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1. Introduction

Earth is an integrated system, where physical, chemical, biological and human interactions affect the
state of the planet (Steffen et al., 2015). Changes in Earth System (ES), either natural or driven by
humans, include changes in climate. Although naturally fluctuating solar radiation determines the
global energy balance on our planet, and is the driver for atmospheric and oceanic circulations, recent
scientific evidence links human activities to climate change. According to the Intergovernmental Panel
on Climate Change (IPCC) the energy balance between incoming shortwave and outgoing longwave
solar radiation is influenced by global climate ‘drivers’, i.e. changes in solar radiation, greenhouse gases,
aerosols and surface albedo that is highly affected by the Earth’s seasonal snow cover (IPCC, 2013). The
changes caused by the drivers perturb global radiation budget producing radiative forcing (RF =
measure of the net change in the energy budget) that affects the climate. There are complex global
feedback mechanisms that determine the eventual response of the climate system to the forcing. The
forcing effect can e.g. be balanced by storage of energy in the oceans and carbon uptake by forests.
Characterization of the dynamics of the climate system is a complex and challenging task considering
the system responses to a variety of external forcing and internal natural (periodic or chaotic) variability
over a wide range of timescales.

Northern Hemisphere terrestrial snow cover is an important component of the cryosphere, where the
Earth’s surface is seasonally or perennially frozen (AMAP, 2011). Permanent snow cover exists mostly
in Antarctica and Greenland, and seasonal snow in the Northern Hemisphere. The spatial extent of
seasonal snow varies according to latitude, occurring north of latitude 40° in North America, 50° in
western Europe, 60° in eastern Europe and 30° in Asia, and also in mountainous areas (Rees, 2006).
Ephemeral snow can occur southwards from the regions of seasonal snow more randomly. The vast
boreal forest zone south of the tundra across Eurasia and North America, characterized by seasonal
snow, is the largest continuous land ecosystem in the world (ACIA, 2005). Boreal forest carbon uptake
and storage capacity is influenced by snow cover and seasonal snow is one of the most important
features in boreal ecology (Pan et al., 2011).

Considerable decline in the extent and duration of snow cover and sea ice, and related changes in
permafrost, hydrology, ecology and temperature, have been measured across the high latitudes
(AMAP, 2011; Brown and Mote, 2009; Brown and Robinson, 2011; Choi et al., 2010; Flanner et al., 2011;
Derksen and Brown, 2012; Hori et al., 2017). Compared to the global increase in annual average
temperature the arctic warming has been roughly twice as high, i.e. arctic amplification. Although snow
cover is affected by climate change, it also has an influence on the interacting system. In fact, snow
cover is a dynamic variable of the Earth System due to its large spatial and temporal variability and
several notable physical properties. Snow has high reflectivity and dry snow, in particular, reflects the
majority of the incoming sunlight (Warren, 1982; Pellikka and Rees, 2009). Changes in surface albedo
due to declining snow cover can cause increases in the absorbed solar radiation, amplifying the initial



global warming, see Fig. 1. Secondly, due to its low thermal conductivity, snow has an insulating effect
over the underlying surface that prevents permafrost and the seasonally frozen/thawed layer from
energy losses and helps to sustain ice sheets and glaciers (ACIA, 2004; Flanner et al., 2011; Vaughan et
al., 2013).

The topic of this thesis concerns snow mapping using remote sensing methods. Albedo is the fraction
of incident radiation that is reflected by a surface, while reflectance is defined as this same fraction for
a single incidence angle. Therefore, using single satellite images the albedo cannot be directly
measured. Instead, it has to be estimated assuming a known pattern of surface (bidirectional)
reflectance to cover all the other viewing angles (Painter and Dozier, 2004; Wiscombe and Warren,
1980). In this thesis, satellite observed reflectance is not employed to study the albedo, but the
mapping of the snow extent. On the other hand, snow extent on landscape can be used as input to
albedo determination in climate models and weather prediction models.

Increase in
temperature
from external
forcing
Increased
absorption of Snow cover
radiation
Radiative Forcing decreases
Positive
Feedback
Loop
Albedo/ Increase of
reflectivity darker
decreases surfaces

Figure 1. Snow albedo feedback loop. Changes in surface albedo from warming can cause increases in absorbed
solar radiation, amplifying the initial warming.

Snow cover has also a direct impact on the hydrological cycle and water balance. Seasonal snow is an
enormous fresh water storage during the cold season. After the winter, water is rapidly released from
the snowpack during the melting season. Run-off from melting snow favours hydropower production
and this economical, clean and renewable energy source has been widely utilized to meet the rising
energy needs, although there are environmental concerns. Water resources management and
hydropower production need to adapt to the ongoing changes in snow cover duration and winter



precipitation. In regions where the winter precipitation is expected to increase, an increase in run-off
is also expected (Callaghan et al., 2011). Moreover, changes in spring snowmelt patterns may have
severe consequences, e.g. river flooding. Heavy snowfall may also disrupt air, road and rail transport.
In fact, several socio-economic fields are interconnected to the changes in snow cover, such as
transport, logistics, forestry, agriculture, irrigation, municipal water supply and recreational activities.
Consequently, accurate information on spatial and temporal distribution of snow is essential for reliable
run-off and river discharge forecasting, but also for numerical weather prediction (NWP).

Scientists use diverse observation techniques and theoretical models to study the Earth System. Long-
term, quality controlled and homogenous datasets are vital for more accurately understanding the
ongoing global and regional processes and their effect on climate system and global water cycle. There
exists much uncertainty on how fast the Arctic cryosphere will change, will the changes intensify (e.g.
the Arctic amplification), what the exact impacts will be (either beneficial or damaging) and how the
various feedback mechanisms affect the whole system. Unified monitoring and research is needed to
reduce this uncertainty (AMAP, 2011; Bokhorst et al., 2016).

For the above mentioned reasons it is crucial to develop methods for snow cover monitoring and also
to find a way to evaluate the accuracy of the obtained snow estimates. Winter maximum extent of
snow in the Northern Hemisphere is about 46 million square kilometres (40% of the land areas), so the
in situ snow measurement network is not sufficient to monitor the annual snow distribution (Rees,
2006). Therefore, remote sensing of snow has been well used for decades to acquire frequent and
spatially extensive data coverage for global monitoring purposes. Then again, using both direct ground
truth (i.e. in situ) and satellite-based snow observations facilitates snow mapping method development
and result validation.

Remote sensing techniques mainly use electromagnetic radiation as the source of information. Passive
satellite instruments measure either reflected or emitted radiation from the surface and atmosphere,
whereas active instruments emit themselves the electromagnetic radiation and measure the
(back)scattered fraction. In order to retrieve useful information on the satellite observed radiation
intensity, a mathematical relation has to be developed between the observation and the geophysical
variable. A commonly used approach is the application of inverse methods. First, a theoretical, empirical
or semi-empirical forward model is needed to describe the satellite observation as a function of
different variables affecting the observation. For example, the satellite observed Top-of-Atmosphere
(TOA) reflectance can be described as a function of e.g. snow covered area percentage (and other
affecting factors) for each satellite pixel. Thereafter, remote sensing solves an inverse problem to
retrieve the value of a geophysical variable, such as snow covered area, from a satellite observation. In
its simplest, a forward model can be analytically inverted. Metaphorically, solving the inverse problem
is like trying to determine the type of animal from its footprints. Alternatively, direct linear regression
can be developed between the observation and the geophysical variable, if adequate ground truth data
on geophysical variable is available for training the empirical algorithm.

In the optical (visible to near infrared) wavelength region remote sensing of snow is based on the very
high albedo of snow compared to other natural surfaces (Warren, 1982). Passive optical satellite



instruments can have sufficiently high spectral, spatial and temporal resolution even for small-scale
snow mapping purposes, but snow detection is still dependent on daylight and cloud-free conditions
(Dietz et al., 2012; Frei et al., 2012; Nolin, 2010). Passive microwave techniques can also detect snow
well, operate at night and through cloud cover, but their spatial resolution is coarse and mostly suitable
for global applications. High resolution and insensitivity to clouds and daylight can be obtained using
active microwave SAR data but the image interpretation is complicated and has limitations, such as that
only wet snow cover can be distinguished from the snow-free terrain (Rees, 2006). Thus, finding a
suitable instrument and method for snow detection is dependent on the purpose — e.g. regional
instantaneous flood monitoring or global decadal climate data record (CDR) time series collection.

The potential of remote sensing in cryospheric and boreal applications is limited by uncertainty,
especially concerning the data sets and interpretation methods (Rittger et al., 2013). For instance,
applying only a single value for albedo over a broad region can lead to large errors in global energy
estimates, and likewise, uncertainty in a snow extent estimate can penetrate into hydrological models
(Rittger et al., 2013). A major issue common to most optical (and microwave) approaches in snow
remote sensing is the problem of how to accurately detect snow in complex landscapes, under
conditions of seasonal, patchy and melting snow, and especially in forested regions (Dietz et al., 2012;
Dozier et al., 2009; Frei et al., 2012; Hall and Riggs 2007; Klein et al., 1998; Nolin, 2010). Regional
airborne campaigns and high (spatial) resolution satellite data have been successfully used for
algorithm development, validation and drainage basin scale research but they are not feasible for large
scale operational monitoring purposes. There are spatially and temporally effective optical binary
(snow/no snow) snow mapping methods (Hall et al., 2002; Helfrich et al., 2007; Ramsay, 1998), but over
the extensive areas of seasonal snow their relatively large satellite footprint contains fractional snow
and forest cover. Therefore, various linear unmixing (Painter et al., 2003; 2009; Vikhamar and Solberg,
2002; 2003), empirical and thresholding based (Hall et al., 2002; Salomonson and Appel, 2004; 2006)
and inverse model based (Metsamaki et al., 2005; 2012; 2015) methods for mapping the fractional snow
cover (FSC) within a satellite pixel have been developed (PIV). Compared to stand-alone satellite data-
based methods, some combined methods require additional information (such as land cover data) or
utilize in situ observations and/or modelling results together with remote sensing data as input (Frei et
al., 2012). Whatever snow mapping method is applied, it is beneficial to include the consideration of
uncertainty in order to facilitate correct data interpretation and a valid meaning for the obtained
results.

When model-based inversion algorithm is used for the snow characteristics retrieval, the uncertainty
of the retrieval results is dependent on the accuracy of the applied forward model. Therefore, it is
essential to determine the uncertainty characteristics of the modelling approach e.g. through error
propagation analysis. In contrast to that, in the case of linear regression algorithms, the uncertainty
estimate can be obtained from the applied training data (in situ observations of the investigated
geophysical variable). We focus here on fractional snow cover mapping using a forward model based
inverse model. Thereby, we consider the modelling error of satellite observations next.



Even in highly controlled conditions the measurements of physical quantities, such as snow reflectance,
are subject to uncertainties. Additionally, all models describing satellite observations include
inaccuracies. Thus, when modelling a satellite observation, the uncertainty of the model representation
of observation includes both the uncertainty of the actual measurement and that of the applied model?.
Total (modelling) error of a satellite observation is a sum of these two elements, and it can be
considered as a combination of a systematic error component and random (i.e. statistical) error
component.

The error in forward modelling of satellite observations directly affects the quality of geophysical
variable estimates (obtained by the applied inverse method). Using an error propagation analysis
(Taylor, 1982), a random statistical uncertainty estimate of retrieval results can be calculated e.g. for
snow covered area percentage using statistical accuracies of each constituent of the applied model as
input information. In that case, only random error is included in the uncertainty estimation and the
results only describe the precision, which does not necessarily describe the total error. Systematic
uncertainty causes the results to be consistently either too small or too large, i.e. biased. Thus,
estimates of geophysical variables also include both random and systematic components. Total error
characteristics can be estimated using in situ observations on the geophysical variable under
investigation (Fig. 2). However, the availability of the in situ data can be a limiting factor (Frei et al.,
2012). This thesis defines how to estimate the systematic error of snow characteristics retrieval
provided that both the total and statistical errors of the retrieval results (FSC estimates) are known.
Further on, the assessed systematic error is used to derive an enhanced consideration of FSC product
error.

Independent reference in situ, airborne, high resolution satellite and field spectroscopy data have been
typically used to qualitatively validate and quantitatively assess the optical snow mapping accuracy, but
actual quantitative uncertainty layers in snow products are rare (Dozier et al., 2009; Hall and Riggs,
2007; Metsamaki et al., 2015; Stroeve et al., 2005).

! Uncertainty characterizes how well the model represents the actual observation (range of +values around the accepted
truth/in situ reference) and should account for both components of the total error. Systematic uncertainty causes the
model predictions to be consistently either too small or too large, i.e. biased. Random uncertainty is unpredictable and it
cannot be deterministically determined. Accuracy is an expression of lack of error.
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Figure 2. Uncertainty is a quantitative expression of estimation accuracy (e.g. in case of model inversion
depending on how well the applied forward model represents the actual remote sensing observation) and it can
be depicted by calculating a total error for the observed snow variable estimate. BIAS and RMSE are quantitative
expressions of trueness. They are obtained by comparing multiple snow variable observations with reference in
situ data. The inverse model constituent variability can be described quantitatively by assessing their standard
deviation from the average value. Precision defines the closeness of individual estimates representing the same
situation i.e. ground truth value of the investigated geophysical variable.

1.2 Objective of the thesis

The main objective of this thesis is to investigate how to improve snow monitoring methods in order to
meet the needs of both operative hydrology and climate research applications. The work is conducted
by (a) by experimentally determining reflectance characteristics essential for the forward and inverse
modelling of boreal landscapes and (b) by analyzing satellite data retrievals of FSC (fractional snow
cover) in order to derive statistical and systematic error characteristics of FSC estimates for the boreal
zone. The focus is on optical remote sensing, which is well suited for determining snow extent in the
melting season. Thus, the work aims at improving FSC retrieval algorithms and at characterizing the
uncertainty in snow estimates and facilitating the improvement of the uncertainty considerations of
the existing snow mapping algorithms. This is achieved by first employing an optical, semi-empirical,
reflectance model-based SCAmod method to demonstrate the various factors affecting snow detection,
and then, establishing a novel experimental method to analyze and quantify the amount of uncertainty.
Specific objectives of the thesis are:
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e Specification of the behaviour of wet snow, dry snow and snow-free ground reflectance in
boreal forest utilizing field spectroradiometer measurements in northern Finland (PI).

e Determination and analyses of the behaviour of snow-free ground reflectance for the
predominant non-forested land cover classes in central, eastern and northern Europe using
satellite (MODIS) data (PlI).

e |nvestigating the effect of boreal forest canopy to the observed scene reflectance using airborne
and mast-borne spectrometer data together with high resolution information on forest (canopy)
characteristics (obtained by airborne LIDAR data) in northern Finland (PIll and PIV).

e |nvestigating the effect of all error components on the satellite estimated GlobSnow Snow
Extent (i.e. FSC-product) accuracy using a novel experimental analysis approach and a unique
multi-temporal in situ FSC reference data set covering the region of Finland (PV).

2. Earths’ surface reflectivity measurements and interpretation

The focus of this thesis is on determining the different factors affecting fractional snow cover (FSC)
estimation accuracy using a semi-empirical reflectance model (Metsamaki et al., 2005). The scope is
outlined in the following paragraphs, as only those concepts relevant to model-based approach, related
data analysis and measurement set-ups handled in PI-PV are discussed. Note, that in PI-PV the used
symbols to denote surface and Top-of-Atmosphere (TOA) reflectance are not consistent. In this
summary for the thesis we use R to describe the TOA reflectance and symbol p to describe surface
reflectance observed by field and mast-based spectroradiometer, and also by airborne imaging
spectrometer.

Earth-observing satellites provide unprecedented amounts of global reflectivity information also for
remote and inaccessible regions. First, the obtained raw digital raster images need to be pre-processed;
calibrated and geo-referenced, as they contain e.g. geometric and radiometric distortions (Rees, 2006).
Raw data row and column numbers are geo-referenced with a known spatial location (e.g. latitude-
longitude grid) using geolocation data typically provided within the satellite data. The satellite observed
radiation intensity reflected from the land surface target is calibrated into a physical quantity such as
Top-of-Atmosphere (TOA) radiance (unit of measure: W m-2 sr-1 nm-1) or TOA reflectance (unit of
measure: dimensionless). Satellites typically use several discrete wavelength bands located in the
visible and infrared region of the electromagnetic spectrum (e.g. MODIS instrument: 0.4 um to 14.4
um). The spatial resolution of different wavelength channels also usually varies, being e.g. either 250m,
500m or 1 km for a certain channel. Polar orbiting satellites used in snow remote sensing are typically
on a sun synchronous orbit, where the illumination conditions remain similar for different images and
their interpretation is more consistent. The spatial coverage, depending on swath width of the
instrument, defines the frequency of the observations over a certain location. At high latitudes the
instruments typically provide daily observations.



TOA reflectance can be converted to surface reflectance using atmospheric correction methods.
However, in this work, atmospheric effects are not corrected (instead standard atmospheric values
adjusted to regional conditions are used to shift ground-based reflectances to TOA reflectances, when
relevant). TOA reflectances are applied since the employed inversion approach, the SCAmod method,
is based on the use of TOA reflectances as a static atmospheric correction does not improve the quality
of FSC estimates (Metsamaki et al., 2015). In the optical wavelengths, discriminating snow from clouds
is difficult due to their similar spectral signatures. This work does not try to tackle the cloud
discrimination problem, but instead cloud-free observations are selected.

Although satellite data pre-processing (geo-referencing and radiometric correction) and cloud
screening are not emphasized in this thesis, the main pre-processing features for the thesis are
summarized next concerning TOA or surface reflectance data. The processing of the satellite data in PII
was conducted using the Finnish Environment Institute (SYKE) operational snow mapping system.
Accordingly, Terra/MODIS Level-1B calibrated radiance products were obtained from NASA archives
and converted to cloud screened TOA reflectances at SYKE, to be used in PIl. The atmospheric and
imaging geometry effects were taken into account in the analysis by using a large number of MODIS
observations with varying viewing angles and atmospheric conditions. However, the largest (>50°)
instrument viewing angles and highest (>75°) sun zenith angles were excluded, since the highest angles
are excluded in typical satellite snow mapping algorithms.

In PV, ESA GlobSnow Snow Extent (SE) products on FSC (based on Envisat/AATSR TOA reflectances)
were downloaded from the FMI Sodankyla satellite data center: www.globsnow.info (Metsamaki et al.,
2015). These readily available FSC products were used in the analysis for PV instead of processing TOA
reflectances. The GlobSnow processing system uses ESA provided Level 1B calibrated and geolocated
reflectance data as input for radiometric solar illumination and topography correction and cloud
screening at FMI. Then, the pre-processed reflectances are used to calculate the FSC products, yet only
for observations at sun zenith angle < 73° due to otherwise occurring decrease in algorithm
performance (Metsamaki et al., 2015).

In addition to the above mentioned satellite observations, airborne, mast-based and field spectral
observations were utilized in the thesis. In PI, the key material is the field spectroradiometer-based
reflectances, whereas mast-based reflectances are only used to show the effect of forest canopy to
scene reflectance. In PIlIl and PIV, the principal data is the airborne imaging spectrometer-derived
reflectance, whereas the airborne LIDAR data was utilized to obtain information on forest (canopy)
characteristics. Additionally, in PIIl and PIV, mast-based spectroradiometer measurements were used
to analyse the bidirectional reflectance characteristics (i.e. sun and measurement angle bidirectional
effects) of the snow covered forested terrain.

Both field and mast-based spectroradiometer observations were analyzed and calibrated to surface
reflectances using a white Spectralon reference panel with known reflectance spectrum. Also, airborne
observed radiances were cross-calibrated to reflectances using mast-based (Spectralon reference
panel-calibrated) reflectance observations. A specific software was used to geometrically correct the
airborne imaging spectrometer observations (PlIll and PIV). Major part of the ground-based



observations were obtained at sun zenith angle range of 50°-75°(Pl), when with mast-based
observations, the range was 67°-73° (Plll) and 58°-75° (PIV). In Plll and PIV, the airborne imaging
spectrometer data with sun zenith angle of about 68° was used.

The surface reflectances can be shifted to TOA reflectances using regional standard atmosphere
characteristics when appropriate, e.g. in PV (Table 1) to facilitate their comparison with TOA reflectance
based model constituents (Metsamaki et al., 2015). In PI, Plll and PIV, the correspondence of field
observations with large scale scene reflectance was performed by using the field and mast-based
surface reflectance observations.

In this thesis, uncertainties in fractional snow cover mapping by a semi-empirical reflectance model
based SCAmod inversion method are investigated. The method was originally developed for fractional
snow mapping in Finland representing boreal forested landscape (Metsamaki et al., 2005; 2012; 2015).
After, the method was found to be feasible for hemispheric FSC detection, provided that the forest
transmissivity information is available. Forest transmissivity describes how forest cover attenuates the
incoming radiation and prevents the visibility to the underlying snow covered or snow-free forest floor.
Accordingly, SCAmod algorithm considers this as a two-way forest transmissivity, obtained by
reflectance observations under full dry snow cover, when the forest clearly stands out (Metsamaki et
al., 2005). Also, the forest canopy and shadows contribute to the satellite observations. The European
Space Agency’s (ESA) Data User Element (DUE) project GlobSnow implemented SCAmod inversion
method to provide and maintain a global database of Snow Extent (SE) products on Fractional Snow
Cover (FSC). The SCAmod inversion model originates from a radiative transfer theory based forward
model, which describes the satellite scene reflectance as a mixture of partially transparent forest
canopy, snow and snow-free ground that are interrelated through forest transmissivity and snow
fraction (Metsamaki et al., 2005; 2015). FSC can then be derived by inverting the forward model. Fig. 3
depicts the forward and inverse model concepts in snow remote sensing. The SCAmod method is
sensitive to the representativeness of the applied parameters, which are generally applicable
predetermined reflectances of thick opaque forest canopy, (wet) snow and snow-free ground
reflectance, and two-way transmissivity. Therefore, this thesis focuses first on determining the
reflectance characteristics essential for the forward and inverse model and then investigating the effect
of all the error components on the satellite estimated GlobSnow Snow Extent (i.e. FSC-product).
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Figure 3. Description of forward and inverse problem (dashed lines) in satellite data-based snow remote sensing.
First, a forward model is developed, e.g. a radiative transfer model, where all the factors affecting the observed
satellite reflectance of a snow covered landscape are included. Secondly, using an inverse retrieval model, the
geophysical snow variable, such as Fractional Snow Cover (FSC), is obtained for each satellite pixel.

In general, a forward model of space-borne observations for a single channel (wavelength band) of
observation can be given by

y = f(x1, Xz oo, X, D1, P2y ooy Pp) + € (1
where
y is the (calibrated) space-borne observation (e.g. Top-of-Atmosphere (TOA) reflectance),
X1, X5, ... , Xy denote the geophysical variables (e.g. FSC),

D1, P2, - ,Pn are the parameters affecting the observations (e.g. wavelength of observation,
observation geometry, forest coverage on pixel under investigation etc.),

€ is the uncertainty of space-borne observation y (including all error contributors).

In its simplest, the estimation of one geophysical variable can be obtained by inverting Equation (1):

x = 1Y, p1. D20 s P) (2)



where parameters pi,p,, ... ,Pn are known. The SCAmod method is essentially a single channel
algorithm according to Equation (2).

On the other hand, if extensive training data (e.g. concurrent in situ observations of FSC covering the
satellite image) are available, a simple regression model can be used. The linear case corresponding to
Equation (2) yields:

x=a-y+b 3)

where a and b are the regression parameters obtained by fitting a regression line between the observed
geophysical variable values and corresponding space-borne observations.

The benefit of linear regression is that uncertainty of estimates can be obtained. However, the
algorithm cannot be (reliably) extrapolated outside the validity range (e.g. spatial or temporal) of
training data.

In case of Equation (2) the statistical accuracy of estimates can be evaluated through error propagation
analysis (for any model), if variabilities (standard deviations from the averages) of parameters
D1, P2, - , Py are known (Taylor, 1982). That leads to:
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where
Ax is the statistical accuracy of the estimated value of geophysical variable (e.g. Ax = AFSC),
Ap,, is the standard deviation of parameter n (e.g. snow-free ground reflectance),

Af(v,pn)
0pn
observation (TOA reflectance) shows the value y.

denotes the sensitivity of inverse model to change in parameter p, when the satellite

Equation (4) is the basis of uncertainty considerations in this thesis. Fig. 4 clarifies why Equation (4) can
be used to calculate the statistical error i.e. how the error in the estimated geophysical variable is
dependent on the likely change/variability in the utilized model parameter value.
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Figure 4. The derivative in Equation (4) corresponds to the sensitivity of the inverse model (with satellite
observation y) to the change in the utilized parameter value (e.g. snow-free surface reflectance). The uncertainty
in parameter value p; leads to uncertainty in FSC estimate depending on the sensitivity of inverse model to
change in p; (slope of the solid line in graph). The SCAmod inverse model applied in this work for the FSC retrieval
is non-linear with respect to model parameters. Hence its sensitivity to parameters varies with the level of the
parameter value, i.e. the shown solid line is actually a curve for high ranges of p,, refer to Chapters 2.3 and 3.1.

2.2. Landscape reflectance and its modelling

2.2.1 Surface reflectance and satellite observed TOA reflectance

A single satellite instrument observes the landscape target at one viewing angle. Typically, satellite
observations are given as reflectance, which corresponds to the isotropic reflectance of Lambertian
surface, i.e. being a completely diffuse reflector. In this case, the direction of the satellite observation
makes no difference. Yet, nearly all natural surfaces are anisotropic reflectors. Thus, for example,
determining the spectral and angular structure of snow’s Bidirectional Reflectance Distribution
Function (BRDF) is important (Painter and Dozier, 2004; Warren, 1982). The BRDF signifies how much
of the incident radiation (irradiance E) from a specific direction is reflected (radiance L) to another
specific direction. Therefore, BRDF describes the reflectivity of a landscape target as a function of
illumination geometry and viewing geometry, and requires the knowledge of azimuth and zenith angles
for directional information (Pellikka, 1998). BRDF is the baseline quantity, from which all the other
reflectance values (quantities) can be calculated. So, if the BRDF of snow covered landscape is known,
albedo can be calculated by integrating BRDF over all the other directional angles. BRDF and
consequently reflectance depends on the wavelength, surface structure (e.g. snow surface roughness,
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texture, impurity concentration, grain morphology and liquid water content) and optical properties
(e.g. shadowing, scattering, reflection, absorption and emission).

Nicodemus et al. (1977) defined the reflectance terminology based on the incoming and reflected
radiance geometry, whereas Shaepman-Strub et al. (2006) continued the work by demonstrating the
proper usage of the different surface reflectance quantity terminology common in remote sensing. For
instance, Hudson et al. (2006) and Painter and Dozier (2004) measured and defined reflectance
quantities for snow targets. In this work, the measured diffuse (cloudy conditions) surface reflectance
guantity approximates the hemispherical-conical reflectance factor, whereas the direct (clear sky
conditions) surface reflectance approximates the biconical reflectance factor (PI, Fig. 3). These
definitions are approximations to describe the illumination geometries of the measurable reflectance
quantities as in natural conditions the irradiance is not completely hemispherical or directional but a
mixture of the both (and depending on the wavelength). The surface reflectance values in Pl are given
as reflectances equivalent to Equation (5), which is a typically used definition of satellite-observed TOA-
reflectance. That is, the reported values in Pl are converted to directional-hemispherical surface level
reflectances, assuming that the target is a Lambertian surface, which it is not, in reality. The conversion
of the measured quantity to a conceptual quantity is relevant in order to facilitate the comparison
between the surface reflectance (reverse atmospheric correction to TOA values also necessary) and
space-borne reflectance.

As mentioned above, albedo calculations are not included in the scope of this thesis. Fig. 5 depicts the
sun-satellite measurement geometry and related illumination characteristics. In remote sensing, BRDF
is often necessary for pre-processing, corrections and image interpretation. In this thesis BRDF is not
analysed. The relation between BRDF and reflectance characteristics are described in PI.

Diffuse
Irradiation

Landscape in boreal forest region with seasonal snow

Figure 5. Representation of the sun-satellite measurement geometry of a planar (non-mountainous) landscape.
0; is the incidence angle of incoming irradiance (solar zenith angle) and 6, is the angle of observation. To simplify,
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azimuth angles are not depicted. The landscape surface reflectance can be considered to consist of
measurements under direct illumination from the Sun (bidirectional case) and under diffuse Eqi illumination
(hemispherical-directional case), i.e. incoming light from other parts of the sky and/or under cloudy conditions.
Note that to be exact both Sun and the satellite instrument occupy a certain spherical angle, but are close to the
directional case.

A satellite observation is close to the measurement of BRDF for a certain bidirectional angular
composition (if diffuse illumination is small compared with the direct illumination). Note that a satellite
measures above the atmosphere and thus the incoming irradiance can be regarded as a direct beam
from the Sun and the planet (atmosphere-Earth system) as a surface. Typically, a satellite observation
is considered as reflectance with a Lambertian surface assumption (surface is as bright to any direction
independent of the angle of incoming radiation). In that case the TOA-observed reflectance is simply:

Lobs
Rroa = T[Eocos(el-) )

where

Rro4 is the Top-of-Atmosphere reflectance
m is a factor related to Lambertian surface
L,ps is the satellite-observed (TOA) radiance

Eycos(8;) is the incoming radiance projected to the surface, the Sun zenith angle of incident radiation
is 6; (TOA-value).

In case of surface (or at the tree-top level) values we can write Equation (5) using symbol p instead of
R. Fig. 6 clarifies the typical observation geometry and resulting reflectance definition when using an
optical satellite instrument.
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Figure 6. Schematic representation of a satellite measurement. 6; is the incidence angle of incoming irradiance
and 6 is the angle of observation. The incoming irradiance Eq is projected to the Earth’s surface (satellite
footprint area) with the magnitude of Eycos(8;). The reflected radiance Lous is measured by the satellite
instrument viewing angle (i.e. the radiant flux per unit solid angle Q44 angie)- The ratio between the reflected
and incoming radiation is given by reflectance according to Equation (5). The azimuth angle is omitted for
simplicity.

2.2.2 Forested landscape reflectance under snow-covered and snow-free conditions

In the following sub-chapters, the main elements affecting the seasonally snow covered and forested
landscape reflectance observations using optical satellite instruments are specified. The reflectance of
a forested terrain is contributed by (a) snow reflectance, b) snow-free ground reflectance, (c) forest
canopy reflectance and (d) transparency of the forest cover. The effect of snow on canopy (on the
reflectance) is considered in PIII but it is not further discussed here as the Thesis focuses on snow
monitoring on the melting season, when canopy is typically snow-free. The reflectance of snow is
primarily studied here using field spectrometer observations in northern Finland, whose measurement
set up corresponds to the typical measurement geometry employed by optical satellite instruments
(PI1). Snow-free ground reflectance is investigated by developing a time series analysis method to detect
the valid reflectance observation to represent snow-free conditions right after the last traces of snow
have disappeared. The results were obtained by using a pixel-wise multi-temporal satellite data set
from a large European study area during the snow melt season (Pll). Forest canopy reflectance and
forest canopy transparency (transmissivity) characteristics were obtained by analyzing airborne
imaging spectrometer data together with high resolution airborne lidar observations under full dry

24



snow cover conditions (PIll and PIV). In Fig. 7 the dominant scattering properties of boreal forest
landscape elements are illustrated. The Earth’s surface can be thought as a surface when observed from
a large distance, such as from a satellite instrument using optical wavelengths.
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Figure 7. Schematic illustration on the different scattering properties of typical landscape elements in the boreal
forest region. For snow, forward scattering is dominant. Depending on the snow-free ground surface type, its
scattering properties can vary between forward, complex and backward scattering. Snowy forest is considered
as a target, where backscatter dominates the overall scattering (PIV; Pellikka, 1998; Peltoniemi et al., 2005).

2.2.2.1 Effect of snow: reflectance characteristics by field and laboratory spectroscopy

Pl investigates the behavior of dry and wet snow reflectance based on field spectroscopy campaigns
carried out in Sodankyld, northern Finland during the spring winter periods of years 2007 and 2008
(Figs. 8 and 9). Additionally, reflectance of snow-free terrain directly after the snow melt was measured
concerning typical landscape features of the boreal forest zone including mineral soil sites, open bogs
and other peat lands. These experimentally observed reflectance characteristics are further exploited
in PIV and PV, and in Metsamaki et al. (2015), in order to assess the accuracy of FSC retrieval from
satellite data.

The measurement principle was to record the radiance reflected to nadir direction under conditions of
total cloud cover representing diffuse lighting conditions and clear sky with dominating direct Sun
irradiance that had a moderately varying solar zenith angle range from 50° to 75° (Fig. 9). The spectral
radiance measurements at wavelengths from 350 to 2500 nm were calibarated to reflectances by
applying reference measurements of a white Spectralon panel, resulting to surface level-observed
reflectances, similar to those values given by Formula (5) in the case of TOA reflectances.
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Figure 8. (Left) An example of a field measurement set up of a portable Analytical Spectral Devices (ASD) Field
Spec Pro JF spectrometer. The measurement head was mounted on a tripod and the instrument optic cable
inside was set to look at nadir (0°) direction with 25° field of view (FOV). The resulting footprint area of the
measured snow target is around 20 cm in diameter. Calibrated white optical panel with known reflectance
spectrum was used as a reference. (Right) Snow grain size was visually estimated by comparing a snow sample
to a snow crystal screen with 1, 2 and 3-mm-grids.
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Figure 9. Field spectroradiometer measurement campaign sites in Sodankyld, northern Finland (Left) open
sparsely forested bog on 18 April 2007 under direct illumination and (Right) pine dominated forest stand on 27
April 2007 under diffuse illumination. Both the sites were measured under melting snow conditions.

The snow reflectances were investigated in particular for the blue (436-449 nm and 459-479 nm), green
(545-565 nm), (yellow-)red (580-680 nm) and infra-red (1628-1652 nm) bands, as these wavelengths
are relevant for satellite snow cover monitoring applications using such instruments as MODIS, MERIS
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and AVHRR demonstrated in Pl (as well as for more recent instruments). The obtained snow
reflectances indicate that the wet snow reflectance at visible bands is lower than that of the dry snow
(close to 1.0 or 100% for dry snow). The visually observed top-layer snow grain sizes for these two
categories varied from 0.2 to 2 mm for dry snow and from 0.5 to 3.5 mm for the wet snow, respectively.
An important finding was that for wet snow layers thinner than 20 cm the ground below the snow
particularly decreases the reflectance, which is highly relevant for FSC estimation from satellite data
(Fig. 10). Based on the results of PI, the snow reflectance level currently used in SCAmod algorithm
(used in FSC retrieval for different sensors), was selected to correspond to the observed level of wet
snow reflectance. Note that in SCAmod investigations the surface level snow reflectance from Pl is
shifted to TOA reflectance using a standard atmospheric propagation approach adjusted to Finnish
springtime conditions (Metsamaki et al., 2015). PV contains a table of all the currently used SCAmod
parameter values (PV, Table 1). Concerning the use of snow field spectrometry results for FSC retrieval
algorithm a relevant aspect is that patchy snow cover (FSC<100%) occurs with wet melting snow
conditions. Therefore, wet snow reflectance is selected instead of dry snow as model parameter. On
the other hand, for full dry snow cover the used smaller wet snow reference reflectance in SCAmod
only yields an FSC estimate higher than 100%, which is cut to the 100% top ceiling value. That is, dry
patchy snow occurs only seldom or at night with colder temperatures compared to daytime, so there
will be no problem in snow detection using the wet snow reference value as model parameter instead
of dry snow.

Wet snow
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Figure 10. Field spectroradiometer ASD observations of mean reflectance tstandard deviation for wet snow in
cases where snow depth is either above or below 20 cm. Results include both direct and diffuse illumination
conditions. The wavelength area around 1400 nm is affected by an insufficient signal-to-noise ratio. This figure
is adapted from PI, ©2009 Elsevier.



Pl does not analyze the BRDF characteristics of the snow surface. Based on literature, the forward
scattering dominates over the backscatter (Hudson et al., 2006; Painter and Dozier, 2004). As the
measured surface is thought to be Lambertian in Equation (5), but the snow BRDF is actually
anisotropic, the snow surface reflectance calculated according to Equation (5) can yield values higher
than 1.0 also for nadir measurement angles (as in Pl and Painter and Dozier (2004)).

The developed method to determine the snow-free ground reflectance after snow melt is based on the
analysis of multi-temporal MODIS images during the ablation period (Pll). The principle of the analysis
was the investigation of pixel-wise time-series of MODIS TOA-reflectance for different non-forested or
sparsely forested land cover categories. An example of the pixel-wise time-series of TOA reflectance for
different MODIS bands is presented in Fig. 11. The example shows a typical behaviour observed for a
pixel representing sparse vegetation and tundra (GlobCover Class 150). In total there were 728 pixels
representing class 150, for which the analysis was carried out (the criteria in pixel selection was that
the area surrounding the pixel should represent the investigated land cover category within a region of
1.5 km x 1.5 km, and that a sufficiently long time-series of satellite observations was available). The
analysis was performed in the region depicted in Fig. 12 for different GlobCover classes (Bontemps et
al., 2009) including: Agricultural areas/steppe (20), Tundra/Sparse vegetation (150), Wetlands (180),
Rainfed croplands (14), Mosaic vegetation/cropland (30), Mosaic forest or shrubland/grassland (110)
and Grassland (141). Fig. 12 shows the obtained reference map of snow-free ground reflectance (TOA)
directly after the snow melt indicating the mean values of reflectance of each land cover category. A
similar map was obtained for the standard deviation of reflectance.

The developed algorithm estimates the snow-free ground reflectance directly after the snow melt. That
moment is the point in time when the TOA reflectance observed at the MODIS channel 4 (545-565 nm)
drops to its minimum value (in a window of 15 days after the moment when the operational SCAmod
FSC retrieval algorithm has indicted that FSC has reached the zero value for the pixel under
investigation). The snow-free ground reflectances at MODIS channel 4 were also provided by applying
a forest canopy transmissivity correction as the apparent forest canopy transmissivity was available for
this specific channel.

The motivation in the analysis of snow-free ground reflectance was to improve the performance of
SCAmod algorithm. The results indicated that some improvement can be achieved by using the spatially
varying snow-free ground reflectance according to land cover type. However, the results indicated that
the constant value of 0.10 operationally applied with the SCAmod (Metsamaki et al., 2015) is a good



overall characteristics in the investigated European domain. Concerning the analysis of statistical error
characteristics of FSC estimation the results of Pll gave a fundamental insight.
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Figure 11. An example of a typical pixel-wise MODIS reflectance time-series used for the determination of snow-
free ground reflectance directly after the snow clearance. Black vertical line depicts the moment of estimated
snow melt according to operational SCAmod algorithm (first observation with FSC=0%). Red vertical line indicates
the moment of the extracted snow-free ground reflectance estimates, i.e. detected by the minimum value of
MODIS band 4 reflectance within the window of 15 days (note that MODIS band 4 time series is highlighted).

Also note, that SCAmod algorithm, when operationally applied to MODIS data, employs the band 4 (545-565 nm).
This figure is adapted from PIl, ©2013 Elsevier.
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Figure 12. Retrieved map of TOA reflectance of (non-forested or sparsely forested) snow-free ground at the
MODIS band 4 (545-565 nm) covering the European study region (PIl). Snow/ice covered regions are shown by
white colour. Note that their reflectance is much higher than the image threshold value of 12%. Forests cover
46.38 % of the total land area. The forest floor reflectance of these areas is considered with a constant value of
10 % (0.10), which is based on the investigations of boreal forests in Sodankyla (PI, PIll and PIV). This figure is
adapted from PIl, ©2013 Elsevier.

2.2.2.3 Effect of forest canopy: reflectance characteristics based on radiative transfer approach

Results of Plll and PIV indicate that in case of boreal forests the effect of forest canopy can be described
by a simple non-linear radiative transfer approach with a partially transparent scattering (reflecting)
canopy (Fig. 13). The results of the two papers show that this concept is valid even without considering
the effects of forest openings (PIV, Table 3). Forest canopy effects (such as extinction and reflectance)
on the scene reflectance were determined by analyzing airborne imaging spectrometer data under full
dry snow cover conditions. This analysis was enabled by the detailed tree coverage information derived
from lidar observations. The results indicate, that forest canopy constituents can be considered to be
distributed equally over the image footprint area for visible band observations (without considering
gaps between the trees), see Fig. 13. On the other hand, PIV shows that an often applied linear mixing
model does not perform as well as the simple radiative transfer model (note that a linear mixing model
to treat forest canopy was also investigated in PI). A liner mixing model considers a forested landscape
as combination of gaps (canopy openings) and non-transparent (opaque) tree foliage. One important
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finding was that backscattering dominates the overall observed reflectance of a forested landscape
(PIV, Fig.8).

A zeroth-order solution of a radiative transfer formula provides the following Equation (6) for the
reflectance of forested terrain (PIV):

p(A) = Psurface (A)t(l)z +(1- t(/uz)pforest (6)
where

p(A) is the reflectance of the forested terrain at wavelength A (note that angles are omitted here for
simplicity)

Psurface(4) is the reflectance of forest floor surface (snow covered, snow free or patchy snow cover)

t(1)? is the two-way forest canopy transmissivity (transparency) in the angles of incoming irradiance
and sensor viewing angle

Prorest(A) is the reflectance of a thick non-transparent (opaque) forest.

Figure 13. Geometrical consideration of the reflectance of a forested landscape. The forest canopy is partially
transparent, which can be described by canopy transmissivity (Plll and PIV). 8; is the incidence angle of incoming
irradiance and 6; is the angle of observation. The forested scene observed by satellite instrument can be
considered as a single turbid layer, where forest gaps are not directly considered — but instead, the forest opening
information is taken into account by using the forest transmissivity. The figure is modified after PIV.

31



To summarize, the Earth’s surface is not, in fact, a surface even in the optical wavelengths, but
specifically vegetation such as boreal forest forms a partially transparent layer. This complex structure
can be described in a simplified manner by using radiative transfer approach. In the simplified approach
the incoming radiation is thought to reflect to observation direction from forest floor and different
canopy constituents within the foliage, branches and trunks (including multiple scattering within the
forest layer). This simplification to consider forests in a pixel as a uniform turbid layer enables the
development of a simple semi-empirical forward modeling of scene reflectance and the model
inversion, see Chapters 2.2.3 and 2.3 below.

Based on empirical observations of (a) reflectance snow free terrain, (b) reflectance of snow and (c)
radiative transfer approach for forest canopy effects we can construct a simple semi-empirical model
(Metsamaki et al., 2005; 2012) corresponding to Equation (1):

y= Rroa(A) = RTOAground (A)tapparent(l)z(l —FSC) + RTOAsnow(A)tapparent(’DZFSC
+(1
- tapparent (A)Z)RTOAforest (7)

where symbol R is used instead of p as the model describes TOA reflectance instead of ground based
reflectances (p in Equation (6)). Thus, all reflectance contributions as well as the apparent forest canopy
transmissivity (tgpparent) are Top-of-Atmosphere observed values. If FSC = 0 or FSC = 1, Equation (7)
reverses back to Equation (6).

The parameters of the semi-empirical scene/landscape TOA reflectance model can be derived from
different data sets as described in Chapters 2.2.2.1 —2.2.2.3 above. Additionally, satellite data itself can
be used to derive model parameters. The parameter Rroaforest (reflectance of the opaque, non-
transparent, forest canopy) can be approximated by investigating TOA-reflectances from pixels having
the highest forest density (full coverage). Similarly, the two-way forest canopy transmissivity (tépparem)
can be estimated from the observed TOA-reflectances obtained at full snow cover conditions (FSC = 1)
by fitting the model of Equation (7) to the observed refelectance at the channel under investigation
when all other parameters than tém,arent are known (Metsamaki et al., 2005; 2012).

As a summary, the semi-empirical modelling provides a feasible method to describe satellite
observations with as few parameters as possible, which enables a robust model inversion to map FSC
reliably in a global scale (Metsamaki et al., 2015), see Chapter 2.3. below.



The Globsnow product for estimating FSC from ENVISAT AATSR data in PV is based on the employment
of the SCAmod method (Metsamaki et al., 2005; 2012). SCAmod is based on Equation (2) above. That
is, the forward model of TOA-reflectance according to Equation (7) is inverted and we obtain:

x = FSC = f""(Rroa)

1
t2 Rros + <1 - 2—) RTOAforest - RTOAground

apparent apparent

= ®)

RTOAsnow - RTOAground

The Globsnow product applies only one Envisat/AATSR channel of observation (at the center
wavelength A = 545 — 565 nm) for the actual FSC estimation according to Equation (8), other channels
are only used for cloud screening and for eliminating certain low/mid-latitude non-snowy surfaces.

PIV shows that the overall concept of the SCAmod is valid. That is, the simple semi-empirical model and
its inverse solution to estimate FSC describe realistically the scene and landscape-level reflectance and,
in particular, the effect of forest on the reflectance. The limitations of the robust approach include that
it cannot be used for observation angles highly tilted from the nadir. The Globsnow SE product on FSC
is limited to satellite observation angles close to nadir, and as the swath width of AATSR is only 500 km,
the maximum accepted Sun zenith angle is 73° (Metsamadki et al., 2015).

3. Accuracy of snow cover retrieval

The error of FSC estimation can be considered to include both a systematic and statistical (random)
component. The systematic component arises from the fact that any forward and inverse model, such
as in Equations (7) and (8) investigated here, is not an exact representation of the true situation, but
merely an approximation. If knowledge of the average value of some model parameter is not exactly
correct, the error in it causes a systematic error in the FSC estimates obtained by using the inverse
model according to Equation (8). On the other hand, an approximate model includes parameters the
values of which vary spatially or temporally (i.e. are not constant), such as ground reflectance after the
snow melt. The spatial and temporal variability of parameters can be described by their standard
deviation from the average value. This variability causes the statistical (random) error component of
FSC estimates. Fig. 14. depicts the behavior of different error components of FSC estimation.



Statistical error can be treated with error propagation analysis (Taylor, 1982), see Equation (4), if
standard deviations and average values of model parameters are known (i.e. there are proper
measurements on their values). Systematic error can be analysed through in situ reference data on the
geophysical variable under investigation (e.g. FSC), if such data sets are available (as in this thesis). Note
that the difference between the observed in situ value and the estimated value of, for example, satellite
data based fractional snow cover percentage, is denoted as residual. Root-mean-square error (RMSE)
is a quantitative measure of the differences between the observed and estimated values.The combined
consideration of statistical and random errors allow the determination of total (product) error
according to the concept of Fig. 2 above. These aspects are discussed next in Chapters 3.1. and 3.2.

(total) Error: Systematic and Random components

Solid line =
Systematic (biased) error

BIAS ™
Random statistical error =
deviation from the solid line

Product error e.g. FSC %-units

>

e.g. true Fractional Snow Cover percentage -
based on in situ data

Figure 14. Schematic diagram on the behavior of different error components of FSC estimation. Statistical error
describes the random variability resulting from the spatial variability of inverse model parameters, such as the
spatial variability of snow-free ground reflectance (from the typical average) for a certain land cover category.
Systematic error component and BIAS result from the (unknown) systematic inaccuracy of the applied model.
Note that the systematic error from RMS sum of residuals may vary as a function of some variable, whereas BIAS
is only one average value of residuals over a set of observations.
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The theory of error propagation analysis according Equation (4) provides a technique to assess the
statistical error of FSC estimates (Taylor, 1982). The GlobSnow FSC product is based on the employment
of SCAmod approach (Metsamaki et al., 2005). In that case Equation (4) is directly applied to Equation
(8). The challenge is, however, how to estimate the average values and fluctuations (standard
deviations) of inverse model (according to Equation (8)) parameters, which are:

- Reflectance of the thick (opaque) forest canopy, Rroaforest in (8)

- Apparent forest canopy transmissivity topparent in (8)

- Reflectance of the snow covered ground before melt-off, Rrgasnow in (8)

- Reflectance of the snow-free ground after melt-off, Rroagrouna in (8).
Chapters 2.2.2.1 — 2.2.2.3 above describe how the values of these model parameters are investigated
and derived in this work.

In practice, the statistical error varies both spatially and temporally depending on landscape physical
characteristics of the pixel under investigation (about 1 km x 1 km in case of ENVISAT AATSR-based
Globsnow FSC product). Additionally, the level of FSC influences on the statistical accuracy. This is
illustrated in Fig. 15. The analysis of statistical error can be performed to any pixel of GlobSnow FSC
product, and separately for any individual product. An example of that is shown in Fig. 16: The spatial
maps of estimated statistical error and the corresponding estimated FSC. The maps are composites for
a period of 14 days (each pixel value is obtained from the first non-cloudy observation during the
period).
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Figure 15. Statistical error component of FSC estimation and its contributors for two typical cases of boreal forest
(y-axis: error standard deviation in FSC percentage units) as a function of FSC. Forest canopy transmissivity
corresponds to dense (Upper panel) and sparse (Lower panel) boreal forests. The statistical error component
and its contributors are determined according Equation (2). This figure is adapted from PV, ©2017 Elsevier.
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Statistical error (Estat), 20100415

e 4

14-day FSC composite, date: 20100415

Figure 16. Statistical error (FSC %-units) of GlobSnow FSC estimate for a composite of daily products between
April 02 and April 15, 2010 (Upper panel), and the corresponding FSC (%-units) estimation map (Lower panel).
Clouds are depicted in brown-grey color (Upper panel), and yellow (Lower panel), respectively. This figure is
adapted from PV, ©2017 Elsevier.
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The total error in FSC estimation does not include only the statistical error, but may include systematic
error contributions arising from unidealities or inaccuracies of the applied forward and inverse model
(SCAmod here). A reliable way to assess the systematic error is the employment of independent in situ
reference data on FSC. Thereby, we can assess the residuals of FSC estimates by the satellite product
(GlobSnow FSC), and further on, evaluate the systematic error and construct the estimate of FSC
product error. Fig. 17 outlines the procedure of conducting this. The in situ validation data allows the
determination of residuals (true estimation errors) for the region and conditions that the reference
data and concurrent satellite product sets cover. When this information is combined with the statistical
error estimates of the satellite product, upper panel of Fig. 16, we can assess the error contribution not
considered or described by the statistical error. This remaining error contribution is referred to as
systematic error (PV). After the systematic error is determined using the validation data set (in situ
data and corresponding statistical errors from validation satellite products), the product error can be
provided by summing the statistical error estimates and assessed systematic error. This can be carried
out for any satellite product and any pixel, on a condition that in situ validation data ranges over the
spatial and observational characteristics of the satellite product. In practice, the additive systematic
error can be analyzed for certain intervals of FSC, and a curve giving the systematic error as a function
of FSC can be obtained, see Fig. 18. The resulting product error as is simply the root mean squared
(RMS) sum of the statistical and systematic errors, PV:

PE(x,y,t) = v (Estar (x,7,£))? + (A(FSC))2 ©)

This product error varies both spatially (x,y) and temporally (t), since the statistical error Estqt is dynamic.
Additionally, as stressed by Fig. 18, the systematic error A is given as a function of estimated FSC, being
larger for the lower levels of FSC. An example of the resulting FSC product error is depicted in Fig. 19
corresponding to Fig. 16. The product error map of Fig. 19 demonstrates that the systematic error
increases the overall level of error estimate for the regions of patchy snow (low levels of FSC), but does
not influence much on regions with a high FSC.



Product error PE
Varying with time and location

Formula (9)
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Theoretical error Requires in situ analysis € - calculation for
propagation analysis Figure 18 validation images
Formula (4) [
,._-_T_--- RMS e e

1 Snow product !

: FSC estimate :

1 for any pixel

error

In-situ FSC data for region X
RMSE calculation from residuals

-
1 Validation !

images on FSC
: estimate I

Figure 17. Procedure for the determination of the total product error PE. The calculation of systematic error is
performed by using in situ data set. Here the procedure according to Fig.2 is described in more detail. This figure

is modified after PV.
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Figure 18. Regression curve to describe the systematic error A as a function of FSC. The systematic error here is
obtained for FSC interval stratified values (open circles) from the analysis of observed residuals (FSC estimates —
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in situ reference data) and Globsnow FSC product provided statistical errors, see Fig. 17. The regression curve is
fitted to interval stratified values (open circles). This figure is adapted from PV, ©2017 Elsevier.

Total product error (PE), 20100415

30°e 4s’E

Figure 19. Total FSC product error PE (FSC %-units) between April 02 and April 15, 2010 according to Equation
(9). The corresponding maps of the statistical error and FSC product are presented in Fig. 16. Clouds are depicted
in brown-grey color. This figure is adapted from PV, ©2017 Elsevier.

4, Conclusions

In this thesis the applicability of various remote sensing data for the assessment and improvement of
snow mapping algorithms was described. The thesis focuses on the investigation of scene or landscape
level aspects that affect the space-borne observed reflectance of the Earth’s surface during the snow
melt period. In particular the emphasis is laid on the boreal forest zone. It was shown, that besides
satellite data, airborne, field and mast-based spectrometer data can be utilised to investigate the
effects of different landscape elements on the overall reflectance. A method to determine the snow-
free ground reflectance right after snow melt was developed using satellite data. Further, field and
mast-based spectral observations on snow covered, forested and snow-free ground were collected to
determine their reflectance characteristics. The spectral information (e.g. mean and standard deviation
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of the reflectance contributors) was shown to be beneficial in selecting the optimal wavelength
channels and investigating the behaviour of the spectral indices, such as NDSI or NDVI, for the snow
detection algorithm.

By assessing the behaviour of different reflectance contributors to the satellite scene reflectance, the
work proceeds into the analysis of accuracy characteristics of the retrieval of Fractional Snow Cover
(FSC). The variability in the contributing reflectances affects the statistical accuracy of the investigated
SCAmod snow detection algorithm. Accordingly, the representativeness of the applied values of the
reflectance contributors is essential for the algorithm performance. The statistical error based on
variability of the applied reflectances was determined first through the theory of error propagation.
Yet, an important issue in this work is the consideration of the total FSC product error that includes
both the statistical (random) component and error contributions that are systematic in nature. For
determining the systematic error a new experimental analysis approach was developed using a unique
regional data set covering Finland. The results are applicable for a larger region of European boreal
forest with similar non-mountainous landscapes and seasonal snow.

5. Summary of the appended papers

The main contents of the original papers are briefly overviewed here.

Paper | The behaviour of snow and snow-free ground reflectance was determined by analyzing their
statistical features in the optical and infrared (350-2500 nm) wavelengths. The results were used to
assess the statistical accuracy and optimal wavelength band selection when applying the SCAmod
method to different sensors typically used in snow remote sensing. It was concluded that the variability
in wet snow and snow-free ground reflectance is a significant (statistical) error contributor in fractional
snow cover estimation. It was shown that the standard deviations of the observed reflectances under
direct and diffuse illumination conditions do not differ significantly. Thus, the variance in the
observations is most likely to be caused by the variability in the measured target characteristics (and
not e.g. due to sun zenith angle or viewing geometry). The field spectrometer data was found feasible
for the development of the snow mapping algorithm. However, the snow-free ground reflectance was
analyzed as one unit including several forest floor samples, without considering different land cover
types separately. It was found that concerning the layers of wet snow thinner than 20 cm, the
underlying ground below the snow particularly decreases the reflectance. Yet, besides the underlying
ground, it is likely that the forest litter also affects the observation.

Paper Il The behaviour of snow-free ground reflectance after snowmelt was determined for the
predominant non-forested land cover classes in Europe using MODIS time-series observations. A new
algorithm was developed to capture the moment directly after snow has disappeared. The results are



relevant for the (operational) monitoring of the Fractional Snow Cover (FSC) and can be utilized to
assess the error caused by the snow-free ground reflectance (parameter) value and its standard
deviation in the snow mapping algorithm. The results show that the performance of the snow mapping
algorithm improves if land cover specific values are applied compared to using a fixed average value to
all land cover categories, at least for e.g. wetlands. In addition to the obtained statistics of wavelength
band reflectances (mean and standard deviation for different land cover classes) and related indices
(NDVI, NDSI), one result is a snow-free ground reference map for central, eastern and northern Europe.

Paper Il The influence of boreal forest stand characteristics on the observed scene reflectance under
full dry snow cover was defined. The advantageous experimental measurement setup combining
airborne hyperspectral imaging and LIDAR data sets from Finland facilitated the analysis of the effects
of the forest canopy to the reflectance. The relation between the forest characteristics and reflectance
was nearly exponential, whereas with reflectance indices it was linear.

Paper IV further analyses the data set introduced in Paper lll. In particular, the analysis shows that a
simple non-linear model obtained from the zeroth order solution of the radiative transfer equation is a
proper approximation for describing the influence of boreal forests to scene reflectance (as suggested
by the SCAmod approach). Additionally, the results show that backscattering dominates over forward
scattering in snow covered boreal forest even though snow itself is a medium dominated by forward
scatter.

Paper V has the main goal of developing a methodology to assess the total product error in optical,
satellite data-based, Fractional Snow Cover (FSC) estimation. First we define a statistical error
component through the theory of error propagation, and then utilize a new experimental analysis
approach and a unique regional data set covering Finland to calculate the remaining systematic error
component. This is demonstrated for northern Europe by applying the Globsnow SE product on FSC.
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Optical methods for snow mapping typically exploit wavelengths in the visible and near-infrared range,
where reflectances from snow and snow-free ground may significantly vary, especially during the melting
season. In this study, the variability of ground reflectance in the boreal forest zone was investigated in order
to assess the feasibility of satellite sensors to the mapping of snow covered area (SCA). This aims at the
improvement of the existing snow mapping algorithms, such as the reflectance model-based snow
monitoring method SCAmod of the Finnish Environment Institute (SYKE). We acquired and identified some
statistical features for reflectance spectra of seasonally snow covered and snow-free terrain by using a field
spectroradiometer (ASD Field Spec Pro JR). Extensive measurement campaigns were carried out in 2007-
2008 in northern Finland, resulting to hundreds of spectral samples between 350 and 2500 nm. The main
emphasis was put on the determination of the melting snow reflectance under different weather conditions
and stages of snow metamorphosis as well as over different terrain types. The gained reflectance spectra
provide useful information for optical snow mapping studies in general. In this investigation, the primary
function of the spectrometer data was the accuracy assessment and optimal band selection when applying
the SCAmod-method to different space-borne instruments (MODIS, MERIS and AVHRR). The correspondence
of small scale field observations with scene reflectance was also addressed. This was performed by
comparing field spectrometer data with mast-based observations.

Based on the inversibility of the SCAmod reflectance model, we addressed the standard deviation (standard
error) of SCA estimation contributed by wet snow and snow-free ground reflectance fluctuations. An average
error in the determination of the fractional Snow Covered Area (SCA) of about 5-7 %-units was obtained
(range from 0% = snow-free ground to 100% = full snow cover), the maximum error of 10-12 %-units occurring
at full snow cover conditions (for the moment when first open patches are emerging). These investigations
show that the variability in the reflectances of snow and snow-free ground is a significant error source in
snow mapping. However, providing the SCA with descriptive error statistics is very beneficial for further use
as the error statistics are needed for data assimilation approaches, e.g. in using SCA-values as input to
hydrological models.
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1. Introduction snow cover distribution and related climate patterns have been

analyzed based on observation data (Kitaev et al., 2002, 2005) and
climate change prediction models (Jylhd et al., 2004; Mellander et al.,
2007). The models project changes in the spatial and temporal

The Northern Hemisphere seasonal snow cover influences highly
the interactive Earth's surface and atmosphere system. For this reason,

snow cover is a sensitive climate change indicator both regionally and
on global scale. Typically, at northern latitudes most of the annual
discharge originates from snowfall. Consequently, snow pack is also an
important temporary fresh water storage. Terrestrial snow cover is a
rapidly varying constituent of the hydrological cycle in particular
during the spring and autumn transition months (Barry et al., 2007;
Vavrus, 2007; Walsh, 2005). Spatial variability and long-term trends in
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0034-4257/$ - see front matter © 2008 Elsevier Inc. All rights reserved.
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distribution of snow in the boreal forest zone. Although the
predictions generally indicate significant decrease in snow cover
throughout the winter and the acceleration of the hydrologic cycle,
the amount of snow increases in the coldest areas, such as the
Canadian Arctic and Siberia (Rdisdnen, 2008). These changes can have
widespread impacts on ecosystems and human activities, e.g. flood-
ing, water resources management, agriculture, transportation, hydro-
power production, and recreational activities (Barry et al, 2007;
Jaagus, 1997; Walsh, 2005). Accurate information on snow spatial and
temporal distribution is essential for climate research, numerical
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weather prediction and hydrological applications. Lundberg and
Halldin (2001) review and assess ground-based snow measurement
techniques for boreal areas and state the importance of both point
and remote sensing observations.

Traditional in-situ weather station and snow-gauging networks
are in practice handicapped by their spatial and temporal sparseness.
Space-borne Earth Observation (EO) techniques provide a spatially
and temporally effective means to obtain information on the snow
cover extent, including the fraction of snow covered area (SCA) within
a single pixel or a single calculation unit such as a hydrological
drainage basin. Optical snow mapping methods are often based on the
fact that snow has high reflectance in visible and near infrared (NIR)
wavelengths compared to most other land surfaces (Warren, 1982;
Wiscombe & Warren, 1980). This difference is used in operational
snow cover monitoring systems, such as the National Oceanic and
Atmospheric Administration (NOAA) snow map production for the
Northern Hemisphere, fractional snow cover mapping for the Baltic
Sea area with SCAmod (Metsamadki et al., 2005) and the retrieval of the
global Moderate Resolution Imaging Spectroradiometer (MODIS)
snow-cover products (Hall et al., 2002). The MODIS algorithm
employs visible green and shortwave-infrared reflectances to calcu-
late the Normalized Difference Snow Index (NDSI), which is used to
provide either binary snow information (snow/no snow) or fractional
SCA based on regression analysis between NDSI and Landsat 30-m
observations used as “ground truth” (Salomonson & Appel, 2004).
Additionally, linear spectral unmixing techniques have been applied
for sub-pixel snow mapping by assuming that a pixel is composed of
several spectral classes. (Nolin & Dozier, 1993; Painter et al., 1998,
2003; Rosenthal, 1996; Vikhamar & Solberg, 2003a,b). Spectral
unmixing is specifically suitable for data with a considerable number
of spectral bands, such as Airborne Visible/Infrared Imaging Spectro-
meter (AVIRIS), but less usable in remote sensing of snow with current
space-borne instruments with limited number of bands (MODIS,
AVHRR, MERIS). Using spectral unmixing approach, the aerial cover-
age of each class can be estimated. Unmixing often utilizes spectral
libraries for comparison to estimate the mixture spectral endmembers
i.e. pure spectral classes of each pixel. For that purpose, the spectra
obtained from this investigation can be exploited and are relevant
with instruments such as AVIRIS, although the study does not directly
concern spectral unmixing.

There are characteristic sources of error for different satellite data
retrieval methods caused by the spatial and temporal variation in the
observed reflectance. In order to quantify the effects of this variation
on the SCA estimation, measurements under controlled conditions are
fundamental. The variation in the observed reflectance can be
compiled to statistics by collecting reference spectra with field
spectroscopy measurements performed at ground level. Field spectro-
scopy advances remote sensing (imaging spectroscopy) through
feasibility studies, image analysis and vicarious calibration of satellite
products (Schaepman et al., 2006). For example, the retrieval of
optically equivalent snow grain size is at present only possible by
utilizing high spectral resolution spectroscopy data (Painter & Dozier,
2004; Painter et al., 1998). Previous investigations concerning the
behaviour of surface reflectance also include the employment of
simulated spectra based on theoretical models (Nolin & Dozier, 2000;
Wiscombe & Warren, 1980). Problems in theoretical investigations
include that they often consider snow grains as spherical scatterers.
This adduces the difficulty of determining the effective grain radius for
real non-spherical snow crystals, or otherwise, how to describe non-
spherical shapes for more advanced models (Kokhanovsky et al.,
2005; Painter & Dozier, 2004; Xie et al., 2006).

In this work, we study the variability of surface reflectance in the
boreal forest area in order to enable the improvement of existing
optical EO-based snow mapping algorithms, such as the reflectance
model-based SCAmod method (Metsamadki et al., 2005) developed
and operated at the Finnish Environment Institute (SYKE). SCAmod is

particularly designed for boreal forests, excluding mountainous areas
(Anttila et al., 2005). It provides the fraction of Snow Covered Area
(SCA) during the melting season, presented as average percentages
(0-100%) for calculation unit areas. These can be drainage basins or
grid cells equivalent to the satellite pixel size. The operational snow
mapping at SYKE is currently based on 500-meter resolution Terra/
MODIS-imagery. The SCAmod algorithm is based on a single band
reflectance model, where the observed satellite reflectance for a
selected wavelength channel is expressed as a function of SCA. The
typical reflectance values, again for the selected wavelength band, of
three major reflective contributors (wet snow, snow-free ground, and
dense forest canopy) serve as input parameters. SCAmod is, however,
applicable to a variety of optical sensors; switching between sensors
only requires tuning the values of the constant parameters of the
algorithm. These are (a) reflectance of wet snow cover, (b) reflectance
of snow-free ground and (c) reflectance of forest canopy (crowns and
trunks). In addition to those, dry snow reflectance must be concerned
as it affects at-satellite reflectance-derived apparent forest canopy
transmissivity, which is a priori information required by SCAmod and
is based on the same reflectance model as the actual SCA estimate. The
snow information provided by SYKE is primarily used for hydropower
management and hydrological modelling (Metsamdki et al., 2004).
The principle of the SCAmod method is described in Section 2.4.

We consider here the accuracy of the above-described SCAmod
method using ground spectrometer-derived average reflectances as
input to SCAmod at applied satellite-sensor-specific wavelengths. As
SCAmod is based on a reflectance model and applies typical average
reflectances, contributions (a)-(c) above, as input parameters, a
critical error source must be related to the presumed absolute level
and variation in these reflectance values. Since SCAmod uses single
band reflectances, we concentrated on selected wavelength bands in
our analyses. However, the data set introduced here is also relevant in
general, e.g. for approaches that use a wide range of spectrum, such as
that by Painter et al. (2003). An essential issue here is to investigate
the variability of snow and snow-free surface reflectances, particularly
under different state of snow metamorphosis, within several land-
cover categories and under various weather and illumination condi-
tions. The current paper concentrates on the effects of wet snow and
snow-free ground reflectance variability to the SCAmod algorithm
performance as we assume their effect to be more significant
compared to more invariant dry snow and forest canopy reflectance.

In order to investigate the scene reflectance contributions
indicated above, we collected an extensive field spectrum data set
using a portable spectroradiometer (ASD Field Spec Pro JR) in 2007
and 2008 in Finnish Lapland. The obtained spectral data was divided
into selected reflectance classes for which mean and standard
deviation were calculated. Another similar spectrometer was perma-
nently installed in a 30-m mast providing data for a pine forest and
open terrain (partially shadowed by pine trees). The comparison of
field and mast spectrometer observations enabled the investigation
how well the scene reflectance observed by a space-borne system can
be modelled using point-wise observed field spectrometer data.

To perform the actual accuracy assessment of SCAmod, we calculate
the contributions of both wet snow and snow-free ground reflectance
fluctuations to the standard deviation (standard error) of an SCA
estimate. The goal of analyses is to investigate the temporal and
spatial variability in the average reflectances and to find out their
effect to performance of SCA estimation. The gained estimates for the
variance of snow covered and snow-free terrain reflectance directly
provide information for the future SCAmod algorithm modification as
well as for error analyses. The objective also includes the study of the
dependence of wet snow reflectance on depth of the snowpack.
Furthermore, optimal band alternatives are indicated for current and
future satellite instruments by determining the wavelength areas
where the variability is only minor or has only a slight effect on the
performance of a snow covered area algorithm. In this study, we focus
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Fig. 1. (Left) The reflectance sites are located in Sodankyld and Inari districts in Finnish Lapland, an additional site was located in an open fjeld region north of the map region. (Right)

Typically, the landscape represents an open canopy conifer-dominated boreal forest.

on wavelength areas related to three satellite sensors commonly used
in snow mapping: the MODIS aboard Terra, the Medium Resolution
Imaging Spectrometer (MERIS) aboard Envisat and the Advanced Very
High Resolution Radiometer (AVHRR) aboard NOAA satellite series.

2. Data set and methods
2.1. Study area

The target area for fieldwork is in the Sodankyld district in Finnish
Lapland, located on latitude 67 N about 100 km north of the Arctic
Circle (Fig. 1). This sub-arctic environment is characterized by
seasonally snow covered boreal coniferous forests and large open
bogs or sparsely forested mires. Typical for the terrain in Lapland are
numerous tundra-like treeless fjelds, although the overall topography
is relatively flat. The Sodankyld region is undulating moderately up to
500 m in altitude. The extent of forests (forests and scrubland) in
Finland is 74% of the total land area compared to the 44% in Europe
(FAO, 2003). In Finnish Lapland the areal extent of forest is 73%, but
forests are sparse with an average stem volume of only 64 m®/ha on
forestland (METLA, 2007). Dominant tree species are Scots pine (76%
of the forestland coverage) and Norway spruce, but small birches are
also usual especially at fjeld-regions.

The most active period regarding snow hydrology is spring when
the seasonal snow melts, often causing severe flooding particularly in
the North. Snow characteristics of Finnish Lapland are more homo-
geneous compared to Southern Finland, where the repeated freezing
and thawing usually result into a highly metamorphosed snowpack. In
Finnish Lapland snow cover period tends to last more than 6 months
in open areas and the average annual snow water equivalent is as high
as 140-200 mm (Kuusisto, 1984). The structure of snowpack depends
mainly on solar irradiation, air temperature, wind speed and rainfall
that determine the type of metamorphosis process (Colbeck et al.,
1990; Oksanen, 1999; Sturm et al., 1995). During spring melt
metamorphosis, snowpack is typically structured with layers that
may contain ice lenses or refrozen particles. In the Sodankyld region
taiga type snow is predominant, but there is also tundra type snow,
particularly on top of wind-induced fjelds. Fig. 1 depicts the location of
the reflectance sites and indicates the high spatial heterogeneity of the
landscape of the region.

2.2. Data acquisition

The overall strategy of the field measurements is to collect spatially
and temporally extensive data sets that are needed for analysing the
performance and error characteristics of SCA mapping. In addition, by
combining spatially extensive point-wise (very small footprint)

measurements with mast-based (185 m? footprint) experiments at a
single location, we can then link the ground-based ASD measure-
ments also to scene reflectances actually observed by space-borne
remote sensing systems. Hundreds of reflectance spectra were
sampled at the Sodankyld area in Finnish Lapland with a portable
spectrometer (Analytical Spectral Devices (ASD) Field Spec Pro JR,
spectral range 350-2500 nm). The purpose of the ASD measurements
was to determine the reflectance variability of snow and snow-free
ground. In order to identify and locate the most typical land cover
categories, CORINE2000 Land Cover (CLC2000) map was used (Hiarma
et al., 2004). We found that open peat bog, transitional shrub on
mineral or peat land and coniferous forest on mineral or peat land are
the most typical land cover categories in the area (Fig. 1). Among
those, several representative reflectance measurement sites were
selected.

In addition to using the portable spectrometer, a similar spectro-
meter was installed on a top of a 30-m mast to constantly monitor
reflectance of a target area including a Scots pine forest with a mean
tree height of 7 m (stem volume 70 m>/ha) and an adjacent forest
opening. Same observation settings as with the portable spectrometer
were used, except that the instrument was tilted 11° off the nadir. The
main mast-borne data of this study was acquired for a single date, 27
March 2008. Additional data representing snow-free free conditions
were used in order to find out the reference value for vegetation
reflectance (multiple observations of the forested target area from
August 2006). The mast-based spectrometer system is described in
(Sukuvaara et al., 2007).

Simultaneously with mast-based spectrometer observations on
March 2008, digital photographs were acquired for the target area
enabling the determination of the fractions of forest canopy, tree
shadows and directly illuminated snow surface (an automatic camera
system is installed to mast-top together with the azimuthally rotating
spectrometer front-end). In case of winter-time measurements this is
possible as the visible contrast between different target composites is
high. Analogously to ground-based observations, the mast-based
reflected radiance observations were calibrated to reflectance values
applying white reference panel measurements with an automatic
mast-top calibration system.

Field campaigns in 2007 and 2008 consist of reflectance and
concurrent snow measurements in 36 sites (each including 3-5 sub-
sampling sites) from the time period of March to May, both in 2007
and 2008. Additional monitoring was carried out using the mast-
based spectrometer system. Snow pits were excavated at each
reflectance site and average snow depth, snow pack temperature
(at —5 cm and middle of snowpack), ground surface temperature and
air temperature were measured. Based on the temperature measure-
ments and the so-called snowball test suggested by Colbeck et al.
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Fig. 2. (Left) Example of typical wet snow grains with 1 mm grid at the background. (Right) Example of typical dry snow grains with 1 mm grid at the background. The grain sizes
range from 1.0 to 1.5 mm (mean of maximum diameter) for wet snow, 1.0 mm being the dominant grain size. Dry snow grain sizes range from 0.3 mm to 0.8 mm, the dominant size

being 0.5 mm.

(1990), the surface snow layer was defined either dry or wet. Various
reflectance cases from snow-free ground to snow depths up to 84 cm
were recorded. The optically equivalent snow grain size was visually
estimated by comparing a snow sample to a snow crystal screen with
1, 2 and 3-mm-grids, see Fig. 2. If the grain sample's average
maximum diameter size was larger than 1 mm, the average value was
estimated with a precision of 0.5 mm. With grains smaller than 1 mm, a
precision of 0.25 was used. In cases with a mixture of different grain
sizes, the range of sizes was recorded, but the typical or average value
was used for the whole layer. From each range of sizes, outliers were
excluded from the results by visual inspection. The obtained snow grain
average maximum diameter sizes ranged between 0.2-2 mm for dry
snow and 0.5-3.5 mm for wet snow, respectively. This method was
found practical; although more advanced methods can be found from
the literature (e.g. Aoki et al., 2000; Matzl & Schneebeli, 2006; Painter et
al.,, 2007). The prevailing solar illumination conditions were visually
determined to be either direct i.e. clear (0/8 to 2/8 cloud cover), diffuse
i.e. cloudy (6/8 to 8/8 cloud cover) or varying conditions (3/8 to 5/8
cloud cover). Finally, digital photographs were taken from each snow
sample and the surrounding environment for possible reanalysis, see Fig. 2.
Table 1 summarizes snow, weather and environmental conditions
during the measurements.

At the reflectance measurement sites, ground spectrometer-based
spectra of wet snow, dry snow and snow-free ground were measured
under various weather and sun illumination conditions and at different
stages of snow metamorphosis. Generally we followed similar measure-
ment pattern at each site with respect to measurement geometry,
sampling strategy and calibration. The instrument foreoptic unit

Table 1
Weather and snow conditions for dry and wet snow reflectance acquisitions.
Parameter Dry snow  Wet snow Dry snow  Wet snow
spectra spectra spectra in  spectra in
shadow shadow

Min Max Min Max Min Max Min Max

—10.0 +3.7 —2.4 +103 —10.0 —0.7 —2.4+5.5
—105-08 —23 +15 —-105—-10 —23+05

Air temperature range (°C)
Snow surface temperature

range (°C)
Snow depth range (cm) 54 84 05 73 55 84 45 70
Snow grain size range (mm) 02 2 05 35 0.2 15 05 35
(mean of max. diameter)
No. of diffuse/direct reflectance 3/5 15/11 —/3 —/6

sites®

Field work period lasted from March to May during 2007 and 2008 consisting of 36
reflectance sites measured in 14 separate days.

@ 2 of the total of 36 in-situ sites were rejected due to varying illumination
conditions; some sites include both direct and diffuse illumination cases.

(measurement head) was set to look at nadir (0°) direction with 25°
field of view (FOV). The angular anisotropy of the target reflectance was
not specifically observed in this investigation. As the measurement head
was mounted on a tripod at the height of around 45 cm, it was looking at
a surface illumination area of 20 cm diameter. Approximately 90% of the
ground-based observations were obtained with 50°~75° sun zenith
angle range. Table 2 summarizes the measurement setup for spectro-
meter observations. Also the key characteristics of mast-borne ASD-
observations are listed in Table 2. It should be noted that in northern
latitudes during the winter and at the beginning of the snow melt
season, solar zenith angles at solar noon are large (>50°).

It is necessary to observe the radiance (W m-2 sr-1 nm-1) reflected
from the target and Lambertian standard reference to obtain the
reflectance. Calibrated white reference optical panel with known
reflectance spectrum was used as a reference (also in the mast-based
system). During the calibration, the panel was placed horizontally
above the snow surface close to the field of view of the spectrometer
in a way that it is consistently under illumination. The calibration was
carried out after each measurement series or whenever the illumina-
tion or weather conditions changed. Solar irradiation was also
measured for each data series with cosine receptor for reanalysis.

The obtained ASD reflectance quantities approximate generally
two different measurable reflectance quantities defined by Schaep-
man-Strub et al. (2006), see Fig. 3. As the used spectrometer has a 25°
FOV and the data have been collected under clear (direct) and cloudy
(diffuse) solar illumination conditions, the obtained ground spectra
approximate the biconical reflectance factor and the hemispherical-
conical reflectance factor. Here these quantities are referred to as ASD
reflectances in a way that the biconical quantity relates to conditions
where irradiance composes mostly of direct component (direct) and
the hemispherical-conical quantity relates to cloudy conditions

Table 2

Characteristics of ASD instrumentation and measurement set-up.
Parameter Ground ASD value Mast ASD value
Spectrum 350-2500 nm 350-2500 nm

1.4 nm for 350-1000 nm, 2 nm 1.4 nm for 350-1000 nm, 2 nm
for 1000-2500 nm for 1000-2500 nm
Spectralon® white panel with  Spectralon® white panel with
known reflectance known reflectance

Field of view (FOV) 25° bare fibre 25° bare fibre

Sampling interval

Calibration

View angle 0° i.e. nadir 11° (8° in Aug. 2006)
direction

Average footprint 20 cm 185 m?
diameter/size

FOV mean distance 45 cm 33 m

to target
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Biconical

Hemispherical-conical

Fig. 3. (Left) Biconical reflectance factor here referred to as the direct ASD reflectance obtained in clear sky conditions and (Right) the hemispherical-conical reflectance factor here
referred to as diffuse ASD reflectance obtained in cloudy conditions. 6; denotes the sun zenith angle and 6, the observation angle. Definitions and images are according to

(Schaepman-Strub et al., 2006).

where irradiance has mainly diffuse components (diffuse). This is an
approximation because in natural conditions the irradiance is not
completely hemispherical even in uniformly cloudy weather. In the
direct case the Sun disc is the conical source of illumination (almost
directional). To be exact, the reflectance under clear skies approx-
imates the biconical case better at the longer wavelengths. At shorter
wavelengths, where the diffuse irradiance component is stronger and
nontrivial, the reflectance then includes contributions representing
both biconical and hemispherical-conical cases. The observed
reflectance factor quantities can have values above 1 as the reflected
radiation to a certain direction can exceed that of the Lambertian
surface. The diffuse ASD reflectance is a quantity that approximates
the hemispherical-directional reflectance factor (HDRF), whereas the
direct ASD reflectance approximates the bidirectional reflectance
factor (BRF) even though the instantaneous FOV of the instrument is
25° (in practice we assume that the reflectance is uniform across that
FOV). Satellite instruments are often referred to observe BRF that can
be used to estimate the actual surface reflectance (i.e. directional to
hemispherical reflectance), typically using the crude assumption that
the Earth's surface would be Lambertian.

Analogously to Schaepman-Strub et al. (2006), we can define the
equation of BRF and HDRF as:

BRF =1 - f,(6;, 01.60,, 05i N) :"W (M
where the incoming (projected to horizontal level) irradiance E;(A) =
Eo(6;, ©i; A) cos 6;, Eq is the incoming irradiance, L is the reflected
radiance and f is the BRDF (bidirectional reflectance distribution
function). 6; and ¢; denote sun zenith angle and sun azimuth angle,
respectively; 6; and ¢, denote view zenith angle and view azimuth
angle, respectively.

In case of HDRF irradiance is predominantly a hemispherically
isotropic quantity and thus

B
HDRF = BRF - d + (1 — d)/ i /ng<ei,<pi‘es,q,s;>\) cost; sinBdé,dg;  (2)
J o Jo

where d is the fraction of direct radiant flux.

The absolute accuracy of the reflectance data presented here
depends upon the calibration carried out using the white reference
panel. In practice, the anisotropic bidirectional reflectance factor of
spectralon panel affects the absolute calibration accuracy, especially
for the measurement of BRF under clear sky conditions for high zenith
angles. We estimated the maximum possible error arising from this in
our case by applying data on spectralon BRF presented by Sandmeier
et al. (1998). The analysis indicated that at the wavelength band of
459-479 nm, the values reported for reflectance under direct solar
illumination conditions, for the very high solar zenith angles of 75°,

can be overestimated at the highest of about 6% (assuming that no
diffuse irradiance component is present, d =1 in Eq. (2)). In case of
ideally diffuse conditions d=0 in Eq. (2). Then the resulting
overestimation at the band of 459-479 nm can be at the highest of
about 4%, respectively.

2.3. Evaluation of snow reflectance and scene reflectance

Eventually, 36 different ground targets were measured the
selection being based on snow properties (snow depth, snow wetness,
snow grain size, snow metamorphosis stage and impurity (mainly
forest litter) content), target type, illumination conditions, forest
shading and land cover type. The selected ground targets' standard
deviation and mean are composed of from several dozens up to
around 1500 individual spectra at 350-2500 nm. Additionally,
reflectances related to selected satellite sensor bands were extracted
for SCAmod accuracy analysis and method development. These data
were classified to represent the following general cases (both for
direct and diffuse illumination):

wet snow (average of all sub-cases)

dry snow (average of all sub-cases)

snow-free ground (average for different soil types directly after the
snow melt: open bogs, other peat lands, mineral soil sites)

wet snow in forest shadow (only for direct illumination
conditions)

dry snow in forest shadow (only for direct illumination conditions)
wet snow, snow depth >20 cm

- wet snow, snow depth <20 cm.

The mast-based spectrometer observations representing both the
open and forested area were compared against ground-based snow
reflectance measurements. The applied ground-based reflectance data
include observations from directly illuminated and shadowed snow
surfaces (shadowed by tree trunks and crowns). In practice, a linear
mixing model was used to describe the tower-based observations as a
function of ground-based ASD-reflectances in cases of the open target
area Eq. (3a) and the forested area Eq. (3b):

{ RA obs = Fdirectpx.snow + (1 - Fdirect)p)nshadow (3&)
Ryobs = FairectPasnow + (1 = Fairect = Firees)Pashadow + FireesPx trees (3D)
where Ry ops is the scene reflectance simulated by ground-based
observations, Fyirect is the areal fraction of directly illuminated
area, Pasnow iS the reflectance of directly illuminated snow and
Pashadow 1S the reflectance of snow in shadow (calibrated to
downwelling irradiance at non-shadowed conditions). Firees is the
fraction of tree crowns and trunks in the mast-borne reflectance
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Fig. 4. (Above) Digital image and image classification for the mast-borne open area ASD measurement and (Below) for the ASD measurement of the forested area for 28 March 2008.
The open area is partially shadowed by trees, the classification (above right) suggest an areal fraction of 60% for the shadowed area. The pixels from the forested area are classified to
tree crowns and trunks (44%), and directly illuminated areas (1%), below middle and right respectively (thus the fraction of shadowed area is estimated to be 55%).

observation of the forested area. pj (ees Was approximated here
from the summer-time measurements of the forested area (when
ground is covered by green vegetation, such as heather and
lingonberry). One should note that this consideration is not ideal,
for example due to the fact that multiple scattering from the snow
surface strongly differs from that of green vegetation. Factors Fgjrect
and Fiees are estimated through the analysis of concurrent high-
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resolution digital photographs of the area (ellipse) observed by the
mast-based spectrometer, see Fig. 4.

2.4. SCAmod method accuracy assessment

SCAmod is based on a reflectance model, where the (space-borne)
observed reflectance R is expressed as a function of SCA. The average
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Fig. 5. (Left) Mean reflectance + standard deviation for wet snow and (Right) mean =+ standard deviation for dry snow in cases where snow is either under natural direct or diffuse
illumination or fully shaded by forest trees (only including direct illumination). The wavelength area around 1400 nm is affected by a bad SNR.
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apparent forest canopy transmissivity t, and reflectances from wet
SNOW P snow, SNOW-free ground Py ground» and dense forest canopy
Paforest at wavelength N, serve as model parameters (Metsdmadki
etal., 2005):

Ryabs = Ryabs(SCA) = (1= &) nforest + &% [SCAOx snows + (1= SCAID grouma

(4)

The value for effective transmissivity t¥ is characteristic for each
target unit area. It describes how much of the upwelling radiance is
originated underneath the forest canopy. Transmissivity is determined
from Eq. (4) with at-satellite reflectance observation made at full dry
snow cover conditions (SCA=1). This approach is based on the fact
that under full cover dry snow conditions the required reflectance
contrast between forest canopy and snow covered ground in forest
openings is notable (so the estimate for transmissivity can be derived
from satellite data). The applied transmissivity value also includes the
effect of tree shadows. Once the transmissivity is determined, the SCA
estimate for forested terrain during the spring melt period is obtained
by inverting Eq. (4), as follows:

1 1
sz)\.obs 1 2 P forest p)\,ground
A A

Px,wetsnow — p}\,ground

SCA = (5)

Algorithm (5) is applied for SCA mapping from space-borne data
using reflectances from a single channel, typically e.g. MODIS band 3
(459-479 nm) or MERIS band 2 (436-449 nm). Additionally, NDSI or
Normalized Difference Vegetation Index (NDVI) is applied in opera-
tional snow mapping to detect the disturbing effect of emerging green
vegetation at the end of snow melt period. In the statistical accuracy
analysis the law of error propagation can be applied. This approach
provides the standard deviation of the SCA as a sum of partial
derivatives (separately with respect to each model parameter)
multiplied by these parameters' variances (Metsamadki et al., 2005).
Therefore, the information on the variability of the model parameters
is essential. These variances can be derived from experimental at-field
reflectance measurements, from spectral libraries or from the space-
borne earth observation data. In this work, at-ground reflectance
measurements with ASD were used in order to determine variances
for two reflectance contributors: wet snow and snow-free ground. The
term for forest canopy reflectance was not considered in the
sensitivity analyses here (one should note that the magnitude of
forest canopy reflectance is only few percentages in blue wavelength
often applied in snow algorithms).

Snow free grownd

913

The contribution of wet snow reflectance fluctuations to the
standard deviation (standard error) of an SCA estimate is:

5(SCA)

0P wetsnow
1 1
- [RR)\ obs T (1 - R)p)\ forest — P gmund]
= 2

(p)\.welsnow - p)\.gmund)

std(SCA), (6)

P wetsnow

std (p)\wsrsnuw)

std (p)\.wetsnow)

The contribution of ground surface reflectance fluctuations to the
standard deviation (standard error) of an SCA estimate is:

4(SCA)
StA(SCA) jp, o = msm (p)\.gmund) (7)
LRyons + (1— %)p -p
2 *\.obs 2 )P\ forest A.snow
=4 ( l'\) 7 std (f’)\.ground)
(p)\.welsnow ~ Paground
Finally, the total error is gained as a sum of these terms:
2
stdye = \/ (std(SCA) .0 ) + (std(SCA) )2 @)

We calculated the total error for different SCA values and for three
different wavelength bands related to operating space-borne optical
sensors (MODIS, MERIS and AVHRR).

3. Results and discussion

Figs. 5 and 6 (Left) present the obtained standard deviation and
mean reflectance spectra (biconical and hemispherical-conical
reflectance factors) for wet snow, dry snow and snow-free ground,
respectively. Note that the reflectance considered here refers to an
apparent reflectance, i.e. a physical quantity observed by an Earth
Observation sensor. For example, the apparent reflectance in shade
stands for measured radiance (in shade) divided by the full irradiance
(no shade). The corresponding quantitative information for selected
wavelength bands relevant to MODIS-based snow monitoring is given
in Table 3. The focused bands are essential for snow applications as
MODIS band 3 (459-479 nm) is used e.g. in SYKE's operational snow
map production based on SCAmod, while bands 4 (545-565 nm) and 6
(1628-1652 nm) are used for the Normalized Difference Snow Index
(NDSI) to obtain global snow map products (Hall et al., 2002). Table 3
shows the obtained ASD reflectance values separately for direct and
diffuse illumination conditions and for the combination of these two.
Reflectance statistics for relevant MERIS and AVHRR wavelength
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Fig. 6. (Left) Mean reflectance 4 standard deviation for snow-free ground and (Right) mean reflectance & standard deviation for wet snow in cases where snow depth is either above
or below 20 cm. Results include both direct and diffuse illumination. The wavelength area around 1400 nm is affected by a bad SNR.
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Table 3

Ground spectrometer derived reflectance for wet snow, dry snow and snow-free
ground: mean and standard deviation under direct, diffuse and combined sunlight
illumination conditions.

Direct illumination No. of obs. ASD 459-  ASD 545-  ASD 1628-
479 nm 565 nm 1652 nm
Mean SD Mean SD Mean SD
Wet snow 450 095 0.09 094 010 0.03 0.01
Dry snow 240 1.00 0.08 098 010 0.09 0.06
Snow-free ground 120 0.03 0.02 0.04 002 014 0.05
Wet snow, snow depth >20 cm 450 095 0.09 094 010 0.03 0.01
Wet snow, snow depth <20 cm - - - - - - -
Wet snow, in shadow 180 022 004 016 0.03 000 -
Dry snow, in shadow 90 038 0.03 024 0.03 0.01 0.00

Diffuse illumination No.of obs. Mean SD Mean SD Mean SD

Wet snow* 840 0.89 0.08 0.90 0.07 0.02 0.02
Dry snow 190 1.00 0.02 098 0.03 011 0.04
Snow-free ground 210 0.04 0.03 0.07 005 019 0.06
Wet snow, snow depth >20 cm 750 1.04 012 104 010 003 0.03
Wet snow, snow depth <20 cm 90 0.75 010 0.77 010 0.01 0.01

Direct and diffuse illumination No. of obs. Mean SD Mean SD Mean SD

Wet snow* 1290 0.88 0.08 0.88 0.07 0.02 0.01
Dry snow 430 1.00 0.06 0.98 008 010 0.05
Snow-free ground 330 004 0.03 006 0.04 017 0.06
Wet snow, snow depth >20 cm 1270 1.00 011 100 011 0.03 0.02
Wet snow, snow depth <20 cm 90 0.75 010 0.77 010 0.01 0.01

The used wavelengths correspond to MODIS bands 3 (459-479 nm), 4 (545-565 nm)
and 6 (1628-1652 nm).

*Average values for classes: wet snow depth >20 cm and wet snow depth <20 cm (root
mean squared value in case of standard deviation).

bands are given in Table 4, respectively. The grain size range in the
results of Fig. 5, and those of Tables 3 and 4 was 0.5-3.5 mm (mean of
maximum diameter) for wet snow and 0.2-2 mm for dry snow. Snow
depth distribution was 0.5-73 cm for wet snow and 54-84 cm for dry
snow. As wet snow case includes several sub-cases, such as very
shallow snowpack, we calculated weighted standard deviation and
mean in order to obtain representative average wet snow reflectance
(the weighted values are presented in Tables 3 and 4). In order to
obtain the snow-free ground reflectance spectrum presented in Fig. 6
(Left), ASD observations from typical boreal forest understorey
ground targets were averaged, such as mixture of low shrubs and
grasses, heather, lichen, moss, lingonberry and forest litter (from
measurements carried out directly after the snow melt).

The results indicate that in general, for visible wavelengths, the
overall reflectance of dry snow is only slightly higher than that of wet
snow, but the difference is significant in NIR and SWIR wavelengths
especially for thick snow (with no contribution from the underlying
soil). This coincides well with the results by Odermatt et al. (2005).
Likewise, measurements by Li and Zhou (2004) indicate that with low
sun and nadir view geometry, visible reflectance (HDRF) of both large
and fine grained snow is close to 1, but at NIR wavelengths reflectance
of larger grains is clearly lower. We also compared the spectra
collected either under direct or under diffuse illumination and found
that for selected wavelengths used in this study, the difference is
small: the highest differences in the mean values were found for wet
snow indicating a shift of 6%-units at the MODIS band of 459-479 nm
(a relative difference of 6.5%), refer to Table 3 (direct and diffuse
illumination). With different combinations of large/fine-grained and
wet/dry snow, there was no observable difference. Thus, we
calculated the overall standard deviation and mean for wet and dry
snow from both direct and diffuse cases in order to obtain a more
comprehensive data set to represent the melting season conditions
presumed by SCAmod. These values are also given in Table 3.

Tables 3 and 4 also indicate that the standard deviations of
observed reflectances for diffuse and direct illumination conditions do

not differ significantly in general. This is an important notice, as it
suggests that the variance in observations is due to the variability of in
target characteristics, not due to the varying sun zenith angle (the
variance observed under diffuse conditions cannot result from the
changes in the sun zenith angle).

In Fig. 6 (Right), standard deviation and mean of shallow and thick
wet snow are compared. This is an important aspect concerning the
SCA estimation as towards the end of the melting season shallow
snow conditions are usually predominant and the percentage of
patchiness increases. The results show that under snow depths less
than 20 cm the reflectance values decrease significantly. Also snow
optical depth (and thus transmissivity through snowpack), which is
related to snow density, depth, grain size and wavelength in concern,
decreases with decreasing snow depth. The results in Fig. 6 clearly
show that snow depth has a strong effect on the observed snow
reflectance, in fact even much more significant than that of snow grain
size. This was observed from the measurements by comparing data
with different grain sizes and wetnesses for all snow depths. Snow
depth was the only factor explaining the behaviour. Note that in Figs. 5
and 6, the data at wavelengths around 1400 nm was removed due to
an insufficient signal to noise ratio (SNR).

Fig. 7 shows how the standard deviation of reflectance behaves for
wet snow and snow-free ground in wavelengths below 1000 nm.
Since an SCA-estimation method should be as much invariant to
fluctuations of reflectances as possible, these data are very useful in
choosing the optimal wavelengths to be applied. The coefficient of
variation (SD/mean ratio) also given in Fig. 7 provides us valuable
information for this judgement. For example, in the case of SCAmod,
those satellite-sensor bands for which we obtained the smallest
coefficients of variation both for wet snow and snow-free ground, are
the most applicable and will minimize the error in the SCA estimation
(note that this investigation does not discuss the spectral effects of
atmospheric disturbances nor the performance of atmospheric
corrections). Again, as SCAmod uses single band reflectances, we

Table 4

Ground spectrometer derived reflectance for wet snow, dry snow and snow-free
ground: mean and standard deviation under direct, diffuse and combined sunlight
illumination conditions.

Direct illumination No. of obs. ASD-derived ASD-derived

MERIS 436- AVHRR 580-

449 nm 680 nm

Mean SD Mean SD
Wet snow 450 0.96 0.09 0.93 0.10
Dry snow 240 1.01 0.08 0.96 0.10
Snow-free ground 120 0.03 0.01 0.05 0.02
Wet snow, snow depth >20 cm 450 0.96 0.09 0.93 0.10
Wet snow, snow depth <20 cm - - - - -
Wet snow, in shadow 180 0.26 0.05 0.13 0.02
Dry snow, in shadow 90 0.45 0.03 0.18 0.02
Diffuse illumination No. of obs. Mean SD Mean SD
Wet snow* 840 0.89 0.08 0.89 0.07
Dry snow 190 1.01 0.02 0.96 0.04
Snow-free ground 210 0.04 0.03 0.08 0.06
Wet snow, snow depth >20 cm 750 1.04 0.12 1.03 0.09
Wet snow, snow depth <20 cm 90 0.75 0.10 0.76 0.09
Direct and diffuse illumination No. of obs. Mean SD Mean SD
Wet snow* 1290 0.88 0.08 0.87 0.07
Dry snow 430 1.01 0.06 0.96 0.08
Snow-free ground 330 0.03 0.02 0.07 0.05
Wet snow, snow depth >20 cm 1270 1.01 0.11 0.99 110
Wet snow, snow depth <20 cm 90 0.75 0.10 0.76 0.09

The used wavelengths correspond to MERIS band 2 (436-449 nm) and AVHRR band 1
(580-680 nm).

@ Average values for classes: wet snow depth >20 cm and wet snow depth <20 cm
(root mean squared value in case of standard deviation).
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Fig. 7. (Left) Standard deviation and the coefficient of variation of reflectance (standard deviation/mean) for wet snow and (Right) snow-free ground.

focused on the selected wavelength areas in contrast to Painter et al.
(2003), who focus on wide spectrum to consider the reflectance
variation. According to the results in Fig. 7, wavelengths between
450 nm and 700 nm exhibit a high variability for the reflectivity of
snow-free ground reducing their feasibility to wet snow detection. In
contrast to that, the coefficient of variation for wet snow reflectance
decreases with increasing wavelength. However, the practical usabil-
ity of NIR bands during spring-melt is deteriorated by the effect of
green vegetation hampering the difference in signal between snow
and snow-free ground. The blue wavelengths correspond to MODIS
band 3 (459-479 nm) and MERIS band 2 (436-449 nm). The usability
of NIR bands is deteriorated by the effect of green vegetation
hampering the difference in signal between snow and snow-free
ground.

Figs. 8 and 9 show the behaviour of the statistical error
contribution to SCA estimation performance due to the spatial and
temporal variability of wet snow and snow-free ground reflectance.
The results are obtained for SCAmod applying Eqs. (6)-(8) for the
collected ASD reflectance data set. Again, wavelengths related to
MODIS, MERIS and AVHRR bands are in focus. In Fig. 8, the standard
error for SCA estimate as a function of SCA is presented due to wet
snow reflectance variability only (Left) and due to snow-free ground
reflectance variability only (Right). The behaviour of standard error in
both cases is very logical: when wet snow reflectance is accounted for,
the error increases together with increasing SCA, and when snow-free
area is accounted for, the error is highest when the ground has no
snow, decreasing with increasing SCA. The results of Fig. 8 are

Error due to wat snow reflectance variabiity

calculated by inserting Eq. (4) to either Eq. (6) or (7). Thus, the effect
of forests is negligible in the error behaviour depicted. That is, these
error contributors are not affected by the forest canopy characteristics.
Results depicted in Fig. 8 are combined in Fig. 9 by applying Eq. (8).
Thus, Fig. 9 illustrates the total standard error (Left) and total relative
standard error (Right) for different fractions of snow coverage. The
results show that although the reflectances of wet snow and snow-
free ground do have significant variation, their influence to the actual
SCA-estimate is tolerable, the maximum total error being 12%-units,
depending on the value of SCA. The relative errors also show a
satisfying accuracy; less than 20% for most of the SCA-cases (the
increase of the relative error towards low SCA-values is insignificant as
the absolute SCA-level is very small). It is also worth noting that the
gained standard errors, when only wet snow and snow-free ground
fluctuations are concerned, are independent from the apparent forest
transmissivity.

However, forest cover is a major disturbing factor in snow
monitoring with satellite sensors, since forests block the visibility
from the snow surface to satellite sensor and since shadows of the
trees decrease the reflectance observed above the forest canopy. This
is difficult to accurately consider for varying sun and view zenith
angles in models such as Eq. (4). Additionally, forest canopy (crowns
and trunks) reflects a part of incoming radiation, though a very small
percentage in blue to green wavelengths, such as MODIS bands 3
(459-479 nm) and 4 (545-565 nm), and MERIS band 2 (436-449 nm).
Nevertheless, as SCAmod is based on Eq. (4), the apparent (two-way)
forest canopy transmissivity considers and reduces the blocking effect
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Fig. 8. (Left) The standard error of SCA estimation due to wet snow reflectance variability and (Right) snow-free ground reflectance variability. The error is estimated using
wavelengths corresponding to MODIS band 3 (459-479 nm), MERIS band 2 (436-449 nm) and AVHRR band 1 (579-681 nm).
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Fig. 9. (Left) The standard error (%-units) of SCA estimation due to both wet snow and snow-free ground reflectance variability. The error is estimated using wavelengths
corresponding to MODIS band 3 (459-479 nm), MERIS band 2 (436-449 nm) and AVHRR band 1 (579-681 nm). (Right) The relative error (total error divided by SCA) due to both

wet snow and snow-free ground reflectance variability.

of forest canopy as well as tree shadowing effects. In this study, the
absolute effect of forest cover on scene reflectance was demonstrated
with mast-based ASD-observations. In practise, mast-based spectro-
meter measurements were simulated with linear spectral mixing of
ground-based ASD reflectances. This enabled the investigation of
scene reflectances observed above the tree cover.

The scene reflectance was modelled using Eq. (3a) for the forest
opening also measured with the mast-based spectrometer. The same
was repeated for the forested area by applying Eq. (3b). The image
analysis of data shown in Fig. 4 indicated that pine tree shadows
covered a fraction of 60% of the spectrometer footprint during the
mast-based measurement of the open area. In case of the forested
area, the areal fractions of different target constitutes were: 43.5% for
the tree shadows, 55.3% for the crowns/trunks and 1.3% for the
directly illuminated snow cover. This information accompanied with
dry snow reflectance and tree shadow reflectance data (examples for
certain wavelengths given in Table 3 were used as input to (3a and 3b).
For the forested area (3b) the crown reflectance was approximated by
the mast-based summer-time measurements of the forested target
area (assuming that ground reflectance is close to forest canopy
reflectance).

The resulting reflectance spectrum simulation is presented in Fig. 10.
Fig. 10 also depicts the actual observation with the mast-based
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spectrometer indicating a higher level of reflectance for the visible
wavelengths, but spectrally an analogous response. Figs. 4 and 10
demonstrate the strong effect of tree cover even for forest openings,
which has to be considered by snow monitoring algorithms if they are
applied to forested regions, such as northern Finland. In case of SCAmod
these effects are primarily considered by introducing the apparent forest
canopy transmissivity. The other evident alternative is the use of spectral
unmixing techniques in SCA estimation to consider the effects of tree
shadows, blocking by tree canopy and the influence of crown/trunk
reflectance, thus inversion of Eqgs. (3a and 3b). However, this requires
detailed structural forest canopy a priori information for estimating
different target type coverage fractions, i.e. such information as that
demonstrated in Fig. 4.

The possible reasons for the reflectivity difference between the
predicted and observed scene reflectance factor in Fig. 10 include the
small difference in the imaging geometry. The mast-based spectro-
meter observation of the forest opening was performed for a forward
scattering direction with an azimuth angle difference of 125° between
the directions of the Sun and spectrometer measurement head, and
additionally, the spectrometer was tilted 11° off the nadir. In case of
the forested target area, the scattering geometry was slightly towards
the backward direction (azimuth angle difference of 70°). In case of
observations with portable spectrometer the measurement direction
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Fig. 10. (Left) Observed and predicted reflectance factor of a dry snow covered open area shadowed by pine trees and (Right) of a forested area. Measurements are carried out by the
mast-borne ASD spectrometer on 28 March 2008. The corresponding prediction according to (3) is based on spectra measured by the ground-based portable ASD-system. The
fraction of shadowed area is determined from Fig. 4. The dry snow and shadowed snow spectra correspond to mean observations (see Tables 3, 4 and Fig. 5).
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was towards the nadir. The difference in the Sun elevation angle was
marginal (slightly varying in the field spectrometer data set, refer to
Table 2). Another possible reason for the difference in reflectance level
may arise from the target geometry. Point-wise field spectrometer
measurements represent small areas with a diameter of 20 cm, see
Table 2. Mast-borne measurements are collected from a larger region
(ellipse with main axes of 16.0 and 14.7 m), which include some
surface undulations. As a consequence, Fig. 10 suggests that the
absolute level of scene reflectance at visible wavelengths cannot be
directly simulated with spectral mixing of field spectrometer-derived
reflectance values.

4. Summary and conclusions

In this work, the variability of ground reflectance was investigated in
order to assess the feasibility of satellite sensors to the mapping of snow
covered area in the boreal forest zone. The results obtained here suggest
certain requirements for space borne instruments applied to snow cover
mapping. First of all, snow algorithm works best for visible wavelengths,
as in this region, snow reflectance is most invariant to snow physical
properties (e.g. grain size). From ASD-measurements, we found that
using wavelengths at 400-480 nm or 700-800 nm, the lowest standard
deviation of wet snow spectra was gained. However, in 700-800 nm
region, the effect of green vegetation hampers the distinguishing of
snow; therefore we concluded that when a single channel algorithm
(such as SCAmod) is applied wavelengths 400-480 nm also with a very
low standard deviation of reflectance variation, are most suitable for
snow cover mapping. Due to the effect of atmospheric gases and aerosols
into the reflectances in this region, it would be beneficial to use an
atmospheric correction procedure in order to obtain surface reflectances
instead of top-of-the-atmosphere reflectances. Neglecting the atmo-
spheric effect will result to somewhat erroneous snow information; the
magnitude of error is primarily dependent on the water vapour and
aerosol content of the atmosphere during the image acquisitions.

We investigated the performance of the SCAmod method by
applying ASD-derived reflectances for two of the SCAmod model
parameters: wet snow and snow-free ground. Special focus was on the
wavelengths related to MODIS, MERIS and AVHRR bands often utilized
in snow detection. A standard error of about 5-7%-units was on
average obtained, the maximum error of 10-12%-units occurring at
full snow cover conditions. The results for MERIS and MODIS were
notably better than those for AVHRR when SCA showed values below
40% suggesting that these instruments can be better used in snow
mapping at the end of the melting season (which is the most essential
period concerning hydrological end-use applications).

The investigation also demonstrates the feasibility of surface
reflectance observations to predict scene reflectance characteristics
actually observed by space-borne instruments. Combining the actual
satellite observations with the ground-based data given in this paper is
a topic of ongoing research and publication. The data presented here is
also scheduled to be used in similar kind of analysis for NDSI as what is
done here for SCAmod. The future work will further utilize the
reflectance measurements of forest canopy, using spectrometer placed
on the mast above the tree height. The collected data will be used in the
further accuracy analysis of SCAmod and in the algorithm optimization.
In order to derive the statistical accuracy of the apparent transmisivity,
additional dry snow (illuminated and shadowed) reflectance mea-
surements, together with forest canopy measurements, are required.
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This work aims at the improvement of the reflectance model-based methodology for mapping of fractional snow
cover (FSC) in seasonally snow covered areas in the Northern Hemisphere. The investigations are focused to the
determination and analyses of snow-free ground reflectance (pgrouna). The objective is to derive information on
typical average snow-free ground reflectance for predominant non-forested land cover classes in Eurasia and
to investigate the implications of their variations to the FSC estimation accuracy. The snow-free ground reflec-
tances are derived from MODIS time series, using single band reflectances and their related indices. Our approach

gs":‘/,v‘,?;rd; ground for the determination of pgrouna is based on the assumption that the behavior of ground reflectance in conditions
Reflectance occurring directly after the snow melt adequately represents the snow-free ground reflectance during snow ab-
Seasonal snow lation i.e. melting snow cover including snow-free patches. Additionally, the effects of the pgrouna variability to
Land cover snow mapping accuracy for different land cover types are analyzed focusing to the SCAmod algorithm. The cur-
MoDIS rent operational implementations of SCAmod use a fixed value for snow-free ground reflectance at the visible

Fractional snow cover wavelengths around 555 nm (corresponding to Terra/MODIS band 4). The deviation between the true snow-

free ground value and the fixed value causes error in FSC estimation and, thus, it is necessary to investigate the mag-
nitude and variations of the true pgoung for different land covers. Even so, our investigation for the target area of
Europe, shows that the currently used fixed value of pgroung (10.0%-units) in SCAmod seems to work ade-
quately for land cover classes investigated here. For example, the obtained pgouns mean and standard devi-
ation 10.0 4 1.3%-units for the agricultural areas and steppe at 555 nm seem to widely coincide with the fixed
value. According to SCAmod, the error in FSC estimation caused by the deviation between the fixed and the land
cover class-specific value of pgoung for agricultural areas and steppe yields a systematic error close to zero and a
random error ranging from 2.5 to 1.5%-units with the corresponding FSC range of 0-50%. However, in the case of
wetlands (7.4 £ 0.8%-units), the systematic error caused to FSC estimation using the fixed value compared to
using the estimated class-specific value is as large as from 5 to 2.5%-units with the FSC range of 0-50%. For FSC
retrievals larger than 50% the error caused by the variability in pgrounq is considerably smaller for all of the studied
land cover classes.
Our results show that the performance of SCAmod improves if land cover-specific pgrouna values are applied at
least for wetlands. We also suggest that the global application of SCAmod would benefit from the generation of
a Pgrouna Map for all land cover types by using the methods presented in this paper. This post-winter reflectance
climatology map can be constructed by calculating and using the class-specific pgrouna Statistics together with
suitable land cover information.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The seasonal snow cover of boreal forest and sub-arctic zones highly
influences the Earth's surface-atmosphere interaction. In particular, the
surface albedo of snow covered regions differs notably from that of the
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snow-free terrain; see e.g. Barlage, Zeng, Wei, and Mitchell (2005), Betts
and Ball (1997), Moody, King, Schaaf, and Hall (2007) and Wiscombe
and Warren (1980). During the spring snow ablation, vast areas in
Eurasia and North America belong to a transitional melting snow
zone, where the fraction of snow covered area (FSC) ranges between 0
and 100%, see e.g. Choi, Robinson, and Kang (2010). In major parts of
Eurasia and North America the annual discharge originates from melt-
ing snow and large volumes of fresh water are temporarily stored in
snow pack (Barnett, Adam, & Lettenmaier, 2005). Improved estimates
on FSC or Snow Extent (SE) in general, and thereby on the behavior of
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Table 1

Specifications for the MODIS bands and band indices that are exploited in snow mapping and snow-free ground detection under the melting period.

MODIS time series analysis specifications

MODIS bands Central wavelength (nm) Wavelength range (nm) Application area in snow algorithms

MODIS 1 645 620-670 Vegetation index (NDVI)

MODIS 2 858.5 841-875 Vegetation indices (NDVI, NDWI), cloud detection
MODIS 3 469 459-479 Snow mapping, FSC

MODIS 4 555 545-565 Snow mapping (FSC, NDSI)

MODIS 5 1240 1230-1250 Water index (NDWI)

MODIS 6 1640 1628-1652 Snow mapping (NDSI)

MODIS-indices Formulation Application area in snow algorithms

NDSI (Band 4 — Band 6)/(Band 4 + Band 6) Snow mapping

NDVI (Band 2 — Band 1)/(Band 2 + Band 1) Vegetation phenology, start of growing season
NDWI (Band 2 — Band 5)/(Band 2 + Band 5) Vegetation phenology, start of growing season

albedo, provide essential information for Climate research, Numerical
Weather Prediction (NWP) and hydrological forecasting (Hall & Qu,
2006; Stewart, Cayan, & Dettinger, 2005). The temporal and spatial var-
iability in the satellite-based observations of visible and near-infrared
(VIS/NIR) surface reflectance is prone to cause error to Earth Observa-
tion (EO)-based SE estimation. The main objective of this work is to in-
vestigate the snow-free ground reflectance (referred to as pgroung from
now on) behavior for several predominant European land cover types
and to derive reliable snow-free ground reference reflectances for sea-
sonally snow covered areas. Reference reflectance signifies a generally
applicable constant (mean and standard deviation) value for the
snow-free ground reflectance of a specific land cover class, and thus,
can be exploited in EO-based algorithms as a pre-set parameter. Regions
with ephemeral snow cover are not in the scope of this investigation.

The main goal of this work is to develop a methodology to retrieve
snow-free ground reflectances (directly after snow season with senes-
cent vegetation) for the improvement of FSC retrieval algorithms,
such as the SCAmod snow mapping algorithm. This particular method
is applied in producing the hemispheric FSC information within the
European Space Agency (ESA) DUE-GlobSnow initiative (Luojus et al.,
2010; Metsamadki et al., 2012). In practice, time series of NASA Earth Ob-
serving System (EOS) Moderate Resolution Imaging Spectroradiometer
(MODIS) onboard the Terra satellite are employed for the analyses. The
other goal is to provide general information on the behavior of ground
reflectance concerning the conditions apparent directly after the snow
melt i.e. to provide end-member values for the pgroung. This is relevant
e.g. for the spectral unmixing techniques employed in snow cover map-
ping, as they require information on the spectral end-member reflec-
tances (Nolin & Dozier, 2000; Painter, Dozier, Roberts, Davis, & Dozier,
2003, Painter et al., 2009; Vikhamar & Solberg, 2003). For example, (lin-
ear) unmixing models estimate the abundance of spectral feature clas-
ses in each pixel and can utilize multispectral data. The observed
reflectance is considered to be a mixture of pure-element reflectances,
yet the limited number of end-members leads to only rough estimation
results including (residual) error. Nonetheless, it is beneficial to extract
high quality spectral end-members with known variation, which is also
considered in this paper.

In particular MODIS band 4 (555 nm) is investigated here as this
wavelength region is applied in SCAmod based FSC mapping, e.g. in
GlobSnow (Luojus et al,, 2010; Metsamaki et al.,, 2012). Further on, dif-
ferent channel indices relevant to the remote sensing of snow are con-
sidered. They include Normalized Difference Snow Index (NDSI) that
employs MODIS bands 4 and 6 (1640 nm) and is widely used in global
applications (Hall, Riggs, Salomonson, DiGirolamo, & Bayr, 2002;
Rittger, Painter, & Dozier, 2013; Salomonson & Appel, 2004). Additional-
ly, MODIS bands 2 (858.5 nm) and 1 (645 nm) are used to calculate the
Normalized Difference Vegetation Index (NDVI) that is useful in investi-
gating the spectral response of a forest with seasonal snow, as snow
tends to decrease the NDVI. A complementary index to NDVI is the Nor-
malized Difference Water Index (NDWI) that has been used for the

retrieval of phenology in seasonal snow covered areas (Delbart,
Kergoat, Le Toan, Lhermitte, & Picard, 2005). NDWI is calculated using
MODIS bands 5 (1240 nm) and 2 (Gao, 1996). With respect to snow
mapping, changes in NDVI and NDWI correspond to the time of snow-
melt, and can be utilized in detecting snow clearance e.g. from MODIS
time series (Delbart et al., 2005; Gonsamo, Chen, Price, Kurz, & Wu,
2012; Jonsson et al., 2010; Karlsen et al., 2008; Stow et al., 2004). The
MODIS band related snow application areas are specified in Table 1.

The SCAmod method was originally developed for regional applica-
tions in the boreal forest zone and non-mountainous terrain by the
Finnish Environment Institute (SYKE). There is a need to investigate
the reliability of the resulting snow cover maps, as the application
area has extended to cover the Northern Hemisphere thus including
also different land cover categories from those the algorithm was devel-
oped for. The SCAmod is based on a semi-empirical reflectance modeling
approach that applies radiative transfer theory in the consideration of
forest canopy effects. It uses reference reflectances for wet snow pspow,
forest canopy poresc and snow-free ground Pgroung as model parameters;
see Metsamdki, Anttila, Huttunen, and Vepsadldinen (2005). Additional-
ly, the two-way forest canopy transmissivity () is applied as a spatially
varying parameter. Transmissivity is related to forest density and can be
estimated using multiple reflectance observations from a fully snow
covered terrain (Metsdmadki et al.,, 2005, 2012; Nolin, 2004). Our hy-
pothesis is that pgroung Characteristics may vary considerably depending
on the local conditions i.e. climate, soil, vegetation, land use and terrain/
topography. This is also shown in the work by Peltoniemi et al. (2005),
Stow et al. (2004) and Yu, Price, Ellis, and Kastens (2004). Metsamdki
et al. (2005) and Salminen, Pulliainen, Metsdmdki, Kontu, and
Suokanerva (2009) showed that the FSC given by SCAmod is clearly de-
pendent on the applied pgroung-value. Thus, although the SCAmod is a
well performing algorithm (Metsamaki et al., 2012) for detecting the
patchy, discontinuous snow cover in the vast snowmelt zone of the
Northern boreal forest belt, it is important to:

a) Investigate the spatial variations of snow-free ground reflectance
and
b) Facilitate the SE product and FSC value reliability estimation.

Accordingly, we investigate here the spatial and temporal variability
of Pgrouna that is a significant error source while applying the SCAmod on
alarge scale (Metsamadki et al., 2005; Salminen et al., 2009). Fortunately,
due to the SCAmod formulation, simulating the FSC accuracies according
t0 Pgrouna fluctuations is straightforward and can be conducted by
inserting error estimation formulas to the SCAmod, see Section 3.2.2
below. Firstly, however, a methodology for obtaining sufficient statistics
to describe the Pgroung Spatial and temporal behavior in general, and fur-
ther for the FSC error estimation, must be developed. The methodology
development is the central idea and result of this work, besides the ac-
tual FSC sensitivity analysis. Although our final goal is in developing a
continental-scale approach, testing and demonstration are carried out
by using a smaller number of land cover categories and a single study
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region covering Central, Eastern and Northern Europe. The study region
approach is feasible for efficiently obtaining an extensive cloud-free
MODIS time series for the pPgroung Statistics calculation and variability de-
scription. Additionally, the applied study region is large enough to pro-
vide satellite observations with varying imaging and illumination
geometries corresponding to the characteristics of observations used
in operational FSC retrieval algorithms.

Once the methodology is established, it can be expanded to include
several study regions over the Northern Hemisphere and to encompass
the land cover categories not investigated here. When we can deter-
mine the Pgrouna behavior for all of the land cover classes, we can then
generate a Pgroung Map over the Northern Hemisphere using the land
cover data. However, establishing the actual global pgounq reference
map is a relatively laborious task and outside the scope of this investiga-
tion. Consequently, the exploitation of the results of this work is
expected to facilitate the improved performance of the SCAmod algo-
rithm in the global scale. As well, the results can be used for investigat-
ing the performance of other snow cover mapping techniques, e.g. those
using spectral unmixing methods. Further, the magnitude of the error
associated with the variability of snow-free terrain reflectivity can be
exhibited by the obtained data set and applied to the performance anal-
ysis of the SCAmod snow mapping approach, which is also discussed
here.

2. Materials
2.1. Study region and land cover information

The applied study region covering Central, Eastern and Northern
Europe is mainly located in the temperate climate zone, yet reaching
to boreal forests and alpine (and even arctic) tundra in the northern re-
gions. Seasonal snow cover is a characteristic phenomenon throughout
this region, except for some southern- and westernmost low-altitude
regions. Land cover (and topography) in Europe shows great variation
within relatively small areas, so a large variety of terrain and land
cover categories are included in the analysis. Both globally and regional-
ly feasible land cover information is needed in the methodology devel-
opment. We selected the European Space Agency (ESA) GlobCover
products (resolution of 0.0025° x 0.0025°) as they cover the whole
Northern Hemisphere and are applicable as supplementary information
for global snow algorithm development and mapping purposes. The
GlobCover products are based on ENVISAT's Medium Resolution Imag-
ing Spectrometer (MERIS) Level 1B data acquired in a Full Resolution
mode with a spatial resolution of 300 m (Bicheron, Huc, Henry, &
Bontemps, 2008). We selected 3 predominant land cover classes in a
single study region to represent the typical non-forested or very sparse-
ly forested terrain types in Central, Eastern and Northern Europe (re-
ferred to as the European study region from now on), see Fig. 1. These
land cover classes are:

1) Agricultural areas/steppe (class 20),
II) Sparse vegetation including tundra (class 150), and
[lI) Wetlands (class 180).

The three classes are eminently characteristic to the (mostly non-
mountainous) regions of seasonal snow cover in the whole Northern
Hemisphere. The classes correspond to the GlobCover (GC) classes
depicted in Table 2 according to both Regional and Global GC legends
(Bicheron et al., 2008). Agricultural areas (class 20) are widely repre-
sented also in other parts of Eurasia beside the study region. Sparse veg-
etation including tundra (class 150) needed to include subdivisions, as
the generally very sparsely vegetated and regionally widely distributed
land cover type comprises of spectrally distinct areas, which can be sep-
arated also by latitude and elevation. In practice, regions representing
alpine tundra in Norway and arctic/sub-arctic tundra in northern
Fennoscandia, Kola Peninsula and Kanin Peninsula are investigated
both separately and together with the other regions of class 150.

Wetlands (class 180) are composed of both open and forested wetlands
and retain vast bogs/mires in addition to regularly flooded regions.

Although the previously described GC classes 20, 150 and 180 are
the focus of this investigation, the developed method was additionally
exploited for the following classes, see Table 2:

i) Rainfed croplands (class 14), that comprise e.g. of rainfed herba-
ceous crops or shrub or tree crops,

ii) Mosaic vegetation or cropland (class 30), that is a mixed class,
where mosaic vegetation consists of a mixture of grassland,
shrubland and forest up to 50-70% and the proportion of crop-
land ranges from 20% to 50%,

iii) Mosaic forest or shrubland (50-70%) or grassland (class 110) is
also a mixed class with relatively sparsely forested areas, and

iv) Closed (>40%) grassland (class 141), which is a sub-class of 140,
comprising of closed to open (>15%) herbaceous vegetation.

In addition to the land cover information, an estimate of the forest
canopy transmissivity is important as we accept only non-forested or
very sparsely forested terrain types for the snow-free land surface
reference reflectance analysis. This also partly compensates for the
errors possible in the GlobCover data. Therefore, in addition to the
GlobCover information on the proportion of forest in each pixel, we
used the 555 nm MODIS band 4-based transmissivity data, described
in Metsamadki et al. (2012), to i) select to suitable (predominantly)
non-forested pixels to be analyzed and ii) to assess the statistical accu-
racy of the FSC estimates by using SCAmod and the gained snow-free
ground reflectance statistics.

2.2. MODIS time series

To obtain experimental data, i.e. reference reflectances to study the
statistical behavior of the SCAmod algorithm reflectance contributors
for the selected land cover classes, we used a Terra Moderate Resolution
Imaging Spectroradiometer (MODIS) with 500 m and 250 m spatial
resolution. Terra/MODIS has a good spatial and temporal coverage of
the study region and MODIS data are widely used in global and local
snow applications, see Table 1. We employed an extensive time series
of MODIS Top-of-Atmosphere (TOA) reflectances for the 2011 snow-
melt season, covering the time interval from full snow cover through
low snow fractions till the appearance of green vegetation. The coverage
of the European study region is shown in Fig. 1. Original MODO2HKM
and MODO02QKM Level 1b Calibrated radiance products (500 m) are
obtained from LAADS Level 1 and Atmosphere Archive and Distribution
System by NASA (Xiong et al., 2005, 2006). The radiance products were
converted to TOA reflectances using ENVIMON software by Technical
Research Centre of Finland (VTT) at the Finnish Environment Institute
(SYKE). The pixel-wise time series of snow-free land surface reference
reflectance value i.e. pgroung for the selected land cover categories are
extracted from these georectified and cloud-masked MODIS data sets.

Before the actual MODIS time series extraction, large clusters of
GlobCover pixels falling into the same land cover category were auto-
matically searched. To ensure sufficiently large and homogeneous
areas for the analysis, only central pixels (size of ~500 m) of homoge-
neous clusters with a minimum size of about 1.5 km x 1.5 km were ac-
cepted for the MODIS time series extraction. As an outcome, several
thousands of clusters were extracted for each investigated land cover
class.

Reflectance time series were generated for a large number of spatial-
ly distributed MODIS observations from various orbits with a varying
viewing angle in order to compensate for the effects of the imaging ge-
ometry. High number of observations also ensures that the obtained
data set includes a large variety of (non-cloudy) atmospheric condi-
tions. The sensor viewing angle was limited to exclude the largest in-
strument view angles (>50°). We also excluded too high (>75°) sun
zenith angles from the time series dataset.



54 M. Salminen et al. / Remote Sensing of Environment 138 (2013) 51-64

a o 1 OTE HTOE HPOUE AFUDE SPOUE
TN Froron
BTIrHA Lo mern
STTH Laoroom
oot SPOCE
B g et e of s 48]
[ T
I - o Cropimrntagetancs
c oo e vtk et sonds sl bttt
TR lrooon
a
BTITHA = ": Lo oorm
o
TR kaoroom
s 1O E HATOE HPOUE &FO0E HPOUE

B Werisndy Pt of pos- &}
7] ot i

I 5 - ot 0 g vegamation bty naded

p v wee e

TOOTR:

d e

OO lrerom

O Lerrou

S00Tw: SO
oo T 2TOE HPOUE AFTTE SAIOE

[] 44 - Psimtess cragimachs

] 29 siomax: Compiaretinvmgetatinn

[ ] - simam: Vegetsbon Goplarsiy

[ F o i

[ [EILETT R R R ]
I - o Cemsasmn Forsas Stbised
[ 580 - oot s gt st

[ ] 950 - s sogetasion

[ 50 - Ciswd i oy vegetstion sgulirty Bocded
B v - s e

[ o

| EERTT

[ ] 220« Pavmaresnt s s i

Fig. 1. The European study region and the distributions of the 3 predominant land cover classes a) agricultural areas/steppe, b) sparse vegetation including tundra, ¢) wetlands, and d) all
relevant land cover classes in the study region derived from GlobCover product by ESA. The symbols in (a)-(c) represent the individual pixels applied in the time series analysis.

Snow-free ground reflectance for forested terrain is earlier derived
from MODIS TOA reflectances and ASD ground-based field spectral
measurements (Metsamadki et al., 2012; Niemi et al., 2012; Salminen
et al,, 2009). Based on the earlier work, it appears acceptable to use
the current constant value for pgrouna (10%-units) to represent forest
floor and several non-forested terrain types in the boreal forest region.
In this work, we use the 10%-units constant not only in error estimation,
but also to represent all densely and some sparsely forested areas for
calculating the actual snow-free ground reflectance map.

3. Method development

The overall goal here is the investigation and extraction of post-
winter snow-free ground reflectance statistics for continental scale
snow mapping purposes. Effectively, this is achieved by developing a
methodology to derive land cover class-wise snow-free ground refer-
ence reflectances (Ogrouna), that can be used in generating a Pground

map. The methodology is developed by using time series of pixel-wise
satellite observations from a large study area (Fig. 1) and for such land
cover classes where forest canopy has a minor role. Once established,
the method can be applied to other study regions and land cover classes
in the Northern Hemisphere to get a global coverage (concerning the re-
gions of seasonal snow cover). The key question in the time series anal-
ysis is to find the valid reflectance observation representing the snow-
free conditions right after the last traces of snow have disappeared.
This value is then assumed to represent snow-free ground reflectance
during the actual ablation season, prior to the appearance of the green
vegetation. This assumption is based on the earlier investigations e.g.
(Stow et al,, 2004), reporting that green vegetation — shown as increas-
ing reflectances and particularly NDVI - appears only after the final
snow clearance. The obtained feasible pgrouna-values from all the select-
ed pixels and their class-wise variability information can be exploited in
generating a Pgroung Map and, further, in the accuracy assessment of FSC
estimation for each land cover class.
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Table 2

The surface area of all the forested and non-forested and sparsely forested land cover classes in the European study region.

GC Class Class title Surface Class description based on Bicheron et al. (2008)
area (%)?*
20 Agricultural areas/steppe 13.51 Mosaic cropland (50-70%) or other vegetation (20-50%)
150 Sparse vegetation including tundra 13.72 Sparse (>15%) vegetation (woody vegetation, shrubs, grassland)
150A Tundra -Northern latitudes (including Alpine and arctic/sub-arctic tundra)
150B Sparse vegetation -Southern latitudes
180 Wetlands 2.59 Closed to open (>15%) grassland or woody vegetation on a regularly flooded or
waterlogged soil, also with fresh, brackish or saline water
14 Rainfed croplands 1222 Rainfed croplands
30 Mixed class with sparsely forested ~ 3.84 Mosaic vegetation (50-70%)/cropland (20-50%)
areas
110 Mixed class with sparsely forested ~ 2.92 Mosaic forest or shrubland (50-70%)/grassland (20-50%)
areas
141 Grassland 0.93 Closed (>40%) grassland (Sub-class of 140, which is closed to open (>15%)
herbaceous vegetation)
13,15, 16, 21, 32, 120, 140, 151, 152, 185,  Other open/non-forested area 3.89 Non-forested and sparsely forested areas (including urban areas, bare areas and

190, 200, 201, 202, 203, 220 classes in the study region
50, 60,70,90,91,92,100, 101, 130, 131,134  Forested classes in the study region 46.38

permanent snow and ice)
Consisting of various broadleaved and needleleaved forests and (closed) shrublands

@ % of the total surface area of all classes excluding water bodies.

3.1. Snow-free reflectance determination using MODIS time series

3.1.1. MODIS time series extraction

We applied GC land cover data to extract the land cover class-
specific reflectance time series for different MODIS wavelength bands.
For each GC class, MODIS time series from each selected pixel were gen-
erated, resulting to thousands of time series. However, proper time se-
ries were only retrieved for a much smaller number of pixels as
shown in Fig. 1. This is because firstly, only those time series featuring
also seasonal snow conditions were accepted to further studies. Second-
ly, the first approximation of snow clearance day was made by applying
SCAmod (with a fixed value of Pgroung = 10%) in order to find the first
occasion when FSC = 0%. After that, several criteria around that time
must be met in order to obtain a valid observation representing the
snow clearance day.

We focus on analyzing the MODIS bands essential for snow applica-
tions (see Table 1). The MODIS wavelength band 4 (555 nm), is utilized
in the FSC estimation with SCAmod. MODIS band 4 and MODIS band 6
(1640 nm) are used in the NDSI calculation. NDVI is calculated using
MODIS band 1 (645 nm) and 2 (858.5 nm), which benefits snow map-
ping in forested areas. NDWI calculated using MODIS band 2 and MODIS
band 5 (1240 nm) has potential in phenological applications.

3.1.2. Criteria for the selection of the valid moment after snow clearance

The extraction of the pgound-value representing the reflectance di-
rectly after the snow melt is based on the analysis of the temporal
changes in the observed reflectances and related channel indices. Vari-
ous investigations show that the reflectance in visible bands drops to a
local (or even to annual global) minimum with the snow clearance
when soil is typically wet directly after snow melt (Duke & Guérif,
1998; Twomey, Bohren, & Mergenthaler, 1986). This is also the case
for forests, if they are at least partially optically transparent. Additional-
ly, different snow mapping algorithms for satellite data, discussed
above, are based on this particular reflectance contrast apparent be-
tween the snow covered and melt-off conditions. Thus, we applied a de-
cision rule method for detecting the value of pgrounqa from the extracted
MODIS time series. The outline of this method can be summarized as
follows:

(a) Check that the MODIS time series for the pixel under investiga-
tion includes observations with (nearly) full snow cover condi-
tions (e.g. FSC > 70% as criterion) and FSC = 0%, and that the
time difference between these observations is smaller than a
threshold value (e.g. in practice, based on the time series analysis
we discovered that using a gap of 10 days is feasible).

(b) If condition (a) holds for the pixel, analyze the minimum values
of different MODIS channels within a prefixed time window
around/after the moment of snow clearance (FSC = 0% for the
first time in the estimated FSC time series); the selection of the
optimal length of the window is discussed in Section 4 below.

(c) Assign the day for pgroung acquisition based on the most feasible

MODIS channel reflectance or channel index, (the most feasible

indicator for this moment determined from the analysis of the

obtained data set, e.g. MODIS 555 nm, see Section 4 below).

Extract pgroung-values for days identified in step (c) for different

pixels and determine statistics for all pixels of the certain GC

class within the study area.

(d

=

The time series analysis algorithm defined in steps (a)-(d) above
was implemented as an automatic procedure that was applied to data
sets representing different land cover classes, see also Section 2.2. As
an outcome, proper time series with extracted pgrounq values were
obtained for 9 land cover classes with the number of Pgrounq Values rang-
ing from 52 to 728 depending on class.

3.2. The exploitation of Pground

3.2.1. Statistical analysis of Pgrouna for several land cover classes

The obtained pgrounq values for the selected pixels of each investigat-
ed GlobCover (GC)-class are utilized in statistical analysis. The purpose
is to calculate the mean and standard deviation for the class-wise reflec-
tances of the essential MODIS wavelength bands. This information is
then used to represent the statistical behavior of the reflectance for
the different land cover classes. The statistical reliabilities of the
obtained class-wise pgroung Mmean and standard deviation values for
each MODIS band are assessed by calculating their confidence limits.

We use the forward modeling approach of SCAmod to describe the
correspondence between reflectance constituents and the observed re-
flectance (Metsamaki et al., 2005). Thus, the model for the TOA reflec-
tance, denoted here by R;,,q at the wavelength \ is

R)\.mod (FSC) = (1 _ti)p)\jorest + ti Fscp)\.snow + (] _FSC> <p)\‘gmund>} <l>

where (O grouna* is the average value of the snow-free ground reflec-
tance for a certain land cover category representing open areas or forest
floor. The two-way forest canopy transmissivity is t2, FSC is the fraction
of snow covered area within the pixel, px snow i the snow reflectance
and pj sores: is the reflectance of an opaque forest canopy, respectively.
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When FSC = 0% and £ ~ 1, Eq. (1) directly yields the estimate for
Parouna- If forest canopy is present, i.e. <1, px ground 15 obtained by
inverting Eq. (1), using the a priori value of (pixel-wise) forest canopy
transmissivity and a constant parameter value for forest canopy reflec-
tance of an opaque vegetation layer (constant 0.08 (or 8%-units) applied
here based on Metsamaki et al. (2012). Hence, the forest canopy trans-
missivity corrected (t>-corrected) estimate for the ground reflectance
below the forest canopy (N ignored from now on for simplicity) is
given by:

Rubs - (] - tz) pfnresr

o @

Pground =

In Eq. (2), the Ryps is the actual observation instead of the modeled
TOA reflectance Ripoq. ThUS, Pground can be determined from the reflec-
tance observations that were identified to represent snow clearance,
as described above. When pgroung is solved from Eq. (2) for a large
number of pixels, an estimate for the standard deviation of Pgrouna is
obtained, in addition to the mean value of the investigated land cover
class.

Also note that the fractional snow cover (FSC) can be solved from
Eq. (1), given that the three values of reflectance constituents and trans-
missivity are known, which is the basis of the SCAmod.

3.2.2. The impact of the pgrouna variability on snow mapping according to
the SCAmod algorithm

The effect of the obtained class-wise pgroung mean values in FSC
estimation is assessed by comparing the current (constant value of
Perouna used for all land cover categories) snow mapping results
with the results obtained by using the class-wise pgroung mean and
standard deviation. The results will indicate if it is necessary to
take into account the effect of various land cover types while using
SCAmod.

According to SCAmod the FSC estimate for pixel representing a cer-
tain GC land cover class is obtained by inverting Eq. (1)

1 1

Raps + (1= ) Pporest = (Parouna)
— 2 obs < t2> 'forest grount
FSC =

Psnow — <pgmund > (3)

where R, is the TOA-observed reflectance and «0gouna is the class-wise
mean reflectance.

Instead of having the mean class-wise snow-free reflectance
value groung in Eq. (3), the biased estimate of FSC can be obtained
by applying a constant value pPground = 10.0%. This value (for the
MODIS band 4 TOA reflectance) is typically applied by the SCAmod
to describe snow-free ground reflectance (Metsamadki et al., 2012).
By setting ¢Ogroune = 10.0% in Eq. (3), and thereafter, by inserting
Eq. (1) to Eq. (3), we get the formula for the bias error of FSC estimation:

JAS — FSCPspow + (1—FSC) <pgraund> —10.0 .

psnowflo'o (4)

As well the upper and lower bounds of FSC estimated can be
obtained from the standard deviations of land cover class-wise esti-
mates of Pground:

BOUNDSupper/lawer

- FSCPsnow + (1—FSC) (<pground> + Std<pground>) —10.0
- Psnow—10.0 .

(5)

Eqgs. (4) and (5) characterize the systematic (bias) and random
error levels of FSC estimation for different land cover categories

when a constant value of Pgroung = 10.0% is applied in SCAmod
(for MODIS band 4). The same equations can be used to character-
ize the overall error level for a larger area (or even globally) by
considering the areal fractions of different land covers and by sum-
ming their corresponding snow-free ground reflectance variances
accordingly.

3.2.3. Sensitivity of Pgrouna eStimation to forest transmissivity

The forest canopy transmissivity corrected value of Pgrouna Can be
obtained by using Eq. (2). If this correction is not performed, the value
of Pgrouna is directly obtained from solving Eq. (1) with FSC = 0.
Hence the absolute error ignoring the effect of forest canopy transmis-
sivity is given by:

Robs - (1 - tz) Prorest

o ®

Apgmund = Rabs —Pground = Rubs_

On the other hand, the transmissivity correction provided in Eq. (2)
is sensitive to error in the applied transmissivity information. The statis-
tical error level of transmissivity corrected pgroung Value can be obtained
by the derivative of Eq. (2). As the inaccuracy of pyres is also considered
we get according to the law of error propagation:

Robs—Pjorest e 21 \?
= J (%A(tz) + <TApforest) + <t750b5>
7)

where A(t?) is the statistical error (standard deviation) of two-way
transmissivity for the channel under investigation, Apfoes is that for
the forest canopy reflectance and S,p; is the standard deviation of obser-
vational noise, respectively. However, when A(t?) and APforest are
estimated from the space-borne observations the influence of observa-
tional noise is included into A(?) and APforest. Thus, the third term of
Eq. (7) can be ignored in that case.

‘Apground

4. Results and discussion

The behavior of pgrouna and NDVI since the day of snow melt-off
is depicted in Fig. 2. Here, the depicted moment of snow melt is the
estimate obtained by applying SCAmod with pgrouna = 10.0%. The
results are shown for three land cover classes corresponding to
pixels indicated in Fig. 1. When examining NDVI for the 20-day
time window since this first snowmelt, it is evident that the growing
season starts, and thus, NDVI starts to increase after 10-15 days,
depending on the land cover class. So, it is justified to limit the
analysis of Pgroung for a period of 15 days after the first snowmelt
in order to avoid greening contaminating the representativeness
of the demanded snow-free reflectance values. Additionally, the
temporal behavior of MODIS band 4 reflectance, also shown in
Fig. 2, suggests that the 15-day time window after the snowmelt
is reasonable for the identification of the snow-free ground reflec-
tance value representing the conditions apparent immediately
after the snow disappearance. Since MODIS observations are not
available for all days due to cloud cover, there has to be a window
for searching the best estimate of pgrouna. As discussed in
Section 3.1, the problem is then to search the minimum value of
a suitable reflectance channel within the 15-day window, and to
assign the pgrouna values of other channels from the concurrent ob-
servations of the same day.

Fig. 3 depicts the behavior of different MODIS band TOA reflec-
tance observations for selected typical cases demonstrating the fea-
sibility of reflectances at different bands for the searching of the
best estimate for the timing of melt-off conditions. As demonstrated
in Fig. 3, MODIS band 4 reflectance is providing the clearest indica-
tion of snow melt timing, and thus it was chosen for pgroung value
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Fig. 2. Results depicting the behavior of snow-free reflectance (left) for MODIS band 4 (545-565 nm) and (right) NDVI with respect to the estimated first snowmelt occurrence for all
observation points (not only those selected for statistical analysis) for (a) agricultural areas/steppe (b) sparse vegetation including tundra and (c) wetlands in the European study region.
The average values (red asterisk) for all pixels and values (blue dots) for all individual observations are depicted.
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Fig. 3. Examples of typical pixel-wise MODIS time series. Reflectance is shown in a-c. FSC and NDWI time series are depicted in d-f. Examples for Agricultural areas/steppe are shown ina
and d; Sparse vegetation (tundra) in b and e and Wetlands in c and f, respectively. The utilized MODIS bands are specified in Table 1. Black vertical line depicts the moment of estimated
snow melt according to SCAmod algorithm (first observation with FSC = 0%). Red vertical line indicates the moment of the extracted snow-free ground reflectance estimates (minimum
value of MODIS band 4 reflectance within the window of 15 days; note that MODIS band 4 is highlighted).

extraction. In addition to reflectance time series, Fig. 3 shows NDWI and
FSC time series of predominant non-forested or sparsely forested land
cover types. The behavior of the NDWI (local minimum directly after
snowmelt, Delbart et al., 2005) confirms the feasibility of MODIS band

4 for the extraction of the pPgrouna vValues. NDWI helps to identify the
period, when ground is possibly still wet after snowmelt and the
index should not, therefore, increase during the identified time window
of 15 days.



Table 3a

Snow-free ground reflectance analysis results for GlobCover classes: agricultural areas/steppe (20), tundra/sparse vegetation (150) and wetlands (180). Mean, standard deviation (SD) and number of observations for the exploited MODIS wavelength
bands and band indices. Mean and SD are accompanied by their confidence intervals. The snow-free ground reflectance statistics extraction was conducted using the time window of 15 days after snow clearance and pixel two-way forest canopy
transmissivity £ > 0.5 as criterium.

> 0.5 and time window maximum of 15 days after snow clearance

Class 20 (N obs 495) Class 180 (N obs 421) Class 150 (N obs 728) Class 150 tundra (N obs 329) Class 150 sparse (N obs 399)
Criteria Mean (4+95% conf)*  SD (95% bounds) ~ Mean (+95% conf.)®  SD” (95% bounds) ~ Mean (+95% conf.)®  SD" (95% bounds) ~ Mean (+95% conf.)*  SD" (95% bounds) ~ Mean (£95% conf.)*  SD" (95% bounds)
MODIS4 1001 (0.12) 1.34 (1.26, 1.43) 738 (0.07) 0.75 (0.70, 0.80) 10.02 (0.16) 216 (2.05,2.28) 10.09 (0.30) 273 (2.54, 2.96) 9.96 (0.15) 1.53 (143, 1.64)
MODIS4 1104 (0.18) 2.02 (190, 2.15) 7.09 (0.11) 114 (1.07,1.22) 10.89 (0.22) 3.00 (2.85,3.16) 10.84 (0.40) 3.69 (343, 4.00) 1092 (0.22) 227 (2.12, 2.44)
£-corr.
MODIS3 1295 (0.12) 1.36 (1.28, 1.45) 10.63 (0.09) 097 (091, 1.04) 13.18 (0.17) 238 (2.26,2.51) 1345 (0.32) 296 (2.75,321) 12.96 (0.17) 1.74 (163, 1.87)
NDSI ~037(0.01) 0.09 (0.09,0.10)  —022 (0.01) 011(0.11,012)  —034(0.01) 0.1 (0.10,0.12) ~034 (0.01) 0.10(0.09,0.11)  —0.34 (0.01) 012 (0.11,0.13)
NDVI 027 (0.01) 0.07 (0.06, 0.079) 044 (0.01) 0.07 (0.06,0.07) 032 (0.01) 010 (0.10,0.11) 037 (0.01) 0.07 (0.07, 0.08) 027 (0.01) 0.09 (0.08,0.10)
NDWI —0.11 (0.01) 0.10 (0.09, 0.10) 021 (0.01) 0.15(0.14,0.16)  —0.04 (0.01) 0.1 (0.10,0.12) 0.00 (0.01) 0.09 (0.08,0.10)  —0.08 (0.01) 0.10 (0.09,0.11)

? 95% + confidence interval.
b SD = standard deviation; lower and upper bounds for the 95% confidence interval.

Table 3b

Snow-free ground reflectance analysis results for GlobCover classes: rainfed croplands (14), mosaic vegetation/cropland (30), mosaic forest or shrubland/grassland (110) and grassland (141). Mean, standard deviation (SD) and number of obser-
vations for the exploited MODIS wavelength bands and band indices. Mean and SD are accompanied by their confidence intervals. The snow-free ground reflectance statistics extraction was conducted using the time window of 15 days after snow
clearance and pixel two-way forest canopy transmissivity £ > 0.5 as criterium.

2> 0.5 and time window maximum of 15 days after snow clearance

Class 14 (N obs 398) Class 30 (N obs 127) Class 110 (N obs 52) Class 141 (N obs 110)
Criteria Mean (495% conf.)? SD" (95% bounds) Mean (+95% conf.)? SD" (95% bounds) Mean (495% conf.)? SD" (95% bounds) Mean (4-95% conf.)? SD" (95% bounds)
MODIS 4 1068 (0.11) 1.07 (1.00, 1.15) 8.94 (0.44) 249 (2.21,2.84) 1041 (0.44) 1,58 (133, 1.96) 11.13 (043) 228 (201, 2.63)
MODIS 4 12.16 (0.17) 1.74 (162, 1.87) 946 (0.73) 418 (3.72,4.77) 11.76 (0.70) 250 (2.09,3.10) 1271 (069) 3.64 (3.2, 420)
£-corr.
MODIS 3 1371 (0.15) 1.54 (1.44, 1.66) 1229 (038) 2.166 (1.93, 2.47) 13.84 (0.72) 260 (2.17,322) 13.90 (0.55) 289 (2.55,333)
NDSI ~029 (001) 007 (0.06,0.07) ~0.19 (0.05) 027 (0.24,031) ~035(0.03) 0.11 (0.09, 0.14) ~030(0.03) 013 (0.12, 0.16)
NDVI 026 (0.01) 0.06 (0.05, 0.06) 017 (0.02) 013 (0.12,0.15) 035 (0.03) 009 (0.08,0.11) 032 (0.01) 0.07 (0.06, 0.08)
NDWI —0.05 (0.01) 0.06 (0.06, 0.07) —0.08 (0.03) 0.16 (0.14,0.18) —0.01 (0.04) 0.13 (0.11,0.16) 0.02 (0.02) 0.11 (0.10, 0.13)

¢ 95% + confidence interval.
b Sp = standard deviation; lower and upper bounds for the 95% confidence interval.
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The main findings of this investigation are depicted in Tables 3a and
3b. It summarizes the statistical values of the obtained estimates on
snow-free ground reflectance for different GC land cover classes of the
study area. That is, mean and standard deviation values with their statis-
tical confidence limits. Additionally, results for different indices are given.
The presented Pgrounq vValues are determined directly from MODIS TOA re-
flectances using the methodology outlined in Section 3.1.2. For the MODIS
band 4 (555 nm), t*-corrected Perouna €Stimates according to Eq. (2) are
also shown. The results are presented for seven GC land cover classes.
However, class 150 representing tundra and other sparse vegetation
areas are separated into two sub-classes: tundra and southern/low alti-
tude sparsely vegetated areas. The presented standard deviation values
also include the contribution of varying viewing geometry and sun illu-
mination angles. However, the search procedure for pgrouna values
outlined in Section 3.1.2 provides the estimates according to viewing
geometry and atmospheric conditions that provide the minimum levels
of reflectance in the search window of 15 days after the estimated snow
melt. This criterion was selected in order to provide a set of Pground
values as consistent as possible. Figs. 1 and 2 indicate that due to the
high amount of pixels distributed around the European study area, the
obtained statistics provide values indicating well the overall behavior
of TOA-observed reflectance. The observed variability for the conditions
directly after the snow melt is resulting from (a) the actual spatial
variability of snow-free ground surface reflectance, (b) variability in
imaging/illumination geometry and (c) variability in atmospheric
conditions.

The results of Tables 3a and 3b are determined excluding pixels
representing dense forests. For the areas with a low value of the two-
way forest canopy transmissivity (2), i.e. dense forests, t>-correction for
the Pground Values yields intolerable standard deviations and mean values,
so the forest canopy transmissivity correction is not feasible for such re-
gions. We tested several t>-limits, and found that only observations
from pixels with £2 > 0.5 are feasible for the analysis. Thus, only these
areas are considered in the results shown in Tables 3a and 3b. Fig. 4 de-
picts the error caused by forest canopy transmissivity in Pgrouna €Stimates
by showing the error as a function of . Fig. 4 also demonstrates the abso-
lute error of Pgroung eStimation excluding forest canopy transmissivity cor-
rection. High estimation errors are obtained when > < 0.5, both in cases
including or excluding the transmissivity correction.

The results in Tables 3a and 3b indicate that even though the analy-
sis focuses to areas (pixels) with a sparse or non-existing forest cover

Erraring___-Extimate Excluding U'-Comection

T T

o1
-

Predicted Bias of p, ~Estimate (3-units)

(2 > 0.5), there are systematic differences ranging from — 1.6%-units
to + 0.29%-units between the t>-corrected and not-corrected Peround €S-
timates. As suggested by Fig. 4a, the negative difference in the deter-
mined Pgrouna Value is obtained for the case of wetlands (GC class 180)
that exhibits an overall low level of pgrouna. All other classes show higher
mean values of the estimated pgrounq in case the forest canopy correction
is performed. Since the >-data is only available representing the MODIS
band 4, it is not possible to determine the correction for other wave-
lengths or channel indices. However, for band 4, the values in
Tables 3a and 3b excluding or including canopy transmissivity correc-
tion indicate the upper and lower margins of the obtained GC class-
wise determined mean values of Pgroung. The standard deviations of
Peround €Stimates appear to be smaller when t>~correction is excluded,
which also agrees with the predictions of Fig. 4.

Examples of the distributions of pgouna €stimates at MODIS band 4
are shown in Fig. 5 corresponding to Table 3a. The results for GC classes
20 and 180 demonstrate that typical snow-free ground reflectance his-
tograms are close to a Gaussian distribution. The exception is class 150
that incorporates tundra and other sparsely vegetated areas. The split
of class 150 into these two contributions is also shown in Fig. 5 indicat-
ing that tundra regions at north latitudes (or at high altitudes in the
south) include surfaces with substantially higher reflectances than the
class in general. The applied data set includes backscatter viewing ge-
ometries for tundra regions of the class 150 incorporating high sensor
zenith angles, which may cause the high values e.g. for lichen-
dominated regions (Peltoniemi et al, 2005). Due to this behavior,
Tables 3a and 3b present statistics for the sub-divisions of class 150, in
addition to the statistics of the whole GC class. In contrast to tundra re-
gions, the reflectance histogram for other sparsely vegetated surfaces
approaches the Gaussian distribution.

The obtained pgrouna Statistics presented in Tables 3a and 3b can be
used to investigate the performance of SCAmod by applying Egs. (4)
and (5).Eqgs. (4) and (5) define the error levels of FSC estimation emerg-
ing from the use of the prefixed value of snow-free ground reflectance
in SCAmod-algorithm. That is, the systematic and random errors of FSC
estimation are given concerning the case when the prefixed value of
10.0%-units is used instead of land cover class-wise derived mean
reflectances. The error assessment is carried out by inserting mean
and standard deviation values of MODIS band 4 reflectances from
Tables 3a and 3b to Egs. (4) and (5). The results are shown in Fig. 6
for GC classes 20, 150 and 180. Solid lines depict systematic errors
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Fig. 4. (a) The predicted absolute error of pgouna-estimation according to Eq. (6) when the forest canopy transmissivity (£*) correction is ignored and (b) the statistical error of Pground €s-
timation when t?-correction is included. The results are shown for different levels of true Perouna Values (a), and for different levels of space-borne observed reflectance, Robs (b). For trans-
missivity t% < 0.5, the effect of forest on the satellite observed reflectance is dominant and the absolute error is large, if t>-correction is ignored. Also the statistical error of t>-corrected
estimate is high, if t> < 0.5. In 6 (b), the statistical error is calculated assuming a relative error of 15% in t> and a RMS-error level of 1.0%-units in Pforest-
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Fig. 5. Histograms for the MODIS band 4 (545-565 nm) reflectances for (a) agricultural areas/steppe, (b) wetlands and (c) sparse vegetation including tundra in the study area. Sub-division of
class 150 to actual tundra and other sparsely vegetated (southern) regions is shown in (d) and (e), respectively.

(bias) according to Eq. (4), and the corresponding error bounds as a
function of FSC are obtained by using Eq. (5). The results of Fig. 6 indi-
cate that the systematic error of FSC estimation is close to zero for the
two classes representing dry land areas; i.e. for classes 20 and 150 in-
cluding steppe, agricultural areas, sparsely vegetated areas and tundra
regions. However, in case of wetlands (class 180), the systematic error
is significant causing the underestimation of FSC. The statistical error
bounds are particularly high for class 150 due to the fact that this class
combines tundra regions with southern sparsely vegetated areas
which causes a high variability in pgrouna values, refer to Tables 3a
and 3b and Fig. 5. As a conclusion, Fig. 6 and Tables 3a and 3b
suggest that SCAmod provides reasonable accuracies of FSC for the
study region even if a constant prefixed value of pgroung = 10.0%-units
is employed.

Fig. 7 depicts the estimated overall inaccuracy of FSC estimation due
to the spatial variability of snow-free ground reflectance (Pground). The

results show the general performance of SCAmod for the applied Euro-
pean study region considering the open and sparsely forested land
cover classes defined in Table 2. Analogous to Fig. 6, the FSC retrieval
error is evaluated employing the constant Pgroung = 10.0% for the
MODIS band 4 (545-565 nm) in SCAmod. The analysis in Fig. 7 is
based on the consideration of the areal coverage of different land
cover classes and their representative snow-free ground reflectance his-
tograms. The mean and standard deviation for pgrounq are calculated by a
Monte Carlo simulation from the gained class-wise values (from
Tables 3a and 3b), weighted by their areal proportions for the whole re-
gion (from Table 2). However, actual forest classes are excluded from
the analysis. As a result, the weighted average of Pgrouna is found to be
10.0%-units with a standard deviation of 1.8%-units, if forest canopy
transmissivity effects are not compensated. If t*-correction according
to Eq. (2) is performed, the values are 11.0%-units and 2.7%-units, re-
spectively. As the transmissivity correction approach yields higher
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(dashed lines) are obtained by using Eqs. (4) and (5), respectively. The shown error (in-
cluding systematic (bias) and random error) is emerging when SCAmod is applied by
using the fixed constant snow-free ground reflectance (10.0%) to describe all different
land cover categories.

standard deviations of Pgrounq €stimates than the exclusion of t>-correc-
tion, the error bounds of the two cases are slightly different. An impor-
tant finding is also that the systematic error induced into the FSC
estimation is close to zero whether the t*-correction is applied or not.
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Fig. 7. The overall FSC retrieval error for the European study region as areal fractions of dif-
ferent land types within the region are considered. Error levels according to Egs. (4) and
(5) are shown for SCAmod when a pre-fixed constant snow-free ground reflectance
(10,0%) is applied for MODIS band 4. Systematic and statistical error contributions are
evaluated (a) excluding or (b) including forest canopy transmissivity correction in the de-
termination of ground reflectance statistics.

As in Fig. 6, the results of Fig. 7 imply that SCAmod can be applied in
the study region with a relatively good overall performance using a con-
stant value Pgrouna = 10.0%.

The snow-free ground reflectance values listed in Tables 3a and 3b
can be used to derive maps on the spatial distribution of TOA-
observed reflectance (pgrounq) Or reflectance indices (NDSI, NDVI and
NDWI). As an example, the obtained MODIS band 4 reflectance and
NDSI maps, covering the investigated European study region, are
shown in Fig. 8. As indicated in Table 2, the analyzed GC classes in
Tables 3a and 3b cover almost all open and sparsely forested areas of
the region. For the sparsely forested and open land cover types, we al-
ready used the transmissivity condition as one of the reflectance selec-
tion criteria, so those values are applicable in pground map generation.
Thus, presented maps give a concise view of the TOA-observed surface
reflectance and NDSI directly after the snow melt for non- and sparsely
forested areas. As discussed above, this information (as well as the stan-
dard deviation of Pgrouna, also available from Tables 3a and 3b) is essen-
tial for the accuracy assessment of SCAmod-based FSC retrieval.
Similarly, information on NDSI (and NDVI) of snow-free ground, also
given in Tables 3a and 3b, can be applied to analyze the performance
of algorithms that apply these indices.
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Fig. 8. Retrieved map of (a) TOA reflectance of snow-free ground at the MODIS band 4
(545-565 nm) covering the European study region and (b) NDSI, respectively. The
study area is also shown in Fig. 1 indicating the locations of investigated pixels (three of
the total of seven investigated GC land cover classes are shown in Fig. 1). Ice caps are
shown by white color in (a); their reflectance is much higher than the image threshold
value of 12%. In (b); forests are masked off by green color and ice caps/water by black
color, respectively.

According to Table 2, forested areas cover about 46% of the land areas
in the investigated European study region. As the forest canopy trans-
missivity is low for these areas, the retrieval of ground reflectance is
not feasible, refer to Fig. 4. Hence we assign a constant reflectance of
10.0% for these areas when producing the map of Fig. 8. As discussed
above, this value is feasible for the MODIS band 4 reflectance, based
on earlier investigations for boreal forest zone (Salminen et al., 2009;
Metsamdki et al., 2012). As the forests in the study region are mainly bo-
real forests or conifer-dominated forests in mountain/high altitude re-
gions, we assign this value to represent all forests in Fig. 8a. Since
NDSI was not analyzed for the forested areas, these regions are masked
off by green color in Fig. 8b. Thus, Fig. 8b also shows the locations of for-
est pixels. Of all the investigated open and sparsely forested areas, the
investigated classes cover a fraction of 93%. For the unanalyzed portion
of 7% (4% of the total land area), we assigned pgrouna and NDSI from the
closest resembling analyzed GC class (separately for each unanalyzed
class). Thus, the map in Fig. 8 gives an estimate of pPgrouna for all land
areas of the European study site, and an estimate of NDSI is shown for
all land areas, but forests. The exception is bare ground or glaciers/ice
caps on mountains that are depicted by white color in Fig. 8a and by
black color in Fig. 8b.

5. Summary and conclusions

The behavior of snow-free ground reflectance pgrouna directly after
the snow melt was investigated by applying a time series of Terra
MODIS TOA reflectance observations. In practice, the minimum Pground
value at the 555 nm channel, occurring after the estimated time of
snow melt, was searched within a time window of 15 days. This was
carried out separately for all pixels of a certain class, in order to obtain
a consistent data set that excludes possible observations with partial
snow cover and in order to reduce the effects of viewing geometry var-
iations. The same moment was selected to also represent snow-free
ground conditions for other MODIS channels. The analysis was carried
out for various land cover categories within Europe by applying ESA
GlobCover data as reference. Thus, the results enabled the determina-
tion of the spatial behavior of TOA-observed snow-free ground reflec-
tance and reflectance indices, such as NDSI and NDVI. The analyzed
land cover classes represent 93% of the non-forested land in the investi-
gated European study region.

The obtained pgrounq Statistics facilitate the investigation of error
level, resulting from the non-representative consideration of snow-
free ground reflectance, in the mapping of the Fraction of Snow Covered
Area (FSC). In particular, the performance of the SCAmod method was
investigated here. The results show that in general, the SCAmod method
that is based on the employment of the 555 nm band is applicable for
the FSC mapping in Europe, even if pgrouna is treated by a present man-
ner using a constant value for all land cover categories. According to
the results, the exception is wetlands where pgrounq at 555 nm consider-
ably differs from the presently employed constant pgoung 0f 10%. How-
ever, additional land cover categories should be investigated in the
future work aiming to global applicability. Further on, information on
the snow-free ground NDSI is relevant for the FSC mapping approaches
that are based on the use of this index.

Even though the variability of the mean value of pgrounq Was found to
be relatively small for different land cover classes of the study area (ex-
cept for wetlands), the variance from pixel to pixel was found to be con-
siderable. This also affects to the retrieval of FSC, as shown in Figs. 6 and
7 in the case of the SCAmod method. Further research will combine the
analysis of different error contributions (e.g. those due to forest canopy
transmissivity and variability of snow reflectance) to FSC estimation, in
order to assess the general performance of retrieval algorithms both
spatially and temporally.
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Optical remote sensing methods for mapping of the seasonal snow cover are often obstructed by the
masking effect of forest canopy. Therefore, optical algorithms tend to underestimate the amount of snow
cover in forested regions. In this paper, we investigate the influence of boreal forest stand characteristics
on the observed scene reflectance under full dry snow cover conditions by applying an advantageous
experimental setup combining airborne hyperspectral imaging and LIDAR data sets from a test region
in Sodankyld, northern Finland. This is particularly useful to the understanding of the composition of
the mixed satellite scene reflectance behavior and it is relation to the natural ground targets’ spectral
signatures.

At first, we demonstrate the effects of varying forest stand characteristics, including Canopy Cover
(CC), Tree Height (TH) and the product of the these parameters referred to as CCXTH, on the reflectance
measured by airborne imaging spectrometer AisaDUAL. Then, we analyze the effects of the presence
of snow on forest canopy on the observed AisaDUAL data. The analysis of the effects of canopy was
enabled by the high resolution LIDAR measurements which provide reference information on forest
canopy characteristics. According to the results the change in Canopy Cover, as well as in CCXTH, is
related to the observed change in reflectance, as well as to changes in such spectral indices as Normalized
Difference Snow Index (NDSI) and Normalized Difference Vegetation Index (NDVI). Additionally, NDSI
was found to vary extensively particularly in dense forests (CC>85%), where the relative variation was
over 100%. This should be considered when applying NDSI-based snow mapping methods in the case of
forested areas. One notable finding was that the relation between the forest characteristics and reflectance
was nearly exponential, while with reflectance indices it was linear. Besides, the results show that NDSI
was a more effective parameter in detecting snow on canopy (values deviated 0.3 on average) than NDVI
(values deviated 0.3 on average) in all Canopy Cover classes. The difference in NDSI between these two
cases, snow-covered and snow-free canopy, increased when the canopy coverage increased.

© 2013 Published by Elsevier B.V.

1. Introduction

temporal behavior are required. Above all, it is crucial to com-
bine the employment of in situ data of the scene characteristics,

The development of improved and accurate methods to describe
satellite-based observations as a function of regionally varying
scene (target) characteristics, i.e. forward modeling, requires
extensive and reliable experimental datasets. The feasibility of
geo/biophysical variable estimates retrieved from satellite-data
is most of all dependent on how reliable is this forward modeling.
Thus, e.g. in developing and improving methods for seasonal snow
cover monitoring in boreal forests, high spatial and spectral reso-
lution information on the investigated scene properties and their

* Corresponding author. Tel.: +358 400 148 747; fax: +358 9 5490 2690.
E-mail address: miia.salminen@environment.fi (M. Salminen).

0303-2434/$ - see front matter © 2013 Published by Elsevier B.V.
http://dx.doi.org/10.1016/j.jag.2013.06.004

coinciding near-range remote sensing reference observations (e.g.
airborne, mast- or ground-based) and satellite observations. Using
optical snow mapping instruments, such as the MODIS (Moderate
Resolution Imaging Spectroradiometer) aboard Terra, specifically
the forest disturbs the snow covered area detection as the trees
prevent the visibility of snow-covered ground. In open areas with
full snow cover the error in detecting snow from a satellite is
usually very tolerable, typically less than 1%, but in forested areas
the error has been found to be much larger, even 76% in Metsamaki
etal. (2012).

Retrieval of fraction of snow covered area (FSC) using opti-
cal data is based on the high reflectance of snow in visible (VIS)
and near-infrared (NIR) wavelengths compared to other natural
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targets (Wiscombe and Warren, 1980). Spectral unmixing meth-
ods for FSC mapping are presented e.g. by Painter et al. (2003)
and Vikhamar and Solberg (2003a,b). Moreover, the algorithm of
NASA/Goddard Space Flight Center estimates the FSC from Normal-
ized Difference Snow Index (NDSI) using linear regression (Hall and
Riggs, 2007; Riggs et al., 2006; Salomonson and Appel, 2004, 2006).
A typical defect with these methods is their weaker performance
over forested areas. The semi-empirical reflectance model-based
method SCAmod for FSC mapping in boreal forest and tundra belt
using optical data was proposed by Metsamadki et al. (2005). SCAmod
originates from radiative transfer theory and describes the scene-
level reflectance as a mixture of three major constituents — opaque
forest canopy, snow and snow-free ground, which are intercon-
nected through forest canopy transmissivity and snow fraction. The
method has proven to be feasible for global scale snow cover map-
ping and is particularly designed to give a good performance also
for forested areas (Metsamadki et al., 2012). However, in SCAmod,
the spatial and temporal variation in the utilized reflectance causes
potential error in the satellite FSC retrieval when different con-
stituents of modeled reflectance have standard constant values in
the parametrization of SCAmod (Metsamadki et al., 2012; Niemi et al.,
2012; Salminen et al., 2009). In order to quantify the magnitude of
this error, high resolution measurements in controlled condition
are required. The usability of satellite data can be improved (e.g.
by better forward modeling) by applying more accurate snow-free
ground, forest canopy and wet snow reflectances as model param-
eters (Metsamadki et al., 2012; Niemi et al., 2012; Salminen et al.,
2009).

High resolution airborne optical measurements of snow-
covered forests accompanied with LIDAR (Light Detection and
Ranging) data-derived detailed forest canopy characteristics enable
an advanced analysis of forest cover effects on space-borne obser-
vations, which is the key novelty of this investigation. The use of
extensive data sets from Sodankyla test region, northern Finland,
enables the development of optical snow mapping method, and
their further validation and regional parameterization. Addition-
ally, the mast-based spectral observations are particularly useful
for determining the temporal behavior of forest scene reflectance
(Niemietal, 2012; Salminen et al., 2009). The effects of tree charac-
teristics on the observed reflectance have been investigated earlier,
while there is less information available on the spectral differ-
ences between various coniferous forest stands in snow-covered
conditions (e.g. Betts and Ball, 1997; Ni and Woodcock, 2000;
Rautiainen et al., 2004). The combined utilization of the airborne
AisaDUAL (Airborne Imaging Spectrometer for Applications) hyper-
spectral data and LIDAR data with full dry snow cover enables the
detailed examination of the effects of the forest stand properties,
such as Canopy Cover (CC) and Tree Height (TH), to the observed
scene reflectance. Moreover, the exploitation of the high spatial
resolution airborne and ground based reflectances acquired under
homogeneous dry snow cover conditions is beneficial for the mod-
eling of the scene reflectance of forested terrain. Additionally, the
airborne AISA and LIDAR data were utilized in the investigation of
the effects of snow on canopy on scene reflectance in different types
of forest. This is a further contribution to earlier work that indicates
the significant influence of snow on canopy to boreal forest albedo
(Kuusinen et al., 2012; Manninen and Stenberg, 2009; Niemi et al.,
2012).

The scope of this research is the modeling of the effect of tree
canopy on snow mapping in boreal forests. In the next step of
the research the results will be used in the developing spectral
un-mixing methods and reflectance model-based snow monitor-
ing. Furthermore, the obtained full spectrum dataset facilitates the
adaptation and development of snow mapping methods for current
and future optical satellite sensors with different optical chan-
nels. To summarize, we apply scene-level observations from aerial

Table 1

The measurement conditions on 18 March 2010 when the canopy was snow-free
and on 21 March 2010 when the canopy was snow-covered. The proportions are
from the area monitored by mast-borne spectrometer analyzed from digital image.

18 March 2010 21 March 2010

at 10:05 UTC at 10:05 UTC
Solar azimuth (°) 175.5 175.7
Solar elevation (*) 21.7 229
Snow depth (cm) 77 83
Grain size (mm) 0.54 0.38
Proportion of snow-free 62.4 39.5
canopy (%)
Proportion of directly 3.8 119
illuminated snow at ground
and on canopy (%)
Proportion of shadowed snow 34.0 48.6
at ground and on canopy (%)
Snow surface temperature (°C) -6 -7
Air temperature (°C) -4 -5

campaigns to provide information on the behavior of optical spec-
tral signatures relevant to the parameterization of forward models
including canopy and ground components.

2. Material and methods
2.1. Study area

Sparse coniferous forest dominates the study area in the
surroundings of the Arctic Research Center of the Finnish Mete-
orological Institute (FMI-ARC) in Sodankyld located in southern
Lapland of Finland at 26.6°E 67.4°N, about 100 km north of the
Arctic Circle and 180 m above the sea level. This sub-arctic envi-
ronment has long, cold continental winters, and it is characterized
by seasonally snow covered forests and open wetlands. In gen-
eral, snow layer in Lapland is rather homogenous until the spring
melt-freeze metamorphosis starts. The Scots Pine (Pinus sylvestris)
dominated forests are characteristic for the area as overall 92% of
forests in southern Lapland are dominated by Scots Pines (fraction
of pines >75%) (METLA, 2010).

2.2. Airborne spectrometer data and processing

The airborne hyperspectral data was acquired utilizing AisaD-
UAL, which combines two sensors. It provides very high spatial
and spectral resolution data covering with VNIR sensor the spec-
tral range of 400-970nm and with SWIR sensor the range of
970-2500 nm. The campaign was carried out in Sodankyld dur-
ing full dry snow cover and ideal weather conditions, i.e. several
minus degrees and cloudless sky, on 18 March and on 21 March
2010 (Table 1). On 18 March, the trees were snow-free and snow
cover on ground was several days old, while on 21 March, the trees
were snow-covered and the snow on trees and ground was newly
fallen (Fig. 1). The hyperspectral data was acquired from helicopter
at the altitude of 800 m producing a spatial resolution of 0.8 m.
The spectral resolution for the VNIR bands was 5 nm and for SWIR
bands 6 nm totaling to 359 spectral bands. The image swath was
240 m and flight lines were several kilometers long. All measure-
ments were carried out in direct illumination (i.e., clear sky: 0/8
to 2/8 cloud cover). In both campaigns, Oxford Technical Solutions
RT4000 GPS/INS was used, which enables high accuracy measure-
ments with low drift rates. The instrument foreoptics unit was set
to look at nadir (0°) direction and the field of view (FOV) was 17°.
The data was radiometrically and geometrically corrected by using
CaliGeo tool by SPECIM in the ENVI software. The AISA data was
first filtered with mean filter using 12 x 12 window corresponding
to pixel size of 10m and then reprojected to the same grid with
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Fig. 1. The forest canopy and grain size on 18 March 2010 on the left and on 21 March 2010 on the right. Snow grain samples are on the 1-mm grid.

LIDAR data. Besides obtaining the correspondence with the LIDAR
data, using the average value for 10 m grid reduces the error caused
by irregular noise. The calibration of the absolute reflectance level
of the AISA observations was performed by applying well calibrated
ASD-spectrometer data from a 30-m high mast. The mast-borne
system (calibrated by a white Spectralon panel) made reflectance
measurements of a forest footprint concurrently with AISA image
acquisitions. To get same level of reflectance for the mast-borne and
AlSA-observations of the forest footprint, calibration coefficients
(for different VIS, NIR and SWIR wavelength ranges) were deter-
mined for the AISA data, see Section 2.4.

The AISA data was investigated using the bands and spec-
tral indices relevant to MODIS snow mapping (Klein et al., 1998)
(Table 2). The bands were extracted from the AISA spectra by using
the band specific FWHM criterion (full width at half maximum) cor-
responding to MODIS bands (Table 2). AISA derived green (555 nm)
and near infrared (858.5nm) bands, and NDSI and NDVI indices,
were compared with the LIDAR based Canopy Cover (CC) and Tree
Height (TH) maps. In addition, the AISA data was compared with
the product of CC and TH, referred to as CCxTH. In order to find out
the correspondence with the total forest canopy volume, CCXTH
values were compared with the 25 m resolution volume of grow-
ing stock (VOL) data, which was calculated from Landsat images
by the Finnish Forest Research Institute (METLA) (Tomppo et al.,
2008). The comparison of these data sets is shown in Fig. 2 indicat-
ing a slightly non-linear relation between VOL and CCXTH values.
The obtained second-degree fit is

VOLgodeiled = —2.5€ — 05 x CCXTH? + 0.081 x CCxTH+17 (1)

Additionally, the comparison of the volume estimates (VOL)
with the LIDAR data-derived Tree Height (TH) and Canopy Cover
(CC)indicated that the product of these factors (CCXTH) has a higher
correlation to total volume than when comparing these variables
solely. Since the data on growing stock volume is not spatially as
accurate as the LIDAR data-based reference information, it is rea-
sonable to apply in the analyses here the CCxTH data instead of
volume estimates retrieved from satellite data.

Table 2
Resampled reflectance bands and indices from AISA spectra.

MODIS bands Central wavelength (nm) Bandwidth (nm)
Band 1 645 620-670

Band 2 858.5 841-875

Band 4 555 545-565

Band 6 1640 1628-1652
MODIS-based indices Formulation

NDSI (Band 4 — Band 6)/(Band 4 +Band 6)
NDVI (Band 2 —Band 1)/(Band 2 +Band 1)

The number of observations (N) (i.e. the amount of 10 m grid
cells) was 50200 except in the investigation of the TH. When the
effect of TH was analyzed, only observations where CC was 30-70%
and TH >1 m (N=19 100) were included in order to reduce the cor-
relation between TH and CC (Fig. 3.). When studying the relation
between the CC and indices, a linear model was fitted. An expo-
nential model was used in describing the relation between the CC
and AISA reflectances. For all the cases, the root mean squared error
(RMSE) was calculated as follows:

1
RMSE = \/ & >~ (Vestim — Vaisa)® 2)

where N is the number of observations, Ve, is the value pre-
dicted by the fitted model (linear or exponential) and Vpsa is the
reflectance or index derived from AISA data. Additionally, the inter-
dependency between the NDSI and NDVI was investigated in the
study area by analyzing the behavior of observations in NDSI-NDVI
space. These indices are used in operational snow mapping, e.g. in
NASA'’s binary snow algorithm a pixel is labeled as snow-covered
if it has NDSI and NDVI values within a certain range taking into
account the forest cover of the pixel (Klein et al., 1998). The effect
of snow on trees on scene reflectance was analyzed by using NDSI

LIDAR-based CCxTH vs Volume of growing stock
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Figure 2. The mean values and the standard deviation of the volume of the growing
stock (VOL) in different CCXxTH classes (CCxTH-values are divided into 15 classes).
The regression lines between CCxTH and the VOL data are also shown. Pearson’s
correlation coefficient R is calculated between the CCXTH and the VOL data as well
as between the modeled VOL values and VOL estimates determined from the coarser
resolution satellite data.



34 K. Heinild et al. / International Journal of Applied Earth Observation and Geoinformation 27 (2014) 31-41

LIDAR-based CC vs TH

R=02
RMSE = 2.69
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Fig. 3. The mean Tree Height (TH) and standard deviation were calculated for
Canopy Cover (CC) classes. A linear regression line between TH and CC is also shown.
R refers to Pearson’s correlation coefficient and RMSE to Eq. (2).

and NDVI indices. They were employed as these indices are less
sensitive to (small) differences in illumination geometry than band
reflectances. AISA imaging spectrometer was set to look at nadir,
which minimizes the effect of solar azimuth. The effect of solar ele-
vation could be expected to be low due to the fact that it varied
maximum 1 degree between the measurements from two days.
Additionally, the relative difference d; between the indices from
two different days was calculated as follows:

st — Ve
(st + Ve )/ 2

where Vi is the AISA data-derived index value (NDSI or NDVI) for
forest with snow-free canopy and V. is the index value for forest
with snow-covered canopy. In the visualization of the mean and
standard deviation for reflectance or index, the forest characteris-
tics are presented in equal interval classes.

dp = x 100% 3)

2.3. LIDAR reference data processing

The reference data covering the airborne spectrometer flight
lines includes airborne high-resolution LIDAR measurements of
forest canopy and terrain topography (Fig. 4). Based on LIDAR

[Carapy
Cover (%)

-
| []
[ e
i [F<tr)

Fig. 4. Utilized AisaDUAL data from 18 March 2010 consists of four flight lines, same
four flight lines was measured on 21 March 2010. In the background is forest Canopy
Cover (CC) map derived from the LIDAR data. Red spot represents the location of
mast-based spectrometer.

measurements at snow-free conditions, a vegetation height map
and a Canopy Cover map were derived for grid cells of 10 m. First,
LIDAR point-cloud data was acquired for Sodankyld area from the
National Land Survey of Finland. After, the point-clouds, with the
point density of at least 0.5 points/m? (distance between each
point approximately 1.4m), were transformed to a vegetation
height raster image with a resolution of 2 m. The vegetation height
was retrieved by creating a digital surface model (DSM) from the
LIDAR point cloud data, and subtracting the ground elevation from
the DSM. The 10 m resolution Canopy Cover (CC) and Tree Height
(TH) maps were both derived from the 2 m resolution vegetation
height map. In the CC map, the value in percentage for each grid
cell was retrieved by calculating the ratio between tree pixels
(vegetation height over 1.5m) and the total number of 2 m pixels
inside a 10 m grid cell. In the TH map, each pixel value in meters
was either the mean value of the low vegetation pixels, or the
mean value of the tree pixels if at least one tree pixel was inside
the 10 m grid cell. The LIDAR measurements were acquired under
leafless conditions, and therefore the CC map was suitable for
AISA-based analysis from snow-covered forests. In the observed
area, there were only sparsely distributed individual deciduous
trees of birch (Betula ssp.) present.

2.4. Mast-borne spectrometer data

In addition to AISA observations, mast-borne spectrometer data
was applied in the study, also for calibrating the AISA data. The
ASD Field Spec Pro JR spectrometer, maintained by the FMI-ARC,
measures radiance from a 30-m-high mast. Spectral range of the
instrument is 350-2500 nm with a spectral resolution about three
nm for the band 350-1000nm and of 10-12nm for the band
1000-2500 nm. The detector is at the end of an adjustable 6-m-
long pole and is tilted 11° from nadir (Sukuvaara et al., 2007). The
sensor azimuth is 110° and the FOV is 25°. The incoming radiation
was determined by measuring the radiance from a white Spec-
tralon panel at a particular wavelength Ljg (1) and by calibrating
the measured radiance as follows:

1 Lea®)
Lrer(2)

where Rcap is the instrument background noise, Lggr is the radi-
ance of the white Spectralon panel from the mast measured
simultaneously with the new white Spectralon panel (Lcar) in the
laboratory, and Lge is the radiance of the white Spectralon panel of
the mast at the time of the measurement.

The mast-borne spectrometer provides radiance data from two
sites: (1) a forest and (2) a forest opening with tree shadows.
For both of these 185m?2 sized areas an average instantaneous
reflectance spectrum and simultaneously acquired digital images
are obtained on a daily basis (Niemi et al., 2012; Salminen et al.,
2009). The in situ (nadir) Canopy Cover in the observed forest stand
is 40%, though the canopy covered 48% of the spectrometer view
due to the tilted imaging angle. The mast-borne reflectance data
from snow covered forest (Fig. 5) from the field campaign dates,
18 March 2010 and 21 March 2010 was utilized. The reflectance
data was used for illustrating the effect of solar position on scene
reflectance with snow-free canopy and with snow-covered canopy.

Lr(A) =

= * Lyei(2) @
CAL(L)

3. Results and discussion

3.1. The effect of tree characteristics on scene reflectance and
indices

Fig. 6 presents the mean reflectance or index values and
standard deviation for each Canopy Cover (CC) equal interval class
of 10%-units (5% from the mean CC value). We found that CC
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Fig. 5. The specific forest area of mast-borne ASD spectrometer measurements.

is nearly linearly related to both NDSI and NDVI, see Fig. 6¢ and
d. Also, the exponential relation between CC and the reflectance
at wavelengths 555 nm and 858.5 nm is considerable (Fig. 6). The
reflectances decreased, when the CC increased, due to the low
reflectance of forest canopy compared to snow in the visible wave-
lengths (Fig. 6a and b). However, in this case the decrease of
reflectance with increasing CC appears to obey an exponential func-
tion a x exp(b x CC), which is fitted to the Fig. 6a and b. This appears
to be in an agreement with modeling results, see e.g. Metsamaki
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et al. (2005, 2012), Niemi et al. (2012), Salminen et al. (2009),
Schlerf and Atzberger (2006). As CC has such a strong correlation
with the scene reflectance, it is beneficial to include valid forest
canopy transparency information (i.e. the proportion of the radi-
ation that penetrates through the tree canopy layer) as input to
satellite data retrieval algorithms. This is the case with the SCAmod
that employs the forest canopy two-way transmissivity informa-
tion. Ni and Woodcock (2000) investigated the effect of Canopy
Cover on forest albedo and found that also the forest albedo varied
dramatically as a function of Canopy Cover when the ground was
snow covered. They also noticed that when CC > 70% the presence of
snow had only a minor effect on the observed albedo. This coincides
well with our results in Fig. 6, where the reflectances did not vary
considerably within the three highest CC classes (75-100% CC).
Additionally, we found, that the standard deviation of the
reflectances decreases with increasing CC, while NDVI and NDSI
behaved oppositely gaining low variability in sparse forests
(i.e. variation increases when CC gets higher). In dense forests
(CC>85%), the relative variation of NDSI was over 100% while in
sparse forests (CC<45%) it was less than 30%. This agrees with
the findings by Niemi et al. (2012), where NDSI and NDVI were
less sensitive to variations in illumination geometry (including the
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Fig. 6. (a) Green band reflectance (555 nm), (b) NIR band reflectance (858.5 nm), (c) NDSI and (d) NDVI, and the standard deviation, for forests with varying Canopy Cover
(CC). CC-values are divided into 11 classes. Mean values and standard deviations are depicted for each class. The exponential regression lines data (a x exp(b x CC)) between
CC and reflectances and linear regression lines between CC data and indices are also shown. R is Pearson’s correlation coefficient between the indices and TH and RMSE is
calculated using Eq. (2).
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Fig. 7. The relation between Tree Height (TH) and (a) green band reflectance (555 nm), (b) NIR band reflectance (858.5 nm), (c) NDSI and (d) NDVL R is Pearson’s correlation

coefficient between the indices and TH.

amount of shadows) in open areas. Moreover, illumination geome-
try induced large variation in the obtained reflectances. Results by
Niemi et al.(2012) showed that it is beneficial to apply these indices
for snow mapping in sparsely vegetated or open areas, based on
the analysis of time-series of mast-based observations at single
site (Sodankyld mast). This agrees well with the results obtained
here using spatially distributed airborne observations. On the other
hand, in forests the indices varied strongly, similar to our findings
in dense forests. Cao and Liu (2006) have correspondingly found
that the variation in NDSI (caused by e.g. solar zenith angle and
instrument view angle) increased with decreasing snow covered
area.

The Pearson’s correlation coefficient (R) between the TH and
AISA data-derived reflectances or indices was not as strong as that
in the case of CC (Fig. 7). When TH was around 5 m, the reflectance
varied in the range of 80%. This might be explained by the varia-
tion in CC, though the lowest (<30%) and the highest (>70%) values
of CC were excluded from the analysis. According to results, TH
seems to correlate negatively with the reflectance values. Consis-
tently with the CC, Fig. 7 illustrates that the response of reflectance
tothe increase of TH is merely nonlinear than linear. The reflectance
is predominantly less than 0.2 in the band of 555 nm when the
trees are higher than 15 m (Fig. 7a). The study of Heiskanen (2006)
showed that the accuracy of the Tree Height estimates in the

tundra-taiga transitions reduced around 10% when multispectral
nadir data was used together with the multi-angle data, when com-
pared with the utilization of multispectral nadir data only. Similar
improvements were found in the case of tree cover. When indices
were plotted in the Canopy Cover and Tree Height space an inter-
esting effect is observed for dense forests (Fig. 8): NDSI decreases
for the highest and densest forests whereas NDVI increases with
the increasing TH for all CC levels.

The behavior of reflectance and channel indices as a function
of CCXTH is investigated in Fig. 9. As shown by Fig. 2, the product
CCXTH has a slightly non-linear relation with the volume of grow-
ing stock. As the level of ground biomass is related to the volume
of the growing stock (e.g. Boudewyn et al., 2007), CCxTH is also
related to the level of biomass. Fig. 9 indicates that the reflectances
observed at the 555 nm and 858.5 nm bands decrease non-linearly
as a function of CCxTH. The sensitivity of NDSI and NDVI to the
increase in CCXTH is also considerable with a negative nearly lin-
ear response in the case of NDSI and a positive response in the
case of NDVI. Muukkonen and Heiskanen (2005) found that par-
ticularly green band reflectance was sensitive to tree biomass and,
correspondingly to our CCxTH results, the shape of the correlation
between the green band and biomass was more nonlinear than lin-
ear (Fig. 9a). NDVI has a low value in all cases with a low level of
CCXTH. The increase of NDVI with increasing CCxTH is clear, but
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Fig. 10. The correlation between the NDSI and NDVI based on AISA observations
with fully snow-covered open and forested areas (CC=0-100%). R is Pearson’s cor-
relation coefficient between NDSI and NDVI and RMSE is calculated with Eq. (2).

also the variation significantly increases (Fig. 9d). Rautiainen et al.
(2004) found that reflectances increase with increasing crown vol-
ume, but in our case with CCxTH the correlation was negative. This
is because the ground is covered by snow, and therefore, has high
VIS and NIR reflectance dominating the signal at scene-level.

In addition, e.g. Fig. 9 illustrates that NDSI tends to get also neg-
ative values when CCxTH increases. The lowest observed NDSI was
as low as —0.47 for forest area with CC of 76%, CCxTH of 980 and
NDVI of 0.63. This coincides well with the results by Niemi et al.
(2012) obtained by using mast-borne spectrometer data where the
NDSI was found to obtained negative values in the forest with CC of
40%. Similarly, Klein et al. (1998) modeled negative NDSI values in
snow-covered forest stands, but the limit of NDSI to classify pixel
as snow-covered in NASA’s snow mapping method is set to mini-
mum of 0.1 (Hall et al., 1998; Klein et al., 1998; Riggs et al., 2006).
This is to avoid false snow interpretations in the case of snow-free
conditions, as similar values for snow-free forests were obtained.
In NASA'’s algorithm the threshold value for NDSI to detect snow
cover depends on the NDVI value. In Fig. 10 is showed this region
of MODIS binary snow algorithm which is set to detect snow cover.

Forest site on 18 March 2010
Snow-fren canopy & Funtus, 34
— 1T, 425, 3
----- 17+, 25%, 107

ASD refiectance
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Additionally, Fig. 10 demonstrates the behavior of NDSI against
NDVI based on AISA observations on 18 March 2012 in fully snow-
covered areas (snow-free canopy, snow depth about 80cm, see
Table 1). NDSI and NDVIwere found to be nearly linearly correlated.
However, the spread in the observations is high, even though the
measurement conditions were rather stabile during the data acqui-
sition that was carried out within 1 h. Thus, the variation is probably
induced by forest characteristics. Most of the negative NDSI values
were found in the forests where NDVI was >0.3. Xin et al. (2012)
has described that the NDSI value determined using MODIS satellite
images is prone to the changes in View Zenith Angle (VZA). They
found that when VZA increases, NDSI decreases. In the case of AISA
data, the effect of the variation of the VZA is negligible with the FOV
only 17° and allows us to investigate the relation between NDSI and
NDVI without the disturbance of VZA. The NDSI-NDVI relation will
be further investigated with AISA data acquired in snow-free con-
ditions right after snow melt to discover the proper limits of NDSI
to capture snow in boreal forests.

3.2. The effect of snow on canopy on spectral behavior of
reflectance and indices

The applied AISA data set and the mast-based ASD spectrome-
ter observation data set enabled the investigation the difference
between the scenes with snow-free and snow-covered forest
canopy. The presence of snow on canopy is a regular phenomenon
in high latitudes and has been found to effect strongly on forest
reflectance and albedo, see results e.g. by Manninen and Stenberg
(2009) and Niemi et al. (2012).

In particular, the mast-based observations are used here
to demonstrate the effect of illumination geometry on scene
reflectance in both cases (Fig. 11). The results for snow-free and
snow-covered canopies are analogously showing an increased level
of reflectance for the case of backscatter. However, the effect of solar
azimuth angle (with respect to instrument view angle) is stronger
in the case of snow covered canopy for the infrared region (Fig. 11,
right). Correspondingly, Kuusinen et al. (2012) found large varia-
tionin pine forest albedo, when the canopy was fully snow-covered.
They deduced that changes in illumination conditions as well as the
amount and properties of snow caused the variation. According the
results from mast-borne spectra, the differences in the calibration
or illumination geometry may cause variation to the reflectances
from these two measurement days and only indices were employed
in further investigations on canopy effect. The overall low values

Forest site on 21 March 2010
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Fig. 11. The effect of solar elevation 6, fraction of shadowed snow Fgpq snow and the relative azimuth Ag on scene reflectance of forest area in dry snow conditions. The sun is in
the direction of instrument view when Ag =0 (case of forward scatter). Dashed curves and solid curves represent backscattered and forward scattered spectra, respectively.

Left: Snow-free canopy. Right: Snow-covered canopy.
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refers to Pearson’s correlation coefficient and RMSE to Eq. (2).

especially in the visible wavelengths of the mast-borne spectra
(Fig. 11, left) might be caused by the relatively high trees in the for-
est stand (TH around 12 m), as the mean reflectance e.g. in 555 nm
is 0.27 with std of 0.12 when TH is 12 m (see also Fig. 7a).

Fig. 12 depicts the AISA data-derived response of NDSI and
NDVI to increase in CC, TH and CCxTH. For all Canopy Covers,

snow-covered canopy introduces higher NDSI compared to snow-
free canopy. The behavior of NDVI is the opposite. The strong effect
of snow-covered canopy on forest albedo has been found in var-
ious investigations, see e.g. Manninen and Stenberg (2009) and
Kuusinen et al. (2012). According to our results, the difference in
indices between forest with snow-free and snow-covered canopy
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Table 3

The NDSI and NDVI for forest scene with snow-free canopy Vi and snow-covered canopy Vs. and their relative difference d; for different forest categories.

Canopy Cover 10-30% Canopy Cover 30-50%

Canopy Cover 50-70% Canopy Cover 70-90%

Vst Ve d; Vs Ve d; Vst Ve dr Ve Ve d;
NDSI 0.58 0.80 —32% 0.48 0.75 —43% 0.37 0.68 —60% 0.23 0.59 —88%
NDVI 0.10 0.02 123% 0.16 0.08 65% 0.23 0.13 54% 0.29 0.18 49%

increases when the CC or CCxTH increases. In addition, the varia-
tion in NDSI increases when CC increase, which can be seen from
the behavior of standard deviation (Fig. 12). However, the snow-
covered canopy reduces this variation. Table 3 presents a summary
of the indices as well as relative difference (Eq. (3)) between the
two cases. The difference between the snow covered and snow-free
canopy is more than 30% in all CC classes in the case of both indices.
The relative difference in NDVI increases when CC decreases. The
relative difference of NDSI behaves oppositely i.e. increases when
CC increases. This sensitivity of NDSI to the presence of snow on
canopy in dense forests is explained by the higher change in total
snow covered area (consisting of both snow on the ground and on
the canopy). However, the lower impact of snow-covered canopy
on NDSI especially in sparsely forested areas, where the proportion
of snow-covered area is high (the visibility to snow layer is more
extensive than in denser forests), might be partly explained by the
smaller grain size of new snow. The increasing grain size as well as
snow aging has been found to raise the NDSI value (Negi et al., 2010;
Niemi et al., 2012). Niemi et al. (2012) found the strong impact of
snow-covered canopy on NDSI and NDVI from mast-borne spec-
tra. The CC of the area illuminated by mast-borne spectrometer
is 40%. In that case the relative difference was 156% for NDSI and
46% for NDVI. The higher impact on NDSI is explained by the dif-
ferences in instrument viewing angle; AISA has a nadir view while
the mast-borne spectrometer viewing angle is 11°. Xin et al. (2012)
has found that in snow-covered forests NDSI decreased when VZA
increased. They also discovered that with small VZA the effect was
lower in sparse forest stands compared to dense forests. Overall,
Fig. 12 depicts that NDSI values between snow-free and snow-
covered canopy overlap less (deviated 0.31 on average) than in the
case of NDVI (values deviated 0.10 on average) suggesting to utilize
NDSI to detect the snow on canopy.

4. Conclusions

The behavior of remotely sensed spectral reflectance in selected
bands, as well as the NDSI and NDVI, was found to be strongly
affected by the spatial variations of forest canopy characteristics. An
important finding was that the relation between the forest canopy
properties and the observed reflectances shows a nonlinear curve,
whereas with the investigated indices this relation is nearly linear.
Canopy Cover (CC) as well as the product of CC and Tree Height (TH)
CCxTH (corresponding with the volume of growing stock as well
as with biomass), correlated rather well with the NDSI and NDVI
(Pearson’s correlation coefficient was 0.8). The obtained results
demonstrate the feasibility of NDSI and NDVI for snow monitoring
algorithms to detect snow cover underneath the forest canopy, but
only for relatively sparse forests or in non-forested areas. In dense
forest, the indices are less sensitive in detecting snow covered ter-
rain, which is indicated by the increase of the variance of indices
when CC increases, see Fig. 6b and c. Especially with high NDVI
(>0.3), NDSI was found to show also negative values (even —0.5,
with NDVI=0.6). This large variation in the NDSI values depending
on forest characteristics should be considered in NDSI-based snow
mapping methods in case of forested areas.

When NDSI and NDVI of forests with full under-canopy snow
cover were investigated with snow on canopy and with snow-free

canopy, the results show NDVI values were almost similar (devi-
ated 0.10 on average) for the scene with snow-covered canopy and
snow-free canopy, whereas the NDSI values deviated more clearly
(0.31 on average) between these two cases. The relative difference
of NDSI between the two conditions increased with increasing CC.

These results could be used in the validation of the transmis-
sivity data by analyzing their dependency on forest characteristics.
This is important in order to reduce the obscuring effect of for-
est canopy over snow cover and to improve the accuracy of snow
mapping algorithms. Moreover, the AisaDUAL data enables the
improvement of the forward modeling using full spectral range,
which is valuable as the terrain physical properties affect various
spectral regions. Furthermore, the obtained full spectrum dataset
facilitates the adaptation and development of snow mapping meth-
ods for current and future optical satellite sensors with different
optical channels.
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This work aims at the development and validation of a zeroth order radiative transfer (RT) approach to describe the
visible band (555 nm) reflectance of conifer-dominated boreal forest for the needs of remote sensing of snow. This
is accomplished by applying airborne and mast-borne spectrometer data sets together with high-resolution infor-
mation on forest canopy characteristics. In case of aerial spectrometer observations, tree characteristics determined
from airborne LIDAR observations are applied to quantify the effect of forest canopy on scene reflectance. The re-
sults indicate that a simple RT model is feasible to describe extinction and reflectance properties of both homoge-
neous and heterogeneous forest scenes (corresponding to varying scales of satellite data footprints and varying
structures of forest canopies). The obtained results also justify the application of apparent forest canopy transmis-
sivity to describe the influence of forest to reflectance, as is done e.g. in the SCAmod method for the continental scale
monitoring of fractional snow cover (FSC) from optical satellite data. Additionally, the feasibility of the zeroth order
RT approach is compared with the use of linear mixing model of scene reflectance. Results suggest that the non-
linear RT approach describes the scene reflectance of a snow-covered boreal forest more realistically than the linear
mixing model (in case when shadows on tree crowns and surface are not modeled separately, which is a relevant
suggestion when considering the use of models for large scale snow mapping applications).

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

Keywords:

Snow reflectance

Remote sensing of snow

Boreal forests

Space-borne observed scene reflectance
Seasonal snow

(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

The appearance of seasonal snow cover and its melting dominate the
annual hydrological and climatic patterns in vast regions of boreal
forests and tundra in the Northern Hemisphere. Spatial and temporal
changes in global snow cover are strongly connected to changes in
Earth surface albedo and permafrost, and they, in turn, can have large
effects on global carbon cycling, radiation balance and climate condi-
tions (Barnett, Adam, & Lettenmaier, 2005; Betts & Ball, 1997; Brown
& Mote, 2009). The Northern Hemisphere snow cover extent has
decreased since the mid-1900, in particular in spring, due to climate
change (Brown & Mote, 2009; Choi, Robinson, & Kang, 2010;
Robinson, Dewey, & Heim, 1993; Vaughan et al.,, 2013). Long-term
time series of satellite data estimates on seasonal snow cover extent
(and its albedo) are needed for constructing climate data records
(CDR) essential for climate research whereas near-real-time observa-
tions are needed for hydrological forecasting and water resource

* Corresponding author at: Finnish Meteorological Institute, P.O. Box 503, FI-00101
Helsinki, Finland. Tel.: +358 50 4485476.
E-mail address: miia.salminen@fmi.fi (M. Salminen).

http://dx.doi.org/10.1016/j.rse.2014.09.004

management; see e.g. Hall and Riggs (2007) and Vaughan et al.
(2013). Currently, the available optical satellite data records for the
Northern Hemisphere snow monitoring reach back for several decades;
nearly 50 years (Robinson et al.,, 1993; Vaughan et al., 2013). Various al-
gorithms for different sensors are summarized and evaluated by Dietz,
Kuenzer, Gessner, and Dech (2012), Frei et al. (2012) and Nolin
(2010). The usefulness of satellite data based results is strongly depen-
dent on the quality of the interpretation (Hall & Riggs, 2007; Rittger,
Painter, & Dozier, 2013). Imprecise remote sensing retrievals used as
input may cause uncertainties to climate change predictions and hydro-
logical modeling results (Rittger et al., 2013; Robinson et al., 1993;
Vaughan et al., 2013). Despite the several feasible approaches to snow
mapping there are defects that decrease their performance, e.g. the
presence of cloud cover (Dietz, Wohner, & Kuenzer, 2012; Hall &
Riggs, 2007). Lower accuracy in snow mapping is also typical in the
transitional snowmelt areas and especially in the case of forested re-
gions (Dietz, Kuenzer, et al., 2012; Hall & Riggs, 2007; Rittger et al.,
2013). The effect of forest cover to the satellite observations applied to
snow monitoring is the topic of this study.

The binary (two classes: snow-covered or snow-free) methods, such
as the National Oceanic and Atmospheric Administration (NOAA)

0034-4257/© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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multisensor snow mapping method or the National Space Administra-
tion (NASA) Global Moderate Resolution Imaging Spectroradiometer
(MODIS) snow map production, are mostly effective in large scale
snow detection yielding products with good spatial and temporal reso-
lution (Hall, Riggs, Salomonson, DiGirolamo, & Bayr, 2002; Helfrich,
McNamara, Ramsay, Baldwin, & Kasheta, 2007; Ramsay, 1998). Howev-
er, there are extensive areas in the northern latitudes with seasonal
snow (annual accumulation and ablation of snow), where relatively
large satellite data pixels are not fully snow covered or snow-free. More-
over, the satellite footprint often contains both forested and non-
forested proportions in regions with seasonal snow causing wide-
ranging problems in snow mapping when optical methods are used
(Hall & Riggs, 2007; Hall, Foster, Salomonson, Klein, & Chien, 2001,
Hall, Foster, Verbyla, Klein, & Benson, 1998; Klein & Barnett, 2003;
Klein, Hall, & Riggs, 1998; Nolin, 2004; Parajka & Bloschl, 2006).
Metsdamaki et al. (2012) showed that MODIS baseline algorithm for
FSC mapping (Salomonson & Appel, 2004, 2006) tends to strongly un-
derestimate snow cover, in particular under dense canopy. The trees
prevent visibility to snow covered or snow-free forest floor, whereas
the crown layer and the related shadows contribute to the satellite ob-
servations. Apart from that, the proportion of (snow covered or snow-
free) forest floor visible to the satellite sensor varies according to the
sensor view zenith angle (Liu et al., 2008; Nolin, 2004). The inevitably
erroneous binary mapping results for the boreal forest zone impair the
further exploitation of the snow mapping retrievals; this includes the
obtained often artificially narrow continental scale snowline instead of
the actual wider transitional patchy snow zone.

Further approaches have been developed to obtain the fraction of
snow covered area i.e. the fractional snow cover (FSC) within a pixel
(Painter, Dozier, Roberts, Davis, & Green, 2003, Painter et al., 2009;
Salomonson & Appel, 2004, 2006; Vikhamar & Sohlberg, 2002,
Vikhamar & Solberg, 2003 ). Nonetheless, majority of the developed lin-
ear unmixing methods assume that the tree crowns are opaque (Painter
et al., 2003, 2009; Vikhamar & Sohlberg, 2002, Vikhamar & Solberg,
2003). Several studies indicate that the other FSC retrieval algorithms
also have problems in discerning snow beneath forest canopies
(Metsamadki, Vepsdldinen, Pulliainen, & Sucksdorff, 2002; Nolin, 2010;
Rittger et al., 2013; Salomonson & Appel, 2004). To compensate the ad-
verse influence of the forest canopy to snow algorithm performance,

Table 1

these effects have to be reliably modeled. Often, snow mapping algo-
rithms are founded on an inverse solution of a forward model that de-
scribes the satellite observation. The success of the method over
forested regions is dependent on how well the model represents the
forest canopy effect. So far, there are three methods for the forward
modeling of forest effects in optical remote sensing of snow (Table 1).
In the case of boreal forests, trees are apparently not opaque (see e.g.
Painter et al., 2003, 2009 and Schlerf & Atzberger, 2006). Therefore, al-
gorithms that treat forest canopy as a partially transparent layer have
been developed and also implemented for operational use. An example
of such approach is the SCAmod method for the mapping of FSC
(Metsamadki, Anttila, Huttunen, & Vepsaldinen, 2005). SCAmod has
been applied to a hemispheric scale in ESA DUE-GlobSnow (Luojus
et al., 2010; Metsamadki et al., 2012). In SCAmod, forested areas are con-
sidered as a single forest canopy layer (permeable to light), character-
ized by a canopy transmissivity and reflectance according to the
zeroth order radiative transfer theory. The apparent forest transmissiv-
ity in SCAmod is related to the fraction of forest floor visible from above
and the penetration of light through the canopy. Basically, more ad-
vanced methods can be constructed by combining radiative transfer
for considering trees and physical optics to account for openings be-
tween the trees (Li, Strahler, & Woodcock, 1995; Liu et al., 2008;
Rosema, Verhoef, Noorbergen, & Borgesius, 1992; Schlerf & Atzberger,
2006). This kind of models can be called as hybrid models.

Table 1 summarizes the three basic modeling approaches for forest
canopy effects to scene reflectance; geometrical optics (GO) with
opaque trees, radiative transfer (RT) and hybrid modeling. Additionally,
some typical empirical snow retrieval algorithms are listed in Table 1.
These empirical algorithms are often based on the employment of
NDSI (with thresholding) (Hall et al., 2002; Salomonson & Appel,
2004, 2006). Apart from using NDSI, NDVI (derived during summer)
can be useful in snow algorithms to estimate vegetation density when
the goal is the reduction of disturbances due to forests (Nolin, 2004). Al-
ternatively, static maps of land cover or forest properties could be con-
sidered as input to snow algorithms but they suffer from infrequent
updating. Hall et al. (1998), Klein et al. (1998) and Nolin (2004) sug-
gested the estimation of forest properties by using satellite observations
on fully snow covered forests. These can be considered preliminary to
the SCAmod that has operationally applied this approach. The SCAmod

Methods for the forward modeling of forest effects in optical remote sensing of snow and related snow parameter retrieval algorithms. Selected examples of empirical snow mapping

methods applied to forested regions are also included.

Author Forward (forest) model

Related (snow) inversion approach

Comments

GO (geometrical optics)
Li & Strahler (1985)° (Linear) spectral mixing -
Painter et al. (2003, 2009) -II-

Vikhamar and Sohlberg (2002), -II-
Vikhamar and Solberg (2003)

Salminen et al. (2009) -lI- -
GO + RT (hybrid)

Schlerf and Atzberger (2006) INFORM -

Rosema et al. (1992) FLIM -

Niemi et al. (2012) - -

Liet al. (1995) GORT -

Liu et al. (2008) GORT -

RT radiative transfer

Metsamadki et al. (2005, 2012) Zeroth order RT

Klein et al. (1998) GeoSAIL -
Salomonson and Appel (2004, 2006) - Empirical
Hall et al. (2002) - -lI-

(Linear) spectral unmixing
Dozier, Green, Nolin, & Painter (2009) -II- (Linear) spectral unmixing
(Linear) spectral unmixing

Analytical inverse solution

GO considers tree canopy opaque

Forest stand model

MEMSCAG, MODSCAG (RT)" for FSC

FSC, Albedo

SnowfFor for snow-covered forest, SnowFrac for FSC

No shadowed/sunlit canopy components considered

Hybrid considers tree canopy non-opaque, otherwise as GO
More sophisticated/complex to FLIM

Simplified model similar to INFORM

Simplified model similar to FLIM and INFORM

Spectral mixing forward model®

Viewable (forest) Gap Fraction (VGF) estimated®

RT considers tree canopy non-opaque (turbid medium)
SCAmod for FSC

Thresholds for MODIS binary algorithm

Linear regression algorithm (using NDSI) for FSC*
Snow binary classification using NDSI and NDVI'

2 Later spectral mixing models are based on Li and Strahler (1985) that consider shadows and directly illuminated background.

b

€ For partially non-opaque forest canopy.

4" Airborne LIDAR data-aided model parameterization.
¢ MODIS fractional method.

T MODIS binary method based on Klein et al. (1998).

Reflectance of the opaque tree canopy can be calculated for MODSCAG using the RT model (Liu et al., 2008; Painter et al., 2009).
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algorithm is an example of an approach that attempts to compensate for
the effects of forest cover based on the use of the zeroth order RT ap-
proach for the forward modeling of the influence of forest canopy
(Metsamaki et al., 2005, 2012). In practice, this is carried out with the
aid of forest canopy transmissivity estimated from the optical satellite
data that represents full snow cover conditions. More complicated hy-
brid forward modeling approaches have been also investigated in case
of boreal forests, e.g. by applying mast-borne spectrometer observations
where shadowing effects and gaps between trees have been considered
(Niemi et al., 2012). This Niemi et al. (2012) model can be considered as
a simplification of the approach used by Schlerf and Atzberger (2006).
However, hybrid approaches are complicated and thereby difficult to
apply to the satellite data inversion. Thus, the topic of this paper is con-
cerned whether a simple zeroth order RT approach - that considers for-
ests of a satellite pixel as a single layer of turbid medium - is valid for
boreal forests and whether this approach applies to different scales.
This is also a central issue concerning the basis of the SCAmod algorithm.

Earlier investigations of forest canopy effects in boreal forest zone
have indicated that the assumption of opaque canopy does not hold,
as discussed above. This is also apparent from the earlier work with
data from the Sodankyli site (the experimental region of this investiga-
tion), as the hybrid approach in Niemi et al. (2012) indicated better
agreement with observations than the (simplified) GO approach
(Salminen, Pulliainen, Metsamaki, Kontu, & Suokanerva, 2009). Thus,
the hybrid approaches are arguably physically most accurate for boreal
forests. However, physical approaches are difficult for inversion pur-
poses due to the model complexity. Therefore, a simpler RT approach
is thoroughly investigated and validated here. This is accomplished by
quantifying the effect of forest canopy on scene reflectance using tree
characteristics determined from airborne LIDAR observations of high
spatial accuracy. These data are compared with the predictions by the
zeroth order RT modeling. The investigations are carried out at the con-
dition of full thick snow cover on ground and with snow free canopy,
which enables the separation of the effect of trees from that of soil/un-
derstory vegetation. The RT model performance is further compared
with simplified linear GO approach (analogous to Li & Strahler, 1985),
in order to find out whether the RT approach with a single forest canopy
layer (in a footprint) explains the observations better than the simpli-
fied GO approach. The investigated and compared forward modeling
approaches are such that they are feasible for the continental scale sat-
ellite data inversion, i.e. to be used for snow cover monitoring if detailed
information on tree distribution are not available for a pixel scale (in-
stead only bulk characteristics such as mean tree height, stem volume,
canopy cover or apparent forest canopy transmissivity were available).

The investigation is carried out in Sodankyld region, northern
Finland, which is a typical example of a classical boreal forest site. The
airborne imaging and mast-borne forest plot monitoring spectrometer
data sets provide unique material to investigate (a) the spatial behavior
of scene reflectance at boreal forests and (b) the temporal variability of
forest scene reflectance due to varying illumination geometries. The re-
sults shown here focus on the wavelength channel of 555 nm as this re-
gion is essential for the remote sensing of snow, and since earlier
investigations for the Sodankyld site (Heinild et al., 2014) demonstrated
the results for other wavelength regions. The investigation is also re-
stricted to the case of near-nadir observations due to the applied exper-
imental data sets.

2. Materials
2.1. Test area, land cover and forest information

The test area in Sodankyld, northern Finland, represents a typical
conifer-dominated northern boreal forest. The dominant species in the
Sodankyla region are Scots pine and Norway spruce. Pine-dominated
forests comprise 92% of the total forest area of the southern part of Finn-
ish Lapland (METLA, 2010). Birches including dwarf birches are typical

at wetlands. Fig. 1 shows the scenery of typical pine forests of the
area. The detailed forest canopy characteristics corresponding to the air-
borne reflectance data acquisition are summarized in Table 2. In addi-
tion to the region of airborne surveys, the multi-temporal mast-borne
spectrometer experiments were carried out for a single forest plot coin-
ciding one of the flight lines. This particular plot represents pine forest
on mineral soil with a canopy cover C = 40%. Fig. 2 shows the land
cover map of the study area with flight lines of airborne spectrometer
observations (see also Fig. 4 in Heinild et al. (2014)).

The forests of the Sodankyld test area are also inventoried using Air-
borne Laser Scanning (ALS), i.e. LIDAR observations. Tree characteristics
determined from these data were applied as main reference data on for-
est properties of the site. The ALS data, with a point density of at least
one point per 2 m?, were provided by the National Land Survey (NLS)
of Finland. These observations were used to create canopy cover per-
centage (C) and tree height (H) maps for a spatial ground resolution
of 10 m. The first step in processing the LIDAR data was to create vege-
tation height (H) grids with a pixel size of 1 m for the Cretrieval and 2 m
for the H retrieval. The vegetation height grids were generated first by
subtracting the ground level height (Digital Terrain Model) from the
top of the vegetation height (Digital Surface Model) and then, by
converting the resulted point cloud to grids of 1 m and 2 m pixel size.
The second step was to generate the C map from the 1 m H grid and
the H map from the 2 m H grid. The C was generated first by classifying
1 mby 1 m-sized pixels to either tree or no tree based on the height (the
limit being 1.5 m) derived to ALS observation of that pixel. Then, the
ratio between tree pixels and all pixels inside a grid cell of 10 x 10 m
was calculated. The H map was generated by 1) removing low vegeta-
tion and water; 2) applying a circle shaped dilation (maximum) filter
with a radius of 2 pixels (equivalent to 4 m on the ground) and; 3) cal-
culating the mean height inside a grid cell of 10 x 10 m. The quality con-
trol for the retrieved maps was performed (at the spatial resolution of
20 m) by evaluating the retrieved maps against corresponding National
Forest Inventory (NFI) digital maps (Tomppo, Haakana, Katila, &
Perdsaari, 2008). For example, the correlation coefficient between NFI-
and ALS-based C was found to be r = 0.72, RMSE = 11.8%-units and
BIAS = 0.89%-units.

2.2. AISA airborne imaging spectrometer data

The employed airborne spectrometer data set was acquired on
March 18,2010 at cloud-free conditions; see Heinild et al. (2014) for de-
tails. Trees were snow free during the airborne campaign, and the snow
pack was dry (temperature —6 °C on average) and the air temperature
was —4 °C at 10 UTC. Further, as described in Heinild et al. (2014),
the AISA imaging spectrometer data were radiometrically and

Fig. 1. Scots pine-dominated northern boreal forests at the Sodankyld site.



306 J. Pulliainen et al. / Remote Sensing of Environment 155 (2014) 303-311

Table 2
Tree canopy characteristics of the Sodankyld test area at spatial scales of 10 m and 100 m
(mineral soil and peat lands).

Forest characteristic Mean Median Min/Max Standard deviation
Canopy cover, C (%)

10 m 244 225 0/100 203

100 m 247 249 0/59 15.1

Stem volume, V (m°/ha)

10 m 337 28.0 0/179 311

100 m 334 31.7 0/113 241

Tree height, H (m)

10 m 75 7.3 0/24.2 5.1

100 m 71 72 0/17.8 43

geometrically corrected and mean-filtered to pixel size of 10 m. This in-
vestigation is performed using this 10 m gridded data together with
AlLS-based forest parameter data processed to the same grid. Fig. 3 de-
picts an example of the gridded airborne AISA spectrometer data at
the channel of 545-565 nm used for analyses here (corresponding to
MODIS band 4).

Since the field of View (FOV) of AISA observations is 17°, the analy-
ses here are limited to near-nadir angles of observation (from 0° to 8.5°
off nadir). As indicated in Fig. 2, the flight lines have varying orienta-
tions. Additionally, they were measured during an interval of one
hour. Thus, the Sun zenith angle is close to 70° for all observations and
the azimuthal angle difference between the direction of illumination
and measurements has a relatively high range from 45° to 135°. As a
consequence, both backscattering and forward scattering geometries
are included in the airborne spectrometer data set.

2.3. Mast-borne and field spectrometry

The applied data sets include mast-borne ASD spectrometer obser-
vations from the day of airborne data acquisition (March 18, 2010), ac-
companied with observations from 12 days during the spring-winter of
2013 (also representing full snow cover conditions). All observations
represent the same forest plot with the same sensor azimuth and look
angle characteristics (measurement angle 11° off nadir); see Niemi
et al. (2012) and Salminen et al. (2009) for details. These data are
used for the analysis of the variability of forest scene reflectance due
to varying illumination and viewing conditions. Since several mast-

Forest Canopy Cover Fraction

Fig. 2. AISA data from 18 March 2010 comprise four flight lines (depicted in black color).
The underlying forest canopy cover (C) fraction is derived using LIDAR data.
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Fig. 3. A close-up of 18 March 2010 AISA data (above) and the corresponding canopy cover
fraction obtained by using LIDAR data.

borne measurements were conducted for each day of observation, the
data set includes both forward and backscattering geometries (corre-
sponding to airborne data set). The Sun zenith angle varies from 59.0°
to 77.2°, and the Sun azimuth and sensor view angle difference is from
2.7° to 136.5°. All data represents dry snow conditions with thick
snow pack (tree canopy snow free).

In addition to mast-borne observations, nadir view-angle field spec-
trometry measurement of natural snow packs using a similar spectrom-
eter system was applied to incorporate information on average level of
dry snow reflectance (Salminen et al., 2009).

3. Methods

The scene reflectance of a (partially) snow-covered boreal forest at
the wavelength A can be modeled by an approach incorporating the re-
flectance contributions of snow-covered ground pj snow and snow-free
ground P, ground, and by considering the forest canopy as a partially
transparent reflecting layer. When the model is based on the zeroth
order solution of the radiative transfer equation (RT), the parameters
that define the effects of the tree layer are the reflectance of an opaque
forest canopy px orest 2nd the two-way forest canopy transmissivity t*
(Metsamdki et al., 2005, 2012; Pulliainen, Heiska, Hyyppd, &
Hallikainen, 1994; Salminen et al., 2009). Additionally, analogous ap-
proaches for the canopy transmissivity, or transmittance, with a differ-
ent notation have been used e.g. by Schlerf and Atzberger (2006).
Based on this approach, if the fraction of the terrain covered by snow
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is denoted by FSC (ranging from O to 1), the model for the observed re-
flectance Rp,oq at the wavelength A is obtained by

Rumoa (FSC) = (1=83) P orest + 6% [ FSC P s+ (1=FSC) Py grouna - (1)
If the scene has a full snow cover on ground FSC = 1, we get
R)\.mud = (] _ti)p)\fores[ + t?\ P snow- (2)

The two-way forest canopy transmissivity t? in Egs. (1) and (2) is re-
lated to the extinction properties of the vegetation canopy, which is
discussed next.

3.1. Modeling of boreal forest scene reflectance based on the zeroth order
solution of the radiative transfer (RT) equation

The zeroth order solution to RT equation excludes multiple scatter-
ing. Thus, analogous to Pulliainen et al. (1994), an analytical formula
can be written to consider the effect of forest canopy to the reflected ra-
diance (now on, ignoring A for simplicity):

) } a

H H—h H—h
o) e (010,10 e (01,0,
EO(B,-)nf_{ {nyﬁ(ﬂl-ﬁs‘h)exp([ cos(@;) dh) exp([ cos(@,) dh
3)

where L is the reflected radiance [W st~ ! m~?], E, is the incoming irra-
diance above the canopy [W m™ 2], y; is the reflectance of an infinites-
imal volume unit and k, is the canopy extinction coefficient [1/m]. The
concept of Eq. (3) illustrated in Fig. 4 shows the geometrical consider-
ation of the approach: H is the total height of the forest canopy, h is
the height within the canopy, 6; is the angle of observation (scatter-
ing/reflection angle) and 6; is the angle of incident radiation. According
to Eq. (3) the total two-way transmissivity of the forest canopy along
the directional path of light propagation is

H H

2 _ _Ke(eheyh) _Ke(ei,es,h)

t (6i~05) = exXp (/C()S(e,)dh> exp (/C()S(ﬂs)dh> (4)
0 0

If k. and my; are assumed to be constants as function of illumination
and reflection angles and the height h within the forest canopy (Eq. 3) is
simplified to

1

Lo, . my, L
Eo(6) ", (cos (6 + cos 1(6) [1-C o]
= pforest [1 _tz (9,', 05)] s (5)

Fig. 4. Geometrical consideration of the bidirectional reflectance of a forest scene. 6; is the
incidence angle of incoming irradiance and 6; is the angle of observation (and hence also
the scattering angle under investigation in the forest canopy). The applied RT approach
considers a forested scene (pixel) as a single turbid medium layer characterized by bulk
volume scattering and extinction properties my; and ; see Eq. (3).

thus, Eq. (5) provides the first term of Eq. (1), and the second term of
Eq. (1) is simply the reflection from the snow-covered ground attenuat-
ed by the two-way forest canopy transmissivity. In the case of the two-
way transmissivity t the assumption of a constant extinction coefficient

leads from Eq. (4) to:
2 1 1
t°(0;,05) = exp<7KeH(m+m)>. (6)

To summarize, if scene reflectance is modeled for observation angles
close to nadir 6 ~ 0, then cos ™ '(6;) + cos™'(6s) ~ cos™ '(6;) + 1. Then
by denoting cos~!(6;) + 1 = 2g’(6;), Eq. (2) can be rewritten as

Rmod = (] - exp(fzKeg,(ei)H))pforest + exp(fzf{eg%(’i)H)psnow- <7>

3.2. Parametrization and validation of the model using airborne
spectrometer and LIDAR data

In Eq. (7), the semi-empirical scene reflectance model, derived from
the zeroth order solution of RT equation, is parameterized as a function
of tree height H [m]. The model can be as well given as a function of can-
opy cover (Cin %-units) or forest stem volume (Vin m>/ha) which is re-
lated to the product V ~ C x H (Heinild et al., 2014). As discussed in
Section 2.2 all canopy characteristics are derived from LIDAR observa-
tions. In the case of V, the product C x H is calibrated to volume estimate
using a regression between the LIDAR data-derived product and NFI for-
est stem volume map (available with a coarser spatial resolution of
20 m).

Thus, we can write by denoting K. = K, Ke = Ke,c OF Ke = Key When
the formula is derived for tree height (H), canopy cover (C) or stem vol-
ume (V), respectively:

Ruoa = (1= exp( =268 (6)H) ) Ppose + X2k (6)H ) s (82)
Rinodc = (1 - EXP(*zKe.Cg’(ei)C))Pfarest + EXP(*ZKe.Cg,(ei)C)Psnuw 8b

Ruoqy = (1= exp(—26eyg 0)V) ) prest + exp(—26erg (0)V ) - 8C

Parameters Ke, Psnow aNd Prorest in Eqs. (8a)-(8c) can be estimated for
certain conditions by fitting the model into an observation data set
representing certain specific measurement conditions. Here, the obser-
vational data consist of AISA measurements carried out at the Sodankyla
site (see Section 2.3). Thus, the assumption is that the three parameters
can be treated with their mean effective values over the image scene.
The model fitting is performed by the least squares method by searching
the global minimum for the cost function J with respect to K., Psnow and

pfores[:

N H; 2
.I(Kea pfore:tapsnow) = Z ( (Rmod,i<Kev pforesn Psnow> { Si > _Robs,i> <9>

i=1 ;

where sub-index i refers to an observation case with specific forest char-
acteristics H;, G; and V;. The fitting is carried out separately for H, Cand V.
That is, models by Eqgs. (8a), (8b) and (8c) are fitted separately to obser-
vational data by estimating three scalars for each case.

As an outcome of the fitting procedure, the modeled response of
scene reflectance to the two forest canopy (e, Pforest) and one surface
characteristic (pspow) is obtained. As shown by Egs. (8a)-(8c) this re-
sponse is exponential. In order to assess the validity of the model fit, it
is compared with the statistical performances of a linear fit (two param-
eters in fitting) and of a second-degree polynomial fit (three parameters
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in the fitting as in the case of Eq. (9)). In practice, the correlation coeffi-
cient between the model prediction of reflectance and observed reflec-
tance is determined for different approaches.

Especially, the comparison of the applied radiative transfer approach
with linear modeling is essential, as the linear approach can be consid-
ered as a simpler characterization of the physical problem. In that case
we can consider that the reflectance is an areally weighted sum of re-
flectance contributions from an opaque forest canopy and from surface,
i.e. from openings between the trees:

Rmod = Cpfores[ + <1_C)psm7w
= C(Dforestfpsnow) + Psnow (10)

= a;C+ay.

Note that Eq. (10) is actually a simplification of the geometric op-
tics approach introduced by Li and Strahler (1985). Thus, the com-
parison of Egs. (8a)-(8c) and Eq. (10) with the experimental
Sodankyld data enables the analysis whether the radiative transfer
approach (Eq. 8) or geometric optics (Eq. 10) applies better to de-
scribe the reflectance observations as a function of quantitative for-
est canopy characteristics.

3.3. Assessment of spatial and viewing/illumination geometry related
characteristics of boreal forest scene reflectance

The applied airborne imaging spectrometer and LIDAR data set also
enables the investigation the effect of spatial scale to the modeling of
observations. Due to image swath and LIDAR data processing limitations
the influence of scale is here investigated from 10 m to 100 m. That is,
the model parameters are estimated separately for data processed to
the grid sizes ranging from 10 x 10 m? to 100 x 100 m?. This is relevant
to the point of view of satellite data retrieval approaches. For example
SCAmod applies reflectance modeling in the scale of the employed satel-
lite data (Metsamaki et al., 2012).

As described in Section 3.2, the analysis of aerial spectrometer
data facilitates the determination of the spatial variability of scene
reflectance as a function of forest canopy characteristics. Another
important issue is the temporal variability of forest canopy reflec-
tance, which is, ignoring bio-physical issues, sensitive to imaging ge-
ometry (Sun and instrument view angles). Since the mast-borne
spectrometer data from a forest plot (described in Section 2.4) rep-
resents variable bidirectional measurement configurations, these
data can be used to derive information on the temporal variability
of forest canopy effects to observed scene reflectance. The basis of
this consideration is the error propagation analysis of scene reflec-
tance. We can write for the total variance of observed reflectance
as a sum of contributions due to canopy extinction, snow reflectance
and reflectance of an opaque forest canopy:

var(R) = var(R), +var(R), -+ var(R)‘pImm. (11)

When the variance contribution resulting from the temporal vari-
ability of forest canopy extinction coefficient (var(R),,, inEq. (11)) is ap-
proximated through the Taylor-series expansion of Eq. (8b) we can re-
write Eq. (11) as

var(R)z(Z?—’fe)zvar(KE)Jr( oR >2V3F(Psnow)+< R

2
=—— | var(p, 12
T o) o) 012

= [28C(Prest—Ponow) exp(=25g €) | var(re)

+ [ exp(—2reg C) | *Var(Pynaw)

+[1- exp(—ZKEg'C)]Zvar(pfmm).

Thus, the estimate on var(k,), the variance of forest canopy extinc-
tion coefficient, can be obtained by

var(R)— [ exp(—2k,g ()] 2var(Dguow) — [1—exp(—2r,g'C)] 2yar (pfom,>
[28C (Pprese—Ponaw) exD(~2658'C)|”

var(k,) =
(13)

where the var(R) is directly determined from the multi-temporal obser-
vations of forested terrain reflectance of the single forest plot; see Niemi
etal. (2012) and Heinild et al. (2014). Note that the term exp(— 2k,g’C)
can be derived from the AISA data analysis of this investigation, whereas
the terms Pporest, Var(Porest), Psnow and var(Psnow) can be derived from
the results of earlier investigations (Niemi et al., 2012; Salminen et al.,
2009).

When Eq. (13) is used to estimate the variance of the two-way forest
canopy transmissivity, we can write:

var(tz)z[72Cg' exp(—2k,g C)]*var(k,). (14)

4. Results and discussion

Fig. 5 depicts the fit of the Eq. (8b) to AISA observations from 18 of
March 2011. The fitting according to Eq. (9) is performed to median re-
flectances observed for nine canopy cover (C) classes (for eight classes
when open areas are ignored). The class-stratified data are applied for
the fitting procedure, since the random fluctuations in the observations
at the processing resolution of 10 m are high. This causes instability to
the used non-linear optimization procedure (search result dependent
on the starting value), which is avoided by the use of averaged/median
values. When the fitting is performed for the class-wise median values
the effect of occasional very high reflectance values are better removed

AlSA-obsaerved and RT-modelled reflactance
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Fig. 5. Scene reflectance at 555 nm as a function of canopy cover (C). The scene reflectance
model (Eq. 8b) is fitted to AISA observations of the Sodankyld site by optimizing the values
Of Px forests Ke forest aNd Px snow- SPatial resolution is 10 m. The fitting was done for C class
stratified median values. Bars indicate + standard deviation from the C class-wise mean
values.



J. Pulliainen et al. / Remote Sensing of Environment 155 (2014) 303-311 309

than when using mean values. Note that the actual individual data
points are also shown in Fig. 5.

The effect of spatial scale to modeling is shown in Fig. 6. The dotted
line shows the model prediction (Eq. 8b) when fitting parameters
(Prorests e forest aNd Psnow) are estimated from data sets processed to a res-
olution of 10 m corresponding to Fig. 5. Solid line depicts the model pre-
diction when the same parameters are estimated from data averaged to
aresolution of 100 m with a two-dimensional box convolution function
(10 x 10 window). The individual data points in 100 m resolution are
presented by dots, and the standard deviations from class-wise aver-
ages are shown by solid bars, respectively. According to the results,
model parameters slightly change as a function of spatial resolution,
as the canopy cover (C) averaged to a scale of 100 m does not include
values exceeding 59% (refer to Table 2) unlike in the scale of 10 m. How-
ever, the radiative transfer model according to Eq. (8b) well describes
the behavior of reflectance. This implies that the suggested modeling
approach is a valid methodology to describe the influence of forests
for instruments with varying spatial resolution characteristics.

The comparison of radiative transfer (RT) approach Eq. (8b) with a
linear mixing model (Eq. 10) indicates a higher validity for the RT
than for the linear mixing model. The correlation coefficient between
the reflectance predicted by Eq. (8b) is as high as R* = 0.91 for all
data points processed to 100 m spatial resolution, whereas it is R? =
0.87 for the linear mixing formula; see Table 3 (the corresponding be-
havior of reflectance as a function of canopy cover is shown in Fig. 6).
Table 3 presents the overall model fittings with respect to canopy
cover (C), stem volume (V) and tree height (H), as well as the compar-
ison of RT modeling performance with respect to linear mixing and
polynomial fitting indicating the better performance of the RT approach,
even though Eq. (10) applies two fitting parameters, whereas the radi-
ative transfer model requires three parameters estimated by Eq. (9).
Nevertheless, the results indicate that the behavior of reflectance is
clearly non-linear and obeys well with Eq. (8b). If a second degree poly-
nomial is fitted to data (three fitting parameters) we obtain about the
same correlation coefficient (R?> = 0.918) than with the exponential

Reflectance at 100 m spatial scale (compared with the scale of 10m)
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Fig. 6. Scene reflectance at 555 nm as a function of canopy cover for data averaged to
spatial resolution of 100 m. The comparison for the model fitting at the scale of 10 m is
also shown (dotted curve). Individual data points at the scale of 100 m are depicted by
gray dots, whereas the error bars show the standard deviations from class stratified
mean values. The case C = 0% is excluded in the fitting procedure (Eq. 9).

radiative transfer approach; see Table 3. However, the use of second de-
gree polynomial lacks any physical significance, whereas both the RT
approach and linear mixing model are based on physical assumptions.

The effect of pixel (footprint) homogeneity to observed scene reflec-
tance is investigated in Fig. 7. In practice, the AISA data is processed
(block averaged) to a spatial grid of 100 m. Thereafter, each grid cell is
assigned to represent either a homogenous or a heterogeneous target
with respect to forest canopy cover (C) by analyzing the canopy cover
at four sub-grid cells of each footprint of 100 m x 100 m. A footprint is
considered as heterogeneous, if any of the four (50 m x 50 m-sized)
sub-grid cells shows a value Cgyp < 0.5 Caye OF Csyp > 2 * Caye, Where Cyye
stands for the canopy cover of the whole 100 m x 100 m pixel. Addition-
ally, grid cell is considered as homogeneous, if all four sub-grid cells
show a value Cgp, < 1%.

Both the data and model fittings by Eq. (9) in Fig. 7 indicate that the
heterogeneity of forest cover within the pixel has an effect to the scene
reflectance as a function of canopy cover fraction C. However, the results
also show that the modeling approach of Egs. (8a)-(8c¢) is appropriate
even for forested targets heterogeneous at the scale of the applied
instrument. This is also indicated by the two fit curves of Fig. 7. Addi-
tionally, Fig. 6 suggests that, if the mixture of homogeneous and hetero-
geneous pixels is corresponding to that of the Sodankyld site, the
deviation of individual observations from the general fit curve is rather
small.

As demonstrated by Fig. 7, the variability of forest canopy effects to
scene reflectance is influenced by the structural heterogeneity of forest
cover. On the other hand, results of earlier investigations, e.g. Niemi
etal. (2012), suggest that variability of forest effects is related to the var-
iability of bidirectional illumination conditions (which is the case with
the applied AISA data). This is further shown in Fig. 8 that depicts the
overall variability of forest scene reflectance due to varying illumination
conditions (deep snow pack and snow-free pine canopy). The mast-
borne spectrometer observations shown in Fig. 8 are obtained for
12 days during the year 2013 from 26 March to 12 April and for a single
day in 2010 (18 March corresponding to airborne AISA data acquisi-
tion). Fig. 8 indicates the strong effect of bidirectional imaging condi-
tions. For forward scattering cases the reflectance at 555 nm drops
with increasing Sun zenith angle to values as low as about 0.07. For
the backscatter, the behavior of reflectance is quite opposite; the
reflectance shows high levels up to 0.17, and may even increase with
the increasing Sun zenith angle. However, the standard deviation of
reflectance corresponds well with the reflectance variability of mast-
borne spectrometer observations carried out simultaneously with air-
borne AISA-imaging (Niemi et al., 2012).

Fig. 9 depicts the prediction of the variability of the two-way forest
canopy transmissivity t* as a function of canopy cover (C) based on
Eq. (14). The results of Fig. 9 are determined using the value
var(K,) = 0.00083% ! for the variance of forest canopy extinction coef-
ficient. This value is estimated by Eq. (13) using the following parameter
values, mainly based on mast-borne spectrometer measurements car-
ried out simultaneously with AISA imaging (green data points in Fig. 8):

~ Keforest2' (8) = 0.017% ' (from Table 3)

- C = 40% (canopy cover fraction in the forest plot observed by the
mast-borne spectrometer (Niemi et al., 2012))

— Prorest = 0.089 (Niemi et al,, 2012)

~ var(prorest) = (0.01)? (Niemi et al,, 2012)

- Psnow = 0.98 (Salminen et al., 2009)

- var(psnow) =~ 0 (observations from a single day applied)

- var(R) = (0.03)? (observed variance for the single day measure-
ments according to Niemi et al. (2012)).

The results of Fig. 9 suggest that the relative standard deviation of
the variability of forest canopy transmissivity is 13% (due to the variabil-
ity of BRDF configuration). One should note that this variability is only a
valid estimate for cases of near-nadir observations as the sensor look
angle in mast-borne experiments is fixed to 11° off nadir. It should be
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Table 3

Fitting parameters of the RT model for reflectance at 555 nm and comparison of its performance with that of the linear mixing model and second degree polynomial fitting curve. The

spatial scale of modeling is 100 m.

Forest parameter RT model fitting parameters

R? (coefficient of determination) for different modeling approaches

Linear mixing”

Paforests Ke forestig’ (8)* Phsnow Radiative transfer (RT) 2nd deg. polynomial®
Canopy cover, C (%) 0.054 0.017 (1/%) 0.91 0.920¢ 0.865 919
Stem volume, V (m>/ha) 0.112 0.015 (ha/m?) 0.86 0.878¢ 0.758 0.864
Tree height, H (m) 0.116 0.069 (1/m) 0.96 0.841¢ 0.750 0.843

2 Note that g'(#) ~ 1.96.
b All individual data points in algorithm training and testing.

€ Seven classes (excluding C = 0%) in algorithm training, all individual points in testing.
d

noted that Fig. 9 considers the variability of forest scene reflectance for a
single day, March 18, 2010, corresponding to airborne data acquisition
(see green symbols in Fig. 8). In that case the range in azimuthal differ-
ence between the sensor and the Sun angles is from 31° to 107° (i.e.
both forward and backscattering geometries are included as source of
transmissivity variability in Fig. 9, but sensor look angle is constant).

5. Summary and conclusions

This investigation shows that the approach using the zeroth order
solution of the radiative transfer (RT) equation to describe forest effects
to scene reflectance is valid for typical boreal forests. The results also in-
dicate that this applies both to homogeneous or heterogeneous forest
scenes (satellite/remote sensing data footprints). However, the param-
eterization of the model changes according to heterogeneity of the
sensor's footprint. The obtained results justify the appliance of apparent
forest canopy transmissivity to describe the influence of forest to reflec-
tance, as done in the SCAmod method for the continental scale FSC mon-
itoring. The analyses carried out here are limited to the wavelength
band of 545-565 nm as this range (MODIS band 4) is operationally fea-
sible to snow monitoring purposes. Apart from that, Heinild et al. (2014)
presented results using several wavelengths for comparison.

AlSA-pbserved and RT-modelled reflectance at 100 m spatial scale
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Fig. 7. Scene reflectance at 555 nm at the scale of 100 m separately for pixels homogenous
or heterogeneous with respect to forest cover. Red and blue curves show the model
fittings according to Eq. (9).

Eleven classes (excluding V = 0 m?/ha) in algorithm training, all individual points in testing.
¢ Eight classes (excluding H = 0 m) in algorithm training, all individual points in testing.

The feasibility of the zeroth order RT approach is also compared with
the use of linear mixing model of scene reflectance. This analysis shows
that the non-linear RT approach describes the scene reflectance of a
snow-covered boreal forest more realistically than the linear mixing
model (in case when shadows on tree crowns and surface are not
modeled separately, which is a relevant suggestion when considering
the use of models for large scale snow mapping applications). The re-
sults also suggest that the consideration of forest canopy by estimating
the apparent canopy transmissivity from the applied satellite data, as
performed in SCAmod approach, is in practice a more feasible approach
than the use of modeled value of forest canopy extinction coefficient.
That is the case, since the modeled value of extinction coefficient is
slightly dependent on scale, as indicated in Figs. 6 and 7. When the ap-
parent canopy transmissivity is estimated from the employed satellite
data, this effect is eliminated.

The obtained results also demonstrate the variability of scene reflec-
tance due to varying illumination and bidirectional measurement ge-
ometries; see Fig. 8 for mast-borne observations. Also in the case of
the applied airborne data set, the variability of reflectance around the
curve of model prediction is in the same order, and apparently predom-
inantly caused by these factors; see Figs. 6 and 7. However, the results
show that the overall variability is quite small. This suggests that simple

Reflectance at 555 nm

g

BACKSCATTERING

8

2

FORWARD SCATTERING

Apenuthal Darance Datwsbn Sun and Sensor Look Dinecton (deg.)

RD

80 ) 70 75
Sun Zenith Angle (deg.)

Fig. 8. Bidirectional reflectance of the forest plot of mast-borne spectrometer observations.
Red and green symbols show the geometry of actual measurements representing full
snow cover condition. The behavior of reflectance (contour plot) is interpolated from
measurements at the locations of all the symbols (red pentagrams and green asterisks).
Red pentagrams depict observations conducted for 12 days at different hours of day
during the year 2013. Measurements from 18 March 2010 coinciding airborne data
acquisition are shown by green asterisks.



J. Pulliainen et al. / Remote Sensing of Environment 155 (2014) 303-311 311

0.15

01

SD of the Variability of *

a n 40 80 1] 100
Canopy Cover (%)

Fig. 9. Estimated variability of forest canopy transmissivity at 555 nm due to variability of
illumination conditions for near-nadir observations.

RT approach is feasible to describe bulk extinction and reflectance
(scattering) properties of forests on average.
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Abstract

Remote sensing provides observations of snow cover based on images with increasingly high spatial,
spectral and temporal resolution. Yet, a certain amount of intrinsic uncertainty and errors affect the
usability of these snow products in climatological and hydrological applications. The main goal of this
work is to develop a methodology to assess the total product error in optical, satellite data-based,
Fractional Snow Cover (FSC) estimation. Here the FSC estimation is based on an algorithm allowing
the consideration of the effect of different error sources; a semi-empirical reflectance model describing
the relationship of the observed reflectance and FSC through several variables. First we define a
statistical error component through the theory of error propagation, and then utilize a new experimental
analysis approach and a unique regional data set covering Finland to calculate the remaining systematic
error component. The results are used to derive a product error (PE) value, which is the sum of
systematic and statistical error components. The experimental analysis approach is conducted through
an analysis of the observed estimation errors (i.e. residuals) in the GlobSnow Snow Extent (SE) v2.1
products on FSC (determined from Envisat AATSR observations). In practice, independent snow course
observations from Finland on FSC are compared to corresponding satellite FSC estimates to quantify
the residuals. We assume that after the statistical error analysis, the remaining portion of error arises due
to systematic factors. Thus, through the analysis of the observed residuals we obtain a realistic estimate
on the total PE. Although such distributed in sifu reference data are not available elsewhere, we
demonstrate the error considerations for a larger region of European boreal forest, where the results are
applicable. Our results show that the total PE in the GlobSnow SE v2.1 product is significantly higher
than the originally delivered statistical error. This is due to deficiencies in the parameterization of the
applied forward modelling approach, in particular in the consideration of the forest canopy effects. In
this study these deficiencies are both analysed and further discussed from an algorithm accuracy point
of view.
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1. Introduction

Over the last decades considerable decline in the appearance of snow cover and related changes
in hydrology and temperature have been measured at the high latitudes, especially in the Arctic
(Robinson et al., 1993; Mote et al., 2005; Brown and Mote, 2009; Takala et al., 2009; Choi et
al., 2010; Flanner et al., 2011; Derksen and Brown, 2012; IPCC, 2013; Hori et al., 2017).
Although being merely a single component of the entire cryosphere, snow interacts strongly
with most of the other constituents due to its high albedo and low thermal conductivity. For
instance, snow has an insulating effect over permafrost and the seasonally frozen/thawed layer,
and it also has an ability to sustain ice sheets and glaciers (see e.g. ACIA, 2004; Flanner et al.,
2011; Vaughan et al., 2013). Besides, seasonal snow is an enormous fresh water resource. The
boreal region, characterized by seasonal snow cover, is a vast zone of forest south of the tundra
across Eurasia and North America, being the largest continuous land ecosystem in the world
(ACIA, 2005). Seasonal snow cover is one of the most important features in boreal ecology.
With its high reflectivity versus light absorbing evergreen forest canopy, snow affects the global
radiative balance. Furthermore, boreal forests are both affected and contribute to the global
climate system through their carbon uptake and storage capacity, which is also influenced by
snow cover (Pan et al., 2011). Thus, monitoring and understanding snow processes is highly
relevant to all of these interconnected themes (ACIA, 2004; Callaghan et al., 2011; Vaughan et
al., 2013; Bokhorst et al., 2016). Our work mainly focuses on quantitative characterization of
snow mapping performance in the boreal forest zone.

Estimation of Snow Extent (SE) through optical Earth Observation (EO) data is particularly
advantageous during the end of the melting season. Passive microwave-based SE detection
methods typically fail to detect patchy wet snow areas, whereas optical observations have been
shown to provide far more reliable SE estimates (Dietz et al., 2012a; Frei et al., 2012). Since it
is possible to obtain observations underneath clouds using microwave data (unlike using optical
instruments), it is desirable to develop advanced methods for snow detection exploiting both
these data types. Together the two complementary satellite remote sensing methods enable both
frequent as well as high resolution spatial retrievals of snow cover necessary for global and
regional scale hydrologic and climate models (Nolin, 2010; Dietz et al., 2012b). The combined
use of optical and microwave data benefits from knowing the accuracy statistic of both the
observation types. In addition to annual regional and global snow monitoring, acquiring long
decadal scale time-series of snow observations has high relevance for climate research (e.g. for
building consistent climate data records), provided that the accuracy of the different snow
products is known and the products exhibit sufficient accuracy (Ramsay, 1998; Hall and Riggs,
2007; Helfrich et al., 2007; Nolin, 2010; Brown and Robinson, 2011; Dietz et al., 2012a; Frei
et al., 2012; Rittger et al., 2013; Metsdmaéki et al., 2015; Hori et al., 2017). Errors in daily SE
and/or albedo products can propagate to the succeeding composite products. As a result, the
underlying uncertainties and errors contained in different snow products can be inherited by
operational hydrological and meteorological models (Dozier et al., 2009; Rittger et al., 2013).
Therefore, the provision of quantitative uncertainty estimates for each remote sensing product,
such as SE or Fractional Snow Cover (FSC) is highly important. Often, information on
uncertainties is in fact a requirement for data assimilation schemes, for both hydrological and
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meteorological models. Previously e.g. Hall and Riggs (2007), Rittger et al. (2013) and
Metsamaiki et al. (2005; 2012; 2015) have discussed and quantified the uncertainty in
measurements of fractional snow cover.

There are few extensively used global snow extent data sets, such as NOAA Climate Data
Record (CDR) of Northern Hemisphere Snow Cover Extent (Robinson et al., 2012), NASA
MODIS and VIIRS snow products (https://modis-snow-ice.gsfc.nasa.gov/) as well as ESA’s
GlobSnow fractional snow cover products (www.globsnow.info). MODIS/VIIRS and
GlobSnow databases include validated daily FSC products, of which the GlobSnow database
also provides pixel-wise uncertainty estimates (Metsdmaéki et al., 2015; Hall and Riggs, 2007).
The FSC define the patchiness of snow cover by assigning a value of FSC ranging from 0 to 1
(or from 0 to 100%-units). For the current optical FSC-methods, the presence of forest cover in
particular is typically problematic and usually causing an underestimation of the area covered
by snow (Salomonson and Appel, 2004; 2006; Nolin, 2010; Metsdmaéki et. al., 2012; Rittger et
al., 2013). Metsdmaki et al. (2012) showed that their semi-empirical reflectance model-based
SCAmod algorithm is feasible for continental-scale snow mapping and is relatively accurate
also in forested regions. The success of the SCAmod algorithm in forested areas is related to the
utilization of the apparent forest transmissivity (derived from space borne reflectance
observations under full snow cover) that enables the consideration of the masking effect of
forest canopy. Since the SCAmod is in practice the only widely used FSC method that is based
on the forward modelling of (Top-of-Atmosphere (TOA) /scene) reflectance, here we examine
its uncertainty characteristics. Currently the SCAmod-based GlobSnow products include a
statistical error layer (Metsamaki et al., 2015), but they do not consider systematic errors, and
thus, the provided error does not describe the observed residuals (RMSE) very well, i.e. the root
mean squared average of individual residuals for a certain snow cover percentage interval. By
combining the theoretically calculated statistical error (FEs.) and the data analysis based
systematic error (A) we can derive a FSC-product error (PE) value that should describe the data
analysis based observed FSC-interval-wise RMS error.

As already stated, quantitative and qualitative information on the uncertainty of optical data-
derived snow coverage maps is essential in the application of satellite data in third party data
processing systems. In this paper the focus is on issues that determine the accuracy of FSC
estimates for cloud-free screened pixels.

The accuracy of FSC information can be investigated by analysing the factors that affect the
space-borne observed Top-of-Atmosphere (TOA) reflectance and thus, the FSC retrieval
performance of SCAmod. These factors include the reflectance signatures of the various
constituents of snow-covered and snow-free scenery. With SCAmod, these constituents
comprise of the effects of forest (canopy closure and transmissivity), as well as the contribution
of snow-free and wet snow covered ground variations. The statistical (random) error (which is
unbiased by nature) of an FSC estimate is obtained here by applying an error propagation
analysis to the inverted reflectance model (Metsdmiki et al., 2005; 2012; 2015; Salminen et al.,
2013). However, the total error in FSC estimation is composed of statistical error and systematic
error, and the goal of this study is to define both of them. So, here we describe our method for
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product error (PE) estimation using a novel analysis approach, where the novelty is based on
using in situ analysis in addition to the prior theoretical statistical error component calculations.
Defining systematic errors requires the determination of residuals (i.e. FSC estimation errors)
from validation experiments. Systematic error is demonstrated here by analysing satellite-data
(Envisat AATSR from 2003 until 2012) derived GlobSnow SE products and their related FSC
retrieval uncertainty estimates (i.e. statistical errors) for each studied pixel together with the in
situ analysis. The factors typically affecting the systematic error are e.g. the sun zenith angle,
instrument viewing angle and topography. In addition, the levels and variations in atmospheric
transmittance and reflectivity have an effect on TOA reflectance. These issues are only
indirectly considered here, since part of the analyses are carried out using TOA reflectance
observations (additionally, surface-level values of reflectance are shifted to TOA reflectances
using constant atmospheric parameters when appropriate). Further, inadequate
parameterization of the applied inversion algorithm causes systematic error. As the different
systematic error components (as well as their proportions and magnitudes) are intangible, we
start off with the statistical analysis and assume that the remaining component to the observed
error (residuals) stems from the systematic factors.

To summarize, we analyse the behaviour of the FSC-product error using first the theory of error
propagation for defining the statistical component and then utilize regional data from Finland
for calculating the remaining systematic component (such distributed in situ reference data are
not available elsewhere). Finally, the error considerations are demonstrated for a larger region
of boreal forest.

2. Materials
Data for analysing the systematic error component

Quantitative analyses are carried out for the region of Finland using the GlobSnow Snow Extent
(SE) v2.1 products on Fractional Snow Cover (FSC), generated by using the SCAmod algorithm
(Metsdamaéki et al., 2015). As a study area, Finland represents southern, central and northern
boreal forests. In Finland, the total forest area of 22 million ha is mostly dominated by conifers
(Scots pine, Norway spruce); even though broad-leaved trees (mainly Birch) can be locally
dominant (ACIA, 2005). As the same coniferous species are typical for the boreal forest belt as
a whole, data from the Finnish study area can be extrapolated to larger regions, basically, for
all boreal forests in the Northern Hemisphere with similar landscapes of evergreen conifer
dominance (except larch dominated regions in Siberia). Therefore, this investigation can also
be considered relevant for the evergreen regions in Russia, Alaska, Canada and Scandinavia
between latitudes of roughly 45° and 70° N, where the largest part of the world’s boreal forests
are located (ACIA, 2005). However, as both the parameterization used in the statistical error
analysis and the in situ data applied in the analysis of residuals (estimation errors) are mostly
conducted for moderately dense forests, the results are not likely to be representative for the
densest forests existing e.g. in Northern Siberia.



This article is submitted to Remote Sensing of Environment and is under revision.

The applied ground truth data consists of the Finnish Environment Institute’s (SYKE) snow
course observations that include spatially distributed information on FSC for the spring melt
period. This unique data set enables the quantitative investigation of residuals in FSC retrieval
in case of southern, central and northern boreal forests. The Finnish snow courses are typically
3-4 km long paths where observations are made at 50 m intervals.

The employed GlobSnow FSC product is based on Envisat AATSR data from the period of
2003 — 2011. The product pixel size is 0.01° x 0.01°, i.e. about 1 km x 1 km. We extracted
(non-cloudy) FSC estimates from daily products corresponding to each snow course
observation within a time window of three days (only those estimates where FSC product
showed values 0% < FSC < 100% to represent the melting conditions). The mean FSC values
of each snow course visit were applied as reference ground truth. The GlobSnow FSC estimate
was extracted from the pixel hitting the central point of the snow course, and from eight
surrounding pixels. This cluster of 3 x 3 pixels approximately corresponds to the areal extent
of snow courses, and thus, FSC values averaged over the cluster are used for the analysis (in
case of product provided statistical error of FSC estimate the average is the root mean squared
value). In total the amount of cloud-free 3 x 3 pixel clusters obtained for the analyses was 173
representing the spring melt period (March, April and May during the years 2003 - 2011).

Data for statistical error analysis

In this investigation we also summarize in detail the consideration of the spatially and
temporally varying statistical error in the GlobSnow FSC product. A brief description was given
earlier in (Metsdamaiki et al., 2015). The static data sets required for determining the statistical
error characteristics through error propagation analyses are given in Table 1. In addition to the
data sets and values listed in Table 1, the GlobSnow v2.1 SE product applies MODIS data
derived snow-free ground reflectance statistics as a source of statistical error considerations for
those regions that are not covered by seasonal snow (Metsdmaki et al., 2015). This investigation
is, however, limited to regions of seasonal snow where Table 1 is relevant (regions of ephemeral
snow are excluded).
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Table 1. Parameters influencing the statistical error of SCAmod algorithm in GlobSnow SE product on FSC.

Relevant parameter

Value at 555 nm (TOA)
and/or characterization

Source

Two-way apparent forest
canopy transmissivity

()

Calculated from MODIS
reflectance-derived
transmissivity combined with
land cover information

GlobCover data set (Bontemps
et al. (2011);
Metsdmaki et al. (2015)

Variance of forest canopy
transmissivity (S tzz)

Analyzed through MODIS data

See section 3 here

Forest canopy reflectance

(p forest)

0.08

Based on MODIS data analysis
and laboratory measurements
(spectroscopy)

Niemi et al. (2012); Metsdamaki
et al. (2012)

Variance of forest canopy
reflectance

(SForest)

(0.01)?
Based on laboratory
measurements (spectroscopy)

Niemi et al. (2012); Salminen
et al. (2013)

Snow free ground reflectance

(pground)

Values according to land cover
class, based on MODIS data
analysis

Salminen et al. (2013)

Variance of snow free ground
reflectance

Values according to land cover
class based on MODIS data

Salminen et al. (2013)

and MODIS data analysis

(nground) analySiS
Wet snow reflectance 0.65 Salminen et al. (2009);
(Psnow) Based on field spectrometry Metsémaki et al. (2012); Niemi

et al. (2012)

Variance of wet snow
reflectance

(Sénow)

(0.10)*
Based on field spectrometry

Salminen et al. (2009); Niemi
et al. (2012)

3. Methods

Definition of error terms

The product error (PE) in FSC estimation can be considered to include the components of (a)
systematic error and (b) statistical error (i.e. random error). Here, statistical error is defined as

a theoretical error estimated through an error propagation analysis (see e.g. Metsdamaéki et al.,
2005; Salminen et al., 2009; Salminen et al., 2013; Metsdmaéki et al., 2015). Systematic errors
emerge e.g. from the unknown biases in retrieval algorithm parameters (for example, the
assumed mean value of wet snow reflectance, a parameter in the SCAmod algorithm, may be
biased). Thus, the general formula for product error PE can be given as

PE(x,,t) = v/ (Estar (x, 7, ) + (A(FSC))2

(1
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where Eg. refers to statistical error, A to systematic error x and y refer to pixel coordinates and
t to the time of observation, respectively. FSC is the estimated (SE product provided) fractional
snow cover. A key topic in this investigation is the analysis of systematic error as a function of
FSC and the concurrent advanced consideration of the statistical error, in order to provide a
realistic estimate on PE. The applied error terminology is defined in Table 2.

Table 2. Applied error terminology description.

Error terminology Symbol | Description Source

Product error PE Effective sum of statistical and Statistical and Systematic
systematic errors error

Statistical error Egu Random error based on error Theoretical
propagation analysis

Systematic error A Error component not described by RMS error based
statistical error

Residual; - Estimation error; FSC* Estimate — in Directly observed; in situ
situ FSC (single case) analysis

RMS error RMSE Root mean squared sum of residuals Directly observed; in situ
(Effective mean, positive) analysis

BIAS BIAS Mean of observed residuals (Positive or | Directly observed; in situ
negative) analysis

*directly observed in situ value of FSC is denoted here by italics letters, whereas its estimate is FSC

The observed FSC estimation error RMSE calculated from residuals should correspond to PE
(note that the real value of F'SC is denoted here by italics letters, whereas its estimate is FSC).
Residuals can be quantified through the analysis of available independent snow course-
observed ground truth on FSC. In practice, by comparing snow course observations on FSC to
satellite data-derived estimates, residuals of each FSC estimate can be determined.

For a certain interval of FSC estimates denoted by index j, we can approximately relate RMSE
(determined from residuals) to systematic error A and statistical error Eyq by:

Nj
RMSE(FSC)) ~ %Z(Em(Fsc{))Z + (A(FSCI))? @
Ti=1

where FSC{ refers to the i:th FSC estimate obtained for a certain discrete interval j, e.g. denoting
values 0% < FSC < 20%, and N; is the number of estimates for the interval j (note that in
practice this discretisation is needed as the amount of available data points for the analysis of
error characteristics is limited).

In order to estimate the systematic error for a FSC interval j, Eq. (2) directly leads to
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N; Nj
A(FSC) = %Z(RMSE(FSC{))Z‘%Z(Esmt(FSC{))Z )
Ji= =

that provides the systematic F'SC estimation error for the investigated interval of FSC estimates.
One should notice that the observed interval-wise RMSE and BIAS are on the other hand:

Nj
RMSE(FSC/) = 1 (Fscf — FSC) )2 4)
Nj i(estimated) i(ground truth)
i=1
Nj
. 1 ; )
BIAS(FSC)) = ﬁ]z (FSC{(estimated) - FSCi](ground truth)) (5)
i=1

When Eq. (3) is applied to several intervals of FSC we obtain discrete estimates of systematic
error A as a function of FSC. This enables the fitting of a regression curve to values of A, in
order to extract a continuous representation of systematic error. When this information is
applied to (1), the values of PE can be provided to any satellite data provided FSC value (given
that the statistical error of each estimate is calculated), see Fig. 1.

Determination of statistical FSC retrieval error in case of SCAmod algorithm

The fundamental formula of the SCAmod algorithm in order to estimate the fraction of snow
covered area (FSC) for an individual pixel is:

1 1
FSC t_zpobs + (1 - t_z) Pforest — Pground

(6)

Psnow — Pground

where p, s is the TOA-observed reflectance (at a channel close to 555 nm). 2, p forests Pground
and pgnow are pre-fixed model parameters describing the apparent (two-way) forest canopy
transsmissivity, reflectance of an opaque forest canopy, reflectance of snow-free ground and
reflectance of (wet) snow reflectance, respectively. The values applied in the GlobSnow SE
product on FSC are given in Table 1 above.

Eq. (6) is based on the inversion of the forward model that describes the TOA-observed
reflectance as a function of FISC:

Pops(FSC) = (1 — tz)pforest +t2 [FSCpsnow +(1 - FSC)pground] @)
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Following (Metsamaki et al., 2005), the statistical accuracy of SCAmod-derived FSC can be
obtained from Eq. (6) using the law of error propagation (e.g. Taylor, 1982), which gives the

variance S = (Em, )’ of FSC estimate as follows:

S5, = (250 )’z +("’(FSC>)2 s (L5

apabs (FSC) obs at? apsnow smow
2 2
6(FSC)> ( d(FSC) )
+ (—— et +|——) S2
<apforest forest apground ground

2
= Egbs + Etz + Es,znow + E]‘zorest + Egzround (8)

where p,ps(FSC) can be obtained from Eq. (7). The variance of observation accuracy is
denoted by SZ,, whereas S, SZiows Sforest and Szounq are variances of apparent forest
canopy transmissivity, snow reflectance, opaque forest canopy reflectance and snow-free
ground reflectance.

Different terms contributing to Eq. (8) are described below, and applied parameter values are
listed in Table 1. When Eq. (8) is applied to the determination of statistical error of satellite
data retrievals, the formulas for different terms have to be presented as a function of FSC. That
is, the product provided FSC is used as input in the error calculation.

Error contribution due to observation noise, E2,

The observation noise SZ, includes the effect of the inaccuracy of instrument, as well as the
effect of other fluctuating variables not considered by other terms of Eq. (8); e.g. the influence
of the atmosphere to the TOA reflectance. However, the effect of this term is included in the
other error contributions (Salminen et. al., 2013). Therefore, we assume S2,; = 0 in the

determination of the statistical FSC retrieval error.

Error contribution due to the two-way forest canopy transmissivity variability, Etzz
The contribution of the variance of the two-way forest canopy transmissivity (#) is obtained
by:

2 (a(FSC))Z 2 :( 1 Pforest_pobs(FSC))z 52
(

2 2 t? 2)2 _ t2
ot t ) Psnow pground

= €)

2

< 1 (pforest - pground) + FSC(pground - psnow) ) 2

=\ Siz
t Psnow ~— Pground

The variance of transmissivity (Stzz) can be estimated from the variance of MODIS reflectances
used in the transmissivity calculations for target areas in Finland and the surroundings. Each
pixel-wise transmissivity is determined from averaged multiple reflectance observations for
that pixel (see Metsdamaéki et al., 2012). Hence the pixel-wise variance of transmissivity can be
estimated by analysing the variability of transmissivities obtained for different reflectance

9
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observations of a single pixel. By calculating variances of transmissivity for a large number of
observations representing different transmissivity levels, a general formula approximating the
variance as a function of # is obtained

S% = [0.01(38.8616 exp(—19.8517 t2) + 9.50151)¢2]? (10)

Error contribution due to snow reflectance variability, E2,,,,
From Eq. (8) we obtain:

1 1 z
t_zpobs(FSC) + (1 - t_z) Prorest — Pground

2
Esnow - snow

(psnow - pground)2

—FSC 2
= <—) Sénow (11)

Psnow — Pground

Error contribution due to (opaque) forest canopy reflectance variability, Eforest

EZ,yrest contribution is equal to

1 2
t2

Psnow — Pground

1-—

Ejgorest = Sjgorest (12)

Error contribution due to snow-free ground reflectance variability, E, ;mund

The contribution of snow-free ground reflectance to total variance is

2

2
ground

ground — ground —

1 1
E2 _ (aF(FSC))Z 2 _ t_zpobs(FSC) + (1 - t_z) Pforest — Psnow

2
apgrm«md (psnow - pground)

Fsc—1  \*
=\ Sground (13)

Psnow — Pground

where S, ;round is the variance of snow-free ground reflectance estimated for the grid cell under
investigation (AATSR pixel in GlobSnow SE product). As each pixel is composed of 16
GlobCover sub-grid cells that exhibit different reflectance levels due to varying land cover,
82 ouna 18 given by

Nciasses
ni\2
Sground = (é) Var(pground,i ) (14)

i=1

10
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The used value for the variance of snow-free ground reflectance in Table 1 is most likely to be
too small, since the snow-free ground investigation was conducted using satellite data only from
one year, regardless of the high number of observations (including a large variety of non-cloudy
atmospheric conditions and variety of orbits with varying viewing angles) and extensive spatial
coverage for each studied land cover type in Central, Eastern and Northern Europe (Salminen
et al., 2013). This may affect the relative proportions of error terms so that the contribution of
S ;mund is slightly underestimated at the expense of other terms. However, this is not crucial,
as the purpose of the paper is to present the theoretical background of the accuracy
determination.

Determination of product error for FSC estimates

The outline of the procedure for determining the product error PE in FSC estimation according
to Eq. (1) is presented in Fig. 1. This procedure is applied in this paper for the GlobSnow SE
product on FSC. The method is applicable to any problem where an analytical inverse solution
of a forward model is employed.

Product error PE Eq. (1)
Varying with time and location

Eiar A

Statistical error E,,,, Eq. (8)
Theoretical error
propagation analysis

. E Statistical error
Systematic error A Eq. (3) st calculation for

Requires In situ analysis e
9 ¥ validation images

I -—— _T_ -
————t e — - - RMSermr 1 Validation !
I Snow product | 3 i !
I _ " images on FSC

FSC estimate i
I . I | estimate |
1 for any pixel 1 In-situ FSC data forregionX | ——=—=——=—-= -

RMSE calculation from residuals

Fig. 1. Procedure for the determination of the total product error PE. The calculation of systematic error is
performed by using in situ data set.

11
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4. Results and discussion

The spatial behaviour of the optical Snow Extent total product error is demonstrated for boreal
forest regions along with a definition of both the systematic and statistical components. The
results compose first of the statistical component calculated by using the theory of error
propagation. An extensive dataset from Finland enabled then the calculation of the remaining
systematic component. The behaviour of statistical error component in GlobSnow SE product
is illustrated in Fig. 2 using model calculations, Egs. (8) — (14). As discussed above GlobSnow
SE products apply SCAmod algorithm according to Eq. (6) to estimate the level of FSC.
Different statistical error component contributors of FSC retrieval, and their sum, are calculated
by Egs. (8) — (14) for two typical levels of forest canopy transmissivity corresponding to dense
(t*=0.2) and sparse (t*=0.6) boreal forests. Fig. 2 clearly shows the high impact of forest density
on the behaviour and the relative proportions of the different statistical error component
contributors. Parameter values given in Table 1 are employed, except that for the spatially
varying parameters typical constant values are used for simulation, i.e. S;round = (0.18)% and
Pgrouna = 0.10. Further, Eq. (10) is applied to determine the variance of forest canopy
transmissivity Stzz. The results indicate that when the true level of FSC is close to 100%, the
highest uncertainty of FSC estimates emerges from the variability of wet snow reflectance. For
low levels of FSC the influence of ground reflectance variability is dominant in the case of
sparse forests. As for dense forests, the variance of forest canopy reflectance S fzorest is assumed
to be 0.012 based on Table 1, and the accuracy of FSC estimates is predicted to be dominated
by waest at low levels of FSC.

12
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Fig. 2. Modelled FSC retrieval statistical error component and its contributors (y-axis: error standard deviation in
FSC percentage units) as a function of FSC for two typical levels of forest canopy transmissivity corresponding to
dense (upper panel) and sparse (lower panel) boreal forests. The statistical error component and its contributors
are determined by Egs. (8) — (14).

Fig. 3 demonstrates a spatial map of the statistical FSC estimation error in GlobSnow SE
product and the corresponding FSC estimation map for a 14-day composite from April 02 to
April 15, 2010. The composites are produced by taking the image of 15 April, 2010 as a
baseline, and replacing cloudy pixels with the previous image, if the previous day is cloud-free.
This procedure is repeated for 14 days to get a good coverage. The region of Fig. 3 is selected
to represent boreal forest dominated areas where the analyses of this study are valid. The
statistical error levels in Fig. 3 are determined by Egs. (8) — (14). Thus, the map corresponds to
the quantitative analysis of Fig. 2. In addition to the behaviour of statistical error, the FSC map
according to Eq. (6) is also shown for comparison in Fig. 3.

13
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Statistical error (Estat), 20100415

APE 45E

14-day FSC composite, date: 20100415

e 48E

Fig. 3. Statistical error (FSC %-units) of GlobSnow FSC estimate for a composite of daily products between April
02 and April 15, 2010 (upper panel), and the corresponding FSC (%-units) estimation map (lower panel). Clouds
are depicted in brown-grey color (upper panel), and yellow (lower panel), respectively.

FSC estimates by SCAmod are compared with in situ observations of FSC from Finnish snow
courses in the left and central panels of Fig. 4a. The obtained residuals indicate that the
systematic error of FSC estimates is typically higher than the statistical error depicted in the
right panel of Fig. 4a. Note that statistical error in Fig 4 (8 years of reference data, 173 matching
pairs of in situ and satellite data, where each data point is an average of nine pixels) corresponds
to Figs. 2 (modelled situation using typical values) and 3 (composite of daily products where
each pixel value represents single observation from one day). As described in Section 2, results
of Fig. 4 are determined for clusters of 3 x 3 pixels covering the regions of reference snow

14
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courses, so that each data point is an average of nine pixels. Therefore, the statistical error in
the right-hand panel is the RMS-value of nine pixel-wise errors. Further, the behaviour of the
systematic error component appears to be strongly dependent on the level of the FSC estimate.
That is, bias changes from negative (underestimation) to positive (overestimation) as FSC
increases from 0% to 100%. Forest canopy transmissivity data in the GlobSnow FSC product
is evidently the cause of the observed bias. Namely, instead of directly using the satellite
derived apparent transmissivity, which provided the highest accuracy (Metsédmaki et al., 2005),
a global generalization from transmissivities of selected training regions are used, which is
based on the analysis of satellite data derived transmissivities of different GlobCover classes at
these regions (Metsdmiki et al., 2015). In practice Finnish boreal forests with a moderate
canopy closure are treated with low values of apparent canopy transmissivity as some of the
training areas for this particular GlobCover class also include denser Russian forests. As the
residuals of FSC estimates depicted in Fig. 4 are obtained for snow courses located in Finland,
the results show a predominantly positive bias resulting from the assigned low level of canopy
transmissivity. This is illustrated in Fig. 4b, where the left and central panels show the residuals
of FSC estimates as a function of GlobSnow forest canopy transmissivity indicating
overestimation for the densest forests (lowest values of transmissivity). The right panel of Fig.
4b indicates that the GlobSnow product derived statistical accuracy by Eq. (8) is strongly
dependent on forest cover, which was expected, as the forest cover affects the signal both by
two-way attenuation process and by reflecting. Fig. 4 suggests that the systematic error can be
estimated for those regions where independent reliable reference data are available. Fig. 4 also
indicates that there is no significant impact by the timing of estimates, as data are collected for
March to April during the period of nine years.

Based on the results shown in Fig. 4, we can apply Egs. (1) - (3) according to the procedure of
Fig. 1 to estimate the levels of systematic and total error. In practice, the determination of
systematic error has to be performed from FSC-interval stratified data according to Eq. (3).
Thereafter, Eq. (1) can be used to derive the total estimation error PE. Fig. 5 depicts the obtained
total error components as determined by FSC estimates from Finnish snow courses. Thus, Fig.
5 shows (a) the statistical errors calculated for the FSC estimates from snow courses, (b) the
interval-wise estimated systematic error levels according to Eq. (3) as well as (c) the observed
interval-wise RMSE. Additionally, the behaviour of BIAS determined by Eq. (5) is shown. For
the statistical error, both the interval-stratified values and individual estimates according to Eq.
(8) are depicted. For the lowest levels of estimated FSC, the BIAS is negative (underestimation
of FSC), but typically it shows positive values for the investigated GlobSnow FSC product.

The obtained values of systematic errors for different FSC estimate intervals (shown in Fig. 5)
can be further applied to describe the overall behaviour of systematic error. As discussed in
Section 3 this general behaviour can be approximated by a regression curve that gives A as a
function of FSC, Fig. 6. The exponential regression function giving A is combined with the
FSC product statistical error according to Eq. (1) to provide the map of total FSC product error
in Fig. 7. The comparison of the map of Fig. 7 with that of the statistical error, shown in Fig. 3,
demonstrates the increase of error level due to the consideration of systematic error.

15
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Fig. 4. Residuals and statistical accuracy for FSC at Finnish snow courses as a function of (a) estimated FSC and
(b) forest canopy transmissivity. Red asterisks show transmissivity interval-stratified averages. For the central and
right-hand panels the averages are root mean squared effective values instead of arithmetic means (left-hand
panel).
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Fig. 5. Estimated components of total FSC product error and the observed RMSE for FSC estimates over the
Finnish snow courses stratified into five FSC-intervals. Statistical error is also shown for individual observations
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Fig. 6. Regression curve determined from the results of Fig. 5 to describe the systematic error A as a function of
FSC.
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Total product error (PE), 20100415

30°e 4s’E

Fig. 7. Total FSC product error PE (FSC %-units) between April 02 and April 15, 2010. The corresponding maps
of the statistical error and FSC product are presented in Fig. 3. Clouds are depicted in brown-grey color.

5. Summary and conclusions

We introduced an approach to assess the uncertainty characteristics of Fractional Snow Cover
(FSC) estimates as provided by the SCAmod —FSC retrieval algorithm employed in the
provision of the GlobSnow SE v2.1 products. The approach builds on the idea of describing the
FSC uncertainty through error propagation, given that the statistical variation of the algorithm
constituents are a priori defined. The novelty is the consideration of systematic error, which is
carried out with the aid of independent in sifu reference data. An approach to provide an
estimate of the FSC product error by summing the systematic and statistical error components
is suggested. The results show that for seasonal snow in boreal forests when the level of FSC is
low, the total GlobSnow FSC product error is dominated by the systematic error component.
At high levels of FSC the demonstrated product error remains close to the levels of error
propagation analysis derived statistical error. It is shown that the systematic error in the
GlobSnow SE product stems from inherent inaccuracies of the applied method to estimate
apparent forest canopy transmissivity characteristics. This means that inaccuracies of the
applied forward model result in systematic errors that can be quantified using the methodology
introduced here. Further, since the values for the variances of e.g. snow-free ground reflectance
in statistical error analysis are suspected to be partially underestimated, the difference between
the total product error and the statistical error could be diminished by obtaining more
comprehensive observations to recalculate the variances. Then, presumably, the compensating
effect of the systematic error component to the statistical error level would also be diminished.
Even though the quantitative analyses are performed for the region of Finland, the
demonstration of FSC estimation error characteristics are showed for a larger region of
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European boreal forests covering the regions spanning from Denmark and Scandinavian
Peninsula to eastern side of the Ural Mountains in Russia.

The developed approach is also applicable to other satellite data-based products given that the
estimation of the quantitative geophysical parameter of interest is derived by an inverse solution
of a forward model and a representative set of independent reference data is available for the
determination of RMS estimation error characteristics.
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