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1. Introduction  

In the last two decades years, applied mathematics and physics nonlinear phenomena play an 

important role in soliton theory, the calculation of analytical and numerical solutions, especially the 

travelling wave solutions of nonlinear equations in mathematical physics [1]. Thus, deeper 

investigation of the analytical solutions to the nonlinear evolution equations with the help of newly 

developed and improved approaches have been considered as one of the important study area in 

mailto:hmbaskonus@gmail.com
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nonlinear sciences such as engineering, chemistry, biology, dynamics, plasma physics, 

electrodynamics, applied physics and others. In this regard, many powerful models with high 

nonlinearity such as the nonlinear (3+1)-dimensional B-type Kadomtsev-Petviashvili-Boussinesq 

equation [2], modified α and modified Vakhnenko-Parkes equations [3], the perturbed nonlinear 

Schrödinger equation [4], Davey-Stewartson equation [5], KDV equation [6], the 

Calogero-Bogoyavlenskii-Schiff and KPH equations [7] some conformable nonlinear model [8], the 

Hirota Maccari system [9], Bogoyavlenskii equation [10], conformable space-time fractional 

Fokas-Lenells equation [11], the (2+1)-dimensional Boussinesq equation with fourth order [12], the 

(3+1) dimensional conformable fractional Zakharov-Kuznetsov equation with power law 

nonlinearity [13], the conformable Ablowitz-Kaup-Newell-Segur equation [14], nonlinear Phi-4 

equation [15] and many others [16‒19,31‒75] have been suggested to investigate deeper physical 

properties such as complex, dark, bright and soliton solutions. 

In the organization of this paper, in section 2, the brief description of considered methods such 

as sine-Gordon Expansion method (SGEM) and improved Bernoulli sub-equation method (IBSEFM) 

are given. In section 3, these projected methods are successfully applied to the nonlinear 

conformable Date-Jimbo-Kashiwara-Miwa equation (CDJKM) defined as [20] 

4 2 6 2 0,xxxxy xxy x xxx y xy xx yyy

u
u u u u u u u u

x x t




 

    
       

    
        (1) 

where  and  are non-zero and  , ,u u x y t  is the wave-amplitude function, which describes 

long water waves. In case of 1  , Eq (1) turns DJKM equation. DJKM equation was firstly 

presented by Kadomtsev and Petviashvili so as to study the stability of the KdV soliton [21]. Later, 

some important properties of DJKM have been investigated in [22‒25]. In 2020, Wazwaz have 

observed the Painlevé integrability and multiple soliton solutions by getting variable coefficient 

in [26].  

Some important discussions and physical meanings of figures are also presented in section 4. 

After the graphical simulations, a conclusion completes the paper in section 5. 

2. Projected methods 

2.1. The Sine-Gordon expansion method 

We will give general structure of the SGEM in this section. Let’s consider the sine-Gordon 

equation given by [28]; 

2 sin( ),xx ttu u u                                (2) 

where ( , )u u x t , is a real constant. Using the wave transform 

 ( , ) ,u u x t U x ct    
 

into Eq (2), we find the corresponding ordinary differential equation (ODE) as following, 
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sin ,

1
U U
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                       (3) 

where  .U U  If we integrate Eq (3), we obtain 

2

2
2

2
sin ,

2 1 2

U U

c




          
    

                

     (4) 

where  is the integration constant. Substituting  0,
2

U
w    and 

2
2

21
b

c





in Eq (4), gives 

 sin ,w b w                              (5) 

Setting 1b   in Eq (5), gives 

 sin .w w                       (6) 

Solving Eq (6) via separation of variables, we obtain 

  sin sec ( ),w h                        (7) 

  cos tan ( ).w h                        (8) 

Suppose that the nonlinear fractional differential equations given in the more general form; 

 2, , , , 0,x tP u u u u                     (9) 

where and  0,1 
 
is the order of the conformable derivative. By using wave transformation given 

as 

   , , ,
c

u u x t U kx t 


   
 

we find the following nonlinear ordinary differential equation (NODE)  

 2, , , , 0,N U U U U    

where   , , .
dU

U U U
d




 
 
To obtain the solutions of this equation, we suppose the following 

equation as trial solution 

       1

0

1

tanh sec tanh .
n

i

i i

i

U B h A A   



                      (10) 
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cos sin cos .
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U w w B w A w A



                          (11) 

Applying the homogeneous balance principle between the highest power nonlinear term and 

highest derivative in the nonlinear ordinary differential equation (NODE), we determine the value of

n . Putting Eq (11) and its consecutive derivatives into the NODE, we obtain a polynomial equation 

with    sin cos .i jw w Using some trigonometric properties to the polynomial equation, it is obtained 

an algebraic equation system by equating to zero the same power summation of coefficients. With 

aid of the computation programme, we solve the equation system to obtain the , , ,i iA B c k values. 

Substituting the , , ,i iA B c k values into Eq (10), we get the new travelling wave solutions to the Eq (9). 

2.2. The structure of IBSEFM 

In this subsection of the paper, we will mention about general structures of the IBSEFM 

[29,30].  

 

Step 1: Suppose that the following fractional differential equation, 

 , , , , , 0,t x t xtP u D u u u u                    (12) 

where ( , )u u x t  and  0,1  is the order of the conformable. The wave transformation is 

 , ( ),    ,
t

u u x t U x


  


                     (13) 

where ,   are real constants and can be determined later. This transformation reduces Eq (12) into 

NODE as following; 

 , , , , 0.N U U U U                            (14) 

Step 2: Let consider the trial solution form of Eq (14) as following  

 
 

 

     

     

2
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0
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m m
j m

i

j

a F
a a F a F a F

U
b b F b F b F

b F


  


  







   
 

   




          (15) 

We can determine the general form of Bernoulli differential equation for F   according to Bernoulli 

theory as 

, 0, 0,MF bF dF b d      𝑀 ∈ ℝ\{0,1,2},              (16) 

where  F F   is Bernoulli differential polynomial function. Eq (16) put into Eq (14), it gives 

polynomial equation  F  which depends on F as the following equality. 

  1 0 0.s

sF F F                             (17) 
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We put account the homogeneous balance principle to determine the relation between 

,  and n m M  constants. 

Step 3: Equating all the coefficients of  F yields an algebraic equation system; 

0, 0, , .i i s    

Once we have solved this system, we can determine the values of 0 1, ,..., na a a
 
and 0 1, ,..., mb b b . 

Step 4: We have two situations depend on  and b d  according to solution of Eq (16). 

   

1

1

1
, ,

M

b M

d
F b d

b e









 
   
 

           (18) 

 
      

  

1

11 1 tanh 1 2
, ,

1 tanh 1 2

Mb M
F b d

b M

  




    
  

   

 𝜀 ∈ ℝ  (19) 

We get the analytical solutions to Eq (14) via software program by using complete discrimination 

system for polynomial of  F  . 

3. Applications of approaches 

3.1. Application of SGEM 

In this section of the paper, we apply SGEM to the Eq (1) to investigate some analytical 

solutions such as exponential and complex. 

First of all, we transform Eq (1) into a NODE by the following wave transformation 

   , , , ,
t

u u x y t U kx my


  


                    (20) 

where , ,k m c are non-zero,

 

  is conformable derivative order. Putting Eq (20) into Eq (1) and after 

some simple calculating, we reach the following NODE 

 4 3 2 3 23 2 0,k mV k mV m k V                   (21) 

where ,V U  and also both integral constants are zero.  

With the help of balance principle for Eq (10), we find 2n  . For this value, Eq (10) can be 

written as 

           2

1 1 2 2 0sin cos cos sin cosV w B w A w B w w A w A    

  

            (22) 

and its second derivation 

         

     

2 2 2 4 2

1 2 2 1

3 3 3

1 2 2

2 cos( )sin 4 cos ( )sin 2 sin cos ( )sin

sin cos ( )sin 5 cos( )sin .

V w A w w A w w A w B w w

B w B w w B w w

     

  
     

 (23) 



4243 
 

AIMS Mathematics  Volume 6, Issue 5, 4238–4264. 

Putting Eq (22) and its second derivation into Eq (21), we find a trigonometric algebraic equation. 

When we take all coefficients of trigonometric functions as zero, we obtain a system of coefficients. 

Via some computational programs, we reach the some of coefficients as follows: 

Case 1: (Figures 1 and 2) When 
 2 4

22
0 2 1 1 2 2

2

4
, 0, , ,

2 2

m m AA
A A A B B k

A







 
       

 

gives the solution in the form, 

 
 

21

2 4

22

2

2

4
,

2
,

2
,

m m AA
A tanh myu t xx t

A
y 





  
   
                      

(24) 

where 2 , , ,A m   are real constants with non zero. 

 

Figure 1. The 3D and contour surfaces of Eq (24) for 
21, 0.2, 2, 0.9, 0.2, 1, 25 25,0 1.m y A x t               

 

 

Figure 2. The 2D graph of Eq (24) for 21, 0.2, 2, 0.9, 0.2, 1, 10, 25 25.m y A t x              
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Case 2. (Figures 3‒5) If 

3 4

00 0 0
1 2

0

1 2 2

3 3 3 16 81
0, , 0, , , ,

72 2 2 2

A iA A m mA
A A B B k

A







      

 

produces 

0 0 0
0 0 02

3 3 33 1 3
sec ,

2 2 2 2 2 2

A A A
iA h my t x A my t x A tanh my tu x    

  

     
             

       

(25) 

where 0 , ,A m 
 
are real constants with non zero. 

 

Figure 3. The 3D surfaces of Eq (25) for 01, 0.9, 1, 0.2, 1.3.m A y         

 
 

 

 

Figure 4. The Contour graph of Eq (25) for 01, 0.9, 0.2, 1, 1.3, 125 125.m y A x            
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Figure 5. The 2D surfaces of Eq (25) for 21, 0.9, 0.2, 1, 1.3, 0.1 125 125.m y A t x            

Case 3. (Figures 6‒8) Selecting as 
 

0 2

2 4

2

2 1 1 2 22

2

, 0, , , ,
2

m m B
A iB A B A iB k iB

B






 
     

 

gives  

  2 2 2 23 e, s c ,, B h my t iB x iB tanhu x y iy m t B xt   

 

   
         

                

(26) 

where 2 , ,B m  are real constants and non zero.

 

 

Figure 6. The 3D surfaces of Eq (26) for 
21, 0.9, 0.2, 5, 5, 25 25, 1 1.m y B x t             

6 4 2 2 4 6
x

1.5

1.0

0.5

Im u

4 2 2 4
x

1.0

0.5

0.5

1.0

1.5

2.0

Re u



4246 
 

AIMS Mathematics  Volume 6, Issue 5, 4238–4264. 

 

Figure 7. The contour surfaces of Eq (26) for 
21, 0.9, 0.2, 5, 5, 25 25, 1 1.m y B x t             

 

  

Figure 8. The 2D surfaces of Eq (26) for 
21, 0.9, 0.2, 5, 5, 0.1, 25 25.m y B t x           

Case 4. (Figures 9‒11) Choosing 
2 4
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(27) 

where 2 , ,B m  are real constants and non zero.
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Figure 9. The 3D surfaces of Eq (27) for 
21, 5, 0.9, 0.2, 1, 25 25, 1 1.m y B x t             

 

Figure 10. The contour surfaces of Eq (27) for 21, 5, 0.9, 0.2, 1, 25 25, 1 1.m y B x t             

  

Figure 11. The 2D surfaces of Eq (27) for 21, 5, 0.9, 0.2, 1, 0.1, 25 25.m y B t x           
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Case 5. (Figures 12‒14) When we select another coefficients for obtaining analytical solution as 

following, 
3

1 1 2

4

0 2 2
, 0, , , ,

2

m
A k A B A

m

k
k B ik

k







    


 

 

gives 

 5 sec ta, nh ,, ik h kx my t k kx myx tu y t   

 

   
        

                  

(28) 

in which , , ,k m   are real constants and non zero.

 
 

  

Figure 12. The 3D surfaces of Eq (28) for 1, 0.9, 0.2, 1, 25 25, 1 1.m y k x t              

 

Figure 13. The contour surfaces of Eq (28) for 1, 0.9, 0.2, 1, 25 25, 1 1.m y k x t              
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Figure 14. The 2D surfaces of Eq (28) for 1, 0.9, 0.2, 1, 25 25, 1 1.m y k x t              

Case 6. (Figures 15‒17) Once
4

2
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2 1 1 2 20 2 2

2

, 0, , , ,
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m
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A

A
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it is formed as 

   3 4 3 4

2 2

2 2 2 22 2

2 2

6 sec tanh ,
2 2

m mA m mA
iA h my xA t A my xu A t

A A

 
 

 

    
        
   
          

(29) 

in which , , ,k m  are real constants and non zero.

 
  

  

Figure 15. The 3D surfaces of Eq (29) for 21, 0.9, 0.2, 1, 0.1, 5, 95 15, 1 1.m y A x t                  
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Figure 16. The contour graphs of Eq (29) for 
21, 0.9, 0.2, 1, 0.1, 5, 95 15, 1 1.m y A x t                  

  

Figure 17. The 2D surfaces of Eq (29) for 
21, 0.9, 0.2, 1, 0.1, 5, 0.2, 95 15.m y A t x                

3.2. Application of IBSEFM 

This section applies IBSEFM to the governing model Eq (1) for obtaining some new complex 

analytical solutions. Let’s consider the following wave transformation into Eq (1) 

   , , , ,
t

u u x y t U kx my


  


                     (30) 

being , ,k m c are non-zero,

 

  is conformable derivative. Putting Eq (30) into Eq (1) and after some 

simple calculations, we find 

 4 3 2 3 23 2 0,k mV k mV m k V                    (31) 

where ,V U  and also both integral constants are zero. With the aid of homogeneous balance 

principle between V  and V
2
, we get relationship for ,n m and M according to IBSEFM properties  

2 2.M m n                     (32) 

Using this relationship, we can find many new complex solutions for governing model as 
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following cases. 

Case 1: When we take 3, 1M m   and 5n  , then we can obtain follows, 

2 3 4 5
50 1 2 3 4

0 1

,
a a F a F a F a F a F

V
b b F

     
 

 
                 (33) 

2
,V

    
 



                                        (34) 

   
2

,

22 2

4
V

    
 



      



                              (35) 

where 
5 1

3
, 0, 0F wF dF a b     . If we put Eqs (33,35) into Eq (31), we get a system of 

algebraic equations of F . Solving these models yields different coefficients as follows 

 

Case 1.1. (Figures 18‒20) Forb d , we select follows 
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These coefficients presents following solution for governing model 

 
   

 

2 , ,22
5 5 5

7 2 , ,2
5 5 5

48 6 3 316
, , ,

2 12

f x y t

f x y t

d a a a ed
u x y t x iy i t
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         (36) 

where  
 2

5

5

5

484

2

3
, .,

d ad
f x iy i t

a
x y t

a






 
  
 
 


  

 

Figure 18. The 3D surfaces of Eq (36) for 
53, 20, 0.1, 2, 0.9, 1, 1 1,0 1.d a y x t                
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Figure 19. The contour graphs of Eq (36) for 
53, 20, 0.1, 2, 0.9, 1, 1 1,0 1.d a y x t                

   

Figure 20. The 2D surfaces of Eq (36) for 53, 20, 0.1, 2, 0.9, 1, 1 1,0 1.d a y x t                

Case 1.2. (Figures 21‒23) Taking as b d , and selecting follows 
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     (37) 

where , , ,    are real constants and non-zero. 
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Figure 21. The 3D surfaces of Eq (37) for 
52, 0.9, 3, 42, 0.1, 1, 3 3,0 0.3.a y x t                  

 

Figure 22. The contour graphs of Eq (37) for
52, 0.9, 3, 42, 0.1, 1, 3 3,0 0.3.a y x t                  

   

Figure 23. The 2D surfaces of Eq (37) for 
52, 0.9, 3, 42, 0.1, 1, 3 3,0 0.3.a y x t                  
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Case 1.3. (Figures 24‒26) Gaining as b d , and selecting follows 
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gives the following complex solution to the governing model 

   

2

5

9
2 2

2

5

4 6 3
1

, , 2 ,
3

2 12

i x iy t

i x iy t

a e

u x y t i x iy t

i a e





 




 






 


 


  

 
   

 

 
   

 

  
   

            
   

     
  

 

    (38) 

where , , ,    are real constants and non-zero. 

 

Figure 24. The 3D surfaces of Eq (38) for 
1 42, 0.9, 3, 42, 0.1, 1, 13 13,0 0.3.b a y x t                

 

Figure 25. The contour graphs of Eq (38) for 
1 42, 0.9, 3, 42, 0.1, 1, 13 13,0 0.3.b a y x t                
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Figure 26. The 2D surfaces of Eq (38) for 
1 42, 0.9, 3, 42, 0.1, 1, 13 13,0 0.3.b a y x t                

Case 1.4. (Figures 27‒29) Withb d , considering into account as  
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gives the following complex solution to the governing model 
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 and 1 4, , , , ,b a     are real constants and non-zero. 

 

Figure 27. The 3D surfaces of Eq (39) for 
1 42, 0.9, 3, 42, 0.1, 1, 13 13,0 0.3.b a y x t                 
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Figure 28. The contour graphs of Eq (39) for 
1 42, 0.9, 3, 42, 0.1, 1, 13 13,0 0.3.b a y x t                 

 

Figure 29. The 2D surfaces of Eq (39) for 
1 42, 0.9, 3, 42, 0.1, 1, 13 13,0 0.3.b a y x t                 
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where , , ,d    are real constants and non-zero. 
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Figure 30. The 3D surfaces of Eq (40) for 0.1, 0.9, 2, 1, 0.5, 13 13, 1 1.y d x t                

 

Figure 31. The contour graphs of Eq (40) for 0.1, 0.9, 2, 1, 0.5, 13 13, 1 1.y d x t                

   

Figure 32. The 2D surfaces of Eq (40) for 0.1, 0.9, 2, 1, 0.5, 13 13, 1 1.y d x t                
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Case 1.6. (Figures 33‒35) When we consider as  
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            (41) 

where , , ,d    are real constants and non-zero. 

 

Figure 33. The 3D surfaces of Eq (41) for 0.1, 0.9, 2, 1, 0.5, 13 13, 1 1.y d x t                

 

Figure 34. The contour graphs of Eq (41) for 0.1, 0.9, 2, 1, 0.5, 13 13, 1 1.y d x t                
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Figure 35. The 2D surfaces of Eq (41) for 0.1, 0.9, 2, 1, 0.5, 13 13, 1 1.y d x t                

4. Discussion, comparision and physical explanations 

This paper finds entirely new complex analytical solutions for governing model with the help of 

two powerful approaches such as SGEM and IBSEFM. These solutions have some more important 

physical features. The hyperbolic secant (bright soliton) arises in the profile of a laminar jet, the 

hyperbolic tangent (dark soliton) arises in the calculation of magnetic moment, the hyperbolic sine 

(periodic wave solution) arises in the gravitational potential, and the hyperbolic cotangent (singular 

soliton) arises in the Langevin function for magnetic polarization [76]. In this sense, Eq (24) is a dark 

soliton solution. Eqs (25‒29) are used to explain the combined dark-bright soliton solutions. It is 

estimated that these solutions may be related to such physical meanings. When we compare these 

solutions in [21], one can see that these solutions entirely new complex dark, mixed dark-bright and 

dark soliton solutions to the governing model. 

In IBSEFM, if we consider more values of 3, 2M m   as 6n  , we obtain another new 

solution for the governing model as 
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, 0, 0F wF dF a b     . In this regards, this projected technique is a powerful tool for 

obtaining new analytical solutions for the nonlinear models. 

5. Conclusions 

This paper studies on the nonlinear Date-Jimbo-Kashiwara-Miwa equation with conformable 
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which defines to explain wave propagation. By using SGEM and IBSEFM, we reach the some new 

dark, bright, singular solitons and complex wave solutions. All the found wave solutions in this study 

are entirely new and they have satisfied the nonlinear Date-Jimbo-Kashiwara-Miwa equation with 

conformable. Under the suitable chosen of the values of parameters, we plotted 2D, 3D and contour 

simulations of the wave solutions. From these Figures (1‒35), it may be observed that wave solutions 

to the studied nonlinear model show the estimated wave propagations. 
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