
Journal of Symbolic Computation 37 (2004) 669–705

www.elsevier.com/locate/jsc

Symbolic computation of exact solutions
expressible in hyperbolic and elliptic functions for

nonlinear PDEs
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Abstract

Algorithms are presented for the tanh- and sech-methods, which lead to closed-form solutions of
nonlinear ordinary and partial differential equations (ODEs and PDEs). New algorithms are given to
find exact polynomial solutions of ODEs and PDEsin terms of Jacobi’s elliptic functions.

For systems with parameters, the algorithms determine the conditions on the parameters so that
the differential equations admit polynomial solutions in tanh, sech, combinations thereof, Jacobi’s sn
or cn functions. Examples illustrate key steps of the algorithms.

The new algorithms are implemented inMathematica. Thepackage PDESpecialSolutions.m can
be used to automatically compute new special solutions of nonlinear PDEs. Use of the package,
implementation issues, scope, limitations, and future extensions of the software are addressed.

A survey is givenof related algorithms and symbolic software to compute exact solutions of
nonlinear differential equations.
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1. Introduction

The appearance of solitary wave solutions in nature is quite common. Bell-shaped
sech-solutions and kink shaped tanh-solutions model wave phenomena in fluids, plasmas,
elastic media, electrical circuits, optical fibers, chemical reactions, bio-genetics, etc. The
travelling wave solutions of the Korteweg–de Vries (KdV) and Boussinesq equations,
which describe water waves, are famous examples.

Apart from their physical relevance, the knowledge of closed-form solutions of
nonlinear ordinary and partial differential equations (ODEs and PDEs) facilitates the
testing of numerical solvers, and aids in the stability analysis. Indeed, the exact solutions
given in this paper correspond to homoclinic and heteroclinic orbits in phase space, which
are the separatrices of stable and unstable regions.

Travelling wave solutions of many nonlinear ODEs and PDEs from soliton theory
(and beyond) can often be expressed as polynomials of the hyperbolic tangent and secant
functions. An explanation is given in, for example,Hereman and Takaoka(1990). The
existence of solitary wave solutions of evolution equations is addressed inKichenassamy
and Olver(1993). The tanh-method provides a straightforward algorithm to compute such
particular solutions for a large class of nonlinear PDEs. ConsultMalfliet (1992, 2004),
Malfliet and Hereman(1996) andDas and Sarma(1999) for a multitude of references to
tanh-based techniques and applications.

The tanh-method for, say, a single PDE inu(x, t) works as follows: in a travelling
frame of reference,ξ = c1x + c2t + ∆, one transforms the PDEinto an ODE in the new
independent variableT = tanhξ . Since the derivative of tanh is polynomial in tanh, i.e.,
T ′ = 1 − T2, all derivatives ofT are polynomials ofT . Via a chain rule, the polynomial
PDE inu(x, t) is transformed into an ODE inU(T), which has polynomial coefficients in
T . One then seeks polynomial solutions of the ODE, thus generating a subset of the set of
all solutions.

Along the path, one encounters ODEs which are nonlinear, higher-order versions of the
ultraspherical differential equation,

(1 − x2)y′′(x) − (2α + 1)xy′(x) + n(n + 2α)y(x) = 0, (1)

with integern ≥ 0 andα real, whose solutions are the Gegenbauer polynomials. Eq. (1)
includes the Legendre equation(α = 1/2), satisfied by the Legendre polynomials, and the
ODEs for Chebeyshev polynomials of type I(α = 0) and type II(α = 1). Likewise, the
associated Legendre equation,

(1 − x2)2y′′(x) − 2x(x2 − 1)y′(x) + [n(n + 1)(1 − x2) − m2]y(x) = 0, (2)

with m andn non-negative integers, appears in solving the Sturm–Liouville problem for
the KdV with a sech-square potential (seeDrazin and Johnson, 1989).

The appeal and success of the tanh-method lies in the fact that one circumvents
integration to get explicit solutions. Variants of the method appear in mathematical physics,
plasma physics, and fluid dynamics. For early references see e.g.Malfliet (1992), Yang
(1994) andDas and Sarma(1999). Recently, the tanh-methods have been applied to many
nonlinear PDEs in multiple independent variables (seeFan, 2002a,b,c, 2003a,b,c; Fan and
Hon, 2002, 2003a,b; Gao and Tian, 2001; Li and Liu, 2002; Yao and Li, 2002a,b).
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In this paper we present three flavors of tanh- and sech-methods as they apply to
nonlinear polynomial systems of ODEs and PDEs. Based on the strategy of the tanh-
method, we also present algorithms to compute polynomial solutions in terms of the Jacobi
sn and cn functions. Applied to the KdV equation, the so-called cnoidal solution (Drazin
and Johnson, 1989) is obtained. For Duffing’s equation (Lawden, 1989), we recover known
sn and cn-solutions which model vibrations of a nonlinear spring. Sn- and cn-methods
are quite effective for symbolically solving nonlinear PDEs as shown inFu et al.(2001),
Parkeset al.(2002), Liu and Li (2002a, submitted for publication), Fan and Zhang(2002),
Fan(2003a,b,c), Chenand Zhang(2003a, submitted for publication) andYan(2003).

We also present our package,PDESpecialSolutions.m (Baldwin et al., 2001) in
Mathematica, which implements the five methods. Without intervention by the user,
our software computes travelling wave solutions as polynomials in eitherT = tanhξ ,
S = sech ξ , combinations thereof, CN= cn(ξ; m), or SN = sn(ξ; m) with ξ =
c1x+c2y+c3z+· · ·+cnt+∆ = ∑N

j =0 cj x j +∆. The coefficients of the spatial coordinates
are the components of the wavevector; the time coefficient is the angular frequency of
the wave. The wave travels in the direction of the wavevector; its plane wavefront is
perpendicular to that wavevector.∆ is the constant phase. For systems of ODEs or PDEs
with constant parameters, the software automatically determines the conditions on the
parameters so that the equations might admit polynomial solutions in tanh, sech, both,
sn or cn.

Parkesand Duffy (1996) mention the difficulty of using the tanh-method by hand for
anything but simple PDEs. Therefore, they automated to some degree the tanh-method
usingMathematica. Their code ATFM carries out some (but not all) steps of the method.
Parkeset al. (1998) also considered solutions to (odd-order generalized KdV) equations
in even powers of sech. The code ATFM does not cover solutions involving odd powers
of sech. Recently,Parkeset al.(2002) extended their methods to cover the Jacobi elliptic
functions.Abbott et al.(2002) produced the function SeriesSn to partially automate the
elliptic function method.Li and Liu (2002) designed theMaplepackage RATH to automate
the tanh-method. InLiu and Li (2002a) they announce theirMaple code AJFM for the
Jacobi elliptic function method. InSection 8.2we review the codes ATFM, RATH, AJFM,
and SeriesSn and compare them with PDESpecialSolutions.m.

The paper is organized as follows: inSections 2and3, we give the main steps of the
algorithms for computing tanh- and sech-solutions of nonlinear polynomial PDEs. We
restrict ourselves to polynomial solutions in either tanh or sech. The Boussinesq equation
and Hirota–Satsuma system of coupled KdV equations illustrate the steps. For references to
both equations see e.g.Ablowitz and Clarkson(1991). In Section 4we consider a broader
class of polynomial solutions involving both tanh and sech. The tanh–sech algorithm is
used to solve a system of PDEs due toGao and Tian(2001). In Section 5we show how
modifying the chain rule allows us to find polynomial solutions in cn and sn. The KdV
equation is used to illustrate the steps. InSection 6we give details of the algorithms to
compute the highest-degree of the polynomials, to analyze and solve nonlinear algebraic
systems with parameters, and to numerically and symbolically test solutions. The coupled
KdV equations illustrate the subtleties of these algorithms. InSection 7we present
exact solutions for several nonlinear ODEs and PDEs. InSection 8we address other
perspectives and extensions of the algorithms, and review related software packages.



672 D. Baldwin et al. / Journal of Symbolic Computation 37 (2004) 669–705

We discuss the results and draw some conclusions inSection 9. Theuse of the package
PDESpecialSolutions.m is shown in theAppendix.

2. Algorithm to compute tanh-solutions for nonlinear PDEs

In this section we outline the tanh-method (Malfliet and Hereman, 1996) for the
computation of closed-form tanh-solutions for nonlinear PDEs (and ODEs). Each of the
five main steps of our algorithm is illustrated for the Boussinesq equation. Details ofSteps
T2, T4 andT5 are postponed toSection 6.

Given is asystem of polynomial PDEs with constant coefficients,

∆(u(x), u′(x), u′′(x), . . . , u(k)(x), . . . , u(m)(x)) = 0, (3)

where thedependent variableu hasM componentsui , the independent variablex hasN
componentsx j , andu(k)(x) denotes the collection of mixed derivative terms of orderk.
Lower-case Greek letters will denote parameters in (3).

Fornotational simplicity, in Section 7we will use dependent variablesu, v, w, etc. and
independent variablesx, y, z, andt .

Example. The classical Boussinesq equation,

utt − uxx + 3uuxx + 3u2
x + αuxxxx = 0, (4)

with real parameterα, was proposed by Boussinesq to describe surface water waves whose
horizontal scale is much larger than the depth of the water (Ablowitz and Clarkson, 1991).
Variants of (4) were recently solved byFan and Hon(2003a).

While one could apply the tanh-method directly to (4), we recast it as a first-order
system in time to show the method for a simple system of PDEs. So,

u1,x2 + u2,x1 = 0,

u2,x2 + u1,x1 − 3u1u1,x1 − αu1,3x1 = 0,
(5)

wherex1 = x, x2 = t , u1(x1, x2) = u(x, t), andu2(x1, x2) = ut (x, t). We use

ui,kxj

def= ∂kui

∂xk
j

, ui,pxj rxksx�
def= ∂ p+r+sui

∂x p
j ∂xr

k∂xs
�

, etc. (6)

through out this paper.

Step T1 (Transform the PDE into a Nonlinear ODE). We seek solutions in the travelling
frame of reference,

ξ =
N∑

j =1

cj x j + ∆, (7)

wherecj and∆ are constant.
The tanh-method seeks polynomial solutions expressible in the hyperbolic tangent,

T = tanhξ . Based on the identity cosh2 ξ − sinh2 ξ = 1 one computes
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tanh′ ξ = sech2 ξ = 1 − tanh2 ξ,

tanh′′ ξ = −2 tanhξ + 2 tanh3 ξ, etc.
(8)

Therefore, the first and, consequently, all higher-order derivatives are polynomials inT .
SinceT ′ = 1 − T2, repeatedly applying the chain rule,

∂•
∂x j

= ∂ξ

∂x j

dT

dξ

d•
dT

= cj (1 − T2)
d•
dT

, (9)

transforms the system of PDEs into a coupled system of nonlinear ODEs,

∆(T, U(T), U′(T), U′′(T), . . . , U(m)(T)) = 0, (10)

with U(T) = u(x). Each component of∆ is anonlinear ODE with polynomial coefficients
in T .

Example. Substituting

ui,x j = cj (1 − T2)U ′
i ,

ui,2x j = c2
j (1 − T2)[(1 − T2)U ′

i ]′ = c2
j (1 − T2)[−2TU′

i + (1 − T2)U ′′
i ],

ui,3x j = c3
j (1 − T2)[−2T(1 − T2)U ′

i + (1 − T2)2U ′′
i ]′

= c3
j (1 − T2)[−2(1 − 3T2)U ′

i − 6T(1 − T2)U ′′
i + (1 − T2)2U ′′′

i ],

(11)

into (5), and cancelling common(1 − T2) factors, yields

c2U ′
1 + c1U ′

2 = 0,

c2U ′
2 + c1U ′

1 − 3c1U1U ′
1 + αc3

1[2(1 − 3T2)U ′
1

+ 6T(1 − T2)U ′′
1 − (1 − T2)2U ′′′

1 ] = 0,

(12)

whereU1(T) = u1(x1, x2) andU2(T) = u2(x1, x2).

Step T2 (Determine the Degree of the Polynomial Solutions). Seeking polynomial solu-
tions of the form

Ui (T) =
Mi∑
j =0

ai j T j , (13)

we must determine the leading exponentsMi before theai j can be computed. We assume
that Mi ≥ 1 to avoid trivial solutions. SubstitutingUi into (10), the coefficients of every
power of T in every equation must vanish. In particular, the highest degree terms must
vanish. Sincethe highestdegree terms depend only onT Mi in (13), it suffices to substitute
Ui (T) = T Mi into the left-hand side of (10). In the resulting polynomial systemP(T),
equating every two possible highest exponents in every componentPi gives a linear system
for Mi . Thatlinear system is then solved.

If one or more exponentsMi remain undetermined, assign an integer value to the freeMi

so that every equation in (10) has at least two different terms with equal highest exponents.
Carry each the solution toStep T3.
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Example. For theBoussinesq system, substitutingU1(T) = T M1 andU2(T) = T M2 into
(12), and equating the highest exponents ofT for each equation, gives

M1 − 1 = M2 − 1, 2M1 − 1 = M1 + 1. (14)

Then,M1 = M2 = 2, and

U1(T) = a10 + a11T + a12T2, U2(T) = a20 + a21T + a22T2. (15)

Step T3 (Derive the Algebraic System for the Coefficientsai j ). To generate the system
for the unknown coefficientsai j and wave parameterscj , substitute (13) into (10) and set
the coefficients ofTi to zero. The resulting nonlinear algebraic system for the unknowns
ai j is parameterized by thecj , and the external parameters (in lower-case Greek letters) of
system (3), if any.

Example. Continuing with the Boussinesq system, after substituting (15) into (12), and
collecting the terms of like degree inT , we get (in order of complexity)

a21c1 + a11c2 = 0,

a22c1 + a12c2 = 0,

a11c1(3a12 + 2αc2
1) = 0,

a12c1(a12 + 4αc2
1) = 0,

a11c1 − 3a10a11c1 + 2αa11c
3
1 + a21c2 = 0,

−3a2
11c1 + 2a12c1 − 6a10a12c1 + 16αa12c

3
1 + 2a22c2 = 0,

(16)

with unknownsa10, a11, a12, a20, a21, a22, andparametersc1, c2, andα.

Step T4 (Solve the Nonlinear Parameterized Algebraic System). The most difficult step
is solving the nonlinear algebraic system. To do so, we designed a customized, yet
powerful, nonlinear solver (seeSection 6.2for details).

The nonlinear algebraic system is solved under the following assumptions:

(i) All parameters,α, β, etc., in (3) are strictly positive. Vanishing parameters may
change the exponentsMi in Step T2. To compute solutions corresponding to negative
parameters, reverse the signs of the parameters in the PDE. For example, replaceα

by −α in (4).
(ii) The coefficients of the highest power terms(aiMi , i = 1, . . . , M) in (13) are all

nonzero (for consistency withStep T2).
(iii) All cj are nonzero (demanded by the physical nature of the solutions).

Example. Assumingc1, c2, a12, a22, andα are nonzero, the solution of (16) is

a10 = (c2
1 − c2

2 + 8αc4
1)/(3c2

1), a11 = 0, a12 = −4αc2
1,

a20 = arbitrary, a21 = 0, a22 = 4αc1c2.
(17)

In this case, there are no conditions on the parametersc1, c2 andα.

Step T5 (Build and Test the Solitary Wave Solutions). Substitute the solutions obtained
in Step T4 into (13) and reverse Step T1 to obtain the explicit solutions in the
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original variables. It is prudent to test the solutions by substituting them into (3). For details
about testing seeSection 6.3.

Example. Inserting (17) into (15), and replacingT = tanh(c1x + c2t + ∆), the closed
form solution for (5) (or (4)) is

u(x, t) = u1(x, t) = (c2
1 − c2

2 + 8αc4
1)/(3c2

1) − 4αc2
1 tanh2(c1x + c2t + ∆),

u2(x, t) = −
∫

u1,t (x, t)dx = a20 + 4αc1c2 tanh2(c1x + c2t + ∆),
(18)

wherea20, c1, c2, α and∆ are arbitrary.Steps T1–T5 must be repeated if one or more of
the external parameters (lower-case Greeks) are set to zero.

3. Algorithm to compute sech-solutions for nonlinear PDEs

In this section we restrict ourselves to polynomial solutions of (3) in sech. Polynomial
solutions involving both sech and tanh are dealt with inSection 4. Details of the algorithms
for Steps S2, S4andS5are given inSection 6.

Using tanh2 ξ + sech2 ξ = 1, solution (18) of (5) can be expressed as

u1(x, t) = (c2
1 − c2

2 − 4αc4
1)/(3c2

1) + 4αc2
1sech2(c1x + c2t + ∆),

u2(x, t) = a20 + 4αc1c2 − 4αc1c2sech2(c1x + c2t + ∆).
(19)

Obviously, any even order solution in tanh can be written in even orders of sech. Some
PDEs however have polynomial solutions of odd-order in sech. For example, the modified
KdV equation (Ablowitz and Clarkson, 1991),

ut + αu2ux + uxxx = 0, (20)

has the solution

u(x, t) = ±c1
√

6/αsech(c1x − c3
1t + ∆), (21)

which cannot be found using the tanh-method.

Example. The five main steps of the sech-algorithm are illustrated with the
Hirota–Satsuma system of coupled KdV equations (Ablowitz and Clarkson, 1991),

ut − α(6uux + uxxx) + 2βvvx = 0,

vt + 3uvx + vxxx = 0,
(22)

with real parametersα, β. Sech-type solutions were reported inHereman(1991) andFan
and Hon(2002). Variants and generalizations of (22) were solved inChenand Zhang
(2003a) andYan(2003).

Lettingu1(x1, x2) = u(x, t) andu2(x1, x2) = v(x, t), Eq. (22) is then

u1,x2 − α(6u1u1,x1 + u1,3x1) + 2βu2u2,x1 = 0,

u2,x2 + 3u1u2,x1 + u2,3x1 = 0.
(23)
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Step S1 (Transform the PDE into a Nonlinear ODE). Adhering to the travelling frame of
reference (7), and using tanh2 ξ + sech2 ξ = 1,

sech′ ξ = −sechξ tanhξ = −sechξ

√
1 − sech2 ξ. (24)

SettingS = sechξ and repeatedly applying the chain rule,

∂•
∂x j

= ∂ξ

∂x j

dS

dξ

d•
dS

= −cj S
√

1 − S2 d•
dS

, (25)

(3) is transformed into a system of nonlinear ODEs of the form

Γ (S, U(S), U′(S), . . .) +
√

1 − S2Π (S, U(S), U′(S), . . .) = 0, (26)

where U(S) = u(x), and all components ofΓ and Π are ODEs with polynomial
coefficients inS. If eitherΓ or Π are identically0, then

∆(S, U(S), U′(S), . . .) = 0, (27)

where∆ is eitherΓ or Π , whichever is nonzero. For this to occur, the order of all terms
in any equation in (3) must be even orodd (as is the case in (23)).

Any term in (3) for which the total number of derivatives is even contributes to the first
term in (26); while any term of odd order contributes to the second term.Section 4deals
with any case for which neitherΓ or Π is identically0.

Example. Substituting

ui,x j = −cj S
√

1 − S2U ′
i ,

ui,x j xk = cj ckS
√

1 − S2
[
S
√

1 − S2U ′
i

]′

= cj ckS[(1 − 2S2)U ′
i + S(1 − S2)U ′′

i ],
ui,x j xkxl = −cj ckcl S

√
1 − S2[S(1 − 2S2)U ′

i + S(1 − S2)U ′′
i ]′

= −cj ckcl S
√

1 − S2[(1 − 6S2)U ′
i + 3S(1 − 2S2)U ′′

i

+ S2(1 − S2)U ′′′
i ],

(28)

into (23), and cancelling the commonS
√

1 − S2 factors yields

c2U ′
1 − 6αc1U1U ′

1 − αc3
1[(1 − 6S2)U ′

1 + 3S(1 − 2S2)U ′′
1

+ S2(1 − S2)U ′′′
1 ] + 2βc1U2U ′

2 = 0,

c2U ′
2 + 3c1U1U ′

2 + c3
1[(1 − 6S2)U ′

2 + 3S(1 − 2S2)U ′′
2 + S2(1 − S2)U ′′′

2 ] = 0,

(29)

with U1(T) = u1(x1, x2) and U2(T) = u2(x1, x2). Note that (29) matches (27) with
∆ = Π , sinceΓ = 0.

Step S2 (Determine the Degree of the Polynomial Solutions). We seek polynomial solu-
tions of the form,
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Ui (S) =
Mi∑
j =0

ai j Sj . (30)

To determine theMi exponents, substituteUi (S) = SMi into the left-hand side of (27) and
proceed as inStep T2. Continue withStep S3for each solution ofMi . If some of theMi

exponents are undetermined, try all legitimate values for the freeMi . SeeSection 6.1for
more details.

Example. For (23), substitutingU1(S) = SM1, U2(S) = SM2 into (29) and equating the
highest exponents in the second equation yieldsM1 + M2 − 1 = 1 + M2, or M1 = 2.
The maximal exponents coming from the first equation are 2M1 −1 (from theU1U ′

1 term),
M1 + 1 (from U ′′′

1 ), and 2M2 − 1 (from U2U ′
2). UsingM1 = 2, two cases emerge: (i) the

third exponent is less than the first two (equal) exponents, i.e., 2M2 −1 < 3, soM2 = 1, or
(ii) all three exponents are equal, in which caseM2 = 2. For the caseM1 = 2 andM2 = 1,

U(S) = a10 + a11S+ a12S2, V(S) = a20 + a21S, (31)

and, for the caseM1 = M2 = 2,

U(S) = a10 + a11S+ a12S2, V(S) = a20 + a21S+ a22S2. (32)

Step S3 (Derive the Algebraic System for the Coefficientsai j ). Follow the strategy in
Step T3.

Example. After substituting (31) into (29), cancelling common numerical factors, and
organizing the equations (according to complexity) one obtains

a11a21c1 = 0,

αa11c1(3a12 − c2
1) = 0,

αa12c1(a12 − 2c2
1) = 0,

a21c1(a12 − 2c2
1) = 0,

a21(3a10c1 + c3
1 + c2) = 0,

6αa10a11c1 − 2βa20a21c1 + αa11c
3
1 − a12c2 = 0,

3αa2
11c1 + 6αa10a12c1 − βa2

21c1 + 4αa12c
3
1 − a12c2 = 0.

(33)

Similarly, after substitution of (32) into (29), one gets

a22c1(a12 − 4c2
1) = 0,

a21(3a10c1 + c3
1 + c2) = 0,

c1(a12a21 + 2a11a22 − 2a21c
2
1) = 0,

c1(3αa11a12 − βa21a22 − αa11c
2
1) = 0,

c1(3αa2
12 − βa2

22 − 6αa12c
2
1) = 0,

6αa10a11c1 − 2βa20a21c1 + αa11c
3
1 − a11c2 = 0,

3a11a21c1 + 6a10a22c1 + 8a22c
3
1 + 2a22c2 = 0,

3αa2
11c1 + 6αa2

10a12c1 − βa2
21c1 − 2βa20a22c1 + 4αa12c

3
1 − a12c2 = 0.

(34)
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Step S4 (Solve the Nonlinear Parameterized Algebraic System). Similar strategy as in
Step T4.

Example. Forα, β, c1, c2, a12 anda21 all nonzero, the solution of (33) is

a10 = −(c3
1 + c2)/(3c1), a11 = 0, a12 = 2c2

1,

a20 = 0, a21 = ±
√

(4αc4
1 − 2(1 + 2α)c1c2)/β.

(35)

Forα, β, c1, c2, a12 anda22 nonzero, the solution of (34) is

a10 = −(4c3
1 + c2)/(3c1), a11 = 0, a12 = 4c2

1,

a20 = ±(4αc3
1 + (1 + 2α)c2)/

(
c1

√
6αβ

)
, a21 = 0,

a22 = ∓2c2
1

√
6α/β.

(36)

Step S5 (Build and Test the Solitary Wave Solutions). Substitute the result ofStep S4
into (30) and reverseStep S1. Test the solutions.

Example. The solitary wave solutions of (23) are

u(x, t) = −(c3
1 + c2)/(3c1) + 2c2

1sech2(c1x + c2t + ∆),

v(x, t) = ±
√

[4αc4
1 − 2(1 + 2α)c1c2]/βsech(c1x + c2t + ∆),

(37)

and

u(x, t) = −(4c3
1 + c2)/(3c1) + 4c2

1sech2(c1x + c2t + ∆),

v(x, t) = ±(4αc3
1 + (1 + 2α)c2)/

(
c1

√
6αβ

)
∓ 2c2

1

√
6α/βsech2(c1x + c2t + ∆).

(38)

In both casesc1, c2, α, β, and∆ are arbitrary. These solutions contain the solutions reported
in Hereman(1991).

Steps S1–S5must be repeated if any of the parameters in (3) are set to zero.

4. Algorithm for mixed tanh–sech solutions for PDEs

The five main steps of our algorithm to compute mixed tanh–sech solutions for (3) are
presented below. Here we seek particular solutions of (26) whenΓ �= 0 andΠ �= 0. On
could apply the method ofSection 3to (26) in ‘squared’ formΓ 2(S, U(S), U′(S), . . .) −
(1− S2)Π 2(S, U(S), U′(S), . . .) = 0. For anything but simple cases, the computations are
unwieldy. Alternatively, sinceT = √

1 − S2, Eq. (26) mayadmit solutions of the form

Ui (S) =
M̃i∑
j =0

Ñi∑
k=0

ãi, j k Sj Tk. (39)
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However, (39) can always be rearranged such that

Ui (S) =
Mi∑
j =0

ai j Sj + T
Ni∑
j =0

bi j Sj =
Mi∑
j =0

ai j Sj +
√

1 − S2
Ni∑
j =0

bi j Sj . (40)

The polynomial solutions inS from Section 3are special cases of this broader class.
Remarkably, (27) where

√
1 − S2 is not explicitly present also admits solutions of the

form (40). SeeSection 7.6for an example.
Computing solutions of type (30) with the tanh–sech method is inefficient and costly, as

the following example and the examples inSections 7.5and7.6show.

Example. We illustrate this algorithm with the system (Gao and Tian, 2001):

ut − ux − 2v = 0,

vt + 2uw = 0,

wt + 2uv = 0.

(41)

Step ST1 (Transform the PDE into a Nonlinear ODE). Same asStep S1.

Example. Use (25) to transform (41) into

(c1 − c2)S
√

1 − S2U ′
1 − 2U2 = 0,

c2S
√

1 − S2U ′
2 − 2U1U3 = 0,

c2S
√

1 − S2U ′
3 − 2U1U2 = 0

(42)

with Ui (S) = ui (x1, x2), i = 1, 2, 3.

Step ST2 (Determine the Degree of the Polynomial Solutions). Seeking solutions of form
(40), we mustfirst determine the leadingMi and Ni exponents. SubstitutingUi (S) =
ai0 + aiMi S

Mi + √
1 − S2 (bi0 + biNi SNi ) into the left-hand side of (26), we get an ex-

pression of the form

P(S) +
√

1 − S2Q(S), (43)

whereP andQ are polynomials inS.
Consider separately the possible balances of highest exponents in allPi andQi . Then

solve the resulting linear system(s) for the unknownsMi and Ni . Continue with each
solution inStep ST3.

In contrast toStep S2, we no longer assumeMi ≥ 1, Ni ≥ 1. Even with someMi or
Ni zero, non-constant solutionsUi (S) often arise. In most examples, however, the sets
of balance equations forMi and Ni are too large or the corresponding linear systems
are under-determined (i.e., several leading exponents remain arbitrary). To circumvent the
problem, we set allMi = 2 and allNi = 1, restricting the solutions to (at most) quadratic
in S andT .

Example. For (42), we set allMi = 2, Ni = 1, and continue with

Ui (S) = ai0 + ai1S+ ai2S2 +
√

1 − S2(bi0 + bi1S), i = 1, 2, 3. (44)
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Step ST3 (Derive the Algebraic System for the Coefficientsai j and bi j ). Substituting
(40) into (26) givesP̃(S) + √

1 − S2Q̃(S), which mustvanish identically. Hence, equate
to zero the coefficients of the power terms inSso that̃P = 0 andQ̃ = 0.

Example. After substitution of (44) into (42), the resulting nonlinear algebraic system for
the coefficientsai j andbi j contains 25 equations (not shown).

Step ST4 (Solve the Nonlinear Parameterized Algebraic System). In contrast toStep S4
weno longer assume thataiMi andbiNi are nonzero (at the cost of generating some constant
solutions, which we discard later).

Example. For (41), there are 11 solutions. Three are trivial, leading to constantUi . Eight
are nontrivial solutions giving the results below.

Step ST5 (Build and Test the Solitary Wave Solutions). Proceed as inStep S5.

Example. The solitary wave solutions of (41) are

u(x, t) = ±c2 tanhξ,

v(x, t) = ∓1
2c2(c1 − c2)sech2 ξ,

w(x, t) = −1
2c2(c1 − c2)sech2 ξ,

(45)

which could have been obtained with the tanh-method ofSection 2;

u(x, t) = ±ic2sechξ,

v(x, t) = ±1
2ic2(c1 − c2) tanhξsechξ,

w(x, t) = 1
4c2(c1 − c2)(1 − 2sech2 ξ),

(46)

reported inGao and Tian(2001); and the two complex solutions

u(x, t) = ±1
2ic2(sechξ ± i tanhξ),

v(x, t) = 1
4c2(c1 − c2)sechξ(sechξ ± i tanhξ),

w(x, t) = −1
4c2(c1 − c2)sechξ(sechξ ± i tanhξ).

(47)

In all solutionsξ = c1x + c2t + ∆, with c1, c2 and∆ arbitrary. The complex conjugates
of (47) are also solutions.

5. Algorithms used to compute sn and cn solutions for PDEs

5.1. Computation of solutions involving Cn

In this section we give the main steps (labelledCN1–CN5) of our algorithm used to
compute polynomial solutions of (3) in terms of Jacobi’s elliptic cosine function (cn).
Modifications needed for solutions involving the sn function are given at the end of this
section. Details forSteps CN2, CN4andCN5are shown inSection 6.

Example. Consider the KdV equation (Ablowitz and Clarkson, 1991),

ut + αuux + uxxx = 0, (48)
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with real constantα. The KdV equation models, among other things, waves in shallow
water andion-acoustic waves in plasmas.

Step CN1 (Transform the PDE into a Nonlinear ODE). Similar to the strategy inS1and
T1, using (Lawden, 1989)

sn2(ξ; m) = 1 − cn2(ξ; m), dn2(ξ; m) = 1 − m + mcn2(ξ; m), (49)

and

cn′(ξ; m) = −sn(ξ; m)dn(ξ; m), (50)

one has CN′ = −
√

(1 − CN2)(1 − m + mCN2) where CN = cn(ξ; m) is the Jacobi
elliptic cosine with argumentξ and modulus 0≤ m ≤ 1.

Repeatedly applying the chain rule

∂•
∂x j

= ∂ξ

∂x j

dCN

dξ

d•
dCN

= −cj

√
(1 − CN2)(1 − m + mCN2)

d•
dCN

, (51)

system (3) is transformed into a nonlinear ODE system. In addition to thecj , the algorithm
introducesm as an extra parameter.

Example. Using (51) to transform (48) we have

(c3
1(1 − 2m + 6mCN2) − c2 − αc1U1)U

′
1

+ 3c3
1CN(1 − 2m + 2mCN2)U ′′

1 − c3
1(1 − CN2)(1 − m + mCN2)U ′′′

1 = 0. (52)

Step CN2 (Determine the Degree of the Polynomial Solutions). Follow the strategy in
Step T2.

Example. For (48), substitutingU1(CN) = CNM1 into (52) and equating the highest
exponents gives 1+ M1 = −1 + 2M1. Then, M1 = 2, and

U1(CN) = a10 + a11CN + a12CN2. (53)

Step CN3 (Derive the Algebraic System for the Coefficientsai j ). Proceed as inStep T3.

Example. For (48), after substituting (53) into (52), one finds

a11c1(αa12 − 2mc2
1) = 0,

a12c1(αa12 − 12mc2
1) = 0,

a11(αa10c1 − c3
1 + 2mc3

1 + c2) = 0,

αa2
11c1 + a12(2αa10c1 − 16mc3

1 − 8c3
1 + 2c2) = 0.

(54)

Step CN4 (Solve the Nonlinear Parameterized Algebraic System). Solve the system as in
Step T4.

Example. Forc1, c2, m, α anda12 nonzero, the solution of (54) is

a10 = [4c3
1(1 − 2m) − c2]/(αc1), a11 = 0, a12 = (12mc2

1)/α. (55)
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Step CN5 (Build and Test the Solitary Wave Solutions). Substitute the results ofStep
CN4 into (53). ReverseStep CN1. Test the solutions.

Example. The cnoidal wave solution of (48) is

u(x, t) = [4c3
1(1 − 2m) − c2]/(αc1) + (12mc2

1)/(α)cn2(c1x + c2t + ∆; m), (56)

wherec1, c2, α, ∆ and modulusm are arbitrary. If any of the parameters in (3) arezero,
Steps CN1–CN5should be repeated.

5.2. Computation of solutions involving Sn

To find solutions in terms of Jacobi’s sn function, one uses the identities,

cn2(ξ; m) = 1 − sn2(ξ; m), dn2(ξ; m) = 1 − msn2(ξ; m),

sn′(ξ; m) = cn(ξ; m)dn(ξ; m).
(57)

Then, SN′ =
√

(1 − SN2)(1 − mSN2), where SN= sn(ξ; m) is the Jacobi elliptic sine
with argumentξ and modulus 0≤ m ≤ 1. The steps are identical to the cn case, except
one uses the chain rule

∂•
∂x j

= ∂ξ

∂x j

dSN

dξ

d•
dSN

= cj

√
(1 − SN2)(1 − mSN2)

d•
dSN

. (58)

Since (51) and (58) involve roots, as inSections 3and 4 there is no reason to restrict
the solutions to polynomials in only cn or sn. Solutions involving both sn and cn (or
combinations with dn) are beyond the scope of this paper.

Finally, from the sn and cn solutions, sin, cos, sech, and tanh-solutions can be obtained
by taking the appropriate limits for the modulus(m → 0, and m → 1). Indeed,
sn(ξ; 0) = sin(ξ), sn(ξ; 1) = tanh(ξ), cn(ξ; 0) = cos(ξ), cn(ξ; 1) = sech(ξ). No need to
compute solutions in dn explicitly since cn(

√
mξ; 1/m) = dn(ξ; m).

6. Key algorithms

In this section we present in a uniform manner the details of steps two, four and five of
the algorithms inSections 2–5.

6.1. Algorithm to compute the degree of the polynomials

Step M1 (Substitute the Leading-Order Ansatz). A tracking variable is attached to each
term in the original system of PDEs. LetTr[i] denote the tracking variable of thei th term
in (3).

The first step of the main algorithms leads to a system of parameterized ODEs in
U, U′, U′′, . . . , U(m). TheseODEs match the form

Γ (F, U(F), U′(F), . . .) + √
R(F)Π (F, U(F), U′(F), . . .) = 0, (59)
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Table 1
Values forR(F) in (59)

F R(F)

T 0
S 1− S2

CN (1− CN2)(1 − m + mCN2)

SN (1− SN2)(1 − mSN2)

whereF is eitherT , S, CN, orSN, andR(F) is defined inTable 1. Sincethe highest degree
termonly depends onF Mi , it suffices to substitute

Ui (F) → F Mi (60)

into (59).

Example. We use the coupled KdV equations (22) asour leading example:

Tr[1]ut − 6αTr[2]uux + 2βTr[3]vvx − αTr[4]uxxx = 0,

Tr[5]vt + 3Tr[6]uvx + Tr[7]vxxx = 0.
(61)

Step S1resulted in (29) with Π = 0. Substituting (60) into (61), we get

(Tr[1]c2M1 − αTr[4]c3
1M3

1)SM1−1 + αTr[4]c3
1M1(M1 + 1)(M1 + 2)SM1+1

− 6αTr[2]c1M1S2M1−1 + 2βTr[3]c1M2S2M2−1 = 0,

(Tr[5]c2M2 + Tr[7]c3
1M3

2)SM2−1 − Tr[7]c3
1M2(M2 + 1)(M2 + 2)SM2+1

+ 3Tr[6]c1M2SM1+M2−1 = 0.

(62)

Step M2 (Collect Exponents and Prune Sub-dominant Branches). The balance of highest
exponents must come from different terms in (3). For each equation∆i and for each
tracking variable, collect the exponents ofF , remove duplicates, and non-maximal
exponents. For example,M1 − 1 can be removed from{M1 + 1, M1 − 1} because
M1 + 1 > M1 − 1.

Example. Collecting the exponents ofS in (62), we get the unpruned list:

∆1 ∆2
Tr[1]: {M1 − 1} Tr[5]: {M2 − 1}
Tr[2]: {2M1 − 1} Tr[6]: {M1 + M2 − 1}
Tr[3]: {2M2 − 1} Tr[7]: {M2 + 1, M2 + 1, M2 + 1, M2 − 1}
Tr[4]: {M1 + 1, M1 + 1, M1 + 1, M1 − 1}

(63)

We prune by removing duplicates and non-maximal expressions, and get

from ∆1: {M1 + 1, 2M1 − 1, 2M2 − 1},
from ∆2: {M2 + 1, M1 + M2 − 1}. (64)

Step M3 (Combine Expressions and Compute Relations forMi ). For each∆i separately,
equate all possible combinations of two elements. Construct relations between theMi by
solving for oneMi .
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Example. Combining the expressions in (64), we get

∆1 ∆2

M1 + 1 = 2M1 − 1 M2 + 1 = M1 + M2 − 1
M1 + 1 = 2M2 − 1
2M1 − 1 = 2M2 − 1

(65)

We construct relations between theMi by solving for M1 (in this case):

∆1 ∆2

M1 = 2 M1 = 2
M1 = 2M2 − 2
M1 = M2

(66)

Step M4 (Combine Relations and Solve for ExponentsMi ). By combining the lists of
expressions in an outer product like fashion, we generate all the possible linear equations
for Mi . Solving thislinear system, we form a list of all the possible solutions forMi .

Example. Combining theequations in∆1 and∆2, weobtain

{M1 = 2, M1 = 2}, {M1 = 2, M1 = M2}, {M1 = 2, M1 = 2M2 − 2}. (67)

Solving, we find{
M1 = 2
M2 = 2

{
M1 = 2
M2 = Free.

(68)

Step M5 (Discard Invalid ExponentsMi ). The solutions are substituted into the un-
pruned list of exponents (inStep M2). For every solution (without free exponents) we
test whether ornot there is a highest-power balance between at least two different tracking
variables. If not, the solution is rejected. Non-positive, fractional, and complex exponents
are discarded (after showing them to the user). Negative exponents(Mi = −pi ) and frac-
tional exponents(Mi = pi /qi ) indicate that a change of dependent variables(u1 = ũi

−pi

or ui = ũi
1/qi ) should be attempted in (3). Presently, such nonlinear transformations are

only carried out automatically for single equations.

Example. Removing the case{M1 = 2, M2 = Free} from (68), we substitute{M1 =
2, M2 = 2} into (63). Leading exponent (3 in this case) occurs forTr[2], Tr[3] and
Tr[4] in ∆1, and forTr[6] andTr[7] in ∆2. The solution is accepted.

Step M6 (Fix UndeterminedMi and Generate Additional Solutions). When some solu-
tions involve one or more arbitraryMi we produce candidate solutions with a countdown
procedure and later reject invalid candidates.

Based on theoutcome ofStep M5, scan for freedom in one or more ofMi by gathering
the highest-exponent expressions from the unpruned list inStep M2. If the dominant
expressions are free of anyMi , a countdown mechanism generates valid integer values
for thoseMi . These values ofMi must not exceed those computed inStep M5. Candidate
solutions are tested (and rejected, if necessary) by the procedure given inStep M5.
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Example. The dominant expressions from (63) with {M1 = 2, M2 = 2} are

∆1 ∆2

Tr[2]: {2M1 − 1} Tr[6]: {M1 + M2 − 1}
Tr[3]: {2M2 − 1} Tr[7]: {M2 + 1}
Tr[4]: {M1 + 1}

(69)

SubstitutingM1 = 2, the highest exponent (3 in this case) matches forTr[2] andTr[4]
in ∆1 whenM2 ≤ 2. The highest exponent(M2 + 1) matches forTr[6] andTr[7] in ∆2.

A countdown mechanism then generates the following list of candidates:{
M1 = 1
M2 = 1

{
M1 = 1
M2 = 2

{
M1 = 2
M2 = 1

{
M1 = 2
M2 = 2.

(70)

Verifying these candidate solutions, we are left with{
M1 = 2
M2 = 1

{
M1 = 2
M2 = 2.

(71)

Notice that for the new solution{M1 = 2, M2 = 1} only the exponents corresponding to
Tr[2] andTr[4] in ∆1 are equal.

Currently, for the mixed tanh–sech method, the code setsMi = 2 andNi = 1.

6.2. Algorithm to analyze and solve nonlinear algebraic systems

In this section, we detail our algorithm to analyze and solve nonlinear parameterized
algebraic systems (as generated in step 3 of the main algorithms). Our solver is custom
designed for systems that are (initially) polynomial in the primary unknowns(ai j ), the
secondary unknowns(ci ), andparameters(m, α, β, γ, . . .).

The goal is to compute the coefficientsai j in terms of thewavenumbersci and the
parametersm, α, β, etc. In turn, theci must besolved in terms of these parameters. Possible
compatibility conditions for the parameters (relations amongst them or specific values for
them) must be added to the solutions.

Algebraic systems are solved recursively, starting with the simplest equation, and
continually back-substituting solutions. This process is repeated until the system is
completely solved.

To guidethe recursive process, we designed functions to: (i) factor, split, and simplify
the equations; (ii) sort the equations according to their complexity; (iii) solve the equations
for sorted unknowns; (iv) substitute solutions into the remaining equations; and (v) collect
the solution branches and constraints.

This strategy is similar to what one would do by hand. If there are numerous parameters
in the system or if it is of high degree, there is no guarantee that our solver will return a
suitable result, let alone a complete result.

Step R1 (Split and Simplify Each Equation). For all but the mixed tanh–sech algorithm,
we assume that the coefficientsaiMi of the highest power terms are nonzero and thatci ,
m, α, β, etc. are nonzero. For the mixed sech–tanh method,aiMi = ai2 andbiNi = bi1 are
allowed to bezero.
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We first factor equations and set admissible factors equal to zero (after clearing possible
exponents). For example,{φ1φ

3
2φ2

3 = 0} → {φ1 = 0, φ2 = 0, φ3 = 0}, whereφi is
a polynomial in primary and secondary unknowns along with the parameters. Equations
where non-zero expressions are set to zero are disgarded.

Example. Consider (34), which was derived in the search for sech-solutions of (22) for
the caseM1 = M2 = 2. Takinga12, a22, c1, c2, α, β, to be nonzero, splitting equations,
and removing non-zero factors leads to

a12 − 4c2
1 = 0,

a21 = 0 ∨ (3a10c1 + c3
1 + c2) = 0,

a12a21 + 2a11a22 − 2a21c
2
1 = 0,

3αa11a12 − βa21a22 − αa11c
2
1 = 0,

3αa2
12 − βa2

22 − 6αa12c
2
1 = 0,

6αa10a11c1 − 2βa20a21c1 + αa11c
3
1 − a11c2 = 0,

3a11a21c1 + 6a10a22c1 + 8a22c
3
1 + 2a22c2 = 0,

3αa2
11c1 + 6αa10a12c1 − βa2

21c1 − 2βa20a22c1 + 4αa12c
3
1 − a12c2 = 0,

(72)

where∨ is the logical or.

Step R2 (Sort Equations According to Complexity). A heuristic measure of complexity
is assigned to eachφi by computing a weighted sum of the degrees of nonlinearity in the
primary and secondary unknowns, parameters, and the length ofφi . Linear and quasi-linear
equations (with products likea11a21) are of lower complexity than polynomial equations of
higher degree or non-polynomial equations. Solving the equation of the lowest complexity
first, forestalls branching, avoids expression swell, and conserves memory.

Example. Sorting (72), we get

a12 − 4c2
1 = 0,

3αa11a12 − βa21a22 − αa11c
2
1 = 0,

a12a21 + 2a11a22 − 2a21c
2
1 = 0,

a21 = 0 ∨ (3a10c1 + c3
1 + c2) = 0,

3αa2
12 − βa2

22 − 6αa12c
2
1 = 0,

6αa10a11c1 − 2βa20a21c1 + αa11c
3
1 − a11c2 = 0,

3a11a21c1 + 6a10a22c1 + 8a22c
3
1 + 2a22c2 = 0,

3αa2
11c1 + 6αa10a12c1 − βa2

21c1 − 2βa20a22c1 + 4αa12c
3
1 − a12c2 = 0.

(73)

Step R3 (Solve Equations for Ordered Unknowns). The ordering of unknowns is of
paramount importance. The unknowns from the first equation fromStep R2are ordered
so that the lowest exponent primary-unknowns precede the primary-unknowns that the
equation is not polynomial in. If there are not any primary-unknowns, the lowest
exponent secondary-unknowns precede the secondary-unknowns that the equation is not
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polynomial in. Likewise, in the absence of primary- or secondary-unknowns, the lowest
exponent parameters precede thenon-polynomial parameters.

The equation is solved using the built-inMathematicafunctionReduce, whichproduces
a list of solutions and constraints. Constraints of the forma �= b (where neithera or b is
zero) are pruned, and the remaining constraints and solutions are collected.

Example. In this example,a12 − 4c2
1 = 0 is solved fora12 and the solutiona12 = 4c2

1 is
added to a list of solutions.

Step R4 (Recursively Solve the Entire System). The solutions and constraints fromStep
R3 are applied and added to the previously found solutions and constraints. In turn, all the
solutions are then applied to the remaining equations. The updated system is simplified
by clearing common denominators in each equation and continuing with the numerators.
Steps R1–R4are then repeated on the simplified system.

Example. Substitutinga12 = 4c2
1 and clearing denominators, we obtain

βa21a22 − 11αa11c
2
1 = 0

a11a22 + a21c
2
1 = 0,

a21 = 0 ∨ (3a10c1 + c3
1 + c2) = 0,

βa2
22 − 24αc4

1 = 0,

6αa10a11c1 − 2βa20a21c1 + αa11c
3
1 − a11c2 = 0,

3a11a21c1 + 6a10a22c1 + 8a22c
3
1 + 2a22c2 = 0,

3αa2
11 − βa2

21 − 2βa20a22 + 24αa10c
2
1 + 16αc4

1 − 4c1c2 = 0.

(74)

The recursive process terminates when the system is completely solved. The solutions
(including possible constraints) are returned.

RepeatingSteps R1–R4seven more times theglobalsolution of (34) is obtained:

a10 = −(4c3
1 + c2)/(3c1), a11 = 0, a12 = 4c2

1,

a20 = ±(4αc3
1 + (1 + 2α)c2)/(c1

√
6αβ), a21 = 0, a22 = ∓2c2

1

√
6α/β

(75)

wherec1, c2, α andβ are arbitrary.
This solution of (33), corresponds to theM1 = 2, M2 = 1 case given in (35).

6.3. Algorithm to build and test solutions

The solutions to the algebraic system found inSection 6.2are substituted into

ui (x) =
Mi∑
j =0

ai j F j (ξ) + √
R(F)

Ni∑
j =0

bi j F j (ξ), (76)

whereF andR(F) are defined inSection 6.1. The constraints on the parameters (m, α, β,
etc.) are also collected and applied to system (3).

Since the algorithm used to solve the nonlinear algebraic system continually clears
denominators, it is important to test the final solutions forui . While Mathematica’sReduce
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function generates constraints that should prevent any undetermined or infinite coefficients
ai j after back-substitution, it is still prudent to check the solutions.

To present solutions in the simplest format, we assume that all parameters (ci , m, α, β,
etc.) are positive, real numbers. This allows us to repeatedly apply rules such as

√
α2 → α,√−α2 → i α,

√−β → i
√

β and
√

−(c1 + c2)2 → i (c1 + c2).
We allow for two flavors of testing: a numeric test for complicated solutions and a

symbolic test which guarantees the solution. In either test, we substitute the solutions into
(3) after casting the solutions into exponential form, i.e., tanhξ → (eξ − e−ξ )/(eξ + e−ξ )

and sechξ → 2/(eξ + e−ξ ).
For thenumeric test ofsolutions:

• after substituting the solution, substitute random real numbers in[−1, 1] for xi , ci ,
and∆ in the left-hand side of (3),

• expand and factor the remaining expressions,
• substitute random real numbers in[−1, 1] for arbitraryai j , bi j , m, α, . . .,
• expand and factor the remaining expressions,
• if the absolute value of each of the expressions< ε ≈ MachinePrecision/2, then

accept the solution as valid, else reject the solution (after showing it to the user).

Mathematicaevaluates
√

a2 → a whena is numeric, but does not evaluate
√

a2 → |a|
whena is symbolic. Our simplification routines use

√
a2 = a instead of|a| whena is

symbolic. This has two consequences: (i) valid solutions may be missed, and (ii) solutions
have a 1/2 probability of evaluating to matching signs during the numeric test. The numeric
test being inconclusive, we perform a symbolic test.

For the symbolic test of solutions:

• after substituting the solution, expand and factor the left-hand side of (3),

• apply simplification rules like
√

a2 → a,
√−a2 → ia, 1− sech2 ξ → tanh2 ξ , and

sn2(x; m) → 1 − cn2(x; m),
• repeat the above simplifications until the expressions are static,
• if the final expressions are identically equal to zero, then accept the solution, else

reject the solution and report the unresolved expressions to the user.

7. Examples of solitary wave solutions for ODEs and PDEs

The algorithms fromSections 2–5 were implemented in ourMathematicapackage
PDESpecialSolutions.m, which was used to solve the equations in this section.

7.1. The Zakharov–Kuznetsov KdV-type equations

The KdV–Zakharov–Kuznetsov (KdV–ZK) equation,

ut + αuux + uxxx + uxyy + uxzz = 0, (77)

models ion-acoustic waves in magnetized multi-component plasmas including negative
ions (see e.g.Das and Verheest, 1989).
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With PDESpecialSolutions (Tanh and Sech options) we found the solution

u(x, y, z, t) = 8c1(c2
1 + c2

2 + c2
3) − c4

αc1
− 12(c2

1 + c2
2 + c2

3)

α
tanh2 ξ,

= −4c1(c2
1 + c2

2 + c2
3) + c4

αc1
+ 12(c2

1 + c2
2 + c2

3)

α
sech2 ξ,

(78)

whereξ = c1x + c2y + c3z + c4t + ∆, with c1, c2, c3, c4, ∆ andα arbitrary.
Forc2 = c3 = 0 and replacingc4 by c2, onegets the solitary wave solution

u(x, t) = 8c3
1 − c2

αc1
− 12c2

1

α
tanh2(c1x + c2t + ∆),

= −4c3
1 + c2

αc1
+ 12c2

1

α
sech2(c1x + c2t + ∆),

(79)

of the ubiquitous KdV equation (48).
The functionPDESpecialSolutions does not take boundary or initial conditions

as input. One cana posteriori impose conditions on solutions. For example, requiring
limx→±∞ u(x, t) = 0 in (79) would fix c2 = −4c3

1.
For the modified KdV–ZK equation (Das and Verheest, 1989),

ut + αu2ux + uxxx + uxyy + uxzz = 0, (80)

using the Tanh and Sech options,PDESpecialSolutions returns

u(x, y, z, t) = ±i
√

6(c2
1 + c2

2 + c2
3)/α tanhξ, (81)

with ξ = c1x + c2y + c3z + 2c1(c2
1 + c2

2 + c2
3)t + ∆, and

u(x, y, z, t) = ±
√

6(c2
1 + c2

2 + c2
3)/αsechξ, (82)

with ξ = c1x + c2y + c3z− c1(c2
1 + c2

2 + c2
3)t +∆. Forc2 = c3 = 0, (81) and (82) reduce

to the well-known solitary wave solutions

u(x, t) = ±ic1
√

6/α tanh(c1x + 2c3
1t + ∆), (83)

u(x, t) = ±c1
√

6/αsech(c1x − c3
1t + ∆) (84)

(c1, ∆ andα arbitrary real numbers) of the modified KdV (mKdV) equation (Ablowitz and
Clarkson, 1991),

ut + αu2ux + uxxx = 0. (85)

For a three-dimensional modified KdV (3D-mKdV) equation,

ut + 6u2ux + uxyz = 0, (86)

oneobtains the solitary wave solution

u(x, y, z, t) = ±√
c2c3sech(c1x + c2y + c3z − c1c2c3t + ∆), (87)

wherec1, c2, c3 and∆ are arbitrary.
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7.2. The generalized Kuramoto–Sivashinsky equation

Consider the generalized Kuramoto–Sivashinsky (KS) equation (see e.g.Parkesand
Duffy, 1996)

ut + uux + uxx + αuxxx + uxxxx = 0. (88)

Ignoring complex solutions,PDESpecialSolutions (Tanh option) automatically
determines the special values of the real parameterα and the corresponding closed form
solutions. Forα = 4,

u(x, t) = 9 ± 2c2 ± 15 tanhξ − 15 tanh2 ξ ∓ 15 tanh3 ξ, (89)

with ξ = ∓(1/2)x + c2t + ∆. Forα = (12/
√

47),

u(x, t) = 45∓ 4418c2

47
√

47
± 45

47
√

47
tanhξ − 45

47
√

47
tanh2 ξ ± 15

47
√

47
tanh3 ξ, (90)

whereξ = ±(1/2
√

47)x + c2t + ∆. Forα = (16/
√

73),

u(x, t) = 2(30∓ 5329c2)

73
√

73
± 75

73
√

73
tanhξ

− 60

73
√

73
tanh2 ξ ± 15

73
√

73
tanh3 ξ, (91)

whereξ = ±(1/2
√

73)x + c2t + ∆.
The remaining solutions produced byPDESpecialSolutions are either complex (not

shown here) or can be obtained from the solutions above via the inversion symmetry of
(88): u → −u, x → −x, α → −α.

A separate run of the code after settingα = 0 in (88) yields

u(x, t) = −2

√
19

11
c2 − 135

19

√
11

19
tanhξ + 165

19

√
11

19
tanh3 ξ, (92)

with ξ = (1/2)
√

11/19x + c2t + ∆. In all the solutions abovec2 is arbitrary.

7.3. Coupled KdV equations

In Section 3we gave the sech-solutions for the Hirota–Satsuma system (22). Here we
list the tanh, cn and sn solutions for (22) computed byPDESpecialSolutions (Tanh,
JacobiCN and JacobiSN options):

u(x, t) = 2c3
1 − c2

3c1
− 2c2

1 tanh2(ξ),

v(x, t) = ±
√

[8αc4
1 + 2(1 + 2α)c1c2]/β tanh(ξ),

u(x, t) = 8c3
1 − c2

3c1
− 4c2

1 tanh2(ξ),

v(x, t) = ±8αc3
1 − (1 + 2α)c2

c1
√

6αβ
∓ 2c2

1

√
6α/β tanh2(ξ),

(93)
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u(x, t) = (1 + m)c3
1 − c2

3c1
− 2mc2

1sn2(ξ; m),

v(x, t) = ±
√

[4αm(1 + m)c4
1 + 2(1 + 2α)mc1c2]/βsn(ξ, m),

u(x, t) = 4(1 + m)c3
1 − c2

3c1
− 4mc2

1sn2(ξ; m),

v(x, t) = ±4α(1 + m)c3
1 − (1 + 2α)c2

c1
√

6αβ
∓ 2c2

1

√
6α/βsn2(ξ; m),

(94)

u(x, t) = (1 − 2m)c3
1 − c2

3c1
+ 2mc2

1cn2(ξ; m),

v(x, t) = ±
√

[4αm(2m − 1)c4
1 − 2(1 + 2α)mc1c2]/βcn(ξ; m),

u(x, t) = 4(1 − 2m)c3
1 − c2

3c1
+ 4mc2

1cn2(ξ; m),

v(x, t) = ±4α(1 − 2m)c3
1 − (1 + 2α)c2

c1
√

6αβ
± 2c2

1

√
6α/βcn2(ξ; m),

(95)

with ξ = c1x + c2t + ∆, andc1, c2, α, β, ∆, and modulusm arbitrary. These solutions
correspond with those given inFan and Hon(2002).

With the SechTanh option we obtained two dozen (real and complex) solutions. The
real solutions coincide with the ones given above.

Another coupled system of KdV-type equations was studied byGuha-Roy(1987)

ut + αvvx + βuux + γ uxxx = 0,

vt + δ(uv)x + εvvx = 0,
(96)

whereα throughε are real constants. The packagePDESpecialSolutions (Sech option)
computed:

u(x, t) = −4ε2γ c3
1 + (4αδ + ε2)c2

Ac1
+ 12ε2γ c2

1

A
sech2(c1x + c2t + ∆),

v(x, t) = 2ε[4δγ c3
1 + (δ − β)c2]
Ac1

− 24δεγ c2
1

A
sech2(ξ),

(97)

whereξ = c1x + c2t + ∆, A = 4αδ2 + βε2, with c1, c2, ∆ andα throughε arbitrary. For
ε = 0, (96) reduces to Kawamoto’s system; forε = 0, δ = −2 to Ito’ssystem. Neither of
these systems has polynomial solutions in sech or tanh.

7.4. The Fisher and FitzHugh–Nagumo equations

For the Fisher equation (Malfliet, 1992),

ut − uxx − u(1 − u) = 0, (98)

with PDESpecialSolutions (Tanh option) we found the (real) solution
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u(x, t) = 1
4 ± 1

2 tanhξ + 1
4 tanh2 ξ, (99)

with ξ = ±(1/2
√

6)x ± (5/12)t + ∆. In addition, there arefour complex solutions.
Obviously,PDESpecialSolutions handles ODEs also. For example, we can put the

FitzHugh–Nagumo (FHN) equation (Hereman, 1990),

ut − uxx + u(1 − u)(α − u) = 0, (100)

where−1 ≤ α < 1, into a travelling frame,

βvz + √
2vzz − √

2v(1 − √
2v)(α − √

2v) = 0, (101)

with v(z) = v(x − (β/
√

2)t) = √
2u(x, t). Ignoring the inversion symmetryz → −z,

β → −β of (101), we find with PDESpecialSolutions (Tanh option)

v(z) = 1

2
√

2

[
β + (β − 2) tanh

[√
2

4
(2 − β)z+ ∆

]]
, (102)

if α = β − 1;

v(z) = (β + 2)

2
√

2

[
1 − tanh

[√
2

4
(β + 2)z+ ∆

]]
, (103)

if α = β + 2; and

v(z) = 1

2
√

2

[
1 + tanh

[√
2

4
z + ∆

]]
, (104)

if α = (1/2)(β + 1). In thesesolutions(see e.g.Hereman, 1990) β and∆ are arbitrary.

7.5. A degenerate Hamiltonian system

Gao and Tian(2001) considered the following degenerate Hamiltonian system,

ut − ux − 2v = 0,

vt − 2εuv = 0, ε = ±1,
(105)

which was shown to be completely integrable by admitting infinitely many conserved
densities. Our code does not find sech-solutions. With the SechTanh option,
PDESpecialSolutions returns thesolutions:

u(x, t) = −εc2 tanhξ,

v(x, t) = 1
2εc2(c1 − c2)sech2 ξ,

(106)

which could have been obtained with the tanh-method inSection 2; and

u(x, t) = 1
2ic2ε(sechξ + i tanhξ),

v(x, t) = 1
4c2(c1 − c2)εsechξ(sechξ + i tanhξ),

(107)

plus their two complex conjugates. There are no constraints onc1, c2, andε, andξ =
c1x + c2t + ∆. The above solutions were reported inGao and Tian(2001).
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7.6. The combined KdV–mKdV equation

The combined KdV–mKdV equation (seeGao and Tian, 2001)

ut + 6αuux + 6βu2ux + γ uxxx = 0, (108)

describes a variety of wave phenomena in plasma, solid state, and quantum physics. We
chose this example to show that ODEs of type (27), which are free of

√
1 − S2, can admit

mixed tanh–sech solutions.
First,PDESpecialSolutionswith the Tanhoption, produces

u(x, t) = − α

2β
± i

√
γ

β
c1 tanh

(
c1x + c1

2β
(3α2 + 4βγ c2

1)t + ∆
)

. (109)

Next, with the Sech option,PDESpecialSolutions computes

u(x, t) = − α

2β
±

√
γ

β
c1sech

[
c1x + c1

2β
(3α2 − 2βγ c2

1)t + ∆
]

. (110)

Third, with the SechTanh option,PDESpecialSolutions finds

u(x, t) = − α

2β
+ 1

2

√
γ

β
c1(sechξ ± i tanhξ), (111)

and

u(x, t) = − α

2β
− 1

2

√
γ

β
c1(sechξ ∓ i tanhξ), (112)

whereξ = c1x + (1/2)(c1/β)(3α2 + βγ c2
1)t + ∆. In all solutionsc1, ∆, α, β andγ are

arbitrary. The solutions were reported inGao and Tian(2001), although there were minor
misprints.

7.7. The Duffing equation

Duffing’s equation (Lawden, 1989),

u′′ + u + αu3 = 0, (113)

models a nonlinear spring problem. Its cn and sn solutions

u(x) = ±
√

2m

(1 − 2m)α
cn

(
εx√

1 − 2m
+ ∆; m

)
, ε = ±1,

u(x) = ±
√

−2m

(1 + m)α
sn

(
εx√

1 + m
+ ∆; m

)
, ε = ±1,

(114)

are computed byPDESpecialSolutionswith the JacobiCN and JacobiSN options. There
are four sign combinations in (114). Since 0≤ m ≤ 1, the cn solution is real whenα > 0
andm < 1/2. The sn solution is real forα < 0. Such conditions are not automatically
generated. During simplifications the code assumesα > 0 (seeSection 6.2for details).
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Initial conditions fix the modulus in (114). For example,u(0) = a andu̇(0) = 0 lead to
u(x) = acn(

√
1 + αa2x; (αa2)/(2 + 2αa2)).

7.8. A class of fifth-order PDEs with three parameters

To illustrate the limitations ofPDESpecialSolutions consider the family of fifth-
order KdV equations (Göktaşand Hereman, 1997),

ut + αu2ux + βuxuxx + γ uuxxx + uxxxxx = 0, (115)

whereα, β, andγ are nonzero parameters.
An investigation of the scaling properties of (115) reveals that only the ratiosα/γ 2 and

β/γ are important, but let us proceed with (115).

7.8.1. Special cases
Several special cases of (115) are wellknown (for references seeGöktaşand Hereman,

1997). Indeed, forα = 30,β = 20,γ = 10, Eq. (115) reduces to

ut + 30u2ux + 20uxuxx + 10uuxxx + uxxxxx = 0, (116)

which belongs to the completely integrable hierarchy of higher-order KdV equations
constructed by Lax. Eq. (116) has two tanh-solutions:

u(x, t) = 4c2
1 − 6c2

1 tanh2(c1x − 56c5
1t + ∆), (117)

and

u(x, t) = a10 − 2c2
1 tanh2[c1x − 2(15a2

10c1 − 40a10c
3
1 + 28c5

1)t + ∆], (118)

wherea10, c1, ∆ are arbitrary.
Forα = β = γ = 5, one obtains the equation,

ut + 5u2ux + 5uxuxx + 5uuxxx + uxxxxx = 0, (119)

due to Sawada and Kotera (SK) and Dodd and Gibbon, which has tanh-solutions

u(x, t) = 8c2
1 − 12c2

1 tanh2(c1x − 16c5
1t + ∆), (120)

and

u(x, t) = a10 − 6c2
1 tanh2[c1x − (5a2

10c1 − 40a10c
3
1 + 76c5

1)t + ∆], (121)

wherea10, c1, ∆ are arbitrary.
The KK equation due to Kaup and Kupershmidt,

ut + 20u2ux + 25uxuxx + 10uuxxx + uxxxxx = 0, (122)

corresponding toα = 20,β = 25,γ = 10, and again admits two tanh-solutions:

u(x, t) = c2
1 − 3

2c2
1 tanh2(c1x − c5

1t + ∆), (123)

and
u(x, t) = 8c2

1 − 12c2
1 tanh2(c1x − 176c5

1t + ∆), (124)

with c1, ∆ arbitrary, but no additional arbitrary coefficients.
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The equation

ut + 2u2ux + 6uxuxx + 3uuxxx + uxxxxx = 0, (125)

for α = 2, β = 6, γ = 3, was studied by Ito. It has one tanh solution:

u(x, t) = 20c2
1 − 30c2

1 tanh2(c1x − 96c5
1t + ∆), (126)

again withc1 and∆ arbitrary.PDESpecialSolutions (Tanh option) produces all these
solutions.

7.8.2. General case
Eq. (115) is hard to analyze by hand or using a computer. After a considerable amount

of time, PDESpecialSolutions (Tanh option) produced the solutions given below (but
not in as nice a form). Our write-up of the solutions is the result of additional interactive
work with Mathematica.

The coefficientsa10, a11, anda12 in

u(x, t) = a10 + a11 tanh(ξ) + a12 tanh2(ξ), (127)

with ξ = c1x + c2 + ∆, must satisfy the following nonlinear algebraic system with
parametersc1, c2, α, β, andγ :

αa2
12 + 6βa12c

2
1 + 12γ a12c

2
1 + 360c4

1 = 0,

a11(αa2
12 + 2βa12c

2
1 + 6γ a12c

2
1 + 24c4

1) = 0,

a11(αa2
10c1 − 2γ a10c

3
1 + 2βa12c

3
1 + 16c5

1 + c2) = 0,

a11(αa2
11 + 6αa10a12 + 6γ a10c

2
1 − 12βa12c

2
1 − 18γ a12c

2
1 − 120c4

1) = 0,

2αa2
11a12 + 2αa10a

2
12 + βa2

11c
2
1 + 3γ a2

11c
2
1 + 12γ a10a12c

2
1

− 8βa2
12c

2
1 − 8γ a2

12c
2
1 − 480a12c

4
1 = 0,

αa10a
2
11c1 + αa2

10a12c1 − βa2
11c

3
1 − γ a2

11c
3
1 − 8γ a10a12c

3
1 + 2βa2

12c
3
1

+ 136a12c
5
1 + a12c2 = 0.

(128)

Assumingnonzeroa12, c1, c2, α, β, andγ , two cases must be distinguished:

Case1. a11 = 0. In turn, this case splits into two sub-cases:

Case1a.

a11 = 0, a12 = −3
2a10, c2 = c3

1(24c2
1 − βa10), (129)

wherea10 must be one of the roots of

αa2
10 − 4βa10c

2
1 − 8γ a10c

2
1 + 160c4

1 = 0. (130)

Case1b.

a11 = 0, a12 = −6γ

α
c2

1,

c2 = − 1

α
(α2a2

10c1 − 8αγ a10c
3
1 + 16αc5

1 + 12γ 2c5
1),

(131)
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provided that

β = 1

γ
(10α − γ 2). (132)

Case2. a11 �= 0. Then

α = 1

392
(8β2 + 38βγ + 39γ 2), a12 = − 168

2β + 3γ
c2

1, (133)

providedβ is one of the roots of

(104β2 + 886βγ + 1487γ 2)(520β3 + 2158β2γ − 1103βγ 2 − 8871γ 3) = 0. (134)

Thus, case 2 also splits into two sub-cases:

Case2a. If β2 = −(1/104)(886βγ + 1487γ 2), then

α = − 1

26
(2β + 5γ )γ, a10 = −52(4378β + 9983γ )

7γ (958β + 2213γ )
c2

1,

a11 = ± 336

2β + 3γ
c2

1, a12 = − 168

2β + 3γ
c2

1,

c2 = −364(1634β + 3851γ )

2946β + 6715γ
c5

1

(135)

whereβ is any root of 104β2 + 886βγ + 1487γ 2 = 0.

Case2b. If β3 = (1/520)(1103βγ 2 + 8871γ 3 − 2158β2γ ), then

α = 1

392
(8β2 + 38βγ + 39γ 2),

a10 = 28(1066β2 + 5529βγ + 6483γ 2)

(2β + 3γ )(6β + 23γ )(26β + 81γ )
c2

1,

a2
11 = 28 224(26β − 17γ )(4β − γ )

(2β + 3γ )2(6β + 23γ )(26β + 81γ )
c4

1, a12 = − 168

2β + 3γ
c2

1,

c2 = −8(188 900 114β2 + 1161 063 881βγ + 1792 261 977γ 2)

105 176 786β2 + 632 954 969βγ + 959 833 473γ 2
c5

1,

(136)

whereβ is any root of 520β3 + 2158β2γ − 1103βγ 2 − 8871γ 3 = 0.

8. Other algorithms and related software

8.1. Other perspectives and potential generalizations

The algorithms presented in this article can be extended in several ways. For instance,
one could modify the chain rule inStep T1(S1, T1, or CN1) to compute othertypesof
solutions or consider more complicated polynomials than those used inStep T2(S2, T2,
or CN2). Both options could be used together.

With respect to the first option, it suffices to know the underlying first-order
differential equation of the desired fundamental function in the polynomial solution.
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Table 2
Functions with corresponding ODEs and chain rules.P(x; g2, g3) is the Weierstrass function with invariantsg2
andg3

Function Symbol ODE(y′ = dy/dξ) Chain rule

tanh(ξ) T y′ = 1 − y2 ∂•
∂xj

= cj (1− T2) d•
dT

sech(ξ) S y′ = −y
√

1 − y2 ∂•
∂xj

= −cj S
√

1 − S2 d•
dS

tan(ξ) TAN y = 1 + y2 ∂•
∂xj

= cj (1+ TAN2) d•
dTAN

exp(ξ) E y′ = y ∂•
∂xj

= cj E
d•
dE

cn(ξ; m) CN y′ = −
√

(1 − y2)(1 − m + my2) ∂•
∂xj

= −cj

√
(1− CN2)(1− m + mCN2) d•

dCN

sn(ξ; m) SN y′ =
√

(1 − y2)(1 − my2) ∂•
∂xj

= cj
√

(1 − SN2
)(1− mSN2) d•

dSN

P(ξ; g2, g3) P y′ = ±
√

4y3 − g2y − g3
∂•
∂xj

= ±cj

√
4y3 − g2y − g3

d•
dP

Table 2summarizes some of the more obvious choices. Several researchers, includingFan
(2002a,b,c) andGao and Tian(2001), seek solutions of the form

ui (x, t) = Ui (ξ) =
Mi∑
j =1

ai j w(ξ) j , ξ = c1x + c2t + ∆, (137)

wherew(ξ) is constrained by a Riccati equation,

w′(ξ) = b + εw2(ξ), ε = ±1, b real constant. (138)

Ignoring rational solutions, (138) has the following solutions:

w(ξ) = a tanh(aξ + c), if ε = −1, b = a2,

w(ξ) = a coth(aξ + c), if ε = −1, b = a2,

w(ξ) = a tan(aξ + c), if ε = 1, b = a2,

w(ξ) = a cot(aξ + c), if ε = −1, b = −a2.

(139)

So, (137) is polynomial in tanhξ , tanξ , cothξ , or cotξ . The integration constantc gets
absorbed in∆, and the constanta (or b) is an extraparameter in the nonlinear algebraic
system for theai j . For single PDEs,Yao and Li (2002a,b) consider solutions of the
form

u(x, t) = U(ξ) =
M∑

j =0

aj w(ξ) j +
M∑

j =0

bj z(ξ)w(ξ) j −1, (140)

wherew(ξ) andz(ξ) satisfy the Riccati equations

w′(ξ) = −w(ξ)z(ξ), z′(ξ) = 1 − z2(ξ). (141)

Sincew(ξ) = sech(ξ), z(ξ) = tanh(ξ) this approach is similar to the sech–tanh method
given inSection 4.
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Generalizing further,Fan(2002b, 2003a,b,c), Fan and Hon(2002, 2003a) andHon and
Fan(2004b) take

y′(ξ) =
√

b0 + b1y + b2y2 + b3y3 + b4y4, bi constant, (142)

which covers the functions sech, sec, tanh, tan, cn, sn, andP . The parametersbi are
added to the nonlinear algebraic system, which makes such systems hard to solve without
human intervention. Most often, such complicated nonlinear algebraic systems are solved
interactively with the aid ofMathematicaor Maple. To avoid unmanageable systems,
Mi (≤2) is often fixed in (137). Chenand Zhang(2003a, submitted for publication), Fan
and Dai(2003) andSirendaoreji(2003, 2004) use variants of (142) to compute polynomial
and rational solutions in terms of tanh, sech, tan, Jacobi’s elliptic functions, etc.

Zheng et al.(2002) introduce a clever method to compute mixed tanh–sech solutions
for the combined KdV–Burgers equations. They seek formal solutions,

u(x, t) = U(ξ) = a0 +
M∑

j =1

bj sinj w(ξ) +
M∑

j =1

aj cosw(ξ) sinw(ξ) j −1, (143)

subject to dw/dξ = sinw(ξ) which, upon integration, gives sinw(ξ) = sech(ξ) and
cosw(ξ) = ± tanh(ξ). Alternatively, one can use dw/dξ = cosw(ξ), which leads to
cosw(ξ) = −sech(ξ) and sinw(ξ) = ± tanh(ξ).

Liu and Li (2002a) seek solutions of the forms

U(ξ) =
M∑

j =0

aj sn(ξ) j , U(ξ) =
M∑

j =0

aj sn(ξ) j +
M∑

j =0

bj cn(ξ)sn(ξ) j −1,

U(ξ) =
M∑

j =0

aj sn(ξ) j +
M∑

j =0

Aj cn(ξ)sn(ξ) j −1 +
M∑

j =0

bj dn(ξ)sn(ξ) j −1

+
M∑

j =0

Bj cn(ξ)dn(ξ)sn(ξ) j −2,

(144)

which generalize the Jacobi elliptic function method inSection 4.
With respect to the second option,Gao and Tian(2001) consider

ui (x, t) =
Mi∑
j =0

ai j (x, t) tanhj Ψ (x, t)

+
Ni∑
j =0

bi j (x, t)sechΨ (x, t) tanhj Ψ (x, t), (145)

whereΨ (x, t) is not necessarily linear inx and/ort . Of course, (145) arises from recasting
the terms in (39) in a slightly different way than (40). Restricted to travelling waves,
Ψ (x, t) = c1x + c2t + ∆, both forms are equivalent.

Our algorithms could be generalized in many ways. With considerable effort, solutions
involving complex exponentials multiplied by tanh or sech functions could be attempted.
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A solution to the nonlinear Schr¨odinger equation is of this form.Fan and Hon(2003b),Hon
and Fan(2004a) andFan(2003b,c) give examples of complex as well as transcendental
equations solved with the tanh-method.

8.2. Review of symbolic algorithms and software

There is a variety of methods to find solitary wave solutions and soliton solutions
of special nonlinear PDEs. See e.g.Hereman and Takaoka(1990), Estévez and Gordoa
(1995, 1998) andHelal (2002). Some of these methods are straightforward to implement
in computeralgebra systems (CAS).

The most comprehensive methods of finding exact solutions for ODEs and PDEs are
based on similarity reductions via Lie point symmetry methods. These methods are hard to
fully automate (for publications and software see e.g.Cantwell, 2002, Hereman, 1996and
Hydon, 2000). Most CAS have tools to solve a subset of linear and nonlinear PDEs. For
example,Mathematica’sDSolve can find general solutions for linear and weakly nonlinear
PDEs. Available withinMuPAD, the codepdesolve uses the method of characteristics
to solve quasi-linear first-order PDEs.Maple offers the packages ODEtools (for solving
ODEs using classification, integrating factor and symmetry methods) and PDEtools, which
contains the functionpdesolveto find exact solutions of some classes of PDEs. For
information consultCheb-Terrab and von B¨ulow (1995) andCheb-Terrab(2001).

The methods presented in this paper are different from these efforts. Our algorithms and
software only compute specific solutions of nonlinear PDEs which model travelling waves
in terms of the tanh, sech, sn and cn functions. Our code can handle systems of ODEs and
PDEs with undetermined parameters.

To our knowledge, only four software packages are similar to ours. The first package is
ATFM by Parkesand Duffy(1996), who automated to some degree the tanh-method using
Mathematica. In contrast to ATFM, our software performs the computations automatically
from start to finish without human intervention. In our code, the number of independent
variablesxi is not limited to one space variablex and timet ; our code handles any number
of dependent variables.

The second package is RATH byLi and Liu (2002), which automates the tanh-method.
In contrast to our code, RATH only works for single PDEs. Extensions to cover systems
of PDEs and sech solutions are under development. Surpassing our code, RATH can solve
PDEs with an unspecified degree of nonlinearity and deal with negative and fractional
exponents.

Table 3 compares the performance ofPDESpecialSolutions.m and RATH. The
solution times are comparable, yet occasionally there is a mismatch in the number of
solutions computed. This is due in part to the representation of solutions. Occasionally
special solutions are generated although—after inspection by hand—they are included in
more general solutions.

Liu and Li (2002a) present theMaple code AJFM to automate the Jacobi elliptic
function method for single PDEs. This package seeks solutions of the form (144).

The codes RATH and AJFM use the Ritt–Wu characteristic sets method, implemented
by Wang (2001a,b). The CharSets package, available in Maple (Wang, 2002), is more
versatile and powerful than our algorithm inSection 6.2.
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Table 3
Comparison between codes PDESpecialSolutions.m and RATH. Test runs performed on a Dell Dimension
8200 PC, with 2.40 GHz Pentium 4 processor, 512 MB of RAM, with Mathematica v. 4.1 and Maple v. 7.0.
The first 8equations appear inLi and Liu (2002); the last 10 equations are listed in this paper

PDESpecialSolutions.m RATH
Name of equation CPUtime (s) # Sols. CPU time (s) # Sols. Ref.

KdV–Burgers 0.125 2 0.328 1 (2.3)
KdV–Burgers–Kuramoto 0.390 8 25.641 7 (4.1)
7th-order dispersive – 0 6.265 2 (4.7)
5th-order mKdV (Ito) 0.438 4 1.000 4 (4.11)
7th-order mKdV (Ito) 10.469 4 5.531 4 (4.13)
Generalized Fisher 0.406 4 0.469 2 (5.1)
Nonlinear heat conduction – 0 0.485 2 (5.3)
Gen. combined KdV–mKdV – 0 2.062 2 (5.5)
Boussinesq 0.218 1 0.142 1 (4)
KdV 0.125 1 0.126 1 (48)
KdV–Zakharov–Kuznetsov 0.469 1 0.142 1 (78)
mKdV–Zakharov–Kuznetsov 0.282 2 0.642 4 (81)
3D-mKdV 0.078 2 1.874 2 (87)
Gen. Kuramoto–Sivashinsky 0.734 16 1.453 8 (89)
Fisher 0.234 8 0.343 4 (99)
FitzHugh–Nagumo 0.719 12 – 0 (101)
Combined KdV–mKdV 0.204 2 0.251 2 (109)
Duffing 0.094 4 – 0 (114)

Finally, Abbott et al.(2002) designed aMathematicanotebook with key functions for
the computation of polynomial solutions in sn and cn.

There are several symbolic tools for reducing and solving parameterized nonlinear
algebraic systems. Some are part of codes to simplify overdetermined ODE and PDE
systems. For example, the Maple packageRif by Wittkopf and Reid(2003) allows
for the computation of solution branches of nonlinear algebraic systems. The most
powerful algebraicsolvers use some flavor of the Gr¨obner basis algorithm. For up-to-date
information on developments in this area we refer toGrabmeier et al.(2003).

9. Discussion and conclusions

We presented several straightforward algorithms to compute special solutions of
nonlinear PDEs, without using explicit integration. We designed the symbolic package
PDESpecialSolutions.m to find solitary wave solutionsof nonlinear PDEs involving
tanh, sech, cn and sn functions.

While the software reproduces the known (and also a few presumably new) solutions
for many equations, there is no guarantee that the code will compute the complete solution
set of all polynomial solutions involving the tanh and/or sech functions, especially when
the PDEs have parameters. This is due to restrictions on the form of the solutions and the
limitations of the algebraic solver.
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There is so much freedom in mixed tanh–sech solutions that the current code is limited
to quadratic solutions.

Furthermore, the nonlinear constraints which arise in solving the nonlinear algebraic
system may be quinticor of higher degree, and therefore unsolvable in analytic form.
Also, since our software package is fully automated, it may not return the solutions in the
simplest form.

The example inSection 7.8illustrates this situation. By not solving quadratic or
cubic equations explicitly the solutions (computed interactively withMathematica) can
be presented in a more compact and readable form.

In an attempt to avoidthe explicit use ofMathematica’s Solve andReduce functions,
we considered various alternatives. For example, we used (i) variants of Gr¨obner bases on
the complete system, and (ii) combinatorics on the coefficients in the polynomial solutions
(settingai j = 0 or ai j �= 0, for the admissiblei and j ). None of these alternatives paid off
for systemswith parameters.

Often, the nonlinear solver returns constraints on the wave parameterscj and the
external parameters. In principle, one should verify whether or not such constraints affect
the results of the previous steps in the algorithm. In particular, one should verify the
consistency with the results from step 2 of the algorithms. We have not yet implemented
this type of sophistication.
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Appendix. Using the software package

We illustrate the use of the packagePDESpecialSolutions.m on a PC. Users should
have access toMathematicav. 3.0 or higher.
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Put the package in a directory, say myDirectory, on drive C. Start aMathematica
notebook session and execute the commands:

In[1] = SetDirectory["c:\\myDirectory"]; (* specify directory *)

In[2] = <<PDESpecialSolutions.m (* read in package *)

In[3] = PDESpecialSolutions[
{D[u[x,t],t]-alpha*(6*u[x,t]*D[u[x,t],x]+D[u[x,t],{x,3}])+
2*beta*v[x,t]*D[v[x,t],x] == 0,
D[v[x,t],t]+3*u[x,t]*D[v[x,t],x]+D[v[x,t],{x,3}] == 0},
{u[x,t],v[x,t]}, {x,t}, {alpha, beta}, Form -> Sech,
Verbose -> True, InputForm -> False, NumericTest -> True,
SymbolicTest -> True, SolveAlgebraicSystem -> True
(*, DegreeOfThePolynomial -> {m[1] -> 2, m[2] -> 1} *)];

The package will compute the sech solutions (37) and (38) of the coupled KdV
equation (22).

If the DegreeOfThePolynomial → {m[1] → 2, m[2] → 1} were specified, the code
would continue with this case only and compute (37).

If SolveAlgebraicSystem → False, the algebraic system will be generated but not
automatically solved.

The format ofPDESpecialSolutions is similar to theMathematicafunction DSolve.
The output is a list of -lists with solutions and constraints. The Backus–Naur form of the
function is

〈Main Function〉 → PDESpecialSolutions[〈Equations〉, 〈Functions〉,
〈Variables〉, 〈Parameters〉, 〈Options〉]

〈Options〉 → Form→ 〈Form〉 | Verbose→ 〈Bool〉 |
InputForm→ 〈Bool〉 |
DegreeOfThePolynomial→ 〈List of Rules〉 |
SolveAlgebraicSystem→ 〈Bool〉 |
NumericTest→ 〈Bool〉 | SymbolicTest→ 〈Bool〉

〈Form〉 → Tanh | Sech | SechTanh | JacobiCN | JacobiSN
〈Bool〉 → True | False

〈List of Rules〉 → {m[1] →Integer,m[2] → Integer,...}
The default value ofForm is Tanh. The packagePDESpecialSolutions.m has been
tested onboth UNIX work stations and PCs withMathematicaversions 3.0, 4.0 and 4.1.
A test set of over 50 PDEs and half a dozen ODEs was used.
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