380 research outputs found

    A Computational Theory of Contextual Knowledge in Machine Reading

    Get PDF
    Machine recognition of off–line handwriting can be achieved by either recognising words as individual symbols (word level recognition) or by segmenting a word into parts, usually letters, and classifying those parts (letter level recognition). Whichever method is used, current handwriting recognition systems cannot overcome the inherent ambiguity in writingwithout recourse to contextual information. This thesis presents a set of experiments that use Hidden Markov Models of language to resolve ambiguity in the classification process. It goes on to describe an algorithm designed to recognise a document written by a single–author and to improve recognition by adaptingto the writing style and learning new words. Learning and adaptation is achieved by reading the document over several iterations. The algorithm is designed to incorporate contextual processing, adaptation to modify the shape of known words and learning of new words within a constrained dictionary. Adaptation occurs when a word that has previously been trained in the classifier is recognised at either the word or letter level and the word image is used to modify the classifier. Learning occurs when a new word that has not been in the training set is recognised at the letter level and is subsequently added to the classifier. Words and letters are recognised using a nearest neighbour classifier and used features based on the two–dimensional Fourier transform. By incorporating a measure of confidence based on the distribution of training points around an exemplar, adaptation and learning is constrained to only occur when a word is confidently classified. The algorithm was implemented and tested with a dictionary of 1000 words. Results show that adaptation of the letter classifier improved recognition on average by 3.9% with only 1.6% at the whole word level. Two experiments were carried out to evaluate the learning in the system. It was found that learning accounted for little improvement in the classification results and also that learning new words was prone to misclassifications being propagated

    Characters Segmentation of Cursive Handwritten Words based on Contour Analysis and Neural Network Validation

    Get PDF
    This paper presents a robust algorithm to identify the letter boundaries in images of unconstrained handwritten word . The proposed algorithm is based on  vertical  contour  analysis.  Proposed  algorithm  is  performed  to  generate  presegmentation by analyzing the vertical contours from right to left. The unwanted segmentation  points  are  reduced  using  neural  network  validation  to  improve accuracy  of  segmentation.  The  neural  network  is  utilized  to  validate segmentation  points.  The  experiments  are  performed  on  the  IAM  benchmark database.  The  results  are  showing  that  the  proposed  algorithm  capable  to accurately locating the letter boundaries for unconstrained handwritten words

    A Unified Multilingual Handwriting Recognition System using multigrams sub-lexical units

    Full text link
    We address the design of a unified multilingual system for handwriting recognition. Most of multi- lingual systems rests on specialized models that are trained on a single language and one of them is selected at test time. While some recognition systems are based on a unified optical model, dealing with a unified language model remains a major issue, as traditional language models are generally trained on corpora composed of large word lexicons per language. Here, we bring a solution by con- sidering language models based on sub-lexical units, called multigrams. Dealing with multigrams strongly reduces the lexicon size and thus decreases the language model complexity. This makes pos- sible the design of an end-to-end unified multilingual recognition system where both a single optical model and a single language model are trained on all the languages. We discuss the impact of the language unification on each model and show that our system reaches state-of-the-art methods perfor- mance with a strong reduction of the complexity.Comment: preprin

    Combining diverse systems for handwritten text line recognition

    Get PDF
    In this paper, we present a recognition system for on-line handwritten texts acquired from a whiteboard. The system is based on the combination of several individual classifiers of diverse nature. Recognizers based on different architectures (hidden Markov models and bidirectional long short-term memory networks) and on different sets of features (extracted from on-line and off-line data) are used in the combination. In order to increase the diversity of the underlying classifiers and fully exploit the current state-of-the-art in cursive handwriting recognition, commercial recognition systems have been included in the combined system, leading to a final word level accuracy of 86.16%. This value is significantly higher than the performance of the best individual classifier (81.26%

    An investigation into the use of linguistic context in cursive script recognition by computer

    Get PDF
    The automatic recognition of hand-written text has been a goal for over thirty five years. The highly ambiguous nature of cursive writing (with high variability between not only different writers, but even between different samples from the same writer), means that systems based only on visual information are prone to errors. It is suggested that the application of linguistic knowledge to the recognition task may improve recognition accuracy. If a low-level (pattern recognition based) recogniser produces a candidate lattice (i.e. a directed graph giving a number of alternatives at each word position in a sentence), then linguistic knowledge can be used to find the 'best' path through the lattice. There are many forms of linguistic knowledge that may be used to this end. This thesis looks specifically at the use of collocation as a source of linguistic knowledge. Collocation describes the statistical tendency of certain words to co-occur in a language, within a defined range. It is suggested that this tendency may be exploited to aid automatic text recognition. The construction and use of a post-processing system incorporating collocational knowledge is described, as are a number of experiments designed to test the effectiveness of collocation as an aid to text recognition. The results of these experiments suggest that collocational statistics may be a useful form of knowledge for this application and that further research may produce a system of real practical use

    Multimodal Interactive Transcription of Handwritten Text Images

    Full text link
    En esta tesis se presenta un nuevo marco interactivo y multimodal para la transcripción de Documentos manuscritos. Esta aproximación, lejos de proporcionar la transcripción completa pretende asistir al experto en la dura tarea de transcribir. Hasta la fecha, los sistemas de reconocimiento de texto manuscrito disponibles no proporcionan transcripciones aceptables por los usuarios y, generalmente, se requiere la intervención del humano para corregir las transcripciones obtenidas. Estos sistemas han demostrado ser realmente útiles en aplicaciones restringidas y con vocabularios limitados (como es el caso del reconocimiento de direcciones postales o de cantidades numéricas en cheques bancarios), consiguiendo en este tipo de tareas resultados aceptables. Sin embargo, cuando se trabaja con documentos manuscritos sin ningún tipo de restricción (como documentos manuscritos antiguos o texto espontáneo), la tecnología actual solo consigue resultados inaceptables. El escenario interactivo estudiado en esta tesis permite una solución más efectiva. En este escenario, el sistema de reconocimiento y el usuario cooperan para generar la transcripción final de la imagen de texto. El sistema utiliza la imagen de texto y una parte de la transcripción previamente validada (prefijo) para proponer una posible continuación. Despues, el usuario encuentra y corrige el siguente error producido por el sistema, generando así un nuevo prefijo mas largo. Este nuevo prefijo, es utilizado por el sistema para sugerir una nueva hipótesis. La tecnología utilizada se basa en modelos ocultos de Markov y n-gramas. Estos modelos son utilizados aquí de la misma manera que en el reconocimiento automático del habla. Algunas modificaciones en la definición convencional de los n-gramas han sido necesarias para tener en cuenta la retroalimentación del usuario en este sistema.Romero Gómez, V. (2010). Multimodal Interactive Transcription of Handwritten Text Images [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8541Palanci
    corecore