87 research outputs found

    Estimation of change in forest variables using synthetic aperture radar

    Get PDF
    Large scale mapping of changes in forest variables is needed for both environmental monitoring, planning of climate actions and sustainable forest management. Remote sensing can be used in conjunction with field data to produce wall-to-wall estimates that are practically impossible to produce using traditional field surveys. Synthetic aperture radar (SAR) can observe the forest independent of sunlight, clouds, snow, or rain, providing reliable high frequency coverage. Its wavelength determines the interaction with the forest, where longer wavelengths interact with larger structures of the trees, and shorter wavelengths interact mainly with the top part of the canopy, meaning that it can be chosen to fit specific applications. This thesis contains five studies conducted on the Remningstorp test site in southern Sweden. Studies I – III predicted above ground biomass (AGB) change using long wavelength polarimetric P- (in I) and L-band (in I – III) SAR data. The differences between the bands were small in terms of prediction quality, and the HV polarization, just as for AGB state prediction, was the polarization channel most correlated with AGB change. A moisture correction for L-band data was proposed and evaluated, and it was found that certain polarimetric measures were better for predicting AGB change than all of the polarization channels together. Study IV assessed the detectability of silvicultural treatments in short wavelength TanDEM-X interferometric phase heights. In line with earlier studies, only clear cuts were unambiguously distinguishable. Study V predicted site index and stand age by fitting height development curves to time series of TanDEM-X data. Site index and age were unbiasedly predicted for untreated plots, and the RMSE would likely decrease with longer time series. When stand age was known, SI was predicted with an RMSE comparable to that of the field based measurements. In conclusion, this thesis underscores SAR data's potential for generalizable methods for estimation of forest variable changes

    TanDEM-X digital surface models in boreal forest above-ground biomass change detection

    Get PDF
    Satellite images provide spatially explicit information on forest change covering wide areas. In this study, bistatic TanDEM-X (TDX) synthetic aperture radar (SAR) satellite data were used to derive digital surface models (DSMs) of forest areas using SAR interferometry (InSAR). The capability of change features derived from bi-temporal InSAR DSMs to detect forest height (90th percen-tile of canopy height distribution, H90) and density variations was investigated. Moreover, changes in the forest above-ground bio-mass (AGB) were estimated from height changes between two In-SAR DSMs. Bi-temporal airborne laser scanning (ALS) data, aerial orthoimages and an ALS-based AGB change map from a study area in Southern Finland were used as references. The results indicate that the InSAR height change of a forested area correlates more with vegetation density change than with height change. The corre-lation between the InSAR mean height change and the height change feature from ALS was 0.76 at stand level. Correspondingly, the correlation between the InSAR mean height change and the ALS penetration rate change was 0.89. The AGB changes predicted based on InSAR height change agreed well with the reference data; the root-mean-square error (RMSE) was 20.7 Mg/ha (18.5% of the mean biomass in 2012) at stand level and 27.4 Mg/ha (27.0%) for 16 × 16 m grid cells. The results show that TDX DSMs can be used to detect biomass changes of different orders of magnitude, e.g. due to logging and thinning

    Relationship between Lidar-Derived Canopy Densities and the Scattering Phase Center of High-Resolution TanDEM-X Data

    Get PDF
    Abstract: The estimation of forestry parameters is essential to understanding the three-dimensional structure of forests. In this respect, the potential of X-band synthetic aperture radar (SAR) has been recognized for years. Many studies have been conducted on deriving tree heights with SAR data, but few have paid attention to the effects of the canopy structure. Canopy density plays an important role since it provides information about the vertical distribution of dominant scatterers in the forest. In this study, the position of the scattering phase center (SPC) of interferometric X-band SAR data is investigated with regard to the densest vegetation layer in a deciduous and coniferous forest in Germany by applying a canopy density index from high-resolution airborne laser scanning data. Two different methods defining the densest layer are introduced and compared with the position of the TanDEM-X SPC. The results indicate that the position of the SPC often coincides with the densest layer, with mean differences ranging from −1.6 m to +0.7 m in the deciduous forest and +1.9 m in the coniferous forest. Regarding relative tree heights, the SAR signal on average penetrates up to 15% (3.4 m) of the average tree height in the coniferous forest. In the deciduous forest, the difference increases to 18% (6.2 m) during summer and 24% (8.2 m) during winter. These findings highlight the importance of considering not only tree height but also canopy density when delineating SAR-based forest heights. The vertical structure of the canopy influences the position of the SPC, and incorporating canopy density can improve the accuracy of SAR-derived forest height estimations

    Puistute takseertunnuste hindamine aerolidari mÔÔtmisandmete pÔhjal hemiboreaalsetes metsades

    Get PDF
    A Thesis for applying for the degree of Doctor of Philosophy in Forestry.Forest management and planning requires up-to-date data, which commonly is acquired using field experts and ground measurements. Nowadays, more and more of data about forest stands is measured using remotely sensing methods. Most common methods include aerial photography and laser scanning from airplanes, also spectral measurements from satellites or even drone images and applications. This doctoral thesis focuses on developing applications and methods for utilising the airborne laser scanning (ALS) data that is freely available for the whole Estonia. The ALS measurements are carried out by the Estonian Land Board on a routine basis twice a year – in spring and summer. The first variable that was studied in this thesis was forest height. Based on the thesis, the most reliable method for forest height assessment was using the ALS point-cloud 80th height percentile (HP80). The small circular plot (radius of 15
30 m) and stand based studies showed high correlations with the field-measured forest heights and with great confidence it can be said, that ALS-based forest height estimations are close or even with higher accuracy, than field inspected. The second studied variable was standing wood volume. The ALS-based methods and models that were developed throughout this thesis used the idea, that standing wood volume is based on forest height and density. For this the HP80 and a threshold-based point count ratio was used (canopy cover - CC). ALS-based CC (CCALS) estimates were studied and compared with digital hemispherical photo based measurements. The results showed similar errors as were shown in other similar studies, with around 10-15% root mean square error (RMSE). The strongest correlation was shown using all echoes above a 1.3 metre threshold. Combining the CCALS and HP80 showed standing wood volume estimates with a similar error as we would receive from field measurements (<20%). The freely available multitemporal ALS data showed promising results for forest height growth monitoring and detecting small-scale disturbances. CCALS was shown to have strong predictive value, when compared with a four year difference in thinned and unthinned stands. The nation-wide ALS data can also be combined with forest height predictions from satellites, providing a faster update compared to the ALS data. Promising results were shown using the interferometric synthetic aperture radar (InSAR). Stand species maps generated using self-learning algorithms and satellite based spectral data can be used for developing species specific models of standing wood volume prediction. By combining these different datasets we can construct a nation-wide forest resource to help make better decisions for forest management and targeting fieldwork.Metsades majandamisotsuste langetamiseks ja metsamajanduslike tööde planeerimiseks on metsaomanikel vaja andmeid. HarjumuspĂ€raselt on andmete kogumiseks tehtud metsas maapealseid mÔÔtmisi. Viimastel aastakĂŒmnetel on metsade inventeerimiseks ĂŒha enam aga kasutatud mittekontaktseid mÔÔtmisi - lennukitelt tehtavad aerofotosid, laserskaneerimist, satelliitidelt tehtavaid kiirgusmÔÔtmisi vĂ”i viimastel aastatel ka droonidelt tehtud pilte. Antud doktoritöö on vĂ”tnud fookusesse aerolaserskaneerimise (ALS) andmete pĂ”hjal Eesti metsadesse sobilike rakenduste vĂ€ljatöötamise. ALS mÔÔtmisi teeb Eesti Maa-amet rutiinsete lendude kĂ€igus kaks korda aastas, nii kevadel kui ka suvel. Aastast 2008 alustatud mÔÔtmiste tulemusel on Eesti ĂŒks vĂ€heseid riike maailmas, kus on vabalt kasutada mitmekordselt kogu riiki kattev ALS andmestik. Doktoritöö tulemusel töötati vĂ€lja metsa kĂ”rguse hindamiseks sobilikud meetodid, kasutades selleks punktipilvede kĂ”rgusprotsentiile. Tugevamaid seoseid metsas proovitĂŒkkidel mÔÔdetud kĂ”rgustega nĂ€itas punktipilve 80-protsentiil (HP80) ja uuringute pĂ”hjal vĂ”ib vĂ€ita, et metsa kĂ”rguse mÀÀramine suvistelt aerolidari andmetelt on ligilĂ€hedane tĂ€psustele, mida saadakse metsas kohapeal mÔÔtes. Teine oluline tunnus, mida metsade majandamise planeerimisel silmas peetakse, on kasvava metsa tagavara. Teadustöö pĂ”hjal töötati vĂ€lja mudelite kujud ja metoodika, mille abil prognoositud tagavara oli sarnase veapiiriga, mis on lubatud metsas hinnanguid tegevatele taksaatoritele (<20%). VĂ€ljatöötatud ALS-pĂ”hine mudeli kuju jĂ€rgib loogikat, et metsa tagavara on otseselt seotud mÔÔdetud kĂ”rguse ja metsa tihedusega. Tihenduse hindamiseks aerolidari andmetelt kasutatakse nivoopĂ”hist punktide suhtearvu ehk nn katvushinnangut (CCALS). Katvushinnangu tĂ€psuse valideerimiseks ja tihedas metsas sobiva prognoosimeetodi vĂ€ljatöötamiseks tehti vĂ€limÔÔtmisi kasutades poolsfÀÀrikaameraid. PoolsfÀÀripiltide pĂ”hjal tehtud valideerimise tulemused andsid sarnaseid veahinnanguid, mida on ka varasemates teadusuuringutes esitletud (RMSE = 10
15%). Kahe sarnasest fenoloogilisest perioodist ALS andmestiku lahutamisel uuriti ka muutuste tuvastamise vĂ”imalikkust. Uuringud andsid paljulubavaid tulemusi metsade kĂ”rguskasvu hindamiseks ja CCALS osutus ka oluliseks tunnuseks vĂ€iksemate hĂ€iringute, nagu nĂ€iteks harvendusraie, tuvastamiseks. Kogu riiki katva ALS andmestiku kombineerimisel erinevate satelliitandmetega vĂ”i nĂ€iteks spektraalsete mÔÔtmiste pĂ”hjal tehtud puistu liigiliste koosseisu kaartidega on vĂ”imalik antud töös vĂ€lja pakutud meetodite abil anda igal aastal kogu Eesti metsaressursside ĂŒlevaade. Samuti on vĂ”imalik koostada vaid kaugseirevahendeid ja proovitĂŒkkidel lĂ€hendatud mudeleid kasutades eraldiste pĂ”hised takseerkirjeldused, mida siis taksaatorid saavad nĂ€iteks kasutada oma vĂ€litööde kavandamisel.  Publication of this thesis is supported by the Estonian University of Life Sciences

    Polarimetric Synthetic Aperture Radar

    Get PDF
    This open access book focuses on the practical application of electromagnetic polarimetry principles in Earth remote sensing with an educational purpose. In the last decade, the operations from fully polarimetric synthetic aperture radar such as the Japanese ALOS/PalSAR, the Canadian Radarsat-2 and the German TerraSAR-X and their easy data access for scientific use have developed further the research and data applications at L,C and X band. As a consequence, the wider distribution of polarimetric data sets across the remote sensing community boosted activity and development in polarimetric SAR applications, also in view of future missions. Numerous experiments with real data from spaceborne platforms are shown, with the aim of giving an up-to-date and complete treatment of the unique benefits of fully polarimetric synthetic aperture radar data in five different domains: forest, agriculture, cryosphere, urban and oceans

    Remote sensing of snow : Factors influencing seasonal snow mapping in boreal forest region

    Get PDF
    Monitoring of snow cover in northern hemisphere is highly important for climate research and for operational activities, such as those related to hydrology and weather forecasting. The appearance and melting of seasonal snow cover dominate the hydrological and climatic patterns in the boreal and arctic regions. Spatial variability (in particular during the spring and autumn transition months) and long-term trends in global snow cover distribution are strongly interconnected to changes in Earth System (ES). Satellite data based estimates on snow cover extent are utilized e.g. in near-real-time hydrological forecasting, water resource management and to construct long-term Climate Data Records (CDRs) essential for climate research. Information on the quantitative reliability of snow cover monitoring is urgently needed by these different applications as the usefulness of satellite data based results is strongly dependent on the quality of the interpretation. This doctoral dissertation investigates the factors affecting the reliability of snow cover monitoring using optical satellite data and focuses on boreal regions (zone characterized by seasonal snow cover). Based on the analysis of different factors relevant to snow mapping performance, the work introduces a methodology to assess the uncertainty of snow cover extent estimates, focusing on the retrieval of fractional snow cover (within a pixel) during the spring melt period. The results demonstrate that optical remote sensing is well suited for determining snow extent in the melting season and that the characterizing the uncertainty in snow estimates facilitates the improvement of the snow mapping algorithms. The overall message is that using a versatile accuracy analysis it is possible to develop uncertainty estimates for the optical remote sensing of snow cover, which is a considerable advance in remote sensing. The results of this work can also be utilized in the development of other interpretation algorithms. This thesis consists of five articles predominantly dealing with quantitative data analysis, while the summary chapter synthesizes the results mainly in the algorithm accuracy point of view. The first four articles determine the reflectance characteristics essential for the forward and inverse modeling of boreal landscapes (forward model describes the observations as a function of the investigated variable). The effects of snow, snow-free ground and boreal forest canopy on the observed satellite scene reflectance are specified. The effects of all the error components are clarified in the fifth article and a novel experimental method to analyze and quantify the amount of uncertainty is presented. The five articles employ different remote sensing and ground truth data sets measured and/or analyzed for this research, covering the region of Finland and also applied to boreal forest region in northern Europe

    Fourth Airborne Geoscience Workshop

    Get PDF
    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection

    Growing stock volume estimation in temperate forsted areas using a fusion approach with SAR Satellites Imagery

    Get PDF
    Forest monitoring plays a central role in the context of global warming mitigation and in the assessment of forest resources. To meet these challenges, significant efforts have been made by scientists to develop new feasible remote sensing techniques for the retrieval of forest parameters. However, much work remains to be done in this area, in particular in establishing global assessments of forest biomass. In this context, this Ph.D. Thesis presents a complete methodology for estimating Growing Stock Volume (GSV) in temperate forested areas using a fusion approach based on Synthetic-Aperture Radar (SAR) satellite imagery. The investigations which were performed focused on the Thuringian Forest, which is located in Central Germany. The satellite data used are composed of an extensive set of L-band (ALOS PALSAR) and X-band (TerraSAR-X, TanDEM-X, Cosmo-SkyMed) images, which were acquired in various sensor configurations (acquisition modes, polarisations, incidence angles). The available ground data consists of a forest inventory delivered by the local forest offices. Weather measurements and a LiDAR DEM complete the datasets. The research showed that together with the topography, the forest structure and weather conditions generally limited the sensitivity of the SAR signal to GSV. The best correlations were obtained with ALOS PALSAR (R2 = 0.61) and TanDEM-X (R2 = 0.72) interferometric coherences. These datasets were chosen for the retrieval of GSV in the Thuringian Forest and led with regressions to an root-mean-square error (RMSE) in the range of 100─200 m3ha-1. As a final achievement of this thesis, a methodology for combining the SAR information was developed. Assuming that there are sufficient and adequate remote sensing data, the proposed fusion approach may increase the biomass maps accuracy, their spatial extension and their updated frequency. These characteristics are essential for the future derivation of accurate, global and robust forest biomass maps
    • 

    corecore