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A B S T R A C T

Satellite images provide spatially explicit information on forest change covering wide areas. In this study, bi-
static TanDEM-X (TDX) synthetic aperture radar (SAR) satellite data were used to derive digital surface models
(DSMs) of forest areas using SAR interferometry (InSAR). The capability of change features derived from bi-
temporal InSAR DSMs to detect forest height (90th percentile of canopy height distribution, H90) and density
variations was investigated. Moreover, changes in the forest above-ground biomass (AGB) were estimated from
height changes between two InSAR DSMs. Bi-temporal airborne laser scanning (ALS) data, aerial orthoimages
and an ALS-based AGB change map from a study area in Southern Finland were used as references. The results
indicate that the InSAR height change of a forested area correlates more with vegetation density change than
with height change. The correlation between the InSAR mean height change and the height change feature from
ALS was 0.76 at stand level. Correspondingly, the correlation between the InSAR mean height change and the
ALS penetration rate change was 0.89. The AGB changes predicted based on InSAR height change agreed well
with the reference data; the root-mean-square error (RMSE) was 20.7Mg/ha (18.5% of the mean biomass in
2012) at stand level and 27.4Mg/ha (27.0%) for 16×16m grid cells. The results show that TDX DSMs can be
used to detect biomass changes of different orders of magnitude, e.g. due to logging and thinning.

1. Introduction

Planning sustainable use of forests and carbon monitoring require
up-to-date estimates of forest biomass. In addition, biomass estimates
may be required for areas outside of the typically inventoried land-base
(i.e. non-merchantable or remote locations) or out of sync with existing
inventory cycles. As such, in addition to typically used airborne images
or laser scanning (ALS) data, supplementary remote sensing data are
needed to capture biomass and biomass change. Satellite images can be
used to cover large areas of forest with consistent data in a cost-effec-
tive way (Lunetta et al., 2004).

One of the most important forest-related parameters is above-
ground biomass (AGB) and its changes, which are also known to have
an effect on the global carbon cycle (Houghton, 2005; Bonan, 2008).
Remote sensing provides spatially explicit information about forests
that could in future be integrated into greenhouse gas reporting systems
(Boisvenue et al., 2016). The value of the carbon mitigated by forests
could be billions of euros annually based on current European emission
allowances (Eurostat, 2018; EEX, 2018). However, there is uncertainty
in the current carbon exchange models (Bradshaw and Warkentin,

2015). Thus, small improvements in modeling could be worth millions
of euros.

Forest maps covering large areas can be derived from optical sa-
tellite imagery (e.g. Hansen et al., 2013; Hermosilla et al., 2015) and
synthetic aperture radar (SAR) satellite imagery (Wagner et al., 2003;
Persson et al., 2017). Forest AGB is often mapped using medium-re-
solution satellite imagery (Song, 2012), for example from Landsat and
Sentinel satellites, which provide open-access data acquired several
times per year and covering wide areas (Drusch et al.,2012; Wulder
et al., 2012).

Recently, satellite systems capable of extracting elevation models
(3D features) have been found to be a potential remote sensing data
source for forest AGB mapping (St-Onge et al., 2008; Solberg et al.,
2010; Persson et al., 2013). Very-high-resolution (VHR) satellite ima-
gery can be used to extract forest canopy height models and further-
more to estimate AGB in more detail than the medium-resolution da-
tasets. For example, high accuracy in biomass estimation from VHR
satellite imagery has been achieved from Worldview-2 (Yu et al., 2015)
and Pleaides (Persson, 2016) VHR optical stereo satellite imagery.
However, the availability of suitable image pairs is limited due to cloud
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coverage, and the coverage of VHR optical stereo images is somewhat
limited compared to systems such as Landsat and Sentinel-2. In addi-
tion, the costs of VHR imagery are a limiting factor, although taking
into account the recent developments in opening (open-access) data,
the situation may change in the future.

When elevation models are extracted from SAR satellite data, the
problems of cloud coverage can be omitted. From current operational
satellite SAR systems, the highest biomass estimation accuracy has been
achieved using Tandem-X interferometric image pairs (Askne et al.,
2013; Yu et al., 2015). Tandem-X (TDX) is a system of two X-band SAR
satellites flying in close formation (Krieger et al., 2007). The system
enables bistatic image acquisition simultaneously using the two sa-
tellites. SAR interferometry (InSAR) (Bamler and Hartl, 1998) is a
technique for generating a digital surface model (DSM) from two
complex SAR images. Simultaneous acquisition increases the correla-
tion between the SAR measurements, resulting in more accurate height
estimates.

Relationship between forest height and C-band spaceborne SAR
interferometric height was first analysed by Hagberg et al. (1995), and
first models between InSAR and forest attributes in boreal forest were
developed by Askne et al. (1997). For forested areas, interferometric
height is different from the actual height of the canopy, and it depends
on forest type and signal penetration into the canopy. Effects of forest
type and SAR system frequency have been studied by Sarabandi and Lin
(2000). For the X-band spaceborne SAR observations the height of the
scattering phase center has been analyzed by Praks et al. (2012) and
Kugler et al. (2014). Interferometric height and AGB are both related to
forest canopy height and density (Treuhaft and Siqueira, 2004).

Estimating forest inventory attributes from Tandem-X data in boreal
forests has been proven feasible in several studies; forest AGB has been
derived from forest height using equations adopted for the target area
and the forest type (Mette et al., 2003; Askne and Santoro, 2015;
Torano et al., 2016; Askne et al., 2017, 2018), or by developing pre-
diction models between the Tandem-X height metrics and AGB using in
situ measurements from sample plots (Askne et al., 2013; Solberg et al.,
2013a; Hansen et al., 2015; Karila et al., 2015; Soja et al., 2015a; Yu
et al., 2015; Persson and Fransson, 2017; Persson et al., 2017).

Although it has been shown that the 3D features based on TDX do
not describe the forest structure at plot level as accurately as ALS or
optical imagery, the 3D features based on TDX correlate with the forest
height and can be used consequently in the prediction of forest struc-
tural attributes – even at plot-level – with reasonable accuracy (Yu
et al., 2015). It should be noted that due to the higher ground sampling
distances and different measurement principles, TDX point clouds
cannot be expected to capture the variation in forest height and canopy
cover density in as detailed a manner as ALS. In addition, the method of
deriving a point cloud from radar data affects the prediction accuracy:
estimates for forest attributes based on TDX interferometry are con-
sistently more accurate than estimates based on TerraSAR-X radar-
grammetry (Yu et al., 2015).

Although the potential of AGB mapping from bistatic interfero-
metric SAR (InSAR) data is well known, there are still few scientific
studies about the possibilities and accuracy to estimate AGB change
from InSAR data. In previous studies, Tandem-X datasets have been
used to detect biomass changes in tropical forests (Solberg et al., 2017;
Treuhaft et al., 2017; Knapp et al., 2018). Change detection between
interferometric data from the 30m resolution SRTM (Shuttle Radar
Topography Mission) data and TDX has been carried out in boreal forest
by Solberg et al. (2014) and Næsset et al. (2015). These datasets have
also been used to detect forest clear-cuts (Solberg et al., 2013b). In
addition, change detection between ALS and TDX has been presented in
Askne et al. (2017) and Tian et al. (2017). Detection of thinning and
clear-cuts in boreal forest from solely TDX data was demonstrated by
Persson et al. (2015). Detection of growth from TDX data has been
recently studied by Askne et al. (2018).

This paper aims to improve the understanding of the feasibility of

bi-temporal TDX DSMs to monitor forest AGB changes. The main
strength of our study is the comprehensive reference data. We have
forest field plots and accurate AGB reference maps based on bi-temporal
ALS data. ALS point clouds accurately describe forest height, forest
height variation and canopy cover. All of these factors correlate with
forest AGB (e.g. Koch, 2010; Kaasalainen et al., 2014). Accurate esti-
mates of forest inventory attributes have been provided by ALS (Næsset,
2007; Hyyppä et al., 2008; Kankare et al., 2013; Bouvier et al., 2015;
Sheridan et al., 2015). ALS has also been proved to be a reliable method
to monitor changes in vegetation height and density (Yu et al., 2008;
Næsset et al., 2013; Vastaranta et al., 2013), and AGB changes have
been accurately estimated from ALS (Økseter et al., 2015; Cao et al.,
2016).

In order to monitor AGB, it is necessary to estimate changes in forest
height and density due to forest growth, forest damage and forest
management. Thus, in order to investigate the capability of the TDX
data to characterize forest AGB changes, we investigated how reliably
we can detect changes in forest height (90th percentile of canopy height
distribution from ALS), and canopy cover (ALS penetration rate) from
TDX DSMs. The relationship between interferometric height change and
forest AGB change for a boreal forest study area in Southern Finland
was also investigated.

2. Materials and methods

2.1. Study area and data

The study area is located in the southern boreal forest zone in Evo,
Finland (61.19°N, 25.11°E). The size of the area is approximately
4200 ha. There are both managed and natural forest stands in the area.
The most common tree species in the area are Scots pine (Pinus syl-
vestris, 40% of total volume) and Norway spruce (Picea abies, 35%).
Deciduous trees comprise 24% of the total volume.

ALS data from the study area was acquired in summer 2012 and
2014. In both years, the area was covered by two scans. The 2012
dataset was acquired on May 7 and 13, 2012, using Optech ALTM
Gemini and Leica ALS50 sensors. The flight altitudes were 1830 and
2200m above ground level (AGL). The pulse density was 0.8 pulses per
m2. The data is an open dataset from the National Land Survey (NLS) of
Finland. The 2014 ALS dataset was acquired on May 22 and September
8, 2014, using a Leica ALS70-HA SN 7202 sensor. The flying altitude
was 2500m AGL and the pulse density 0.7 pulses per m2.

Field data was collected in 2014 for 91 sample plots of 32 by 32m,
which were further divided into 364 plots of 16 by 16m (Yu et al.,
2015). The sample plot level AGB was obtained by summing single tree
level AGB's. The AGB for each single tree within a sample plot was
calculated using a field-measured tree height, diameter at breast height
(DBH) and tree species as inputs for a national biomass equation
(Repola, 2008, 2009). The AGB (Mg/ha) estimate of the sample plot
was derived from the absolute AGB by taking the plot size into account.
For the sample plots, the minimum AGB was 19.1Mg/ha, the maximum
AGB 230.6Mg/ha, and the mean AGB 134.5Mg/ha; the standard de-
viation of AGB was 48.3Mg/ha. No forest operations were carried out
between 2012 and 2014 within the sample plots. Thus, the only change
between 2012 and 2014 was growth, which is expected to be ap-
proximately 1.8Mg/ha/year, based on forest growth simulations using
field data. Thus, it has only a minor effect on the quality of our sample
plot data between the two time periods.

Two bistatic TDX pairs were used for interferometric processing.
The image pairs were acquired on August 14, 2012, and June 5, 2014,
from ascending tracks looking right. Imaging was carried out using
StripMap mode with an incidence angle of 48°, and, the reported re-
solution of the original data was 2.4m in ground range and 3.3 m in
azimuth. The height of ambiguity (height corresponding to one inter-
ferogram fringe) was around 45m for both image pairs. The inter-
ferometric baseline was 192m for the 2012 image pair and 190m for
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the 2014 image pair. On August 14, 2012, the temperature was 23 °C
and relative humidity was 49%. On June 5, 2014, the temperature was
16 °C and relative humidity was 84%. Some light rain showers occurred
in the nearby areas, but precipitation data was not available for the
study site, and thus, local rain showers cannot be excluded.

There are temporal differences between the ALS (May 2012) and
TDX (August 2012) datasets. However, the number of harvests during
the summer months is typically limited, and also, according to a visual
inspection, logging occurred only a few times between the data ac-
quisitions.

Aerial orthoimages acquired on May 7, 2012 (open data set), and
May 22, 2014, by NLS, and were used for visual analysis of changed
areas. Forest stand borders were available in vector format from an
existing forest management plan created by Häme University of Applied
Sciences (Fig. 1).

2.2. Calculating biomass-related features from bi-temporal ALS data and
classification of stands into four change classes

Features describing canopy height and canopy cover density were
derived from the 2012 and 2014 ALS datasets. Features were calculated
for grid cells of 16×16m. To describe tree height, the 90th percentile
of canopy height distribution (H90) was calculated from the normalized
points above the 2m threshold. The Pearson correlation coefficient (R)
between tree height and H90 was estimated using the field plots to be
0.92. Vegetation density was described by the penetration rate (PR) as
the ratio of ground returns (points below or equal to 2m) to the total
number of returns. If points above 2m were not available, the PR was
set to 100%. Change features were calculated as differences between
features in 2012 and 2014.

height H H90 90 (positive change means tree growth)2014 2012=

cover PR PR (positive change means more dense vegetation)2012 2014=

The mean for each forest stand was also calculated. Changes in ALS
features for forest stands are presented in Fig. 2a and for grid cells in
Fig. 2b. The stands were classified into four different change classes (A,
B, C, D) based on the mean values of bi-temporal ALS features (Fig. 2a).

2.3. Selecting samples from each change class and visual interpretation

For further analysis, 19 stands were systematically selected from each
of the classes A, B, C and D. The stands were drawn randomly from the
class and accepted if they passed a visual inspection. In the visual inter-
pretation based on the 2012 and 2014 aerial images, it was verified that
the selected stand contains forest or a forest change area. Stands re-
presenting clear cut were selected from class A (density decrease and
height loss). 7 of the 19 stands were only partially clear cut. Thinnings
were selected from class B (density decrease and height increase) based
on Δcover and verified from aerial images. However, the change could not
be absolutely verified as thinning in all cases (6 of the 19 stands); some
minor changes in forest were visible that could have been also blowdown
or snow-damaged trees or due to a different phenological stage.

From classes C and D, 19 forest stands were randomly drawn from
the class and verified from aerial images as containing homogenous
forest. Stands selected from D (height and density increase) present
natural growth in this study. Class C contains other changes. Based on a
visual interpretation, class C contains sparse and slightly non-homo-
genous forest stands. Seed tree removals and thinning of the dominant
tree layer (typical, if continuous cover forestry is applied) are possible
reasons for these changes; however, possible errors due to sparse ve-
getation cannot be neglected.

The selected stands vary in size (0.1 ha to 4 ha). For the selected
stands, the mean AGB in 2012 was 112.0Mg/ha, the minimum AGB was
26.9Mg/ha, and maximum the AGB was 209.8Mg/ha. In this study, the
stands are used to extract a total of 2235 grid cells (16×16m) inside the
stands for further analysis. For the corresponding grid cells, the mean
AGB in 2012 was 101.4Mg/ha, the minimum AGB was 20.2Mg/ha, and
the maximum was 223.0Mg/ha. It should be noted that a stand may
contain grid cells that would present several classes.

2.4. Predicting above-ground biomass for the grid cell within sample stands
using ALS and field observations

Reference AGB maps were produced for 2012 and 2014 using ALS
data and the 364 field plots of 16×16m. A digital terrain model
(DTM) calculated from ALS was used for ground height. Using the 364
field plots for training, AGB was estimated with the random forest

Fig. 1. The aerial image 2014 (©NLS 2014), 364 field plots (a black star on the map presents four 16× 16m plots) for reference AGB estimation from ALS, and forest
stands (black polygons, see 2.3) for change detection analyses.
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technique (Yu et al., 2015). The root-mean-square error (RMSE) of the
AGB estimation was approximately 28Mg/ha (21%) (Yu et al., 2015).
AGB maps of the study area were predicted for 2012 and 2014 with a
16×16m pixel size, and a change map was produced by subtracting
the 2014 AGB map from the 2012 AGB map (Fig. 3)

The average AGB change was −92.4Mg/ha for the stands included
in the change class clear cut (A), −29.1Mg/ha for class thinning (B),
−11.7Mg/ha for class other changes (C), and 3.6Mg/ha for class
growth (D).

2.5. Deriving digital surface models from interferometric SAR data for 2012
and 2014 and calculating features

Tandem-X DSMs were produced using the interferometric SAR
(InSAR) processing chain in ENVI/SARscape software with a pixel size
of 4×4m, described in more detail in (Karila et al., 2015). InSAR

DSMs contain relative height values, and they need to be matched using
common reference points or areas in open areas. In this study, InSAR
heights were matched to ALS DTM using nine reference areas (mostly
fields or meadows) to get absolute heights. Low coherence areas (co-
herence less than 0.25) were set as no data during the InSAR processing.

To calculate the features from bi-temporal InSAR DSMs, the
16× 16m grid was used. For each grid cell the minimum, maximum,
mean and standard deviation of the InSAR heights were calculated. A
height difference map was derived from InSAR DSMs (2014–2012) and
resampled to the 16×16m grid size.

2.6. Investigating forest biomass, height and density changes by change
classes

ALS and InSAR features were compared for the change classes: clear
cut (A), thinning (B), other changes (C), and growth (D). For each grid

Fig. 2. (a) The ALS change features Δcover and Δheight at forest stand level; (b) for grid cells (right). On the left is the classification into four different change classes:
A, B, C and D.

Fig. 3. The AGB change map (Mg/ha) derived from field data and ALS datasets using random forest method.
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cell inside the 19 selected stands, the difference of InSAR features in
2012 and 2014 was calculated to derive ΔTDXmin, ΔTDXmean,
ΔTDXmax, and ΔTDXstd. The correlation between Δheight and Δcover
from ALS and InSAR change features was calculated for the grid cells.

2.7. Predicting biomass change using InSAR change features

In previous studies, both linear (e.g. Solberg et al., 2014; Næsset
et al., 2015) and nonlinear regression models (e.g. Solberg et al., 2010,
2013; Soja et al., 2015) have been used for biomass estimation from
InSAR height. The advantage of linear models is that positive and ne-
gative values can be used. Therefore, the model describes both the
biomass growth and loss. Direct methods estimate AGB change directly
from height change (ΔH), and, indirect methods estimate first AGB for
both dates and the difference is calculated to obtain the biomass
change.

In this study, AGB prediction models based on TDX estimates of
InSAR height were developed by using the 16×16m grid cells inside
the 76 selected forest stands (See 2.3). Linear models (1) with and
without intercept were developed and the accuracy was calculated
using the root-mean-square error (RMSE). Nonlinear models (2) were
developed for a subset of data including the positive values of biomass
loss and height loss. Indirect linear models (3) were also tried. The
models used were:

AGB a H b· ( )= + (1)

AGB a H c· ( )b= + (2)

AGB a H b H c· · ( )2012 2014= + + (3)

where ΔH is the TDX height change, H2012 and H2014 are the TDX mean
heights in 2012 and 2014 respectively, and a, b and c are the unknown
parameters.

Finally, the AGB prediction model was validated at grid cell level by
using a modified k-fold cross-validation in which one stand out of the
76 stands was left out and the model was defined with the grid cells of
the other 75 stands. The difference between the observed and predicted
value was determined for each grid cell inside the left-out stand. This
was repeated for all 76 stands. The RMSEgc_CV was calculated from the
differences between prediction and observation for each grid cell of all
estimation rounds. Stand-level AGB change values were obtained by
aggregating all the predicted grid values within a stand. The root-mean-
square error RMSEs_CV was calculated from the stand-level differences
between observed and predicted values of all estimation rounds.

RMSE
AGB AGB

n
( )

CV
i
n

obs pred1
2

= =
(4)

where n is the number of grid cells (RMSEgc_CV) or stands (RMSEs_CV).
Finally, an AGB change map was predicted for the whole study area,

and the estimates were compared to the ALS-based AGB change map
and aerial orthoimages.

3. Results

3.1. Comparison of ALS and InSAR changes features

First, InSAR and ALS change features were compared at forest stand
level (Fig. 4) using all of the selected 76 stands. At stand level, the
coefficient of determination R2 for Δheight and ΔTDXmean was 0.57
(Pearson correlation coefficient R=0.76). For Δcover and ΔTDXmean,
the coefficient of determination was higher: 0.80 (R=0.89).

At the grid cell level R2 for Δheight and ΔTDXmean was 0.44
(R=0.66) and for Δcover and ΔTDXmean R2 was 0.69 (R=0.83). For
grid cells inside forest stands of classes A, B, C and D, the results are
presented in Table 1. Δheight and Δcover both correlated with changes
in InSAR height (ΔTDXmean, ΔTDXmin and ΔTDXmax) for the clear cut
(A) and thinning (B) classes. However, the correlation was weaker than
at stand level. The correlation of InSAR height change was stronger for
changes in forest density than for changes in forest height. The corre-
lation was similar for ΔTDXmean, ΔTDXmin and ΔTDXmax. ΔTDXstd did
not correlate strongly with the ALS change features. In interferometric
processing, several pixels are averaged and continuity of the inter-
ferometric phase is favored (filtering and phase unwrapping steps).
Therefore, there was not much variation in height, and minimum and
maximum heights were close to the mean height.

3.2. Predicting biomass changes based on InSAR height

Using the grid cells inside the selected 76 forest stands, the AGB
from ALS and InSAR height and their differences were used to derive
linear models to predict forest AGB change. For AGB estimation linear
model with intercept was selected. Direct and indirect methods were
used for the biomass change estimation. Grid cell (gc) level and stand
(s) level linear models for AGB in 2012, AGB in 2014 and models for
AGB change are presented in Table 2. The original data is presented at
stand level in Fig. 5.

Nonlinear regression models were fitted to a subset of the grid cell
data including grid cells with observed AGB loss and decrease in

Fig. 4. Stand-level comparison of change in Tandem-X mean height (ΔTDXmean) and (a) ALS-derived change in 90th height percentile (Δheight), and (b) change in
penetration rate (Δcover), for all classes.
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Tandem-X height (1428 grid cells). For comparison, linear models were
fitted using the same subset of data. The nonlinear models derived
were:

AGB H13.63· (RMSE 26.4 Mg/ha)gc
0.72= (14)

AGB H2.92· 17.20 (RMSE 25.5 Mg/ha)gc
1.22= + (15)

Using the same subset linear model had an RMSE of 25.6Mg/ha
(slope 5.52 and intercept 13.38). Therefore, there is no significant ad-
vantage in using the nonlinear model.

For direct AGB change estimation at stand level the intercept of the
linear was not significant. At grid cell level accuracy increase was minor
when intercept was included. Also, the indirect models resulted in only
a minor increase in accuracy in comparison to direct models.

Finally, the performance of direct linear no-intercept models for
AGB estimation was evaluated using the modified k-fold cross valida-
tion (see Section 2.7). The observed and predicted AGB changes were

compared using the ALS-based AGB change as reference (Fig. 6).
RMSEgc_CV was 27.4Mg/ha (27.0% of the original AGB in 2012) and
RMSEs_CV 20.7Mg/ha (18.5%).

Finally, to derive an AGB change map of the study area from TDX
height change, linear model (11) was used. For visual analysis, the AGB
change was predicted for the whole study area using the 16× 16m grid
cells (Fig. 7). Close-ups of the AGB change predictions and the corre-
sponding aerial orthoimages are presented in Fig. 8.

4. Discussion

In our study, vegetation height and density changes resulted in
consistent changes in InSAR height features. Grid cell correlation ana-
lysis showed that changes are detectable at sub-stand level. TDX height
change was estimated to correlate more with density change than with
height change. This is related to the phase center height being

Fig. 5. TDX mean height of stands and AGB in 2012 (a), and 2014 (b).

Table 1
The coefficient of determination (R2) between interferometric SAR (InSAR) change features and airborne laser scanning (ALS) change features for the grid cells of
four different change classes. InSAR mean height change (ΔTDXmean), change in standard deviation of height (ΔTDXstd), change in minimum height (ΔTDXmin) and
change in maximum height (ΔTDXmax) were compared to ALS-derived change in 90th height percentile (Δheight) and change in penetration rate (Δcover).

Clear cut (A) Thinning (B) Other changes (C) Growth (D)

Δheight Δcover Δheight Δcover Δheight Δcover Δheight Δcover

ΔTDXmean 0.190* 0.444* 0.020* 0.155* 0.003 0.009* 0.001 0.030*

ΔTDXstd 0.018* 0.018* 0.001 0.004 0.000 0.001 0.002 0.000
ΔTDXmin 0.161* 0.403* 0.016* 0.173* 0.003 0.005 0.003 0.023*

ΔTDXmax 0.180* 0.400* 0.017* 0.118* 0.001 0.010* 0.000 0.031*

* The correlation is statistically significant: p-value < 0.05.

Table 2
Linear models for AGB and AGB change estimation from Tandem-X height (H) at stand (s) and grid cell (gc) level.

Model Level Equation RMSE (Mg/ha) Equation number

AGB 2012 Grid cell _AGB H7.04· 37.40gc2012 2012= + 29.6 (5)
AGB 2014 Grid cell _AGB H6.92· 35.95gc2014 2014= + 29.7 (6)
AGB 2012 Stand _AGB H7.04· 40.55s2012 2012= + 21.8 (7)
AGB 2014 Stand _AGB H6.24· 43.44s2014 2014= + 22.6 (8)
ΔAGB indirect Grid cell AGB H H5.50· 6.35· 12.43gc 2012 2014= + 26.3 (9)
ΔAGB indirect Stand AGB H H6.09· 6.98· 11.16s 2012 2014= + 20.0 (10)
ΔAGB direct Grid cell AGB H6.39·gc = 27.1 (11)
ΔAGB direct Grid cell AGB H5.85· 6.51gc = + 26.6 (12)
ΔAGB direct Stand AGB H6.90·s = 20.3 (13)
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dependent on the penetration into forest canopy which is affected by
the density (Hagberg et al., 1995; Treuhaft and Siqueira, 2004). Also,
InSAR produces a smooth surface DSM that is not as sensitive to abrupt
changes (or detailed) as ALS DSM. Some changes e.g. due to growth
occur throughout the area but some changes are very local e.g. resulting
from single cut down trees. Often a change in the forest results in both
height and density changes. In the data used in this study forest height
(H90) change and density change had a moderate correlation
(R=0.59), which is caused by the type of changes e.g. including clear
cuts in the data. In general, forest type affects the correlation between
forest height and density, and, in the study area the correlation is weak
(R=−0.23). For other type of forest and other type of changes the
correlation between TDX height change and forest height or density
changes may be different.

Forest height loss due to clear cuts was detected, and the correlation
with InSAR height change was strong. Thinnings had a moderate cor-
relation to TDX height changes. The results support findings by Persson
et al. (2015) that clear cuts are easily detected and thinnings are de-
tectable to some extent. The data acquisition interval was only two
years, and the expected forest height increase due to growth was rather
small. The InSAR datasets used in this study were not able to detect
growth in the two-year time period. For the change class growth (D),
the average change in height detected from ALS was only 60 cm. Dif-
ferences in SAR signal penetration into canopy due to environmental
conditions, and, any inaccuracies in height level matching of the InSAR
DSMs, for example due to vegetation height in open areas, may affect
the detection of growth. However, over a considerably longer time
span, forest growth causing a large increase in density or height should

Fig. 7. AGB change map (Mg/ha) in 16× 16m cell size predicted from TDX height changes using a linear model (11). Black areas present no data areas. The
locations for the subsets in Fig. 8 are marked with letters A–D.

Fig. 6. (a) The observed AGB change (estimated from bi-temporal ALS and field data) vs. predicted AGB change from TanDEM-X interferometric height change
resulting from the modified k-fold cross validation at grid cell level. (b) The observed AGB change (estimated from bi-temporal ALS and field data) vs. predicted AGB
change from TanDEM-X interferometric height change resulting from the leave-one-out validation at stand level. 1:1 line is presented in the figure.
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be detectable from a single InSAR DSM difference, since large decreases
in forest density and height were reliably detected. In Askne et al.
(2018), growth could be detected over a 3.2-year period using a large
set of TDX acquisitions.

We detected AGB changes of different orders of magnitude using
TDX height changes and a simple model. Visual analysis using aerial
orthoimages as well as the numerical validation using the selected
stands showed correlation between the AGB changes predicted, AGB
changes estimated from ALS data, and visible forest changes. However,
it should be noted that the model is only applicable to forests similar to
the study area, and different models and parameters are needed for
different types of forest. The AGB models derived (5)-(8) are similar to
models derived by Solberg et al. (2010) for pine dominated forest using
X-band SRTM data (AGB=43+6.8H). In other studies considering
boreal forest, the slope has been found higher; In Soja et al. (2015) for
two sites in Sweden using several Tandem-X acquisitions simple no-
intercept linear models had slopes of 8.3–9.6 and 11.3–12.2; In Næsset
et al. (2015) for pine dominated forest using TDX slope was 11.1 (in-
tercept 18.4); and in Solberg et al. (2014) for spruce dominated forest

using TDX slope was 14.9. So, there is variation in model parameters for
boreal forest and for other forest types (tropical, temperate) even more
variation is expected.

Nonlinear relations between phase height and AGB have been pro-
posed in previous studies (Soja et al., 2015; Askne et al., 2018; Knapp
et al., 2018). However, the dataset used in this study could not verify
this. It may be due to the limited size of the dataset and limited oc-
currence of changes of different magnitudes or the amount of change
vs. no change. However, also in previous studies nonlinear relationships
could not have been verified (Solberg et al., 2010, 2013). Often, cur-
vilinear relationships have been proposed for biomass using tree height
as a predictor; however, interferometric height is more related to ca-
nopy height and gaps in canopy than the tree height (Solberg et al.,
2013). In addition, different forest types and baseline geometries might
affect the modeling. In this study the Tandem-X pairs used have very
similar imaging geometry. For TDX pairs acquired using different
geometries the model may be more complex.

The variance in the grid-based comparison of TDX and ALS changes
was likely due the side-looking imaging geometry of SAR. As a result, at

Fig. 8. Close-ups of AGB change predicted from TanDEM-X interferometric height change and corresponding aerial image subsets. These four subsets present
different change classes (from top down): clear cut (A), thinning (B), other changes (C), and growth (D). Polygons present the stand borders. Aerial orthoimage 2012
(left, ©NLS 2012), aerial orthoimage 2014 (middle, ©NLS 2014), AGB change predicted from TDX (right) for grid cells of 16×16m. The AGB change color bar can
be found in Fig. 7.
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the grid cell level, the SAR measurement may have originated from a
different object than the ALS measurement (Næsset et al., 2015). In
addition, the TDX DSM had a smooth surface and the variations in
height were smaller than for ALS. Area-based ALS methods have been
proved to provide accurate predictions for forest inventory attributes
that are highly correlated with canopy height and density, such as AGB.
In boreal forest conditions, ALS-based predictions for stem volume or
AGB typically have an RMSE of approximately 20% at the plot level
(sample plot size ranging from 100 to 300m2) (e.g. Vastaranta et al.,
2013, Yu et al., 2010) but it decreases closer to, or even below, 10% at
the stand level (e.g. Maltamo et al., 2006). Therefore, the use of large
sample plots (> 500m2) or stands for validation has been found pre-
ferable when references are obtained using ALS (Næsset et al., 2015; Yu
et al., 2015). The 16× 16m grid cells used in this study may not be of
optimal size for comparisons with ALS data.

Our results are in line with other studies using InSAR DSMs for di-
rect AGB change estimation. In Næsset et al. (2015), the AGB change
was estimated using a linear model and the height difference between
interferometric data from TDX and SRTM. For mature pine-dominated
forest in Norway, the RMSE was 24.8Mg/ha (400m2 plots) and
30.2Mg/ha (200m2 plots). In Solberg et al. (2014), which also used
TDX and SRTM datasets, the RMSE was 59Mg/ha.

The limitations of the InSAR DSM-based forest change detection
technique are related to the quality of input data. The availability of
two suitable TDX pairs is essential to the technique. Different imaging
geometries, different time of the year or weather conditions of the pairs
might affect the interferometric height (Kugler et al., 2014) and the
accuracy of the AGB change estimate. In addition, low coherence areas
are not used in generating digital surface model because the quality of
the phase information is not adequate. Therefore, there are gaps in the
final AGB change map from a single TDX image pair. The coherence is
strongly influenced by incidence angle, and combining DSMs produced
using image pairs with different imaging geometries would help in
filling the gaps. However, in our study area only approximately 10% of
pixels (excluding water areas) were not included in the result, and good
coverage of the area was obtained.

5. Conclusions

This study shows that abrupt AGB change in boreal forests can be
estimated using interferometric DSM height differences from the TDX
mission and a simple model. Based on our results, InSAR height changes
correlate more with forest density changes than forest height changes.
However, in comparison to ALS measurements, for short acquisition
intervals there is remarkable variance in the TDX height differences for
individual grid cells. Considering the information needs in planning
sustainable forest management and carbon monitoring, sub-stand-level
drastic negative changes in AGB are detectable with InSAR. Forest
structural changes over wide areas can be mapped if suitable InSAR
pairs are available. It was also shown that the detected changes can be
linked to the AGB change.
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