134 research outputs found

    Lie symmetry analysis, exact solutions and conservation laws for the time fractional modified Zakharov–Kuznetsov equation

    Get PDF
    In this work, Lie symmetry analysis (LSA) for the time fractional modified Zakharov–Kuznetsov (mZK) equation with Riemann–Liouville (RL) derivative is analyzed. We transform the time fractional mZK equation to nonlinear ordinary differential equation (ODE) of fractional order using its point symmetries with a new dependent variable. In the reduced equation, the derivative is in Erdelyi–Kober (EK) sense. We obtained exact traveling wave solutions by using fractional DξαG/G-expansion method. Using Ibragimov's nonlocal conservation method to time fractional nonlinear partial differential equations (FNPDEs), we compute conservation laws (CLs) for the mZK equation

    The time-fractional mZK equation for gravity solitary waves and solutions using sech-tanh and radial basic function method

    Get PDF
    In recent years, we know that gravity solitary waves have gradually become the research spots and aroused extensive attention; on the other hand, the fractional calculus have been applied to the biology, optics and other fields, and it also has attracted more and more attention. In the paper, by employing multi-scale analysis and perturbation methods, we derive a new modified Zakharov–Kuznetsov (mZK) equation to describe the propagation features of gravity solitary waves. Furthermore, based on semi-inverse and Agrawal methods, the integer-order mZK equation is converted into the time-fractional mZK equation. In the past, fractional calculus was rarely used in ocean and atmosphere studies. Now, the study on nonlinear fluctuations of the gravity solitary waves is a hot area of research by using fractional calculus. It has potential value for deep understanding of the real ocean–atmosphere. Furthermore, by virtue of the sech-tanh method, the analytical solution of the time-fractional mZK equation is obtained. Next, using the above analytical solution, a numerical solution of the time-fractional mZK equation is given by using radial basis function method. Finally, the effect of time-fractional order on the wave propagation is explained. &nbsp

    Lie Symmetries and Low-Order Conservation Laws of a Family of Zakharov-Kuznetsov Equations in 2 + 1 Dimensions

    Get PDF
    In this work, we study a generalised(2+1)equation of the Zakharov-Kuznetsov (ZK)(m,n,k)equation involving three arbitrary functions. From the point of view of the Lie symmetry theory, we have derived all Lie symmetries of this equation depending on the arbitrary functions. Line soliton solutions have also been obtained. Moreover, we study the low-order conservation laws by applying the multiplier method. This family of equations is rich in Lie symmetries and conservation laws. Finally, when the equation is expressed in potential form, it admits a variational structure in the case when two of the arbitrary functions are linear. In addition, the corresponding Hamiltonian formulation is presented

    Extractions of some new travelling wave solutions to the conformable Date-Jimbo-Kashiwara-Miwa equation

    Get PDF
    In this paper, complex and combined dark-bright characteristic properties of nonlinear Date-Jimbo-Kashiwara-Miwa equation with conformable are extracted by using two powerful analytical approaches. Many graphical representations such as 2D, 3D and contour are also reported. Finally, general conclusions of about the novel findings are introduced at the end of this manuscript

    New extended generalized Kudryashov method for solving three nonlinear partial differential equations

    Get PDF
    New extended generalized Kudryashov method is proposed in this paper for the first time. Many solitons and other solutions of three nonlinear partial differential equations (PDEs), namely, the (1+1)-dimensional improved perturbed nonlinear Schrödinger equation with anti-cubic nonlinearity, the (2+1)-dimensional Davey–Sterwatson (DS) equation and the (3+1)-dimensional modified Zakharov–Kuznetsov (mZK) equation of ion-acoustic waves in a magnetized plasma have been presented. Comparing our new results with the well-known results are given. Our results in this article emphasize that the used method gives a vast applicability for handling other nonlinear partial differential equations in mathematical physics

    Exact closed form solutions of compound Kdv Burgers’ equation by using generalized (Gʹ/G) expansion method

    Get PDF
    In this investigation, the compound Korteweg-de Vries (Kd-V) Burgers equation with constant coefficients is considered as the model, which is used to describe the properties of ion-acoustic waves in plasma physics, and also applied for long wave propagation in nonlinear media with dispersion and dissipation. The aim of this paper to achieve the closed and dynamic closed form solutions of the compound KdV Burgers equation. We derived the completely new solutions to the considered model using the generalized (Gʹ/G)-expansion method. The newly obtained solutions are in form of hyperbolic and trigonometric functions, and rational function solutions with inverse terms of the trigonometric, hyperbolic functions. The dynamical representations of the obtained solutions are shown as the annihilation of three-dimensional shock waves, periodic waves, and multisoliton through their three dimensional and contour plots. The obtained solutions are also compared with previously exiting solutions with both analytically and numerically, and found that our results are preferable acceptable compared to the previous results.Publisher's Versio

    Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs

    Get PDF
    Algorithms are presented for the tanh- and sech-methods, which lead to closed-form solutions of nonlinear ordinary and partial differential equations (ODEs and PDEs). New algorithms are given to find exact polynomial solutions of ODEs and PDEs in terms of Jacobi's elliptic functions. For systems with parameters, the algorithms determine the conditions on the parameters so that the differential equations admit polynomial solutions in tanh, sech, combinations thereof, Jacobi's sn or cn functions. Examples illustrate key steps of the algorithms. The new algorithms are implemented in Mathematica. The package DDESpecialSolutions.m can be used to automatically compute new special solutions of nonlinear PDEs. Use of the package, implementation issues, scope, limitations, and future extensions of the software are addressed. A survey is given of related algorithms and symbolic software to compute exact solutions of nonlinear differential equations.Comment: 39 pages. Software available from Willy Hereman's home page at http://www.mines.edu/fs_home/whereman
    corecore