∗]]]c′′],S⟩ [super]
where c ≺P c′ and ⟨c′, m, x∗, e⟩ ∈∗P c′′ and c′ ≤P c′′

P ⊢ ⟨E[let x = o in ϵ],S⟩ ↩→ ⟨E[ϵ[o/x]],S⟩ [let]

Figure 4.6: Reductions for SMALLTALKPROXY

super sends [super] are similar to regular message sends, except that
the method lookup must start in the superclass of the class of the method
in which the super send was declared. In the case of super send, the object
context ⟨s⟩ corresponds to the sender of the message as well as the receiver.
The object context is used to rebind self. When we reduce the super send,
we must take care to pass on the class c′′ of the method in which the super
method was found, since that method may make further super sends.

Finally, let in expressions [let] simply represent local variable bind-
ings. Errors occur if an expression gets stuck and does not reduce to an a
or to nil. This may occur if a non-existent variable, field or method is refer-
enced (for example, when sending any message to nil, or applying traps on
a handler h that isn’t suitable). We are not concerned with errors, so we do
not introduce any special rules to generate an error value in these cases.

70

P ⊢ ⟨E[a.call(m, o∗, s, my)],S⟩ ↩→ ⟨E[my[[e[o∗/x∗]]]c′],S⟩ [reflect-call]
where S [a] = ⟨c,F⟩ and ⟨c, m, x∗, e⟩ ∈∗P c′

P ⊢ ⟨E[(proxy h t).call(m, o∗, s, my)],S⟩ ↩→ ⟨E[o′],S ′⟩ [reflect-call-proxy]
where ⟨E[h.callTrap(t, m, o∗, s, my)],S⟩ ↩→∗ ⟨E[o′],S ′⟩

P ⊢ ⟨E[a.read(f , my)],S⟩ ↩→ ⟨E[o],S⟩ [reflect-get]
where S(a) = ⟨c,F⟩ and F (f) = o

P ⊢ ⟨E[(proxy h t).read(f , my)],S⟩ ↩→ ⟨E[o′],S ′⟩ [reflect-get-proxy]
where ⟨E[h.readTrap(t, f , my)],S⟩ ↩→∗ ⟨E[o′],S ′⟩

P ⊢ ⟨E[a.write(f , o, my)],S⟩ ↩→ ⟨E[o],S [a 7→ ⟨c,F [f 7→ o]⟩]⟩ [reflect-set]
where S(a) = ⟨c,F⟩

P ⊢ ⟨E[(proxy h t).write(f , o, my)],S⟩ ↩→ ⟨E[o′],S ′⟩ [reflect-set-proxy]
where ⟨E[h.writeTrap(t, f , o, my)],S⟩ ↩→∗ ⟨E[o′],S ′⟩

P ⊢ ⟨E[unproxy(proxy h t)],S⟩ ↩→ ⟨E[t],S⟩ [unproxy]

Figure 4.7: Reflective facilities added to SMALLTALKPROXY

4.4.1 Identity Proxy

As was discussed in subsection 4.2.4, the system requires the ability to re-
flectively apply operations on base objects and proxies to be useful. How
these facilities are provided is orthogonal to our approach. For simplic-
ity, we extend the language with three additional non-stratified reflective
primitives: call, read, and write. The semantics of these primitives is given
in Figure 4.7.

All three primitives take a last argument my (shortcut for “myself”) rep-
resenting the object context that will be rebound. Additionally, the identity
of the sender s can be specified for reflective message sends. When applied
to a proxy, the operations invoke the corresponding trap in a straightfor-
ward manner, passing s and my as-is. When read or write is applied to
an object address, the arguments s and my are ignored. When call is ap-
plied to an object address, my defines how self will be rebound during the
reflective invocation.

With these primitives, we can trivially define the identity handler, id-
Handler. idHandler is an instance of a handler class that defines the follow-
ing methods:

71

newTrap(t, my) = t
readTrap(t, f , my) = t.read(f , my)
writeTrap(t, f , o, my) = t.write(f , o, my)
callTrap(t, m, o∗, s, my) = t.call(m, o∗, s, my)

We can show that sending a message to an identity proxy will delegate
the message to the target, and rebind self to the proxy.

Let us consider an object s that sends the message m(o) to a proxy p =
proxy idHandler t. Object t is an instance of class c which defines method
m(x) with body e = self n(x).

p.m⟨s⟩(o)
idHandler.callTrap(t, m, o, s, p) [call-proxy]
t.call(m, o, s, p) [call]
p[[e[o/x]]]c [reflect-call]
p[[self]]c.n⟨p⟩(o) [translation]
p.n⟨p⟩(o) [translation]

4.4.2 Propagating Identity Proxy

The identity handler can be turned into a propagating identity handler,
idHandler∗, following the technique of propagation presented in subsec-
tion 4.2.1. This technique requires the ability to unproxy a proxy. The ex-
pression unproxy is added to the language as defined in Figure 5.8. We also
assume the existence of the traditional sequencing (;) operation.

The handler idHandler∗ is defined as follows:

newTrap(t, my) = proxy idHandler∗ t
readTrap(t, f , my) = proxy idHandler∗ (t.read(f , my))
writeTrap(t, f , o, my) = t.write(f , unproxy o, my); o
callTrap(t, m, o∗, s, my) = t.call(m, o∗, s, my)

We can formally express the intuitive explanation of subsection 4.2.1
about soundness of the propagation.

Let us assume that all values in the expression E[e] are proxies (using
the idHandler∗). The reduction rules that can match are [new-proxy], [get-
proxy], [set-proxy], [super], [let], and [call-proxy]. According to the defi-
nition of the idHandler∗ traps, rule [new-proxy] will preserve the invariant
that all values are proxies. Rule [get-proxy] does so as well. Rule [set-
proxy] preserves the assumption since it returns the value written, which
we know is a proxy. Rules [super] and [let] do as well since they only bind
variables with existing values, which we know are proxies. Similarly, rule
[call-proxy] will bind self with the expected proxy (see previous section).
It also binds the variables with the passed arguments, which are known to

72

be proxies. Since all values remain proxies, the evaluation is consistent.
The initial redex is evaluated with nil as object context: nil[[e]]Object. If

the proxy p = proxy idHandler∗nil is used instead of nil, the assumption is
initially true, and will not be broken during evaluation.

4.5 Implementation

We have implemented a prototype of delegation proxies in Smalltalk as a
program transformation. The transformation adds two parameters, myself
and sender to rewritten methods. Instead of self, myself is used in the
transformed method body2. Following the same approach as Uniform Prox-
ies for Java [59], proxy classes are auto-generated. Let us consider the class
Suitcase:

Object>>subclass: #Suitcase
instanceVariableNames: 'content'

Suitcase>>printString
↑ 'Content: ' concat: content.

Listing 4.19: Original code of class Suitcase

Applying our transformation, the class Suitcase is augmented with
synthetic methods to read and write the field content, as well as a literal
trap. The definition of the class remains unchanged.

Suitcase>>literal: aLiteral myself: slf
↑ aLiteral.

Suitcase>> readContentMyself: slf
↑ content.

Suitcase>> writeContent: value myself: slf
↑ content ← value.

Listing 4.20: Synthetic methods to read and write instance variable content

In Smalltalk, fields are encapsulated and can be accessed only by their
respective object. The sender of a state access is always myself, and can
thus be omitted from the traps. The existing method in class Suitcase is
then rewritten in two versions, one with additional parameters myself and
sender, and one with parameter sender only. The second one uses the
receiver of the message as myself.

2This is similar to Python’s explicit self argument

73

Suitcase>>printStringMyself: slf sender: s
↑ (slf literal: 'Content: ' myself: slf)

concat: (self readContentMyself: slf) sender: slf.

Suitcase>>printStringSender: s
↑ self printStringMyself: self sender: s

Listing 4.21: The method printString is rewritten to two versions

A proxy class for Suitcase is then generated. It inherits from a class
Proxy, which defines the handler field common to all proxies. The gener-
ated class implements the same methods as the Suitcase class, i.e., print-
StringSender:, printStringMyself:sender:, readContentMyself:, and
writeContent:myself:. The methods invoke respectively message, read
and write traps on the handler.

SuitcaseProxy>> printStringMyself: slf sender: s
| msg |
msg ← Message selector: #printString arguments: {} .
↑ handler message: msg myself: slf sender: s.

Listing 4.22: Sample generated method in proxy class of Suitcase

Smalltalk has first-class classes whose behaviors are defined in meta-
classes. The class and meta-class hierarchies are parallel. Classes can be
proxied like any object. Consequently, meta-classes are rewritten and ex-
tended with synthetic methods similarly to classes. However, the gener-
ated proxy classes do not inherit from Class, but Proxy, as is shown in
Figure 4.8.

Closures are regular objects that are adapted upon creation and evalu-
ation according to subsection 4.2.2.

Exceptions and exception classes are regular objects that are proxied
as well by our propagation technique. Since exception handling is im-
plemented within Smalltalk using first-class activation frames, it would be
possible to make it compatible with proxies.

4.5.1 Performance

We need to distinguish between the performance of delegation proxies them-
selves and the technique that uses them to implement adaptations. Delega-
tion proxies have in themselves little impact on performance. The replace-
ment of the implicit self with an explicit myself is mostly negligible. The
introduction of traps for literal does however degrades performance.

Sending a message to a proxy entails reification of the message, invoca-
tion of the handler’s trap, and then reflective invocation of the message on

74

Point

ColorPoint

Point class

ColorPoint class

ColorPointProxy

PointProxy

ColorPointClassProxy

PointClassProxy

Object

ClassProxy

subclass of

instance of

proxy class of

Figure 4.8: Inheritance of classes, meta-classes, and auto generated proxy
classes.

the target. This has a cost when used extensively. In addition, the handler
might take additional actions that entail costs. This is the case with our
propagation technique.

Benchmarks of Fibonacci3 reveal a performance degradation of two or-
ders of magnitude (44x slower) between executions with our technique (us-
ing propagation of the identity handler) and without it. Manually weaving
the handlers and proxies into specialized classes (e.g., NumberPropIdProxy)
reduces the overhead to below one order of magnitude (8x slower). We be-
lieve it is a good result when we consider that delegation proxies enable
unanticipated behavioral reflection, which is known to be costly.

To further reduce the overhead, our propagation technique can be adapted
to proxy only instances of application classes and skip system classes. De-
pending on the nature of the adaptation, this choice might be viable or even
desirable.

The automatic weaving of handlers and proxies can be addressed in fu-
ture work using techniques for partial evaluation [63] developed for aspect
compilers [107]. Future work could also address the caching of literal inter-
ceptions. Indeed, in the Fibonacci examples, 1, 2 and [^ self] are literals
that are intercepted and unnecessarily proxied thousands of times.

3CogVM 6.0, Mac OS X, 2.3 GHz Intel Core

75

4.5.2 Static Typing

There is no major obstacle to port our implementation to a statically-typed
language. Delegation proxies preserve the interface of their target, like tra-
ditional forwarding proxies. For type compatibility, the generated proxy
must inherit from the original class. Reflective operations can fail with run-
time type errors. Forwarding and delegation proxies suffer the same lack
of type safety from this perspective.

Delegation proxies require however that reflective operations have an
additional parameter that specifies how to rebind self. Naturally, this pa-
rameter must be of a valid type: in practice it will be either the target of
the invocation or a proxy of the target. Both implement the same inter-
face. Rebinding self with an “arbitrary” object that is of a valid type but is
not related to the target would be technically sound, but is undesirable in
practice. Reflective operations should reject this case to favor good design.

4.6 Related Work

We now compare in more details delegation proxies with selected related
work presented in Chapter 2.

Proxies and Reflection MOPs, AOP and proxies are various approaches
that enable the interception and customization of method dispatch. MOPs
reify the execution into meta-objects that can be customized [90]. AOP
adopts another perspective on the problem and enables the definition of
join points where additional logic is woven [91]. MOP and AOP share sim-
ilarities with method combination of CLOS [48]. Proxies enable the reifica-
tion of method dispatch on a per-object basis.

Proxies have found many usefully applications that can be categorized
as “interceptors” or “virtual objects” [162]. An important question for prox-
ies is whether to support them natively at the language level or via lower-
level abstractions. Most dynamic languages support proxies via traps that
are invoked when a message cannot be delivered [106]. Modern proxy
mechanisms stratify the base and meta levels with a handler [106, 59, 162],
including Java that uses code generation to enable proxies for interfaces.
The mechanism was extended to enable proxies of classes as well [59].

Delegation proxies do not suffer from meta-regression issues of AOP
and MOP [157] since the adapted object and the base object are distinct.
For instance, the tracing handler in Listing 4.3 does not lead to a meta-
regression since it sends the message asString to the target, which is dis-
tinct from the proxy (in parameter myself). System code can in this way be
adapted. Also, delegation proxies naturally enable partial reflection [158]
since objects are selectively proxied.

76

Recent works on proxies in dynamic languages have studied orthogo-
nal issues related to stratification [162, 44], preservation of abstractions and
invariants [152, 45], and traps for values [12]. Only Javascript direct prox-
ies support delegation [45]. However, Javascript proxies do not enable the
interception of object instantiations; the variables captured in a closure will
not be unproxied upon capture and proxied upon evaluation.

In addition to full-fledged MOPs and AOP, reflective language like Small-
talk provide various ways to intercept message sends [54]. Java and .NET
support custom method dispatch via JSR 292 [125] and the Dynamic Lan-
guage Runtime [109].

Composing Behavior Inheritance leads to an explosion in the number of
classes when multiple variations (decorations) of a given set of classes must
be designed. Static traits [144] or mixins enable the definition of units of
reuse that can be composed into classes, but they do not solve the issue of
class explosion.

Decorators refine a specific set of known methods, e.g., the method
paint of a window. Static and dynamic approaches have been proposed
to decoration. Unlike decorators, proxies find their use when the refine-
ment applies to unknown methods, e.g., to trace all invocations. Büchi and
Weck proposed a mechanism [31] to statically parameterize classes with a
decorator (called wrapper in their terminology). Bettini et al. [17] proposed
a similar construct but composition happens at creation time. Ressia et al.
proposed talents [141] which enable adaptations of the behavior of individ-
ual objects by composing trait-like units of behavior dynamically. Other
works enable dynamic replacement of behavior in a trait-like fashion [19].

The code snippet below illustrates how to achieve the decoration of a
Window with a Border and shows the conceptual differences between these
approaches. The two first approaches can work with forwarding or dele-
gation (but no implementations with delegation are available). The third
approach replaces the behavior or the object so the distinction does not ap-
ply.

// Buchi and Weck
Window w = new Window<Border>();
// Bettini
Window w = new BorderWrap(new Window());
// Ressia
Window w = new WindowEmptyPaint();
w.acquire(new BorderedPaint());

Listing 4.23: Differences between approaches to decoration

Several languages that combine class-based inheritance and object in-
heritance (i.e., delegation) have been proposed [92, 163]. Delegation enables

77

the behavior of an object to be composed dynamically from other objects
with partial behaviors. Essentially, delegation achieves trait-like dynamic
composition of behavior.

Ostermann proposed delegation layers [128], which extend the notion
of delegation from objects to collaborations of nested objects, e.g., a graph
with edges and nodes. An outer object wrapped with a delegation layer
will affects its nested objects as well. Similary to decorators, the mechanism
refines specific sets of methods of the objects in the collaboration.

Dynamic Scoping Techniques for method dispatch customization make
it hard to customize the dispatch based on the control flow. AOP supports
it for instance with cflow, but in a limited way.

In context-oriented programming (COP) [80, 165], variations can be en-
capsulated into layers that are dynamically activated in the dynamic extent
of an expression. Unlike delegation proxies that support homogenous vari-
ations, COP supports best heterogenous variations [6]. COP can be seen as
a form of multi-dimensional dispatch, where the context is an additional
dimension.

Other mechanisms to vary the behavior of objects in a contextual man-
ner are roles [94], perspectives [150], and subjects [75]. Delegation proxies
can realize dynamic scoping via reference flow, by proxying and unproxy-
ing objects accesses during the execution. Delegation proxies can provide
a foundation to design contextual variations.

Similarly to our approach, the handle model proposed by Arnaud et
al. [11, 10] enables the adaptation of references with behavioral variations
that propagate. The propagation belongs to the semantics of the handles,
whereas in our approach, the propagation is encoded reflectively. Propa-
gation unfolds from a principled use of delegation. Our approach is more
flexible since it decouples the notion of propagation from the notion of
proxy.

4.7 Conclusions

Using active variability is a convenient approach to introduce changes at
run time while avoiding consistency issues. We have presented proxies that
work by delegation instead of forwarding, and demonstrated how they can
be used to implement such kind of variability.

In our approach, object instantiations are intercepted via the intercep-
tion of class name resolutions (i.e., literals), and a variations can propagate
to all objects accessed in a dynamic extent. Contextual mechanisms can be
built on top of delegation proxies. We have sketched for instance how first-
class contextual layers could be implemented on top of delegation proxies.
In future work, it could evolve into a mature implementation.

78

Delegation proxies improve the support of two modularity principles
presented in Chapter 1:

• Encapsulation. Delegation proxies are flexible building blocks to im-
plement contextual mechanisms that encapsulate behavioral varia-
tions.

• Late Binding. Delegation proxies enable self to be rebound to the
proxy.

We can draw the following conclusions about the practicality of delega-
tion proxies:

• Metaness. Delegation proxies naturally compose, support partial be-
havioral reflection, and avoid meta-regressions. We can for instance
trace and profile an execution without interference between the two
(composition). Objects are proxied selectively. Adapting objects dur-
ing an execution will not affect other objects in the system (partial
reflection). Proxies and targets represent the same object at two meta-
levels but have distinct identities (no meta-regression).

• Performance. Delegation proxies do not entail performance issues when
used sporadically (same situation as with forwarding proxies). To
implement active variability, the behavioral variation must be prop-
agated, which entails an overhead close to one order of magnitude
in our implementation. The overhead could be reduced with a more
mature implementation or with VM support.

With delegation proxies and active contexts, developers have powerful
language features to enable run-time changes. Active contexts enable arbi-
trary changes including layout modifications, but require a careful design
to ensure that the update stabilizes. Delegation proxies are easier to lever-
age but the range of changes they support is more restricted. Unlike active
contexts, delegation proxies can encapsulate crosscutting behavior.

It is important to keep in mind that the ability to adapt software at run
time is not only driven by the technicalities of features like active contexts
and delegation proxies, but by the very organization of the code base in
the first place. In the next chapter, we present an approach to address this
point and promote a good modularization of code.

79

80

5
Scaling Information Hiding with

Dynamic Ownership

5.1 Introduction

In a modular software system, application features should be encapsulated
into objects that communicate via stable interfaces. Since the implemen-
tation details of an object are hidden to its clients, objects with similar in-
terfaces but different implementations remain interoperable [2]. When a
change must be introduced, the existing object can be replaced with a new
one easily. Application servers rely for instance on this principle to en-
able the redeployment of web applications without restart. The application
server communicates with the web application only via stable interfaces
that have been standardized (e.g., Java servlets).

Objects are routinely composed of other objects, though. For instance,
a linked list is composed of nodes that must be organized in a certain way.
Such a composite object is a system of objects [83]. The list must maintain
invariants about multiple objects to properly work, and clients of the list
should not depend on its internal nodes for the list to be easily replace-
able. Unfortunately, in object-oriented languages the heap is an unstruc-
tured graph of objects, and there is hence no way to enforce information
hiding beyond individual objects.

We propose in this chapter to improve information hiding by structur-
ing objects in the heap in an ownership hierarchy (similarly to ownership
types [39, 121, 23]) and to vary the behavior of objects depending on the
relative positions of the caller and callee in the hierarchy. Each object in the
tree is a context that alters the behavior of its children. In analogy to the

81

notion of dynamic extent, the children of an object in the hierarchy form its
structural extent.

The behavioral variation works as follows. Methods are assigned one
or more tags, which we call topics to avoid ambiguities. Each object can
define in and out filters which are sets of topics. When a caller object sends
a message to a receiver, the system checks whether the topic of the method
is visible to the caller. If it isn’t, the method fails. If it is, the method is ex-
ecuted as usual. In addition, the system checks that parameters and return
values exchanged between objects do not result in references that go “up”
in the ownership hierarchy. If this is the case, the system triggers a crossing
handler before the faulty reference is established. By default, the crossing
handler raises an exception and prevents such reference transfer. Crossing
handlers are reflective hooks that can be modified by developers.

According to our definitions of structural and active variability, this
mechanism is a mix of both: it belongs to structural variability since the
ownership relationship defines the visibility of methods, and at the same
time it belongs to active variability since the caller (i.e., information in the
dynamic extent) of the message send is used to define the behavioral vari-
ation.

Filters and crossing handlers default to a policy that confines objects
to their owner. This policy is referred as owner-as-dominator. Filters and
crossing handlers can however be configure to relax this policy. Filters in
particular can be used to expose parts of an aggregate, or expose a lim-
ited view of the objects within an owner. The latter case allows read-only
objects to be exposed. Crossing handlers facilitate the systematic imple-
mentation of defensive copying, which complements well the owner-as-
dominator policy.

The chapter is organized as follows: Section 5.2 presents filters and
crossing handlers and their default behavior; Section 5.3 and Section 5.4
show examples of filters and crossing handlers; Section 5.5 discusses the
relationship between secure programming and ownership; Section 5.6 and
Section 5.7 define the semantics and implementation of our variant of dy-
namic ownership; Section 5.8 describes the adaptation of the web server
and Section 5.9 opens further perspectives. We discuss related work in Sec-
tion 5.10 before we conclude in Section 5.11.

5.2 Filters and Crossing Handlers

Let us consider the web server in Figure 5.1. The web server contains web
sites that are composed of web pages. The web server has a hostname and
port. The web server uses a list to maintain references to its two web sites,
called “Intranet” and “Extranet”. Each web site has a name and a home
web page. Web pages are instances of Page. Web pages can have subpages;

82

:WebServer

:Page

Extranet:SiteIntranet:Site

:Page

:List

:Node :Node

ownership references

sites

homepage homepage

server

site

contexts

site

server

∅

∅

∅

∅

∅

∅

∅

∅

:Page
data

{navigation}

{navigation}

filters
{out}

{in}

next

data data

extranet
intranet

head

pages

:List

:Node

∅

∅

head

Figure 5.1: Example of an ownership topology.

a web page keeps references to its subpages in a list. Web pages have URLs
that are of the form http://host:port/site/relative/path.

Information hiding is a well established principle and it is important to
control the accessibility of object members to not break system invariants.
For instance, to move a page between web sites, it is not enough to remove
it from one list and add it to another list; in addition, the page and subpages
must be updated to reference the right web site. The list of subpages should
be manipulated only via methods exposed by the corresponding page.

Ownership Objects are organized at run-time in an ownership tree. In
Figure 5.1, the web server owns the web sites; the web sites own the web
pages; lists own their corresponding nodes. The nodes do not own the ob-

83

Page>>inFilters ↑ #(navigation)
Page>>outFilters ↑ #(navigation)

Listing 5.1: Definition of the in and out filters for the Page class

Page>>fullUrl
<topic:navigation>
↑ site baseUrl , '/' , self relativeUrl.

Site>>baseUrl
<topic:navigation>
↑ server hostUrl , '/' , self name.

Site>>siteMap
<topic:navigation>
↑ homepage flattenChildren

collect: [:page | page fullUrl].

Server>>hostUrl
<topic:navigation>
↑ hostname , ':' , port.

Listing 5.2: Methods belonging to the navigation topic

jects they reference, though. Each object acts as a context object that affects
the behavior of all the objects it owns directly and indirectly. The owner-
ship tree is established at run-time: when new objects are instantiated, the
owner of a new object is by default the sender of the new message.

Filters Methods belong to zero or more topics, and filters select sets of top-
ics. From a given reference, a method is accessible only if its topics match
the in and out filters of the contexts crossed by the reference. The effect of
filters is cumulative. An object can access all methods of its parent, chil-
dren, and siblings. No filter is applied in the case of such message sends.

In Figure 5.1, the class Page uses the topic navigation as in and out
filters. Other classes have empty filters. Listing 5.1 shows how filters are
technically defined. Let us consider the methods in Listing 5.2 that deal
with URL and site map generation. The methods belong to the navigation
topic:

• Pages cannot access method WebServer>>hostUrl since web sites have
empty out filters. To render the URL, pages must use Site>>baseUrl.

84

• Nested pages can access method Site>>baseUrl since the out filter
of pages is navigation.

• In Site>>siteMap, the site flattens the tree of pages into a list. It can
access method Page>>fullUrl on all pages in the list, since the in
filter of pages is navigation.

Crossing Handlers Filters can lead to references that expose no methods.
Outgoing references (references going “up” in the hierarchy) of this kind
are valid, while incoming references (references going “down” in the hier-
archy) are not. All incoming references in the system must expose at least
one method. With this restriction, hiding all methods of an object expresses
confinement.

This corresponds to the traditional principles of alias protection [121]:
nodes of a list can reference the data they hold (outgoing references), but
external (incoming) references to the nodes violate information hiding and
must be forbidden. Only the list can reference its nodes.

The event of an invalid reference transfer is reified and the correspond-
ing crossing handler is triggered. By default, the crossing handler performs
no action and raises an exception. It could however be adapted to perform
some actions after which the reference transfer should be valid. Let us con-
sider Figure 5.1, which uses the default crossing handler:

• When instances of List, WebServer and Site return a reference to ob-
jects they own, a crossing handler is fired since their in filter is empty.
The default crossing handler will raise an exception and prevent the
reference transfer.

• An instance of Page can return a reference to a subpages, since Page’s
in filter contains the navigation topic.

Ownership Transfer When an object creates another object, it is assigned
by default to be the owner of the new object. Since the default owner is
not always appropriate, ownership can be transferred if necessary. Meth-
ods Object>>owner and Object>>owner: respectively query the current
owner of an object, or modify it. Ownership transfer must preserve the tree
structure of the ownership graph, and must not result in invalid incoming
references.

5.2.1 Default Policy

By default, the set of in filters is empty, as well as the set of out filters. With
an empty set of in filters, the topics of the methods are irrelevant and ref-
erences to internal objects cannot be passed to the outside. The default

85

crossing handler raises an exception when a reference to an internal object
is passed to the outside, either as a return value or as a parameter. This
corresponds to the classic owner-as-dominator policy, which enforces con-
finement [39].

Let us consider the web server in Figure 5.1. The list of sites is imple-
mented as a list composed of nodes. Since the set of in filters is empty,
an attempt to return a reference to a node will trigger the crossing han-
dler which will raise an exception: the list is an aggregate and the nodes
are effectively inaccessible outside the aggregate. With an empty set of out
filters, objects within a context can only depend on the identity of objects
outside the context.

5.3 Using Filters

In our approach, each object acts as a context object that affects the behavior
of its children. An object can have a behavior of its own or not. If an object
has no behavior and has no other purpose than controlling the behavior
of its children, we refer to it as first-class context. We first show how regu-
lar objects can be configured with filters to relax the owner-as-dominator
policy. We then show how first-class contexts can be leveraged as well.

5.3.1 Iterators

Owner-as-dominator is too restrictive to implement common idioms like
iterators: for efficiency the iterator must be owned by the aggregate to have
access to internal data, but cannot then be returned to the outside [120].

:List

:Node :Node

∅

head

next
:Iterator

{iteration}

current

ownership references contexts filters
{out}

{in}

Figure 5.2: Iterators can be returned to the outside since they match the
iteration topic.

In our approach, filters can easily be used to solve this situation. The list
owns the iterator, which is then a sibling of the nodes and has full access
to them. The in filters of the list contain the iteration topic, which match
methods next and current of the iterator, shown in Listing 5.3. The iterator
can be by consequence returned outside the list, while nodes cannot.

86

Several variants of ownership types using class nesting [23], ownership
domains [3], relaxed constraints for dynamic aliases1 [39] or additional ac-
cess modifiers [101], have been devised to solve this problem. The imple-
mentation of dynamic ownership by Gordon and Noble [121, 70] relies on
a special language feature to “export” objects to solve this issue. Filters and
crossing handlers support this situation, while being general mechanisms.

Iterator>>next
<topic:iteration>
current ← current next.

Iterator>>current
<topic:iteration>
↑ current data.

Listing 5.3: Methods belonging to the iteration topic

5.3.2 Read-only References

With owner-as-dominator, encapsulated objects cannot be returned to the
outside, which effectively prevents unwanted modification to the internal
representation from ever happening. When internal state must be exposed,
a safe alternative is to expose only a limited read-only view. This is known
as representation observation [25].

Let us consider that each web site has several administrators that are
stored in an array. Administrators can be changed only via a special ad-
ministration page. The ability to obtain an unrestricted reference to the
internal array from outside the web server would imply that the list can be
freely changed. To prevent mutations, the method Array>>at: is assigned
the topic read-only and the in filters of the web site matches the read-only
topic. The situation is shown in Figure 5.3. This way, objects outside the
web site only have a limited access to the array.

Since the effect of filters is cumulative, read-only access will be applied
transitively to all objects within the context. This works well for nested and
recursive structures, as was shown previously when limiting access to the
navigation topic for web pages.

There have been several proposals for read-only references [25]. For dy-
namic languages, only few approaches have been proposed. Schaerli et al.
proposed encapsulation policies [145], which enable fine-grained control of
the interface objects expose. It however fell short in dealing with recursive
structures. Arnaud et al. proposed a specific solution to this problem with

1Static aliases correspond to references from instance variables. Dynamic aliases corre-
spond to references from temporary variables, parameters, and return values. Static aliases
are allocated in the heap. Dynamic aliases are allocated in the stack.

87

:Site

:Array

∅

ownership references contexts filters
{out}

{in}

Alice:String
Bob:String

{read-only}

Figure 5.3: The site enables a read-only view of the internal array

read-only references [11]. In both cases, the policy is attached to a refer-
ence, not the object itself, and references with limited capabilities must be
created explicitly. We believe these approaches are counter-intuitive since
they define behavior based on the history of the reference instead of the
dynamic context. Using the ownership topology appears to be much more
natural.

5.3.3 Access Modifiers

The public and protected access modifiers can be simulated with first-
class context objects. Such objects have no behavior of their own.

Each class categorizes its methods into one of two topics public and
protected, in addition to other existing topics. Each object is then owned
by a “wrapper” which exposes only public methods. Figure 5.4 shows this
situation. Instead of owning the array directly, the web site owns now the
wrapper of the array.

:Wrapper
{public}

{all}

:Site ∅

ownership references contexts filters
{out}

{in}

Alice:String

Bob:String

{read-only}

:Wrapper
{public}

{all}

:Array

Figure 5.4: A synthetic wrapper exposes only public methods

88

This strategy implements instance protected methods: an object cannot
access the protected methods of another object. Whether the receiver of a
message is self or an alias of self has no impact. The strategy is similar
to accessibility of instance variables in Smalltalk.

This contrasts with Ruby and Newspeak. Ruby implements class pro-
tected methods. Newspeak implements instance protected methods, but
the lack of consideration of the sender in the method lookup algorithm re-
sults in different semantics for self sends with self or an alias of self 2.
Since our approach works with objects and not classes, we cannot simulate
private.

5.3.4 Sandboxing

An object has full access to its siblings. Therefore, for the sake of security,
one might want to protect objects within an additional first-class context.

We call this sandboxing. Figure 5.6 shows the design of the web server
with the web handler, and illustrates two forms of sandboxing. The server
is a generic infrastructure that abstracts the HTTP protocol. It manages in-
stances of Connection, Request and Response classes. HTTP request data
can be read with Request>>fields and the response is produced with Re-
quest>>sendResponse:stream: that takes a stream and an HTTP response
code. The actual treatment of the request is delegated to a WebHandler.
The handler is an extension of the web server that implements the desired
functionality, e.g., list directories, evaluate templates, etc., The handler is an
untrusted component from the point of view of the web server.

Two forms of sandboxing are possible, as shown in Figure 5.5 and Fig-
ure 5.6. In one case, the sandbox is around the web server, and in the other
case it is inside the web server. In both cases, the web handler has only
access to the request topic, which suffices to treat the request and produce
the response.

5.3.5 First-class State

In our model, the interface an object exposes depends on its direct and
indirect owners. While an object cannot “on its own” change the interface
it exposes, we can very easily do so using first-class state [154]. Depending
on which state it is owned, the object exposes a different set of operations.
Ownership transfer is used to perform actual state changes.

Let us imagine that connections in Figure 5.6 have two states: open and
closed. We model these settings with three objects, one being the connec-
tion itself, the two others the first-class states. The connection class defines
two topics, open and closed. Each first-class state exposes one topic. When

2§5.7 of the specification

89

∅

{request}

:WebServer :WebHandler

:Request

:Response

:Sandbox

:Connection

:List

:Node

∅

∅

∅

∅

{request}

{request}

ownership static alias

contexts filters
{out}

{in}

dyynamic alias

Figure 5.5: The web server is sandboxed

ownership static alias

contexts filters
{out}

{in}

dyynamic alias

:WebServer

:WebHandler

:Request

:Response

:Sandbox

:Connection

:List

:Node

∅

∅

∅

∅

∅

{request}

∅

{request}

Figure 5.6: The handler is sandboxed

90

{close}

∅

∅

{request}

:WebServer

ownership references (static alias) contexts filters
{out}

{in}

∅

∅

{open}

:Connection

:Closed∅ :Open

openState

closedState

:Request

:Response

Figure 5.7: A connection can be owned either by the closed or open state.

the connection is owned by the open state, it exposes only methods of the
open topic. Inversely, when it is owned by the closed state, it exposes the
closed topic. The connection must be owned by either state. Figure 5.7
shows such a situation. Similarly to sandboxing, the web server owns now
the states instead of the connection. For objects that reference the connec-
tion, the pattern is transparent.

Note that a useful variant of this technique can be used to “freeze” ob-
jects [95], after which they are immutable. All that is required is to im-
plement a first-class “frozen” state, which filters out all mutating methods
making the owned object effectively immutable.

5.4 Using Crossing Handlers

Examples in the previous chapter relied on the default crossing handler
which raises an exception when an invalid reference transfer occurs. We
now show how crossing handlers complement filters in useful ways.

5.4.1 Defensive Copying

Let us consider again the problem of the previous chapter with the adminis-
trators. With owner-as-dominator, encapsulated objects cannot be returned
to the outside. When internal state must be exposed, it is a common prac-
tice to return a copy of the object. This technique is known as defensive
copying [21].

Let us consider that each web site has several administrators whose
names are stored in an array. Administrators can be changed only via a

91

special administration page. The ability to obtain a reference to the internal
array from outside the web server would imply that the list can be freely
changed. A typical implementation of the administrator accessor would
copy the array before returning it3:

Site>>administrator
↑ administrator copy.

Languages do not have mechanisms to express such policies cleanly:
developers must manually add code for copying objects whenever appro-
priate; copying and non-copying accessors might exist side by side and
cause confusion; applying the technique systematically when modules grow
is hard.

In our approach, the crossing handler can be overridden to implement
the strategy. Whenever an encapsulated object is returned to the outside,
the crossing handler is triggered. It copies the object being referenced and
assigns it the sender as owner. The copy is then used for the reference
transfer that is resumed.

Site>>handleCrossing: anObject sender: theSender
↑ anObject copy owner: theSender.

5.4.2 Remoting

With distributed objects, objects can be local and remote. Remote invoca-
tions have a pass-by-value semantics while local invocations have a pass-
by-reference semantics. Parameters of remote invocations must be serializ-
able. Since the caller does not know whether the receiver is local or remote,
all parameters must be serializable. This prevents useful optimizations,
such as using implicit futures as parameters.

Local and remote objects can be organized into distinct first-class con-
texts in the ownership hierarchy. The local context exposes only serializable
objects. When a non-serializable object is passed as parameter, the crossing
handler is fired and can attempt to resolve the conflict. For instance, if an
implicit future is passed as parameter of a remote invocation, the handler
can wait until its value is available and pass it instead.

Local>>handleCrossing: aFuture sender: theSender
↑ aFuture value.

3This example is intentionally close to Java’s Class.getSigners() bug in early versions
of the JDK. The method returned the internal array which could be tampered with by a
malicious client to break security. This bug was motivational for ownership types [3].

92

5.4.3 Synchronization

Threads are objects. Objects that are owned by the threads are thread-local.
Objects that are not owned by any thread are global. Rather than stati-
cally controlling thread locality [173], we control it dynamically. Threads
expose only the sharable objects, i.e., objects with at least one sharable
method. Object that do not have sharable members cannot be passed to
other threads or global object since the crossing handler triggers an error.

To pass thread local objects outside the boundary of the thread, they
must be adapted first to become sharable. This adaptation can be done
manually, or automatically in a crossing handler. For instance, a cross-
ing handler can synchronize objects when they escape their threads by
dynamically changing the class of the object (e.g., Smalltalk’s become: or
changeClassTo:).

Thread>>handleCrossing: anObject sender: theSender
↑ anObject synchronize.

Note that the handler is triggered independently of whether the re-
ceiver would create a static alias of the thread local object or not. It is
more conservative than tracking whether objects are reachable by multiple
threads.

5.5 Security

Dynamic ownership can be used to increase the security of open systems.
We consider in this section the impact of reflection and ownership transfer
from the perspective of security.

5.5.1 Ownership Transfer

Ownership transfer could be used to bypass the constraints imposed by
filters and crossing handlers, and thus break information hiding. In Fig-
ure 5.6, the handler is an untrusted component. Ownership is leveraged
to constrain interactions between the handler and the web server to legal
scenarios according to the principle of least privilege.

There are essentially two privilege escalation scenarios to consider: 1) a
malicious object changes the owner of an object to obtain privileged access
to it, and 2) a malicious object changes its owner to obtain privileged access
to other objects.

Since ownership transfer is realized via regular message sends, it can
be limited by using filters to mitigate the first threat: if ownership transfer
is not exposed with in filters, external objects will not be able to transfer
ownership of internal objects; if an object does not trust one of its internal

93

objects, it can sandbox it (see subsection 5.3.4) and use an out filter to pre-
vent ownership transfers. It is preferable to own only objects one trusts.
Container objects should usually not own their content, e.g., a list does not
own the data it holds.

Filters and crossing handlers are however not sufficient to address the
second threat. The web handler could for instance make the web request
its owner. This way, it would be a sibling of the web response and have full
access to it. It could use this privilege to break encryption protocols.

To prevent such a case, the new candidate owner must accept the trans-
fer first. The web request would for instance reject ownership of the web
handler. In our approach, different objects can specify different owner-
ship transfer policies by overriding the hook Object>>acceptOwnership-
Of: anObject. Following the principle of deny by default, all transfers
are by default rejected. For convenience, the acceptance check is however
bypassed if the initiator of the transfer is the new owner itself. That is,
anObject owner: self always succeeds.

5.5.2 Reflection

Unstratified reflective capabilities to query the class of an object (class),
invoke methods (perform), and access the state of an object (at and at:)
defeat information hiding. For instance, it is possible with reflection to
inspect the value of a field for which there is no accessor.

Since reflection is also realized via regular message sends, it can be lim-
ited using filters. If the out filters hide reflective methods but the in filters
expose them, objects can only reflect on objects they own, but not arbitrary
objects. This way, a site can for instance reflect on all the pages it owns tran-
sitively, but not on the page of another site. If we want to prevent reflection
between siblings, sandboxing can be used in addition (see subsection 5.3.4).
This would prevent that a web site reflects on another web site.

The effect of reflective methods is not subject to constraints imposed by
filters and crossing handlers: it is possible to reflectively invoke a method
that would otherwise be inaccessible, and reflective accesses to the state of
an object bypass crossing handlers. This way, features to save and restore
a website (including its pages) could for instance be implemented using a
generic reflection-based serializer. If the effects of reflective methods were
also constrained, many useful patterns that use reflection would not be ap-
plicable any longer.

Reflection can be used to reveal information of an object at most one
level down. Let us consider Figure 5.8. The web server can reflect on the
homepage since the web site enables reflection. Despite the empty filters of
the homepage, the web site can then reflectively obtain a reference to the
leaf page. It would however fail to reflectively invoke methods on the leaf
page or inspect its state.

94

:WebServer
∅

∅

:PageWithChild

Extranet:Site

ownership references

homepage

site

contexts

:LeafPage

child

filters
{out}

{in}

{reflection}

∅

∅

∅

server

Figure 5.8: Reflection can be limited with filters. The dotted reference can
be obtained only via reflection, since reflection bypasses accessibility and
aliasing constraints.

5.6 Semantics

We have presented informally how our variant of dynamic ownership works
with several examples. We describe in this section the semantics of the
mechanisms more precisely, and how they can be integrated into a dy-
namic language. We omit custom crossing handler and use a set-theoretic
approach to formalize the semantics of filters and the default crossing han-
dler.

5.6.1 Ownership and References

The heap is a set of objects O. The world is a special object in the heap,
world ∈ O. The partial function owner : O → O maps an object to its
owner, possibly the world. owner is defined for all objects except world. The
owner function defines a partial order ≺ over the set of objects:

o1 ≺ o2 ⇐⇒ ∃n > 0, ownern(o1) = o2

The world is the indirect owner of all objects: o ≺ world, ∀o ∈ O. The func-
tion references : O → 2O defines the existing references (static or dynamic).

95

5.6.2 Topics and Filters

For the purpose of explaining our model, we consider that methods are
attached to objects, not classes. The details of method behavior is also irrel-
evant. We model only topics and filters as:

• methods : O → 2M maps objects to methods names m ∈ M;

• topics :M→ 2T maps method names to topic names t ∈ T ;

• inFilters : O → 2T maps objects to set of topics that serve as in filters;

• outFilters : O → 2T maps objects to set of topics that serve as out
filters;

All methods belong to a special topic all ∈ T , that can be used in filters.
If classes and inheritance were considered, rules for topic variance in

overridden methods would need to be specified. Similarly to traditional
access modifiers, subclasses can only make methods more visible, i.e., they
can only add topics to existing methods, not remove them.

5.6.3 Paths

The ancestors of an object o, anc(o) = {o′|o ≺ o′}, is the set of all direct and
indirect owners of that object, up to the world. Conversely, the descendants
of an object, desc(o) = {o′|o′ ≺ o} is the set of all objects that object owns
directly or indirectly. The depth of an object, d(o) is the cardinality of its set
of ancestors, d(o) = |anc(o)| The first common ancestor of two objects is:

com(o1, o2) = max(anc(o1) ∩ anc(o2))

where max returns the object with the maximum depth. (Since the owner-
ship relation forms a tree, there is a unique first common ancestor.)

The outPath from an object a to an object b is the sequence of ancestors
of a up to the first common ancestor of a and b. Respectively, the inPath
from an object a to an object b is the sequence of descendants starting from
the common ancestors of a and b down to b:

outPath(a, b) =
{

owner(a), outPath(owner(a), b) if d(a) > D
() if o/w

inPath(a, b) =
{

inPath(a, owner(b)), b if d(b) > D
() if o/w

where D = 1 + depth(com(a, b)).

96

The path from a to b is then the sequence inPath(a, b), com(a, b), outPath(a, b).
In the ownership tree below, outPath(a, e) = (b) and inPath(a, e) = (d). The
path between a and e is (b, c, d).

a

b

c

e

d

5.6.4 Accessibility

An object a ∈ O can send message m ∈ M to object b ∈ O only if the top-
ics of method m match the filters along the path from a to b. Let us define
exposesIn(o, m) ⇐⇒ inFilters(o)∩ topics(m) ̸= ∅ and exposesOut(o, m) ⇐⇒
outFilters(o)∩ topics(m) ̸= ∅. Formally, the condition can be expressed as a
predicate:

isAccessible(a, b, m) ⇐⇒
{
∀o ∈ outPath(a, b), exposesOut(o, m) and
∀o ∈ inPath(a, b), exposesIn(o, m)

Let us consider Figure 5.4. If method Array>>at has topics read-only
and public, it is visible outside of the web site, since each context exposes
either the topic read-only or the topic public.

Note that outPath(a, b) = ∅ and inPath(a, b) = ∅ if a and b are parent
and child, child and parent, or siblings. In these cases, the accessibility
condition is trivially satisfied, and both objects can access all methods of
the other.

5.6.5 Validity of References

A reference is valid if the contexts that it crosses inward expose at least
one method; the contexts that it crosses outward could hide all methods,
though. The validity of a reference between two objects can be defined as a
variation of the accessibility for an individual method:

isValidReference(a, b) ⇐⇒ ∃m ∈ M, ∀o ∈ inPath(a, b), exposesIn(o, m).

Note that unlike isAccessible, isValidReference considers only the inPath
between the two objects. The system must establish only valid references:
∀a, b ∈ O, b ∈ references(a)⇒ isValidReference(a, b).

97

5.6.6 Instantiation

When an object o requests the creation of another object, a new object is
allocated in the heapO and it is assigned o as its owner. A reference from o
to the new object is established. Since o and the new object are parent and
child, o can access all methods of the new object. This preserves the partial
order ≺ and the consistency of the references at run-time.

5.6.7 Aliasing

Since references cover both static and dynamic aliases, passing references
as parameters or return values of method invocations creates new refer-
ences between objects. The system must establish only valid references
and signal invalid reference transfer with an error.

Let us first consider return values. Let s, r, v be respectively the sender,
receiver and return value of a message. The reference between r and v is
valid, v ∈ references(r) and isValidReference(r, v), otherwise an error would
have been raised previously. The system must ensure that the reference
between s and v will be valid as well.

In practice, one does not need to check all contexts along the inPath(s, v)
to assess the validity of the reference. Let us define path truncation ⊖ :

a, b⊖ c =
{

a if b = c
a, b if o/w

Since the reference from r to v is known to be valid, it suffices to assess
whether the contexts inPath(s, v)⊖ inPath(r, v) accept incoming references
to v.

Figure 5.9 illustrates the references involved when p1 sends a message
to s2 that returns a reference to p2.1. The in contexts crossed between p1
and p2.1 are {s2,p2}. The in contexts between s2 and p2.1 are {p2}. The
list of contexts to check corresponds to inPath(p1,p2.1) ⊖ inPath(s2,p2.1),
which is {s2} in this case. Since s2 has no in filters, the reference to p2.1
exposes no method and s2’s crossing handler is fired. The handler raises
an exception and prevents p1 from obtaining a reference to p2.1.

The treatment of parameters is similar. Let s, r, p be respectively the
sender, receiver and the parameter of interest of a message. The reference
between s and p is known to be valid. The system must ensure that the ref-
erence between r and p will be valid as well. In practice, it suffices to assess
whether the contexts inPath(r, p) ⊖ inPath(s, p) accept incoming references
to p.

Custom crossing handler could be modeled by rewriting message sends
o.m(p∗, . . .) as ⌊o.m(⌈p∗⌉self,o, . . .)⌋self,o. The operators ⌊. . .⌋self,o and ⌈. . .⌉self,o
perform the checks for the parameters and return value as described above.

98

w:WebServer

s1:Site

p1:Page

homepage

server

site

server

∅

∅

extranetintranet

p2:PageWithChild

s2:Site

homepage

site

p2.1:LeafPage

childX

ownership static alias

contexts filters
{out}

{in}

dyynamic alias

{navigation}

∅

{navigation}

∅

{navigation}

{navigation}

Figure 5.9: p1 invokes a method on s2 which returns a reference to p2.1.
The in contexts crossed from p1 to p2.1 are {s2,p2}. The in contexts crossed
from s2 to p2.1 are {p2}. The set of crossing handlers to check corresponds
to {s2,p2} ⊖ {p2} = {s2}. s2’s crossing handler raises an exception and
prevents that p1 obtains a reference to p2.1 (reference marked with a X).

They invoke the special method handleCrossing ∈ M for each context that
is crossed inside.

5.6.8 Ownership Transfer

The owner of an object can be changed at run-time. The ownership transfer
must preserve the partial order ≺ and the consistency of the references at
run-time, though. Failure to do so results in a run-time error. In practice,
this implies that the new owner must not be a descendant of the current
owner, and that the system must verify the validity of all references to de-
scendants of the impacted object.

Custom ownership transfer policies (see subsection 5.5.1) could be mod-
eled by invoking a special method acceptOwnershipOf ∈ M on the new
candidate owner. If the invocation returns false, the transfer is rejected.

99

5.7 Implementation

We have implemented a prototype of our variant of dynamic ownership in
Pharo Smalltalk. Essentially, message sends must be intercepted to enforce
the accessibility defined by filters, and execute crossing handlers if neces-
sary. We implemented a compiler that transforms the original source and
weaves it with additional logic, similarly to the technique used by Rivard
to implement contracts [142]. Each call site is rewritten with one level of
indirection that performs the additional logic, and then sends the original
message.

5.7.1 Closures and self

The four statements in Listing 5.4 have the same intent: they send message
print: to self with anObject as parameter. Self-sends are never filtered.
In the first case, the self send is statically detected and is not rewritten with
one level of indirection. The second case uses an alias myself of self. The
self-send is not detected statically and the message send goes through one
level of indirection. Cases 3 and 4 illustrate the peculiarities of closures.
Within closures, self is not bound to the closure itself, but to the enclosing
object. By consequence, the owner of a closure is the owner of the enclosing
object. Therefore, despite the fact that closures are objects, [...] value:
anObject in Listing 5.4 leads to a reference transfer that is within the same
context. Also, since we rewrite the call sites, non-local returns within clo-
sures are correctly handled.

| myself |
myself ← self.
self print: anObject. "1"
myself print: anObject. "2"
[:p | self print: p] value: anObject. "3"
[:p | myself print: p] value: anObject. "4"

Listing 5.4: Message sends with similar intent

5.7.2 Primitive Types

Instances of String, SmallInteger, etc., are immutable objects. Dynamic
ownership raises the question whether such scalar values can be owned or
not. We can argue that since they are immutable, so leaking such a value
cannot compromise internal invariants of the object and it therefore makes
no sense to own scalar values. On the other hand, such a value might still
represent sensitive information that one does not want to expose. In this
case, similar values need to be treated as distinct objects since their owner

100

can differ. For instance, two objects could each own an instance of a string
with the same value. In our implementation, these objects are owned by
the world and are not subject to dynamic accessibility and aliasing checks.
This decision also applied to nil, the unique instance of UndefinedObject.

5.7.3 Control Flow

Control flow is realized in Smalltalk with message sends. The most com-
mon control flow messages (ifTrue:ifFalse, whileTrue:, etc.,) are not
rewritten. The same treatment could be extended to boolean operators (or:
and and:), assuming they are not redefined in other classes.

5.7.4 Ownership Transfer

After the owner of an object o has changed, the system must ensure that
all references to objects within o’s context are still valid (i.e., expose at least
one method). In Pharo, Object>>pointersTo performs a linear scan of all
objects in memory and returns all objects pointing to a particular object.

5.7.5 First-class Classes

Objects are instantiated by sending the message new to the corresponding
classes4. Classes are objects, and constructors are class-side methods that
act as factories. In our implementation, classes are owned by the world. To
assign a default owner to a newly instantiated object, our implementation
intercepts the message new. The default owner is the sender of the new mes-
sage. First-class classes pose two challenges to our model. First, constructor
methods that use self new internally will produce objects owned by the
class itself. Second, since classes are owned by the world, the constructor
method might not be accessible if a context hides it. In our implementation,
classes are treated in a special way to circumvent these problems.

5.8 Experiments

We used an existing Smalltalk web server5 to experiment with filters and
crossing handlers. We report here on our experience using these mecha-
nisms.

4In Pharo, the primitive method is actually called basicNew
5Original sources: http://www.squeaksource.com/WebClient.html

101

http://www.squeaksource.com/WebClient.html

:WebServer :WikiHandler∅

{request}

ownership static alias

contexts filters
{out}

{in}

dyynamic alias

:WebPage

:WebPage

:Request

:Response

:List

:Array

∅

∅

∅

∅

{content}{log}

{all}

{all}

Figure 5.10: Key objects of the web server and their organization in an own-
ership structure.

5.8.1 Adapting the Web Server

Figure 5.10 shows the key objects of the web server and their organization
in an ownership structure. The examples in the previous chapters were in-
tentionally very similar to the design of this web server. The key classes are
WebServer, WebRequest and WebResponse. Since the web server is only an
infrastructure component to handle the HTTP protocol, we implemented
in addition a minimal WikiHandler to view and edit WebPage. The web
server uses several classes of the collection hierarchy that we adapted to
our approach. The system consists of about 20 classes.

Ownership and Topics Two topics were mainly used to relax ownership:
request and content. The first topic allows the web server to pass the
request to the wiki handler. To process the request, the handler first lo-
cates the web page for the requested URL, and then renders the web page.
The request topic enables the wiki to read (but not write) attributes of
request such as the URL. The content topic enables the handle to access
nested web pages and renders them. The response is owned by the re-
quest. It cannot be accessed by the web server. The web server logs en-
tries with WebServer>>logEntryFor: request response: response so
a third topic log was necessary. Only 14 methods needed to be annotated,
and the effort was low.

102

Note that implementing Request>>createLogEntrywould be more object-
oriented and wouldn’t need the log topic. In that sense, ownership favors
object-orientation.

Factory Methods By default, the owner of an object is the one that in-
voked the corresponding factory method (see subsection 5.7.5). This is not
always appropriate. For instance, Collection>>select: returns a collec-
tion that must have the same owner as the original collection. Such meth-
ods must be adapted to transfer the ownership after creation. The new
owner accepts the transfer if it comes from an object it already owns.

Cloning Cloning should produce a new object that is indistinguishable
from the original one. The implementation in Object was adapted to pro-
duce a copy of the object with the same owner as the original object. The
implementation must be further adapted for specific classes. For instance,
copying a dictionary copies the associations its owns as well. This kind of
copying is called sheep cloning [96]. In this case, the owner of the copied
associations must change to be the copied collection. Cloning can be con-
sidered to be a special factory method.

Utility Methods Class-side utility methods raise problems of ownership
transfer similar to constructor methods (see subsection 5.7.5). We moved
utility methods to a trait that could be reused whenever necessary. Code
like WebUtils decodeUrl: aString is then rewritten as self decodeUrl:
aString. This reformulation avoids problematic crossings, and accessibil-
ity restrictions. The trait contains 7 such methods.

Ownership Bugs The method WebRequest>>fields in Listing 5.5 vio-
lates information hiding and ownership: it adds the internal associations
of a dictionary to another one without copying. Methods associationsDo:
and add: are intended to be private to a dictionary. It is the goal of dynamic
ownership to identity such violations.

fields
| fields |
fields ← Dictionary new.
self getFields associations:[:a| fields add: a].
self postFields associations:[:a| fields add: a].
↑fields

Listing 5.5: This code violates ownership and information hiding since
it adds the internal associations of a dictionary to another one without
copying.

103

A modified version of the code without the aliasing bug is shown below.

fields
| fields |
fields ← Dictionary new.
self getFields keysAndValuesDo:

[:key :val | fields at: key put: val].
self postFields keysAndValuesDo:

[:key :val | fields at: key put: val].
↑fields

Listing 5.6: The modified code does not access the internal state of
dictionaries.

This example shows that such code exists and that dynamic ownership
can detect design anomalies.

5.8.2 Performance

Naturally, enforcing such behavioral variations at run time entails an over-
head. The dynamic checks entail finding the common owner to two objects,
and several manipulations of lists. Also, listing and comparing topics is ex-
pensive. Since our implementation was not optimized for performance, the
overhead is significant.

The check for validity of references after an ownership transfer transfer
was disabled during our evaluation of performance. Indeed, pointersTo
is a very expensive operation that performs a linear scan of all objects in
memory at the application level. Ownership transfers are occasional, so we
can afford some overhead for them, but it would require support from the
virtual machine in a production implementation.

Certain message sends can be optimized easily: messages sent to an
alias of self can bypass all dynamic checks; messages sent to a child re-
quire only checking whether the return value crosses a context; messages
sent to a parent require only checking whether the arguments cross a con-
text; messages sent to a sibling require checking whether the arguments
and the return value cross a context, but do not require checking for acces-
sibility of methods.

Figure 5.11 shows micro benchmarks for message sends. Static self
sends (i.e., using self) are not rewritten and correspond to the performance
of the original system. Dynamic self sends (i.e., using an alias of self) go
through one level of indirection, but bypass all dynamic checks. Dynamic
self sends indicate that the level of indirection itself entails a degradation
of factor 8 (25 vs. 3). Messages sent to a child, a parent, or a sibling can
be partly optimized. Messages sent to “other” objects in the ownership

104

self self parent children sibling other
(static) (dynamic) to children to parent to sibling

3 25 28 41 47 390
3 25 28 41 48 87

Figure 5.11: Times (ms) for 10’000 executions of the method
returnParameter: 42 invoked on itself, a child, its parent, a sib-
lings, or another object. The method takes a parameter as argument and
returns it as-is. The first line shows measures when caching of accessibility
checks is disabled, the second when it is enabled.

0

500

1000

1500

2000

2500

3000

A
rr

a
y

S
o
c
k
e
tS

tr
e
a
m

A
s
s
o
c
ia

ti
o
n

O
rd

e
re

d
C

o
lle

c
ti
o
n

W
e
b
R

e
q
u
e
s
t

D
ic

ti
o
n
a
ry

W
ri
te

S
tr

e
a
m

W
e
b
P

a
g
e

W
e
b
R

e
s
p
o
n
s
e

H
tm

lW
ri
te

r

W
e
b
S

e
rv

e
r

R
e
a
d
S

tr
e
a
m

W
ik

i

M
u
te

x

Id
e
n
ti
ty

S
e
t

S
m

a
llI

n
te

g
e
r

B
y
te

S
tr

in
g

T
ru

e

F
a
ls

e

S
o
c
k
e
t

U
n
d
e
fi
n
e
d
O

b
je

c
t

C
h
a
ra

c
te

r

D
a
te

A
n
d

T
im

e

bypass

other

sibling

parent

children

self

7277 4773

Figure 5.12: Distribution of message sends for the key classes (the graph
is best viewed in color). The majority of interactions between objects are
message sends that can be optimized.

structure require the execution of expensive logic to enforce the generic ac-
cessibility and aliasing constraints. The two lines show the times when the
results of accessibility checks (see subsection 5.6.4) are cached or not. The
overhead of the micro benchmarks range between factor 8 (25 vs. 3) and 29
(87 vs. 3) when caching is enabled. Note that passing a different parameter,
or more than one parameter, might degrade the performance further.

Figure 5.12 shows the distribution of message sends across the five cat-
egories for key classes in the web server. On the left are measures for ob-
jects subject to dynamic checks. On the right are measures for primitive
types (see subsection 5.7.2) not subject to dynamic checks. We can see that
the majority of interactions between objects consists of message sends that
can be optimized. Macro benchmarks using a mock socket independent of
IO indicate a degradation of about factor 13 when caching of accessibility
checks is enabled (204 vs. 2521). This overhead must be put in perspective
with the overhead of the level of indirection (factor 8).

105

5.9 Discussion

Our experiments show that our approach can be put to work to better con-
trol information hiding. We found our approach flexible enough to accom-
modate an existing design, and at the same time constraining enough to
highlight design anomalies. The system we studied was however small.
We plan in future work to investigate how our approach scale for bigger
systems. Here we sketch some improvements that our experiment sug-
gests.

Flexibility with Impersonation Constructor methods and class-side util-
ity methods are problematic since classes are owned by the world. For in-
stance, invoking the copy constructor OrderedCollection from: aCol-
lection implies that the reference aCollection is first transferred to the
object OrderedCollection. The transfer might raise a crossing error.

A solution to this problem is to introduce impersonation of objects.
When object r executes an impersonated method in response to a message
from object s, the owner of r resolves temporary to the owner of s for the
current execution. Following this strategy, classes can defined to always
impersonate the sender of the messages they receive.

Improving Performance The dynamic checks follow the path between
objects in the ownership tree. The identity of objects along the path is how-
ever not relevant, but only the classes of those objects matter to the dynamic
checks. Computing information about the relative positioning of objects in
the ownership tree is expensive. Our implementation caches the results of
accessibility checks, but not the aliasing checks. We plan to investigate how
this information could be effectively computed and cached in this case as
well. The cache could be maintained per object, or per call site.

In tracing VM [64], traces are recorded and compiled to native code
at run-time. Recorded traces are reused by speculating on branching and
types. Guards in the traces validate this speculation, and if a guard fails,
the trace exits. To support dynamic ownership, a tracing VM could spec-
ulate on the relative positions of objects in the ownership tree, in addition
to branches and types. Checking the validity of references after ownership
transfers would also benefit from VM support, since it is an expensive op-
eration.

Note that dynamic ownership can be considered to be a special kind of
contract. Filters could be turned off during execution of production sys-
tems for performance reasons. As long as the system does not use custom
crossing handlers, they can be turned off as well (indeed, if the system uses
custom crossing handlers, removing them might impact the application be-
havior).

106

Composition with Dynamic Topics It is easy to assign topics to a class as
long as they are used in a specific context. If a class is reused in multiple
contexts, it might be complicated to assign topics that satisfy all contexts.
Let us consider Figure 5.3: the site enables a read-only view of the inter-
nal array. Let us imagine that the site uses another array internally to keep
encryption keys. The second array will also be read-only since there is no
way to distinguish from both contexts where arrays are used. The solu-
tion to this problem would be to have topics per objects: two instances of
the same class could have different topics. We plan to achieve this with
rewriting rules attached to individual objects: one array rewrites the topic
read-only to admin-read-only, the other to key-read-only. The web site
can decide to expose only admin-read-only. For composition, a rewriting
rule attached to object o would impact o, but also objects owned by o.

5.10 Related work

We now compare more precisely our approach with other existing approaches
briefly presented in Chapter 2.

The closest related work is Dynamic Ownership by Gordon and No-
ble [70], which itself built on previous concepts of Dynamic Alias Protec-
tion [122], Flexible Alias Protection [121] and Ownership Monitoring [89].
In contrast to Dynamic Ownership, filters enable objects to be accessed out-
side their owner’s context via a possibly limited interface. Also, we not
only check accessibility when messages are sent, but also aliasing of objects
in return values and arguments. Flexible Alias Protection [121] enforces
“external independence”, a property which states that internal objects must
not depend on mutable state of external objects: in Dynamic Ownership,
invocations to external objects raise an exception if state is mutated or if a
value is returned. In our approach, a topic can be used to categorize such
legal methods, but it cannot raise an exception if a method is wrongly cat-
egorized.

Ownership Types Since the work by Clarke et al. [40] that introduced
the owners-as-dominators model, many variants of static ownership types
have been proposed. Similarly to our work, these approaches aim at relax-
ing the owner-as-dominator model to regain flexibility. In an extension of
their previous work [39], Clark et al. enable dynamic aliases to expose inter-
nal objects such as iterators. Boyapati et al. used inner classes instead [23].
With Ownership Domains [4, 3], objects can be organized into various do-
mains with different access constraints. Universe Types [114] similarly par-
tition objects into universes and control references between them. Variant
Ownership Types [101] parameterized types with an accessibility context
in addition to the ownership context, thus giving more fine-grained control

107

over aliasing. In these mechanisms, a member of a class can be accessed if
its type can be named. Filters and crossing handlers are dynamic. Gradual
Ownership[147] combines static and dynamic typing. Dynamic checks are
introduced for code that has not been statically typed. Other variants of
ownership types exist which address other aspects of aliasing, for instance
uniqueness of references [26, 129], thread-locality [173] or data transfer be-
tween actors [38]. Our examples of crossing handlers drew inspiration from
the two latter works.

Limited Interfaces Variant Ownership Types [101] can specify whether
references are writable or read-only. Universe Types [114] enforce the owner-
as-modifier discipline, where read-only references across universes are al-
lowed, but only the owner of an object can modify it. Our approach can
encode the owner-as-modifier discipline by exposing a special read-only
topic. Several languages can define write-once variables, e.g., C++’s const
and Java’s final keywords. Used with references, const does not pro-
vide transitive read-only access. Schaerli et al. proposed encapsulation
policies [145], which enable policies to be bound to references, but does
not consider transitivity. There have been several proposals of type sys-
tems that support transitive read-only references [25, 175] (independently
of ownership). Arnaud et al. proposed a variant of transitive read-only
references for dynamic languages [11]. Filters are flexible and able to ex-
pose limited interfaces; an interface with only read-only methods is just
a special case. In contrast to deep read-only references, read-only access
is only transitive to objects within the context. It can be considered as a
benefit, or a limitation depending on the context. Our approach is syn-
tactic and it assumes that methods have been correctly categorized in the
read-only topic by developers. Traditional access modifiers can be used to
limit interfaces. Modifiers can implement class privacy or object privacy.
Our approach implements object privacy, which was shown to be more in-
tuitive [164]. Arbitrary accessibility rules can be easily implemented with
techniques that reify message sends, such as composition filters [1]. The
Law of Demeter [98] is a design principle which dissuades invocations to
objects returned by previous invocations. Organizing the design in layers,
where objects in a given layer can only call objects in the layer below, is a
way to enforce the law. The law of Demeter, layers, and confinement with
ownership are design principles that prevent interaction between distant
entities.

Security Information hiding controls accesses from external to internal
objects; secure programming controls accesses from an object to its external
environment. Global namespaces compromise security since accesses to
global namespaces cannot be controlled. In Java, access to the class names-

108

pace can be controlled with class loaders and security managers, which are
mechanisms outside of the base language. In the object-capability [111]
model, objects can only send messages to objects that have been obtained
previously with message sends. In this model, global namespaces and re-
flection are loopholes. Filters can be used to limit access to external re-
sources, since filters work in both in and out directions. To control interac-
tions between modules, objects can be wrapped into membranes [111, 162,
44], which transitively impose revocability on all references exchanged via
the membrane, both inward and outward. When the membrane is revoked,
the wrapped module is guaranteed to become eligible for garbage collec-
tion; revoked references raise exceptions when used. Contexts resemble
membranes that intercept outward transfer of references. Newspeak is a
language that follows the object-capability model. In Newspeak, external
dependencies must be provided when an object is created [29]; there is no
global namespace, only nested virtual classes. Also, Newspeak decouples
reflection from classes via mirrors [27]. Tribal Ownership [32] exploits class
nesting to define an implicit ownership structure for objects. From the per-
spective of security, ownership transfer must be limited. Ownership trans-
fer is hard to support in static type systems [115], but very natural in a
dynamic approach.

5.11 Conclusions

Information hiding is an important principle to enable evolution, both at
development time and run time. We have proposed an approach to im-
prove information hiding by contextualizing the behavior of objects using
active and structural variability. Objects are structured in an ownership tree
and the behavior of an object varies dynamically depending on the sender
of a message. Each object acts as a context that alters the interface of its
children.

When a reference between two objects is about to cross a context in-
ward, a crossing handler is triggered. By default the handler fails, which
enforces the strict confinement of objects within their owner. However, the
crossing handler can be customized to implement an alternative policy. For
instance, an object can defensively copy its return value when it is accessed
by an untrusted object, and return an internal reference when it is accessed
by a trusted object.

Our approach improves the support of two modularity principles pre-
sented in Chapter 1:

• Information hiding. It scales information hiding from objects to aggre-
gates.

109

• Encapsulation. Aliasing policies like defensive copying can be encap-
sulated.

We can draw the following conclusions about the practicality of our
approach:

• Adoption. We found our approach flexible enough to accommodate an
existing design, and at the same time constraining enough to high-
light design anomalies. Object interactions tend to be local, i.e., in-
teractions between distant objects in the tree are rare. Filters fit well
with this locality. Objects can be easily confined, not only within their
direct context, but also within indirect contexts.

• Flexibility. The strength of our approach lies in the cumulative effect
of filters. Filters of various contexts compose naturally to define the
specific interface that is exposed to another object. Contexts can fil-
ter independent concerns. The behavior of an object depends on the
context it is in, which can change over time. We can for instance par-
tially simulate first-class states this way. Reflection can be scoped and
limited with filters.

Dynamic ownership, delegation proxies, and active contexts demon-
strate the benefits of embracing dynamism and contextualizing behavior.
In the next chapter we discuss how the three mechanisms complement each
others, and discuss the overall strengths and weaknesses of our approach
to enable run-time changes.

110

6
Conclusions

We have argued throughout this dissertation that contextualizing behavior
with active and structural variability improves the support for encapsula-
tion, information hiding and late binding, which enables run-time changes.
We have identified gaps in the support for run-time changes and devised
contextual programming language features to address them, showing for
each feature its respective benefits.

In this last chapter we review the three contributions together to pro-
vide a big picture of the progress that we achieved, but also of the draw-
backs and open points that remain.

6.1 An Extended Toolbox

The three language features that we described extend the developer’s tool-
box with new tools:

• With active contexts, developers can roll out arbitrary behavioral changes
and migrate the application state;

• With delegation proxies, developers can craft their own contextual-
ization mechanism to adapt or evolve software at run time;

• With dynamic ownership, developers can enforce information hiding
at the level of rigor they desire.

The three language features give novel options to developers to accom-
modate run-time changes at various levels of complexity. The three features

111

can be used in isolation, or together. Let us do a thought experiment1 to re-
cap how the features address the gaps that we identified (see Section 2.5),
and to see how they mutually benefit each others. Let us consider for this
purpose the small web server of subsection 5.3.4.

The web server is essentially a small piece of infrastructure that hosts re-
quest handlers. This is similar to a Java web server that hosts Java servlets2.
Project stakeholders might be interested to support three forms of run-time
changes.

1. The need to replace request handlers hosted by the server;

2. The need to change configuration options of request handlers (e.g.,
log levels);

3. The need to evolve the server infrastructure itself.

With the new options available, developers can decide to address these
requirements in the following way:

1. To ensure that the request handler can be replaced, the web server
must not establish any incoming reference to its internals. If the re-
quest handler must return an object to the web server (e.g., the HTTP
response), the object must not have any dependencies to the request
handler’s internal. The request handler is an opaque aggregate that
can be swapped when the system is quiescent. To enforce this dis-
cipline, developers can leverage dynamic ownership. Only objects
that are not owned by the request handler can be returned to the web
server. To perform the actual switch from one old request handler
to the new one, they can use a regular proxy (or even better, a del-
egation proxy) that does the routing. This example shows that dy-
namic ownership helps partially cover the gap concerning advanced
changes when the system is quiescent by increasing the granularity
of classic objects.

2. To quickly change the configuration options of the request handlers,
developers can leverage delegation proxies. They can implement a
first-class context that intercepts certain method invocations, e.g., in-
vocation of the log method. There exists one context per request han-
dler that represents its configuration. Before a request is processed by
the request handler, the corresponding context is activated. Since the
variation is scoped to the HTTP request, the configuration can change
anytime. This example shows that delegation proxies cover the gap
concerning simple changes when the system is busy.

1Unfortunately, the three features haven’t been integrated in a single Smalltalk image at
the moment.

2http://jcp.org/aboutJava/communityprocess/final/jsr315/

112

http://jcp.org/aboutJava/communityprocess/final/jsr315/

3. To enable the evolution of the server infrastructure at run time, devel-
opers can leverage active contexts. The developers can decide to roll
out updates per request or per session without requiring quiescence.
Additionally, using dynamic ownership, they can organize objects in
a hierarchy that is useful to reason about state transformations and
invariants. This example shows that active contexts cover the gap
concerning advanced changes when the system is busy.

As this thought experiment shows, the features nicely complement each
others. They make new design strategies possible. The above strategy is
only one of them. For instance, developers could decide to use active con-
texts to update the request handlers and the server infrastructure.

With respect to the analogy of an extended toolbox, it is worth noting
that the language features are really extensions3. If developers do not want
to leverage the new features, they do not need to adapt their code.

6.2 Strengths and Weaknesses

A useful programming language feature provides an attractive tradeoff in
terms of versatility, complexity, and performance. In other words: it should
help in many situations, be easy to use, and have a small performance over-
head.

Based on the experience gathered with our features, we now discuss the
overall strengths and weaknesses of an approach that relies on contextual
behavior.

Versatility. Active and structural variability helps in many situations.
The primary goal that it enables is run-time changes, but the previ-
ous chapters have also illustrated other unexpected advantages. For
instance, active and structural variability can address security and
reliability (read-only references, object versioning, first-class states).
Scoping variations to dynamic extents and structural extents seems
relevant to software design in general.

Complexity. Our features are relatively easy to understand. However,
they require some effort to be leveraged. For instance, in the cases
of active contexts and delegation proxies, developers must identify
where to place “switches” that activate variations. For dynamic own-
ership, developers must identify protocols and annotate methods.
They require “object thinking” rather than “class thinking”, which
could be a challenge to some developers.

3Dynamic ownership defaults to a restrictive aliasing policy, but it can also be changed
to default to a permissive policy that is backward compatible.

113

Performance. Active and structural variability inevitable entails a perfor-
mance degradation since it increases late binding. With our features,
the degradation ranged from factor 2 (dynamic updates) to factor 8
(dynamic ownership). This is the most serious drawback of our ap-
proach.

At the moment, our approach is attractive if the performance loss is
acceptable. It is common for features that raise the abstraction level to orig-
inally entail a significant performance penalty. For instance, garbage col-
lection was originally costly, but with optimized implementations tightly
integrated at the virtual machine level the overhead was dramatically re-
duced. We believe our features could be made fast in the future.

6.3 Open Questions

This dissertation leaves two main questions unanswered with respect to
contextualizing behavior with active and structural variability:

What Other Features Exist? We argue that the best way to enable run-
time change is to support active and structural variability with first-class
contexts. The three language features that we presented are only three pos-
sibilities within this design space. Additional features could be designed.

A particular feature that we envision is a generalization of dynamic
ownership. In our current implementation, the behavior of an object varies
in the sense that if the behavior is not visible, an invocation raises an er-
ror. Filters and topics are used to define whether an invocation results in
a failure or not. With a generalized mechanism, filters and topics could be
used to select one behavior within a set of variants. This way, the actual be-
havior of an object (as well as its interface) could be change via ownership
changes.

Can Features Be Unified? The three language features that we presented
are distinct mechanisms with their own specificities; they are not three ap-
plications of a general mechanism. The unification of active and structural
variability in a single language feature remains an open challenge.

With a unification, a behavioral variation would be represented as an
object that can either be attached to another object (structural variability),
or activated during the evaluation of an expression (active variability). For
instance, an “immutability” variation could be applied in a structural way
or in an active way. How the behavioral variation should be expressed to
make sense for both forms of variability is an open question.

114

Going further, it would be interesting to explore whether both forms
of variability could be unified in a single theoretical framework, similarly
to the approach of Tanter that unifies dynamic and static scope [156]. The
open implementation for context-oriented layer composition [100] by Lincke
et al. is also a step in that direction.

These two questions are exciting research tracks for the future.

115

116

Bibliography

[1] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and A. Yonezawa. Ab-
stracting inter-object communications using composition filters. Uni-
versity of Twente, 1993.

[2] J. Aldrich. The power of interoperability: Why objects are inevitable.
In Onward!, 2013.

[3] J. Aldrich and C. Chambers. Ownership domains: Separating alias-
ing policy from mechanism. In ECOOP, pages 1–25, 2004.

[4] J. Aldrich, C. Chambers, and D. Notkin. ArchJava: Connecting
software architecture to implementation. In ICSE’02: Proceedings of
the 24th International Conference on Software Engineering, pages 187–
197, Orlando, FL, USA, 2002. ACM. ISBN 1-58113-472-X. doi:
10.1145/581339.581365.

[5] J. Andersson and T. Ritzau. Dynamic code update in jdrums. In In
Proceedings of the ICSE’00 Workshop on Software Engineering for Wear-
able and Pervasive Computing, 2000.

[6] S. Apel, T. Leich, and G. Saake. Aspectual feature modules. IEEE
Trans. Softw. Eng., 34(2):162–180, Mar. 2008. ISSN 0098-5589. doi:
10.1109/TSE.2007.70770. URL http://dx.doi.org/10.1109/TSE.
2007.70770.

[7] M. Appeltauer, R. Hirschfeld, M. Haupt, J. Lincke, and M. Perscheid.
A comparison of context-oriented programming languages. In COP
’09: International Workshop on Context-Oriented Programming, pages 1–
6, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-538-3. doi:
doi.acm.org/10.1145/1562112.1562118.

[8] M. Appeltauer, R. Hirschfeld, and H. Masuhara. Improving the
development of context-dependent java applications with contextj.
In International Workshop on Context-Oriented Programming, COP ’09,
pages 5:1–5:5, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-
538-3. doi: 10.1145/1562112.1562117. URL http://doi.acm.org/10.
1145/1562112.1562117.

117

http://dx.doi.org/10.1109/TSE.2007.70770
http://dx.doi.org/10.1109/TSE.2007.70770
http://doi.acm.org/10.1145/1562112.1562117
http://doi.acm.org/10.1145/1562112.1562117

[9] M. Appeltauer, R. Hirschfeld, and J. Lincke. Declarative layer com-
position with the jcop programming language. Journal of Object Tech-
nology, 12(2):4:1–37, June 2013. ISSN 1660-1769. doi: 10.5381/jot.
2013.12.2.a4. URL http://www.jot.fm/contents/issue_2013_06/
article4.html.

[10] J.-B. Arnaud. Towards First Class References as a Security Infrastructure
in Dynamically-Typed Languages. PhD thesis, Université des Sciences
et Technologies de Lille, 2013.

[11] J.-B. Arnaud, M. Denker, S. Ducasse, D. Pollet, A. Bergel, and
M. Suen. Read-only execution for dynamic languages. In Proceedings
of the 48th International Conference on Objects, Models, Components, Pat-
terns (TOOLS EUROPE’10). LNCS Springer Verlag, July 2010. URL
http://www.bergel.eu/download/papers/Berg10eReadOnly.pdf.

[12] T. H. Austin, T. Disney, and C. Flanagan. Virtual values for lan-
guage extension. In Proceedings of the 2011 ACM international confer-
ence on Object oriented programming systems languages and applications,
volume 46 of OOPSLA ’11, pages 921–938, New York, NY, USA, Oct.
2011. ACM. ISBN 978-1-4503-0940-0. doi: 10.1145/2048066.2048136.
URL http://dx.doi.org/10.1145/2048066.2048136.

[13] D. Bacon, J. Bloch, J. Bogda, C. Click, P. Haahr, D. Lea, T. May, J.-W.
Maessen, J. Manson, J. D. Mitchell, K. Nilsen, B. Pugh, and E. G. Sirer.
The “double-checked locking is broken” declaration.

[14] K. Beck. Instance specific behavior: How and Why. Smalltalk Report,
2(7), Mar. 1993.

[15] A. Bergel, S. Ducasse, O. Nierstrasz, and R. Wuyts. Classboxes:
Controlling visibility of class extensions. Journal of Computer Lan-
guages, Systems and Structures, 31(3-4):107–126, Dec. 2005. doi: 10.
1016/j.cl.2004.11.002. URL http://scg.unibe.ch/archive/papers/
Berg05aclassboxesJournal.pdf.

[16] A. Bergel, S. Ducasse, O. Nierstrasz, and R. Wuyts. Stateful traits
and their formalization. Journal of Computer Languages, Systems
and Structures, 34(2-3):83–108, 2008. ISSN 1477-8424. doi: 10.
1016/j.cl.2007.05.003. URL http://scg.unibe.ch/archive/papers/
Berg08eStatefulTraits.pdf.

[17] L. Bettini, S. Capecchi, and E. Giachino. Featherweight wrap java. In
Proc. of SAC (The 22nd Annual ACM Symposium on Applied Computing),
Special Track on Object-Oriented Programming Languages and Systems
(OOPS), pages 1094–1100. ACM Press, 2007. URL http://gdn.dsi.
unifi.it/phpbibliography/files/wrapjava.pdf.

118

http://www.jot.fm/contents/issue_2013_06/article4.html
http://www.jot.fm/contents/issue_2013_06/article4.html
http://www.bergel.eu/download/papers/Berg10eReadOnly.pdf
http://dx.doi.org/10.1145/2048066.2048136
http://scg.unibe.ch/archive/papers/Berg05aclassboxesJournal.pdf
http://scg.unibe.ch/archive/papers/Berg05aclassboxesJournal.pdf
http://scg.unibe.ch/archive/papers/Berg08eStatefulTraits.pdf
http://scg.unibe.ch/archive/papers/Berg08eStatefulTraits.pdf
http://gdn.dsi.unifi.it/phpbibliography/files/wrapjava.pdf
http://gdn.dsi.unifi.it/phpbibliography/files/wrapjava.pdf

[18] L. Bettini, S. Capecchi, and F. Damiani. A mechanism for flexible
dynamic trait replacement. In Proceedings of the 11th International
Workshop on Formal Techniques for Java-like Programs, FTfJP ’09, pages
9:1–9:7, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-540-6.
doi: 10.1145/1557898.1557907. URL http://doi.acm.org/10.1145/
1557898.1557907.

[19] L. Bettini, S. Capecchi, and F. Damiani. On flexible dynamic trait re-
placement for java-like languages. Science of Computer Programming,
2011. doi: 10.1016/j.scico.2012.11.003. URL http://www.di.unito.
it/~damiani/papers/SUBscp1.pdf.

[20] K. Bierhoff and J. Aldrich. Lightweight object specification with
typestates. In Proceedings of the 10th European software engineer-
ing conference held jointly with 13th ACM SIGSOFT international sym-
posium on Foundations of software engineering, ESEC/FSE-13, pages
217–226, New York, NY, USA, 2005. ACM. ISBN 1-59593-014-0.
doi: 10.1145/1081706.1081741. URL http://doi.acm.org/10.1145/
1081706.1081741.

[21] J. Bloch. Effective Java (2nd Edition) (The Java Series). Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2 edition, 2008. ISBN 0321356683,
9780321356680.

[22] A. Bohannon, B. C. Pierce, and J. A. Vaughan. Relational lenses:
a language for updatable views. In Proceedings of the twenty-fifth
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, PODS ’06, pages 338–347, New York, NY, USA, 2006. ACM.
ISBN 1-59593-318-2. doi: 10.1145/1142351.1142399. URL 10.1145/
1142351.1142399.

[23] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object en-
capsulation. In Principles of Programming Languages (POPL’03), pages
213–223. ACM Press, 2003. ISBN 1-58113-628-5. doi: 10.1145/604131.
604156.

[24] C. Boyapati, B. Liskov, L. Shrira, C.-H. Moh, and S. Richman. Lazy
modular upgrades in persistent object stores. SIGPLAN Not., 38(11):
403–417, 2003. ISSN 0362-1340. doi: 10.1145/949343.949341. URL
10.1145/949343.949341.

[25] J. Boyland. Why we should not add readonly to Java (yet. In In FTfJP,
pages 5–29, 2005.

[26] J. Boyland, J. Noble, and W. Retert. Capabilities for aliasing: A gen-
eralisation of uniqueness and read-only. In J. L. Knudsen, editor, Pro-

119

http://doi.acm.org/10.1145/1557898.1557907
http://doi.acm.org/10.1145/1557898.1557907
http://www.di.unito.it/~damiani/papers/SUBscp1.pdf
http://www.di.unito.it/~damiani/papers/SUBscp1.pdf
http://doi.acm.org/10.1145/1081706.1081741
http://doi.acm.org/10.1145/1081706.1081741
10.1145/1142351.1142399
10.1145/1142351.1142399
10.1145/949343.949341

ceesings ECOOP 2001, number 2072 in Lecture Notes in Computer
Science, pages 2–27. Springer, June 2001.

[27] G. Bracha. Pluggable type systems, Oct. 2004. URL http://prog.
vub.ac.be/~wdmeuter/RDL04/papers/Bracha.pdf. OOPSLA Work-
shop on Revival of Dynamic Languages.

[28] G. Bracha and D. Ungar. Mirrors: design principles for meta-level
facilities of object-oriented programming languages. In Proceedings
of the International Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA’04), ACM SIGPLAN No-
tices, pages 331–344, New York, NY, USA, 2004. ACM Press. doi:
10.1145/1028976.1029004. URL http://bracha.org/mirrors.pdf.

[29] G. Bracha, P. von der Ahé, V. Bykov, Y. Kashai, W. Mad-
dox, and E. Miranda. Modules as objects in Newspeak. In
ECOOP’10: Proceedings of the 24th European Conference on Object-
Oriented Programming, ECOOP’10, pages 405–428, Berlin, Heidelberg,
June 2010. Springer-Verlag. ISBN 3-642-14106-4, 978-3-642-14106-
5. doi: 10.1007/978-3-642-14107-2 20. URL http://bracha.org/
newspeak-modules.pdf.

[30] K. B. Bruce, M. Odersky, and P. Wadler. A statically safe alternative
to virtual types. In Proceedings ECOOP ’98, pages 523–549. Springer-
Verlag, 1998. ISBN 3-540-64737-6.

[31] M. Büchi and W. Weck. Generic wrappers. In E. Bertino, editor,
ECOOP 2000 - Object-Oriented Programming, 14th European Confer-
ence, Sophia Antipolis and Cannes, France, June 12-16, 2000, Proceed-
ings, volume 1850 of Lecture Notes in Computer Science, pages 201–225.
Springer, 2000. ISBN 3-540-67660-0.

[32] N. Cameron, J. Noble, and T. Wrigstad. Tribal ownership. In Pro-
ceedings of the ACM international conference on Object oriented program-
ming systems languages and applications, OOPSLA ’10, pages 618–633,
New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0203-6. doi:
doi.acm.org/10.1145/1869459.1869510. URL doi.acm.org/10.1145/
1869459.1869510.

[33] S. Cech Previtali and T. R. Gross. Aspect-based dynamic software
updating: a model and its empirical evaluation. In Proceedings of
the tenth international conference on Aspect-oriented software development,
AOSD ’11, pages 105–116, New York, NY, USA, 2011. ACM. ISBN
978-1-4503-0605-8. doi: 10.1145/1960275.1960289.

[34] H. Chen, J. Yu, C. Hang, B. Zang, and P.-C. Yew. Dynamic software
updating using a relaxed consistency model. IEEE Trans. Softw. Eng.,

120

http://prog.vub.ac.be/~wdmeuter/RDL04/papers/Bracha.pdf
http://prog.vub.ac.be/~wdmeuter/RDL04/papers/Bracha.pdf
http://bracha.org/mirrors.pdf
http://bracha.org/newspeak-modules.pdf
http://bracha.org/newspeak-modules.pdf
doi.acm.org/10.1145/1869459.1869510
doi.acm.org/10.1145/1869459.1869510

37(5):679–694, Sept. 2011. ISSN 0098-5589. doi: 10.1109/TSE.2010.79.
URL http://dx.doi.org/10.1109/TSE.2010.79.

[35] S. Chiba. Load-time structural reflection in Java. In Proceedings of
ECOOP 2000, volume 1850 of LNCS, pages 313–336, 2000.

[36] S. Chiba, G. Kiczales, and J. Lamping. Avoiding confusion in metacir-
cularity: The meta-helix. In K. Futatsugi and S. Matsuoka, editors,
Proceedings of ISOTAS ’96, volume 1049 of Lecture Notes in Computer
Science, pages 157–172. Springer, 1996. ISBN 3-540-60954-7. doi: 10.
1007/3-540-60954-7 49. URL http://www2.parc.com/csl/groups/
sda/publications/papers/Chiba-ISOTAS96/for-web.pdf.

[37] A. Choi. Online application upgrade using edition-based redefini-
tion. In Proceedings of the 2nd International Workshop on Hot Topics in
Software Upgrades, HotSWUp ’09, pages 4:1–4:5, New York, NY, USA,
2009. ACM. ISBN 978-1-60558-723-3. doi: 10.1145/1656437.1656443.

[38] T. Clark, P. Sammut, and J. Willans. Superlanguages, Developing Lan-
guages and Applications with XMF, volume First Edition. Ceteva, 2008.
URL http://www.ceteva.com/docs/Superlanguages.pdf.

[39] D. Clarke and S. Drossopoulou. Ownership, encapsulation and the
disjointness of type and effect. SIGPLAN Not., 37(11):292–310, Nov.
2002. ISSN 0362-1340. doi: 10.1145/583854.582447. URL http://
doi.acm.org/10.1145/583854.582447.

[40] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible
alias protection. In Proceedings OOPSLA ’98, pages 48–64. ACM Press,
1998. ISBN 1-58113-005-8. doi: 10.1145/286936.286947.

[41] M. Conrad, T. French, , and C. Maple1. Object shadowing - a key
concept for a modern programming language. In 2nd Workshop on
Object-Oriented Language Engineering for the Post-Java Era: Back to Dy-
namicity, 2004.

[42] P. Costanza and R. Hirschfeld. Language constructs for context-
oriented programming: An overview of ContextL. In Proceedings of
the Dynamic Languages Symposium (DLS) ’05, co-organized with OOP-
SLA’05, pages 1–10, New York, NY, USA, Oct. 2005. ACM. ISBN
1-59593-283-6. doi: 10.1145/1146841.1146842. URL http://p-cos.
net/documents/contextl-overview.pdf.

[43] P. Costanza, O. Stiemerling, and A. Cremers. Object identity and dy-
namic recomposition of components. In Technology of Object-Oriented
Languages and Systems, 2001. TOOLS 38. Proceedings, pages 51 –65,
2001. doi: 10.1109/TOOLS.2001.911755.

121

http://dx.doi.org/10.1109/TSE.2010.79
http://www2.parc.com/csl/groups/sda/publications/papers/Chiba-ISOTAS96/for-web.pdf
http://www2.parc.com/csl/groups/sda/publications/papers/Chiba-ISOTAS96/for-web.pdf
http://www.ceteva.com/docs/Superlanguages.pdf
http://doi.acm.org/10.1145/583854.582447
http://doi.acm.org/10.1145/583854.582447
http://p-cos.net/documents/contextl-overview.pdf
http://p-cos.net/documents/contextl-overview.pdf

[44] T. V. Cutsem and M. S. Miller. On the design of the ECMAScript
reflection api. Technical report, Vrije Universiteit Brussel, 2012.

[45] T. V. Cutsem and M. S. Miller. Trustworthy proxies: Virtualizing ob-
jects with invariants. In ECOOP 2013, 2013. URL http://soft.vub.
ac.be/Publications/2013/vub-soft-tr-13-03.pdf.

[46] F. Damiani, M. Dezani-Ciancaglini, and P. Giannini. Re-classification
and multi-threading: Ficklemt. In Proceedings of the 2004 ACM sympo-
sium on Applied computing, SAC ’04, pages 1297–1304, New York, NY,
USA, 2004. ACM. ISBN 1-58113-812-1. doi: 10.1145/967900.968163.

[47] R. DeLine and M. Fähndrich. Typestates for objects. In ECOOP’04,
pages 465–490, 2004.

[48] L. G. DeMichiel and R. P. Gabriel. The Common Lisp object system:
An overview. In J. Bézivin, J.-M. Hullot, P. Cointe, and H. Lieberman,
editors, Proceedings ECOOP ’87, volume 276 of LNCS, pages 151–170,
Paris, France, June 1987. Springer-Verlag.

[49] M. Denker, S. Ducasse, A. Lienhard, and P. Marschall. Sub-method
reflection. In Journal of Object Technology, Special Issue. Proceedings
of TOOLS Europe 2007, volume 6/9, pages 231–251. ETH, Oct. 2007.
doi: 10.5381/jot.2007.6.9.a14. URL http://www.jot.fm/contents/
issue_2007_10/paper14.html.

[50] M. Denker, M. Suen, and S. Ducasse. The meta in meta-
object architectures. In Proceedings of TOOLS EUROPE 2008, vol-
ume 11 of LNBIP, pages 218–237. Springer-Verlag, 2008. doi: 10.
1007/978-3-540-69824-1 13. URL http://scg.unibe.ch/archive/
papers/Denk08bMetaContextLNBIP.pdf.

[51] P. Deutsch. Building control structures in smalltalk-80. Byte, 6(8):
322–346, aug 1981.

[52] M. Dmitriev. Towards flexible and safe technology for runtime evo-
lution of Java language applications. In Proceedings of the Workshop
on Engineering Complex Object-Oriented Systems for Evolution, in associ-
ation with OOPSLA 2001, Oct. 2001.

[53] S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and P. Gian-
nini. Fickle: Dynamic object re-classification. In Proceedings of the
15th European Conference on Object-Oriented Programming, ECOOP ’01,
pages 130–149, London, UK, UK, 2001. Springer-Verlag. ISBN 3-540-
42206-4. URL http://portal.acm.org/citation.cfm?id=646158.
680007.

122

http://soft.vub.ac.be/Publications/2013/vub-soft-tr-13-03.pdf
http://soft.vub.ac.be/Publications/2013/vub-soft-tr-13-03.pdf
http://www.jot.fm/contents/issue_2007_10/paper14.html
http://www.jot.fm/contents/issue_2007_10/paper14.html
http://scg.unibe.ch/archive/papers/Denk08bMetaContextLNBIP.pdf
http://scg.unibe.ch/archive/papers/Denk08bMetaContextLNBIP.pdf
http://portal.acm.org/citation.cfm?id=646158.680007
http://portal.acm.org/citation.cfm?id=646158.680007

[54] S. Ducasse. Evaluating message passing control techniques in
Smalltalk. Journal of Object-Oriented Programming (JOOP), 12(6):
39–44, June 1999. URL http://scg.unibe.ch/archive/papers/
Duca99aMsgPassingControl.pdf.

[55] D. Duggan. Type-based hot swapping of running modules (extended
abstract). In Proceedings of the sixth ACM SIGPLAN international confer-
ence on Functional programming, ICFP ’01, pages 62–73, New York, NY,
USA, 2001. ACM. ISBN 1-58113-415-0. doi: 10.1145/507635.507645.
URL http://doi.acm.org/10.1145/507635.507645.

[56] E. Ernst. Family polymorphism. In J. L. Knudsen, editor, ECOOP
2001, number 2072 in LNCS, pages 303–326. Springer Verlag, 2001.

[57] E. Ernst. Higher-order hierarchies. In Proceedings European Conference
on Object-Oriented Programming (ECOOP 2003), LNCS, pages 303–329,
Heidelberg, July 2003. Springer Verlag.

[58] M. Ernst, C. Kaplan, and C. Chambers. Predicate dispatching: A
unified theory of dispatch. In Proceedings of the 12th European Con-
ference on Object-Oriented Programming, pages 186–211, London, UK,
1998. Springer-Verlag. ISBN 3-540-64737-6. URL http://portal.
acm.org/citation.cfm?id=646155.679688.

[59] P. Eugster. Uniform proxies for java. In Proceedings of the 21st annual
ACM SIGPLAN conference on Object-oriented programming systems, lan-
guages, and applications, OOPSLA ’06, pages 139–152, New York, NY,
USA, 2006. ACM. ISBN 1-59593-348-4. doi: 10.1145/1167473.1167485.
URL http://doi.acm.org/10.1145/1167473.1167485.

[60] P. T. Eugster, P. A. Felber, R. Guerraoui, and A. Kermarrec. The many
faces of publish/subscribe. ACM Computing Surveys, 35(2):114–131,
2003. doi: 10.1145/857076.857078. URL http://portal.acm.org/
citation.cfm?id=857078.

[61] E. D. Falkenberg. Concepts for modelling information. In IFIP Work-
ing Conference on Modelling in Data Base Management Systems, pages
95–109, 1976.

[62] J. N. Foster, A. Pilkiewicz, and B. C. Pierce. Quotient lenses. In ICFP
’08: Proceeding of the 13th ACM SIGPLAN international conference on
Functional programming, pages 383–396, New York, NY, USA, 2008.
ACM. ISBN 978-1-59593-919-7. doi: 10.1145/1411204.1411257.

[63] Y. Futamura. Partial evaluation of computation process: An ap-
proach to a compiler-compiler. Higher Order Symbol. Comput., 12(4):
381–391, 1999. ISSN 1388-3690. doi: 10.1023/A:1010095604496.

123

http://scg.unibe.ch/archive/papers/Duca99aMsgPassingControl.pdf
http://scg.unibe.ch/archive/papers/Duca99aMsgPassingControl.pdf
http://doi.acm.org/10.1145/507635.507645
http://portal.acm.org/citation.cfm?id=646155.679688
http://portal.acm.org/citation.cfm?id=646155.679688
http://doi.acm.org/10.1145/1167473.1167485
http://portal.acm.org/citation.cfm?id=857078
http://portal.acm.org/citation.cfm?id=857078

[64] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R.
Haghighat, B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ru-
derman, E. W. Smith, R. Reitmaier, M. Bebenita, M. Chang, and
M. Franz. Trace-based just-in-time type specialization for dynamic
languages. In Proceedings of the 2009 ACM SIGPLAN conference on
Programming language design and implementation, PLDI ’09, pages 465–
478, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-392-1.
doi: 10.1145/1542476.1542528. URL http://doi.acm.org/10.1145/
1542476.1542528.

[65] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley Profes-
sional, Reading, Mass., 1995. ISBN 978-0201633610.

[66] Gemstone. Gemstone/s programming guide, 2007. URL http://
seaside.gemstone.com/docs/GS64-ProgGuide-2.2.pdf.

[67] A. Goldberg and D. Robson. Smalltalk 80: the Language and its Im-
plementation. Addison Wesley, Reading, Mass., May 1983. ISBN 0-
201-13688-0. URL http://stephane.ducasse.free.fr/FreeBooks/
BlueBook/Bluebook.pdf.

[68] S. González, K. Mens, and A. Cádiz. Context-Oriented Programming
with the Ambient Object System. Journal of Universal Computer Sci-
ence, 14(20):3307–3332, 2008. ISSN 0948-6968.

[69] S. González, K. Mens, M. Colacioiu, and W. Cazzola. Context traits:
dynamic behaviour adaptation through run-time trait recomposi-
tion. In Proceedings of the 12th annual international conference on Aspect-
oriented software development, AOSD ’13, pages 209–220, New York,
NY, USA, 2013. ACM. ISBN 978-1-4503-1766-5. doi: 10.1145/2451436.
2451461. URL http://doi.acm.org/10.1145/2451436.2451461.

[70] D. Gordon and J. Noble. Dynamic ownership in a dynamic language.
In DLS ’07: Proceedings of the 2007 symposium on Dynamic languages,
pages 41–52, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-
868-8.

[71] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specifi-
cation (Third Edition). Addison Wesley, 2005. ISBN 0-321-24678-0.

[72] A. R. Gregersen and B. N. Jorgensen. Dynamic update of Java appli-
cations — balancing change flexibility vs programming transparency.
J. Softw. Maint. Evol., 21:81–112, mar 2009. ISSN 1532-060X. doi:
10.1002/smr.v21:2. URL http://portal.acm.org/citation.cfm?
id=1526497.1526501.

124

http://doi.acm.org/10.1145/1542476.1542528
http://doi.acm.org/10.1145/1542476.1542528
http://seaside.gemstone.com/docs/GS64-ProgGuide-2.2.pdf
http://seaside.gemstone.com/docs/GS64-ProgGuide-2.2.pdf
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf
http://doi.acm.org/10.1145/2451436.2451461
http://portal.acm.org/citation.cfm?id=1526497.1526501
http://portal.acm.org/citation.cfm?id=1526497.1526501

[73] J. Gustavsson. A classification of unanticipated runtime software
changes in java. In Proceedings of the International Conference on Soft-
ware Maintenance, ICSM ’03, pages 4–, Washington, DC, USA, 2003.
IEEE Computer Society. ISBN 0-7695-1905-9. URL http://dl.acm.
org/citation.cfm?id=942800.943566.

[74] N. B. Harrison. Design patterns in communications software. In
L. Rising, editor, Design patterns in communications software, chapter
Patterns for logging diagnostic messages, pages 173–185. Cambridge
University Press, New York, NY, USA, 2001. ISBN 0-521-79040-9.
URL http://dl.acm.org/citation.cfm?id=566110.566121.

[75] W. Harrison and H. Ossher. Subject-oriented programming (a cri-
tique of pure objects). In Proceedings OOPSLA ’93, ACM SIGPLAN
Notices, volume 28, pages 411–428, Oct. 1993. doi: 10.1145/165854.
165932.

[76] C. M. Hayden, E. K. Smith, M. Denchev, M. Hicks, and J. S. Foster.
Kitsune: efficient, general-purpose dynamic software updating for c,
2012. URL http://doi.acm.org/10.1145/2384616.2384635.

[77] S. Herrmann. A precise model for contextual roles: The program-
ming language objectteams/java. Appl. Ontol., 2(2):181–207, Apr.
2007. ISSN 1570-5838. URL http://dl.acm.org/citation.cfm?id=
1412401.1412405.

[78] S. Herrmann. Demystifying object schizophrenia. In Proceedings of the
4th Workshop on MechAnisms for SPEcialization, Generalization and in-
HerItance, MASPEGHI ’10, pages 2:1–2:5, New York, NY, USA, 2010.
ACM. ISBN 978-1-4503-0535-8. doi: 10.1145/1929999.1930001. URL
http://doi.acm.org/10.1145/1929999.1930001.

[79] M. Hicks and S. Nettles. Dynamic software updating. ACM Trans-
actions on Programming Languages and Systems, 27(6):1049–1096, nov
2005. doi: 10.1145/1108970.1108971.

[80] R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-
oriented programming. Journal of Object Technology, 7
(3), Mar. 2008. doi: 10.5381/jot.2008.7.3.a4. URL http:
//www.jot.fm/contents/issue_2008_03/article4.htmlhttp:
//www.jot.fm/issues/issue_2008_03/article4.pdf.

[81] G. Hjálmtýsson and R. Gray. Dynamic C++ classes: a lightweight
mechanism to update code in a running program. In Proceedings of
the annual conference on USENIX Annual Technical Conference, ATEC
’98, pages 6–6, Berkeley, CA, USA, 1998. USENIX Association. URL
http://portal.acm.org/citation.cfm?id=1268256.1268262.

125

http://dl.acm.org/citation.cfm?id=942800.943566
http://dl.acm.org/citation.cfm?id=942800.943566
http://dl.acm.org/citation.cfm?id=566110.566121
http://doi.acm.org/10.1145/2384616.2384635
http://dl.acm.org/citation.cfm?id=1412401.1412405
http://dl.acm.org/citation.cfm?id=1412401.1412405
http://doi.acm.org/10.1145/1929999.1930001
http://www.jot.fm/contents/issue_2008_03/article4.html http://www.jot.fm/issues/issue_2008_03/article4.pdf
http://www.jot.fm/contents/issue_2008_03/article4.html http://www.jot.fm/issues/issue_2008_03/article4.pdf
http://www.jot.fm/contents/issue_2008_03/article4.html http://www.jot.fm/issues/issue_2008_03/article4.pdf
http://portal.acm.org/citation.cfm?id=1268256.1268262

[82] M. Hofmann, B. Pierce, and D. Wagner. Symmetric lenses. In Proceed-
ings of the 38th annual ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages, POPL ’11, pages 371–384, New York,
NY, USA, 2011. ACM. ISBN 978-1-4503-0490-0. doi: 10.1145/1926385.
1926428. URL 10.1145/1926385.1926428.

[83] J. Hogg, D. Lea, A. Wills, D. deChampeaux, and R. Holt. The Geneva
convention on the treatment of object aliasing. SIGPLAN OOPS
Mess., 3(2):11–16, 1992. ISSN 1055-6400. doi: 10.1145/130943.130947.

[84] M. D. Ingesman and E. Ernst. Lifted java: A minimal calculus for
translation polymorphism. In TOOLS (49), pages 179–193, 2011.

[85] E. B. Johnsen, M. Kyas, and I. C. Yu. Dynamic classes: Modular asyn-
chronous evolution of distributed concurrent objects. In Proceedings
of the 2nd World Congress on Formal Methods, FM ’09, pages 596–611,
Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-642-05088-6.
doi: /10.1007/978-3-642-05089-3 38. URL http://dx.doi.org/10.
1007/978-3-642-05089-3_38.

[86] J. Kabanov. Jrebel tool demo. Electron. Notes Theor. Comput. Sci., 264:
51–57, feb 2011. ISSN 1571-0661. doi: 10.1016/j.entcs.2011.02.005.

[87] J. Kabanov and V. Vene. A thousand years of productivity: the jrebel
story. Software: Practice and Experience, pages n/a–n/a, 2012. ISSN
1097-024X. doi: 10.1002/spe.2158. URL http://dx.doi.org/10.
1002/spe.2158.

[88] A. M. Keller. Algorithms for translating view updates to database
updates for views involving selections, projections, and joins. In Pro-
ceedings of the fourth ACM SIGACT-SIGMOD symposium on Principles
of database systems, PODS ’85, pages 154–163, New York, NY, USA,
1985. ACM. ISBN 0-89791-153-9. doi: 10.1145/325405.325423. URL
http://doi.acm.org/10.1145/325405.325423.

[89] S. Kent and I. Maung. Encapsulation and aggregation. In In TOOLS
Pacific 18. Prentice Hall, 1995.

[90] G. Kiczales, J. des Rivières, and D. G. Bobrow. The Art of the Metaobject
Protocol. MIT Press, 1991. ISBN 0-262-11158-6.

[91] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-oriented programming. In M. Aksit
and S. Matsuoka, editors, ECOOP’97: Proceedings of the 11th European
Conference on Object-Oriented Programming, volume 1241 of LNCS,
pages 220–242, Jyvaskyla, Finland, June 1997. Springer-Verlag. doi:
10.1007/BFb0053381.

126

10.1145/1926385.1926428
http://dx.doi.org/10.1007/978-3-642-05089-3_38
http://dx.doi.org/10.1007/978-3-642-05089-3_38
http://dx.doi.org/10.1002/spe.2158
http://dx.doi.org/10.1002/spe.2158
http://doi.acm.org/10.1145/325405.325423

[92] G. Kniesel. Type-safe delegation for run-time component adapta-
tion. In R. Guerraoui, editor, Proceedings ECOOP ’99, volume 1628 of
LNCS, pages 351–366, Lisbon, Portugal, June 1999. Springer-Verlag.

[93] G. E. Krasner and S. T. Pope. A cookbook for using the model-view-
controller user interface paradigm in Smalltalk-80. Journal of Object-
Oriented Programming, 1(3):26–49, Aug. 1988.

[94] B. B. Kristensen. Object-oriented modeling with roles. In J. Murphy
and B. Stone, editors, Proceedings of the 2nd International Conference on
Object-Oriented Information Systems, pages 57–71, London , UK, 1995.
Springer-Verlag.

[95] K. R. Leino, P. Müller, and A. Wallenburg. Flexible immutability with
frozen objects. In VSTTE ’08: Proceedings of the 2nd international con-
ference on Verified Software: Theories, Tools, Experiments, pages 192–208,
Berlin, Heidelberg, 2008. Springer-Verlag. ISBN 978-3-540-87872-8.
doi: dx.doi.org/10.1007/978-3-540-87873-5 17.

[96] P. Li, N. Cameron, and J. Noble. Cloning in ownership. In Proceedings
of the ACM international conference companion on Object oriented pro-
gramming systems languages and applications companion, SPLASH ’11,
pages 63–66, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-
0942-4. doi: 10.1145/2048147.2048175. URL http://doi.acm.org/
10.1145/2048147.2048175.

[97] S. Liang and G. Bracha. Dynamic class loading in the Java virtual ma-
chine. In Proceedings of OOPSLA ’98, ACM SIGPLAN Notices, pages
36–44, 1998. doi: 10.1145/286936.286945.

[98] K. J. Lieberherr and A. J. Riel. Contributions to teaching object ori-
ented design and programming. In Proceedings OOPSLA ’89, ACM
SIGPLAN Notices, volume 24, pages 11–22, Oct. 1989.

[99] H. Lieberman. Using prototypical objects to implement shared
behavior in object oriented systems. In Proceedings OOPSLA ’86,
ACM SIGPLAN Notices, volume 21, pages 214–223, Nov. 1986.
doi: 10.1145/960112.28718. URL http://web.media.mit.edu/

~lieber/Lieberary/OOP/Delegation/Delegation.htmlhttp:
//reference.kfupm.edu.sa/content/u/s/using_prototypical_
objects_to_implement__76339.pdf.

[100] J. Lincke, M. Appeltauer, B. Steinert, and R. Hirschfeld. An open
implementation for context-oriented layer composition in contextjs.
Sci. Comput. Program., 76:1194–1209, Dec. 2011. ISSN 0167-6423. doi:
10.1016/j.scico.2010.11.013. URL http://dx.doi.org/10.1016/j.
scico.2010.11.013.

127

http://doi.acm.org/10.1145/2048147.2048175
http://doi.acm.org/10.1145/2048147.2048175
http://web.media.mit.edu/~lieber/Lieberary/OOP/Delegation/Delegation.html http://reference.kfupm.edu.sa/content/u/s/using_prototypical_objects_to_implement__76339.pdf
http://web.media.mit.edu/~lieber/Lieberary/OOP/Delegation/Delegation.html http://reference.kfupm.edu.sa/content/u/s/using_prototypical_objects_to_implement__76339.pdf
http://web.media.mit.edu/~lieber/Lieberary/OOP/Delegation/Delegation.html http://reference.kfupm.edu.sa/content/u/s/using_prototypical_objects_to_implement__76339.pdf
http://web.media.mit.edu/~lieber/Lieberary/OOP/Delegation/Delegation.html http://reference.kfupm.edu.sa/content/u/s/using_prototypical_objects_to_implement__76339.pdf
http://dx.doi.org/10.1016/j.scico.2010.11.013
http://dx.doi.org/10.1016/j.scico.2010.11.013

[101] Y. Lu and J. Potter. On ownership and accessibility. In In ECOOP’06,
volume 4067 of LNCS, pages 99–123. Springer-Verlag, 2006.

[102] O. L. Madsen and B. Moller-Pedersen. Virtual classes: A powerful
mechanism in object-oriented programming. In Proceedings OOPSLA
’89, ACM SIGPLAN Notices, volume 24, pages 397–406, Oct. 1989.

[103] S. Magill, M. Hicks, S. Subramanian, and K. S. McKinley. Au-
tomating object transformations for dynamic software updating. In
Proceedings of the ACM international conference on Object oriented pro-
gramming systems languages and applications, OOPSLA ’12, pages 265–
280, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1561-6.
doi: 10.1145/2384616.2384636. URL http://doi.acm.org/10.1145/
2384616.2384636.

[104] K. Makris and R. A. Bazzi. Immediate multi-threaded dynamic
software updates using stack reconstruction. In Proceedings of the
2009 conference on USENIX Annual technical conference, USENIX’09,
pages 31–31, Berkeley, CA, USA, 2009. USENIX Association. URL
http://portal.acm.org/citation.cfm?id=1855807.1855838.

[105] S. Malabarba, R. Pandey, J. Gragg, E. Barr, and J. F. Barnes. Run-
time support for type-safe dynamic Java classes. In Proceedings of
the 14th European Conference on Object-Oriented Programming, pages
337–361. Springer-Verlag, 2000. ISBN 3-540-67660-0. doi: 10.1007/
3-540-45102-1 17.

[106] M. Martinez Peck, N. Bouraqadi, M. Denker, S. Ducasse, and L. Fab-
resse. Efficient proxies in smalltalk. In Proceedings of the Inter-
national Workshop on Smalltalk Technologies, IWST ’11, pages 8:1–
8:16, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-1050-5.
doi: 10.1145/2166929.2166937. URL http://doi.acm.org/10.1145/
2166929.2166937.

[107] H. Masuhara, G. Kiczales, and C. Dutchyn. A compilation and op-
timization model for aspect-oriented programs. In Proceedings of the
12th international conference on Compiler construction, CC’03, pages 46–
60, Berlin, Heidelberg, 2003. Springer-Verlag. ISBN 3-540-00904-3.
URL http://dl.acm.org/citation.cfm?id=1765931.1765937.

[108] Y. Matsumoto. Ruby in a Nutshell. O’Reilly, 1005 Gravenstein High-
way North, Sebastopol, CA 95472, 2001. ISBN 0596002149.

[109] Microsoft. Microsoft .net dynamic language runtime. URL http:
//dlr.codeplex.com/.

128

http://doi.acm.org/10.1145/2384616.2384636
http://doi.acm.org/10.1145/2384616.2384636
http://portal.acm.org/citation.cfm?id=1855807.1855838
http://doi.acm.org/10.1145/2166929.2166937
http://doi.acm.org/10.1145/2166929.2166937
http://dl.acm.org/citation.cfm?id=1765931.1765937
http://dlr.codeplex.com/
http://dlr.codeplex.com/

[110] M. S. Miller and J. S. Shapiro. Paradigm regained: Abstraction mech-
anisms for access control. In Proceedings of the Eigth Asian Computing
Science Conference, pages 224–242, 2003.

[111] T. Millstein, M. Reay, and C. Chambers. Relaxed multijava: balanc-
ing extensibility and modular typechecking. In Proceedings of the 18th
ACM SIGPLAN conference on Object-oriented programing, systems, lan-
guages, and applications, pages 224–240. ACM Press, 2003. ISBN 1-
58113-712-5. doi: 10.1145/949305.949325.

[112] L. Moreau. A syntactic theory of dynamic binding. Higher Order
Symbol. Comput., 11(3):233–279, Oct. 1998. ISSN 1388-3690. doi:
10.1023/A:1010087314987. URL http://dx.doi.org/10.1023/A:
1010087314987.

[113] W. B. Mugridge, J. Hamer, and J. G. Hosking. Multi-methods in a
statically-typed programming language. In P. America, editor, Pro-
ceedings ECOOP ’91, volume 512 of LNCS, pages 307–324, Geneva,
Switzerland, July 1991. Springer-Verlag.

[114] P. Müller and A. Poetzsch-Heffter. Universes: A type system for con-
trolling representation exposure. In A. Poetzsch-Heffter and J. Meyer,
editors, Programming Languages and Fundamentals of Programming.
Fernuniversität Hagen, 1999.

[115] P. Müller and A. Rudich. Ownership transfer in universe types. SIG-
PLAN Not., 42(10):461–478, Oct. 2007. ISSN 0362-1340. doi: 10.1145/
1297105.1297061. URL http://doi.acm.org/10.1145/1297105.
1297061.

[116] I. Neamtiu and M. Hicks. Safe and timely updates to multi-threaded
programs. In Proceedings of the 2009 ACM SIGPLAN conference on
Programming language design and implementation, PLDI ’09, pages 13–
24, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-392-1. doi:
10.1145/1543135.1542479.

[117] I. Neamtiu, J. S. Foster, and M. Hicks. Understanding source code
evolution using abstract syntax tree matching. In Proceedings of
the 2005 international workshop on Mining software repositories, vol-
ume 30, pages 1–5, New York, NY, USA, may 2005. ACM. doi:
doi.acm.org/10.1145/1082983.1083143. URL http://doi.acm.org/
10.1145/1082983.1083143.

[118] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol. Practical dynamic
software updating for C. In Proceedings of the 2006 ACM SIGPLAN
conference on Programming language design and implementation, PLDI

129

http://dx.doi.org/10.1023/A:1010087314987
http://dx.doi.org/10.1023/A:1010087314987
http://doi.acm.org/10.1145/1297105.1297061
http://doi.acm.org/10.1145/1297105.1297061
http://doi.acm.org/10.1145/1082983.1083143
http://doi.acm.org/10.1145/1082983.1083143

’06, pages 72–83, New York, NY, USA, 2006. ACM. ISBN 1-59593-
320-4. doi: 10.1145/1133981.1133991. URL http://doi.acm.org/
10.1145/1133981.1133991.

[119] O. Nierstrasz and F. Achermann. A calculus for modeling soft-
ware components. In S. G. F. S. De Boer, M. M. Bonsangue and
W.-P. de Roever, editors, FMCO 2002 Proceedings, volume 2852 of
LNCS, pages 339–360. Springer-Verlag, 2003. ISBN 978-3-540-20303-2.
doi: 10.1007/b14033. URL http://scg.unibe.ch/archive/papers/
Nier03cPiccolaCalculus.pdf.

[120] J. Noble. Iterators and encapsulation. In Proceedings of TOOLS ’00,
page 431ff, June 2000.

[121] J. Noble, J. Potter, and J. Vitek. Flexible alias protection. In E. Jul, ed-
itor, Proceedings of the 12th European Conference on Object-Oriented Pro-
gramming (ECOOP’98), volume 1445 of LNCS, pages 158–185, Brus-
sels, Belgium, July 1998. Springer-Verlag. ISBN 3-540-64737-6.

[122] J. Noble, A. Taivalsaari, and I. Moore. Prototype-Based Programming.
Springer, 1999.

[123] N. Nystrom, X. Qi, and A. C. Myers. J&: nested intersection for scal-
able software composition. In OOPSLA ’06: Proceedings of the 21st
annual ACM SIGPLAN conference on Object-oriented programming sys-
tems, languages, and applications, pages 21–36, New York, NY, USA,
2006. ACM. ISBN 1-59593-348-4. doi: 10.1145/1167473.1167476.

[124] M. Odersky and M. Zenger. Scalable component abstractions. In
Proceedings of the 20th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, OOPSLA
’05, pages 41–57, New York, NY, USA, 2005. ACM. ISBN 1-59593-
031-0. doi: 10.1145/1094811.1094815. URL http://doi.acm.org/
10.1145/1094811.1094815.

[125] Oracle. Jsr 292: Supporting dynamically typed languages on the java
platform. URL http://jcp.org/en/jsr/detail?id=292.

[126] M. Oriol. Primitives for the dynamic evolution of component-based
applications. In Proceedings of the 2007 ACM symposium on Applied
computing, SAC ’07, pages 1122–1123, New York, NY, USA, 2007.
ACM. ISBN 1-59593-480-4. doi: 10.1145/1244002.1244246. URL
http://doi.acm.org/10.1145/1244002.1244246.

[127] A. Orso, A. Rao, and M. J. Harrold. A Technique for Dynamic Updat-
ing of Java Software. Software Maintenance, IEEE International Con-
ference on, 0:0649+, 2002. doi: 10.1109/ICSM.2002.1167829. URL
http://dx.doi.org/10.1109/ICSM.2002.1167829.

130

http://doi.acm.org/10.1145/1133981.1133991
http://doi.acm.org/10.1145/1133981.1133991
http://scg.unibe.ch/archive/papers/Nier03cPiccolaCalculus.pdf
http://scg.unibe.ch/archive/papers/Nier03cPiccolaCalculus.pdf
http://doi.acm.org/10.1145/1094811.1094815
http://doi.acm.org/10.1145/1094811.1094815
http://jcp.org/en/jsr/detail?id=292
http://doi.acm.org/10.1145/1244002.1244246
http://dx.doi.org/10.1109/ICSM.2002.1167829

[128] K. Ostermann. Dynamically composable collaborations with delega-
tion layers. In Proceedings of the 16th European Conference on Object-
Oriented Programming, ECOOP ’02, pages 89–110, London, UK, 2002.
Springer-Verlag. ISBN 3-540-43759-2. URL http://portal.acm.
org/citation.cfm?id=646159.680026.

[129] J. Östlund, T. Wrigstad, D. Clarke, and B. Åkerblom. Ownership,
uniqueness, and immutability. In R. F. Paige and B. Meyer, editors,
Objects, Components, Models and Patterns, 46th International Conference,
TOOLS EUROPE 2008, volume 11 of Lecture Notes in Business Informa-
tion Processing, pages 178–197. Springer, 2008. ISBN 978-3-540-69823-
4. doi: dx.doi.org/10.1007/978-3-540-69824-1 11.

[130] D. L. Parnas. On the criteria to be used in decomposing systems
into modules. CACM, 15(12):1053–1058, Dec. 1972. doi: 10.1145/
361598.361623. URL http://www.cs.umd.edu/class/spring2003/
cmsc838p/Design/criteria.pdf.

[131] B. Pernici. Objects with roles. Object oriented development, Centre
Universitaire d’Informatique, University of Geneva, July 1989.

[132] M. Piccioni, M. Orioly, B. Meyer, and T. Schneider. An ide-based,
integrated solution to schema evolution of object-oriented software.
In Proceedings of the 2009 IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE ’09, pages 650–654, Washington,
DC, USA, 2009. IEEE Computer Society. ISBN 978-0-7695-3891-
4. doi: 10.1109/ASE.2009.100. URL http://dx.doi.org/10.1109/
ASE.2009.100.

[133] L. Pina and J. P. Cachopo. Atomic dynamic upgrades using software
transactional memory. In HotSWUp, pages 21–25, 2012. doi: dx.doi.
org/10.1109/HotSWUp.2012.6226612.

[134] F. Pluquet, S. Langerman, and R. Wuyts. Executing code in the
past: efficient in-memory object graph versioning. In Proceedings
of the 24th ACM SIGPLAN conference on Object oriented programming
systems languages and applications, OOPSLA ’09, pages 391–408, New
York, NY, USA, 2009. ACM. ISBN 978-1-60558-766-0. doi: doi.acm.
org/10.1145/1640089.1640118. URL http://doi.acm.org/10.1145/
1640089.1640118.

[135] A. Popovici, T. Gross, and G. Alonso. Dynamic weaving for aspect-
oriented programming. In Proceedings of the 1st international conference
on Aspect-oriented software development, pages 141–147. ACM Press,
2002. ISBN 1-58113-469-X. doi: 10.1145/508386.508404.

131

http://portal.acm.org/citation.cfm?id=646159.680026
http://portal.acm.org/citation.cfm?id=646159.680026
http://www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf
http://www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf
http://dx.doi.org/10.1109/ASE.2009.100
http://dx.doi.org/10.1109/ASE.2009.100
http://doi.acm.org/10.1145/1640089.1640118
http://doi.acm.org/10.1145/1640089.1640118

[136] D. R. Prasanna. Dependency Injection. Manning Publications
Co., Greenwich, CT, USA, 1st edition, 2009. ISBN 193398855X,
9781933988559.

[137] M. Pukall, C. Kästner, and G. Saake. Towards unanticipated runtime
adaptation of java applications. In APSEC ’08: Proceedings of the 2008
15th Asia-Pacific Software Engineering Conference, pages 85–92, Wash-
ington, DC, USA, 2008. IEEE Computer Society. ISBN 978-0-7695-
3446-6. doi: 10.1109/APSEC.2008.66.

[138] M. Pukall, C. Kästner, W. Cazzola, S. Götz, A. Grebhahn, R. Schröter,
and G. Saake. JavAdaptor—flexible runtime updates of Java applica-
tions. Software: Practice and Experience, pages n/a–n/a, 2012. ISSN
1097-024X. doi: 10.1002/spe.2107. URL http://dx.doi.org/10.
1002/spe.2107.

[139] J. Ressia. Object-Centric Reflection. Phd thesis, University of Bern, Oct.
2012. URL http://scg.unibe.ch/archive/phd/ressia-phd.pdf.

[140] J. Ressia, T. Gı̂rba, O. Nierstrasz, F. Perin, and L. Renggli. Talents:
Dynamically composable units of reuse. In Proceedings of Interna-
tional Workshop on Smalltalk Technologies (IWST 2011), pages 109–118,
2011. doi: 10.1145/2166929.2166940. URL http://scg.unibe.ch/
archive/papers/Ress11a-Talents.pdf.

[141] J. Ressia, T. Gı̂rba, O. Nierstrasz, F. Perin, and L. Renggli. Talents:
an environment for dynamically composing units of reuse. Software:
Practice and Experience, 2012. ISSN 1097-024X. doi: 10.1002/spe.2160.
URL http://scg.unibe.ch/archive/papers/Ress12eTalentsSPE.
pdf.

[142] F. Rivard. Smalltalk: a reflective language. In Proceedings of REFLEC-
TION ’96, pages 21–38, Apr. 1996.

[143] G. Salvaneschi, C. Ghezzi, and M. Pradella. Context-oriented pro-
gramming: A software engineering perspective. J. Syst. Softw., 85(8):
1801–1817, Aug. 2012. ISSN 0164-1212. doi: 10.1016/j.jss.2012.03.024.
URL http://dx.doi.org/10.1016/j.jss.2012.03.024.

[144] N. Schärli, S. Ducasse, O. Nierstrasz, and A. P. Black. Traits: Compos-
able units of behavior. In Proceedings of European Conference on Object-
Oriented Programming (ECOOP’03), volume 2743 of LNCS, pages 248–
274, Berlin Heidelberg, July 2003. Springer Verlag. ISBN 978-3-540-
40531-3. doi: 10.1007/b11832. URL http://scg.unibe.ch/archive/
papers/Scha03aTraits.pdf.

132

http://dx.doi.org/10.1002/spe.2107
http://dx.doi.org/10.1002/spe.2107
http://scg.unibe.ch/archive/phd/ressia-phd.pdf
http://scg.unibe.ch/archive/papers/Ress11a-Talents.pdf
http://scg.unibe.ch/archive/papers/Ress11a-Talents.pdf
http://scg.unibe.ch/archive/papers/Ress12eTalentsSPE.pdf
http://scg.unibe.ch/archive/papers/Ress12eTalentsSPE.pdf
http://dx.doi.org/10.1016/j.jss.2012.03.024
http://scg.unibe.ch/archive/papers/Scha03aTraits.pdf
http://scg.unibe.ch/archive/papers/Scha03aTraits.pdf

[145] N. Schärli, S. Ducasse, O. Nierstrasz, and R. Wuyts. Compos-
able encapsulation policies. In Proceedings of European Conference
on Object-Oriented Programming (ECOOP’04), volume 3086 of LNCS,
pages 26–50. Springer Verlag, June 2004. ISBN 978-3-540-22159-3.
doi: 10.1007/b98195. URL http://scg.unibe.ch/archive/papers/
Scha04aEncapsulationPolicies.pdf.

[146] M. Seemann. Dependency Injection in .NET. Manning Publications,
sep 2011.

[147] I. Sergey and D. Clarke. Gradual ownership types. In ESOP, pages
579–599, 2012.

[148] M. Serrano. Wide classes. In R. Guerraoui, editor, Proceedings
ECOOP ’99, volume 1628 of LNCS, pages 391–415, Lisbon, Portugal,
June 1999. Springer-Verlag. URL http://www.ifs.uni-linz.ac.at/

~ecoop/cd/papers/1628/16280391.pdf.

[149] C. Smith and S. Drossopoulou. Chai: Typed traits in Java. In Proceed-
ings ECOOP 2005, 2005.

[150] R. B. Smith and D. Ungar. A simple and unifying approach to subjec-
tive objects. TAPOS special issue on Subjectivity in Object-Oriented Sys-
tems, 2(3):161–178, Dec. 1996. doi: 10.1002/(SICI)1096-9942(1996)2:
3%3C161::AID-TAPO3%3E3.0.CO;2-Z. URL http://www.mip.sdu.
dk/~bnj/library/Us_Ungar.pdf.

[151] F. Steimann. On the representation of roles in object-oriented and
conceptual modelling. Data Knowl. Eng., 35(1):83–106, Oct. 2000.
ISSN 0169-023X. doi: 10.1016/S0169-023X(00)00023-9. URL http:
//dx.doi.org/10.1016/S0169-023X(00)00023-9.

[152] T. S. Strickland, S. Tobin-Hochstadt, R. B. Findler, and M. Flatt. Chap-
erones and impersonators: Run-time support for reasonable interpo-
sition. In OOPSLA ’12: Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages and Applications,
Oct. 2012. To appear.

[153] S. Subramanian, M. Hicks, and K. S. McKinley. Dynamic software
updates: a VM-centric approach. In Proceedings of the 2009 ACM SIG-
PLAN conference on Programming language design and implementation,
PLDI ’09, pages 1–12, New York, NY, USA, 2009. ACM. ISBN 978-1-
60558-392-1. doi: 10.1145/1542476.1542478. URL http://doi.acm.
org/10.1145/1542476.1542478.

[154] J. Sunshine, K. Naden, S. Stork, J. Aldrich, and E. Tanter. First-class
state change in Plaid. In Proceedings of the 2011 ACM international

133

http://scg.unibe.ch/archive/papers/Scha04aEncapsulationPolicies.pdf
http://scg.unibe.ch/archive/papers/Scha04aEncapsulationPolicies.pdf
http://www.ifs.uni-linz.ac.at/~ecoop/cd/papers/1628/16280391.pdf
http://www.ifs.uni-linz.ac.at/~ecoop/cd/papers/1628/16280391.pdf
http://www.mip.sdu.dk/~bnj/library/Us_Ungar.pdf
http://www.mip.sdu.dk/~bnj/library/Us_Ungar.pdf
http://dx.doi.org/10.1016/S0169-023X(00)00023-9
http://dx.doi.org/10.1016/S0169-023X(00)00023-9
http://doi.acm.org/10.1145/1542476.1542478
http://doi.acm.org/10.1145/1542476.1542478

conference on Object oriented programming systems languages and ap-
plications, OOPSLA ’11, pages 713–732, New York, NY, USA, 2011.
ACM. ISBN 978-1-4503-0940-0. doi: 10.1145/2048066.2048122. URL
http://doi.acm.org/10.1145/2048066.2048122.

[155] É. Tanter. Expressive scoping of dynamically-deployed aspects. In
Proceedings of the 7th ACM International Conference on Aspect-Oriented
Software Development (AOSD 2008), pages 168–179, Brussels, Bel-
gium, Apr. 2008. ACM Press. URL http://pleiad.dcc.uchile.cl/
papers/2008/tanter-aosd2008.pdf.

[156] E. Tanter. Beyond static and dynamic scope. In Proceedings of the
5th symposium on Dynamic languages, DLS ’09, pages 3–14, New York,
NY, USA, 2009. ACM. ISBN 978-1-60558-769-1. doi: 10.1145/1640134.
1640137.

[157] É. Tanter. Execution levels for aspect-oriented programming. In Pro-
ceedings of AOSD’10), pages 37–48, Rennes and Saint Malo, France,
Mar. 2010. ACM Press. Best Paper Award.

[158] É. Tanter, J. Noyé, D. Caromel, and P. Cointe. Partial behavioral
reflection: Spatial and temporal selection of reification. In Pro-
ceedings of OOPSLA ’03, ACM SIGPLAN Notices, pages 27–46, nov
2003. doi: 10.1145/949305.949309. URL http://www.dcc.uchile.
cl/~etanter/research/publi/2003/tanter-oopsla03.pdf.

[159] R. Toledo, A. Núñez, É. Tanter, and J. Noyé. Aspectizing java access
control. IEEE Trans. Software Eng., 38(1):101–117, 2012.

[160] E. Truyen, N. Cardozo, S. Walraven, J. Vallejos, E. Bainomugisha,
S. Günther, and T. DHondt. Context-oriented programming for cus-
tomizable saas applications. In Symposium on Applied Computing,
SAC’12. ACM press, 2012.

[161] D. Ungar and R. B. Smith. Self: The power of simplicity. In Proceedings
OOPSLA ’87, ACM SIGPLAN Notices, volume 22, pages 227–242, Dec.
1987. doi: 10.1145/38765.38828.

[162] T. Van Cutsem and M. S. Miller. Proxies: design principles for robust
object-oriented intercession apis. In Proceedings of the 6th symposium
on Dynamic languages, DLS ’10, pages 59–72, New York, NY, USA,
2010. ACM. ISBN 978-1-4503-0405-4. doi: 10.1145/1869631.1869638.
URL http://doi.acm.org/10.1145/1869631.1869638.

[163] J. Viega, B. Tutt, and R. Behrends. Automated delegation is a viable
alternative to multiple inheritance in class based languages. Techni-
cal report, University of Virginia, Charlottesville, VA, USA, 1998.

134

http://doi.acm.org/10.1145/2048066.2048122
http://pleiad.dcc.uchile.cl/papers/2008/tanter-aosd2008.pdf
http://pleiad.dcc.uchile.cl/papers/2008/tanter-aosd2008.pdf
http://www.dcc.uchile.cl/~etanter/research/publi/2003/tanter-oopsla03.pdf
http://www.dcc.uchile.cl/~etanter/research/publi/2003/tanter-oopsla03.pdf
http://doi.acm.org/10.1145/1869631.1869638

[164] J. Voigt, W. Irwin, and N. Churcher. Intuitiveness of class and object
encapsulation. In 6th International Conference on Information Technology
and Applications, 2009.

[165] M. von Löwis, M. Denker, and O. Nierstrasz. Context-oriented
programming: Beyond layers. In Proceedings of the 2007 Inter-
national Conference on Dynamic Languages (ICDL 2007), pages 143–
156. ACM Digital Library, 2007. ISBN 978-1-60558-084-5. doi:
10.1145/1352678.1352688. URL http://scg.unibe.ch/archive/
papers/Loew07aPyContext.pdf.

[166] M. Wang, J. Gibbons, and N. Wu. Incremental updates for ef-
ficient bidirectional transformations. SIGPLAN Not., 46:392–403,
sep 2011. ISSN 0362-1340. doi: 10.1145/2034574.2034825. URL
10.1145/2034574.2034825.

[167] A. Warth, M. Stanojević, and T. Millstein. Statically scoped object
adaptation with expanders. In OOPSLA ’06: Proceedings of the 21st
annual ACM SIGPLAN conference on Object-oriented programming sys-
tems, languages, and applications, pages 37–56, New York, NY, USA,
2006. ACM Press. ISBN 1-59593-348-4. doi: 10.1145/1167473.1167477.

[168] E. Wernli. Theseus: Whole updates of Java server applications. In
Proceedings of HotSWUp 2012 (Fourth Workshop on Hot Topics in Soft-
ware Upgrades), pages 41–45, June 2012. doi: 10.1109/HotSWUp.2012.
6226616. URL http://scg.unibe.ch/archive/papers/Wern12b.
pdf.

[169] E. Wernli, D. Gurtner, and O. Nierstrasz. Using first-
class contexts to realize dynamic software updates. In
Proceedings of International Workshop on Smalltalk Technolo-
gies (IWST 2011), pages 21–31, 2011. URL http://scg.
unibe.ch/archive/papers/Wern11a-ActiveContext.pdf.
http://esug.org/data/ESUG2011/IWST/Proceedings.pdf.

[170] E. Wernli, M. Lungu, and O. Nierstrasz. Incremental dynamic up-
dates with first-class contexts. In Objects, Components, Models and
Patterns, Proceedings of TOOLS Europe 2012, pages 304–319, 2012.
doi: 10.1007/978-3-642-30561-0 21. URL http://scg.unibe.ch/
archive/papers/Wern12a.pdf.

[171] E. Wernli, P. Maerki, and O. Nierstrasz. Ownership, filters and cross-
ing handlers: flexible ownership in dynamic languages. In Pro-
ceedings of the 8th symposium on Dynamic languages, DLS ’12, pages
83–94, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1564-
7. doi: 10.1145/2384577.2384589. URL http://scg.unibe.ch/
archive/papers/Wern12c.pdf.

135

http://scg.unibe.ch/archive/papers/Loew07aPyContext.pdf
http://scg.unibe.ch/archive/papers/Loew07aPyContext.pdf
10.1145/2034574.2034825
http://scg.unibe.ch/archive/papers/Wern12b.pdf
http://scg.unibe.ch/archive/papers/Wern12b.pdf
http://scg.unibe.ch/archive/papers/Wern11a-ActiveContext.pdf
http://scg.unibe.ch/archive/papers/Wern11a-ActiveContext.pdf
http://scg.unibe.ch/archive/papers/Wern12a.pdf
http://scg.unibe.ch/archive/papers/Wern12a.pdf
http://scg.unibe.ch/archive/papers/Wern12c.pdf
http://scg.unibe.ch/archive/papers/Wern12c.pdf

[172] E. Wernli, M. Lungu, and O. Nierstrasz. Incremental dynamic up-
dates with first-class contexts. Journal of Object Technology, 12(3):1:1–
27, Aug. 2013. ISSN 1660-1769. doi: 10.5381/jot.2013.12.3.a1. URL
http://scg.unibe.ch/archive/Wern13a.pdf.

[173] T. Wrigstad, F. Pizlo, F. Meawad, L. Zhao, and J. Vitek. Loci: Simple
thread-locality for java. In Proceedings of the 23rd European Conference
on ECOOP 2009 — Object-Oriented Programming, Genoa, pages 445–
469, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-642-03012-
3. doi: 10.1007/978-3-642-03013-0 21.

[174] T. Würthinger, C. Wimmer, and L. Stadler. Unrestricted and safe
dynamic code evolution for Java. Science of Computer Programming,
July 2011. ISSN 01676423. doi: 10.1016/j.scico.2011.06.005. URL
http://dx.doi.org/10.1016/j.scico.2011.06.005.

[175] Y. Zibin, A. Potanin, M. Ali, S. Artzi, A. Kie, un, and M. D. Ernst.
Object and reference immutability using java generics. In Proceedings
of the the 6th joint meeting of the European software engineering confer-
ence and the ACM SIGSOFT symposium on The foundations of software
engineering, ESEC-FSE ’07, pages 75–84, New York, NY, USA, 2007.
ACM. ISBN 978-1-59593-811-4. doi: 10.1145/1287624.1287637. URL
http://doi.acm.org/10.1145/1287624.1287637.

136

http://scg.unibe.ch/archive/Wern13a.pdf
http://dx.doi.org/10.1016/j.scico.2011.06.005
http://doi.acm.org/10.1145/1287624.1287637

� � � � � � � ���	

���������	
������
���������

�������������

��	������������

�	����������

!�"#��������� ���	������� �����������$�����	�	��������

%�	�����������	�

���	��&����������	�

&"#���������#�����	' ������ �"#�����������	 �����	������(��)���	���������������������������

�����������*����������	+	�#��
�������	�����'�����,-�	��"#���������������������*�������

��	�������,�����'�#����"#��������"#��������+��"#��	
�������	������	'������������)�����

��������	����������	�����./����	+�0�!�"#�	�� r�����1���	+	���(����
���2	�����033/�

4�������5��(����	�	�+���6�	+���������)�1����������������	�(�����#�����%�	�������"#	��	���	

7�	�$�	��

5�	���"#��)	

Erwann Wernli
Software Composition Group
Institut für Informatik
Universität Bern

Phone: + 41 78 768 72 56

Email: wernli@iam.unibe.ch

Homepage: www.ewernli.com

Personal

Born on September 23, 1980.

Swiss Citizen.

Education

MSc in Computer Science, Swiss Federal Institute of Technology Lausanne, 1999–2004.

Ph.D. in Computer Science, University of Bern, 2009–2013.

Employment

Research Assistant, University of Bern, 2009–2013.

Software Engineer, IMTF, 2006–2009.

Consultant, Blue-Infinity, 2004–2006.

Publications

Journal Articles

Erwann Wernli, Mircea Lungu, and Oscar Nierstrasz. Incremental Dynamic Updates with First-class
Contexts, 2013, In Journal of Object Technology 12(3) p. 1–27

Proceedings

Erwann Wernli, Mircea Lungu, and Oscar Nierstrasz. Incremental Dynamic Updates with First-class
Contexts, 2012, In Proceedings of TOOLS Europe 2012, p. 304–319.

Erwann Wernli, Pascal Maerki, and Oscar Nierstrasz. Ownership, filters and crossing handlers: flexible
ownership in dynamic languages, 2012, In Proceedings of the DLS 2012, p. 83–94

Erwann Wernli. Theseus: Whole updates of Java server applications. In Proceedings of HotSWUp 2012,
2012, p. 41-45.

Awards

Best Paper Award at TOOLS 2012 for Incremental Dynamic Updates with First-class Contexts

Last updated: September 18, 2013

	1
	1 Introduction
	1.1 First-class Contexts
	1.2 Thesis
	1.3 Contributions
	1.3.1 Active Context
	1.3.2 Delegation Proxies
	1.3.3 Dynamic Ownership

	1.4 Outline

	2 Related Work
	2.1 Temporal Variability
	2.2 Active Variability
	2.3 Structural Variability
	2.4 A Taxonomy of Complexity
	2.5 Goals and Roadmap
	2.6 Conclusions

	3 Dynamically Updating Software with Active Context
	3.1 Introduction
	3.2 Running Example
	3.2.1 The Problem with Updates
	3.2.2 Lifecycle of an Incremental Update

	3.3 First-class Context
	3.3.1 User-defined Update Strategy
	3.3.2 Object Representations
	3.3.3 First-class Classes
	3.3.4 Threads and Contexts

	3.4 Implementation
	3.4.1 Concurrency and Garbage Collection
	3.4.2 State Relocation
	3.4.3 Special Language Constructs
	3.4.4 Further Details

	3.5 Validation
	3.5.1 Evolution
	3.5.2 Run-time Characteristics

	3.6 Discussion
	3.6.1 Portability
	3.6.2 Performance
	3.6.3 Development Effort
	3.6.4 Type Safety

	3.7 Related Work
	3.7.1 Class Redefinition
	3.7.2 Layers
	3.7.3 Additional Related Work

	3.8 Conclusions

	4 Contextualizing Behavior with Delegation Proxies
	4.1 Introduction
	4.2 Delegation Proxies
	4.2.1 Propagation
	4.2.2 Closures
	4.2.3 Forwarding
	4.2.4 Transparency

	4.3 Examples
	4.3.1 Lazy Values
	4.3.2 Membranes
	4.3.3 Layers
	4.3.4 Interceptors
	4.3.5 Object Versioning
	4.3.6 Read-only Execution
	4.3.7 Dynamic Scoping

	4.4 Semantics
	4.4.1 Identity Proxy
	4.4.2 Propagating Identity Proxy

	4.5 Implementation
	4.5.1 Performance
	4.5.2 Static Typing

	4.6 Related Work
	4.7 Conclusions

	5 Scaling Information Hiding with Dynamic Ownership
	5.1 Introduction
	5.2 Filters and Crossing Handlers
	5.2.1 Default Policy

	5.3 Using Filters
	5.3.1 Iterators
	5.3.2 Read-only References
	5.3.3 Access Modifiers
	5.3.4 Sandboxing
	5.3.5 First-class State

	5.4 Using Crossing Handlers
	5.4.1 Defensive Copying
	5.4.2 Remoting
	5.4.3 Synchronization

	5.5 Security
	5.5.1 Ownership Transfer
	5.5.2 Reflection

	5.6 Semantics
	5.6.1 Ownership and References
	5.6.2 Topics and Filters
	5.6.3 Paths
	5.6.4 Accessibility
	5.6.5 Validity of References
	5.6.6 Instantiation
	5.6.7 Aliasing
	5.6.8 Ownership Transfer

	5.7 Implementation
	5.7.1 Closures and self
	5.7.2 Primitive Types
	5.7.3 Control Flow
	5.7.4 Ownership Transfer
	5.7.5 First-class Classes

	5.8 Experiments
	5.8.1 Adapting the Web Server
	5.8.2 Performance

	5.9 Discussion
	5.10 Related work
	5.11 Conclusions

	6 Conclusions
	6.1 An Extended Toolbox
	6.2 Strengths and Weaknesses
	6.3 Open Questions

