768 research outputs found

    Explainable Topic-Enhanced Argument Mining from Heterogeneous Sources

    Full text link
    Given a controversial target such as ``nuclear energy'', argument mining aims to identify the argumentative text from heterogeneous sources. Current approaches focus on exploring better ways of integrating the target-associated semantic information with the argumentative text. Despite their empirical successes, two issues remain unsolved: (i) a target is represented by a word or a phrase, which is insufficient to cover a diverse set of target-related subtopics; (ii) the sentence-level topic information within an argument, which we believe is crucial for argument mining, is ignored. To tackle the above issues, we propose a novel explainable topic-enhanced argument mining approach. Specifically, with the use of the neural topic model and the language model, the target information is augmented by explainable topic representations. Moreover, the sentence-level topic information within the argument is captured by minimizing the distance between its latent topic distribution and its semantic representation through mutual learning. Experiments have been conducted on the benchmark dataset in both the in-target setting and the cross-target setting. Results demonstrate the superiority of the proposed model against the state-of-the-art baselines.Comment: 10 pages, 3 figure

    Multi-Task Attentive Residual Networks for Argument Mining

    Full text link
    We explore the use of residual networks and neural attention for argument mining and in particular link prediction. The method we propose makes no assumptions on document or argument structure. We propose a residual architecture that exploits attention, multi-task learning, and makes use of ensemble. We evaluate it on a challenging data set consisting of user-generated comments, as well as on two other datasets consisting of scientific publications. On the user-generated content dataset, our model outperforms state-of-the-art methods that rely on domain knowledge. On the scientific literature datasets it achieves results comparable to those yielded by BERT-based approaches but with a much smaller model size.Comment: 12 pages, 2 figures, submitted to IEEE Transactions on Neural Networks and Learning System

    Attention in Natural Language Processing

    Get PDF
    Attention is an increasingly popular mechanism used in a wide range of neural architectures. The mechanism itself has been realized in a variety of formats. However, because of the fast-paced advances in this domain, a systematic overview of attention is still missing. In this article, we define a unified model for attention architectures in natural language processing, with a focus on those designed to work with vector representations of the textual data. We propose a taxonomy of attention models according to four dimensions: the representation of the input, the compatibility function, the distribution function, and the multiplicity of the input and/or output. We present the examples of how prior information can be exploited in attention models and discuss ongoing research efforts and open challenges in the area, providing the first extensive categorization of the vast body of literature in this exciting domain

    Enhancing scene text recognition with visual context information

    Get PDF
    This thesis addresses the problem of improving text spotting systems, which aim to detect and recognize text in unrestricted images (e.g. a street sign, an advertisement, a bus destination, etc.). The goal is to improve the performance of off-the-shelf vision systems by exploiting the semantic information derived from the image itself. The rationale is that knowing the content of the image or the visual context can help to decide which words are the correct andidate words. For example, the fact that an image shows a coffee shop makes it more likely that a word on a signboard reads as Dunkin and not unkind. We address this problem by drawing on successful developments in natural language processing and machine learning, in particular, learning to re-rank and neural networks, to present post-process frameworks that improve state-of-the-art text spotting systems without the need for costly data-driven re-training or tuning procedures. Discovering the degree of semantic relatedness of candidate words and their image context is a task related to assessing the semantic similarity between words or text fragments. However, semantic relatedness is more general than similarity (e.g. car, road, and traffic light are related but not similar) and requires certain adaptations. To meet the requirements of these broader perspectives of semantic similarity, we develop two approaches to learn the semantic related-ness of the spotted word and its environmental context: word-to-word (object) or word-to-sentence (caption). In the word-to-word approach, word embed-ding based re-rankers are developed. The re-ranker takes the words from the text spotting baseline and re-ranks them based on the visual context from the object classifier. For the second, an end-to-end neural approach is designed to drive image description (caption) at the sentence-level as well as the word-level (objects) and re-rank them based not only on the visual context but also on the co-occurrence between them. As an additional contribution, to meet the requirements of data-driven ap-proaches such as neural networks, we propose a visual context dataset for this task, in which the publicly available COCO-text dataset [Veit et al. 2016] has been extended with information about the scene (including the objects and places appearing in the image) to enable researchers to include the semantic relations between texts and scene in their Text Spotting systems, and to offer a common evaluation baseline for such approaches.Aquesta tesi aborda el problema de millorar els sistemes de reconeixement de text, que permeten detectar i reconèixer text en imatges no restringides (per exemple, un cartell al carrer, un anunci, una destinació d’autobús, etc.). L’objectiu és millorar el rendiment dels sistemes de visió existents explotant la informació semàntica derivada de la pròpia imatge. La idea principal és que conèixer el contingut de la imatge o el context visual en el que un text apareix, pot ajudar a decidir quines són les paraules correctes. Per exemple, el fet que una imatge mostri una cafeteria fa que sigui més probable que una paraula en un rètol es llegeixi com a Dunkin que no pas com unkind. Abordem aquest problema recorrent a avenços en el processament del llenguatge natural i l’aprenentatge automàtic, en particular, aprenent re-rankers i xarxes neuronals, per presentar solucions de postprocés que milloren els sistemes de l’estat de l’art de reconeixement de text, sense necessitat de costosos procediments de reentrenament o afinació que requereixin grans quantitats de dades. Descobrir el grau de relació semàntica entre les paraules candidates i el seu context d’imatge és una tasca relacionada amb l’avaluació de la semblança semàntica entre paraules o fragments de text. Tanmateix, determinar l’existència d’una relació semàntica és una tasca més general que avaluar la semblança (per exemple, cotxe, carretera i semàfor estan relacionats però no són similars) i per tant els mètodes existents requereixen certes adaptacions. Per satisfer els requisits d’aquestes perspectives més àmplies de relació semàntica, desenvolupem dos enfocaments per aprendre la relació semàntica de la paraula reconeguda i el seu context: paraula-a-paraula (amb els objectes a la imatge) o paraula-a-frase (subtítol de la imatge). En l’enfocament de paraula-a-paraula s’usen re-rankers basats en word-embeddings. El re-ranker pren les paraules proposades pel sistema base i les torna a reordenar en funció del context visual proporcionat pel classificador d’objectes. Per al segon cas, s’ha dissenyat un enfocament neuronal d’extrem a extrem per explotar la descripció de la imatge (subtítol) tant a nivell de frase com a nivell de paraula i re-ordenar les paraules candidates basant-se tant en el context visual com en les co-ocurrències amb el subtítol. Com a contribució addicional, per satisfer els requisits dels enfocs basats en dades com ara les xarxes neuronals, presentem un conjunt de dades de contextos visuals per a aquesta tasca, en el què el conjunt de dades COCO-text disponible públicament [Veit et al. 2016] s’ha ampliat amb informació sobre l’escena (inclosos els objectes i els llocs que apareixen a la imatge) per permetre als investigadors incloure les relacions semàntiques entre textos i escena als seus sistemes de reconeixement de text, i oferir una base d’avaluació comuna per a aquests enfocaments

    Deep Neural Attention for Misinformation and Deception Detection

    Get PDF
    PhD thesis in Information technologyAt present the influence of social media on society is so much that without it life seems to have no meaning for many. This kind of over-reliance on social media gives an opportunity to the anarchic elements to take undue advantage. Online misinformation and deception are vivid examples of such phenomenon. The misinformation or fake news spreads faster and wider than the true news [32]. The need of the hour is to identify and curb the spread of misinformation and misleading content automatically at the earliest. Several machine learning models have been proposed by the researchers to detect and prevent misinformation and deceptive content. However, these prior works suffer from some limitations: First, they either use feature engineering heavy methods or use intricate deep neural architectures, which are not so transparent in terms of their internal working and decision making. Second, they do not incorporate and learn the available auxiliary and latent cues and patterns, which can be very useful in forming the adequate context for the misinformation. Third, Most of the former methods perform poorly in early detection accuracy measures because of their reliance on features that are usually absent at the initial stage of news or social media posts on social networks. In this dissertation, we propose suitable deep neural attention based solutions to overcome these limitations. For instance, we propose a claim verification model, which learns embddings for the latent aspects such as author and subject of the claim and domain of the external evidence document. This enables the model to learn important additional context other than the textual content. In addition, we also propose an algorithm to extract evidential snippets out of external evidence documents, which serves as explanation of the model’s decisions. Next, we improve this model by using improved claim driven attention mechanism and also generate a topically diverse and non-redundant multi-document fact-checking summary for the claims, which helps to further interpret the model’s decision making. Subsequently, we introduce a novel method to learn influence and affinity relationships among the social media users present on the propagation paths of the news items. By modeling the complex influence relationship among the users, in addition to textual content, we learn the significant patterns pertaining to the diffusion of the news item on social network. The evaluation shows that the proposed model outperforms the other related methods in early detection performance with significant gains. Next, we propose a synthetic headline generation based headline incongruence detection model. Which uses a word-to-word mutual attention based deep semantic matching between original and synthetic news headline to detect incongruence. Further, we investigate and define a new task of incongruence detection in presence of important cardinal values in headline. For this new task, we propose a part-of-speech pattern driven attention based method, which learns requisite context for cardinal values

    Discriminative Topic Mining via Category-Name Guided Text Embedding

    Full text link
    Mining a set of meaningful and distinctive topics automatically from massive text corpora has broad applications. Existing topic models, however, typically work in a purely unsupervised way, which often generate topics that do not fit users' particular needs and yield suboptimal performance on downstream tasks. We propose a new task, discriminative topic mining, which leverages a set of user-provided category names to mine discriminative topics from text corpora. This new task not only helps a user understand clearly and distinctively the topics he/she is most interested in, but also benefits directly keyword-driven classification tasks. We develop CatE, a novel category-name guided text embedding method for discriminative topic mining, which effectively leverages minimal user guidance to learn a discriminative embedding space and discover category representative terms in an iterative manner. We conduct a comprehensive set of experiments to show that CatE mines high-quality set of topics guided by category names only, and benefits a variety of downstream applications including weakly-supervised classification and lexical entailment direction identification.Comment: WWW 2020. (Code: https://github.com/yumeng5/CatE

    Classification of Explainable Artificial Intelligence Methods through Their Output Formats

    Get PDF
    Machine and deep learning have proven their utility to generate data-driven models with high accuracy and precision. However, their non-linear, complex structures are often difficult to interpret. Consequently, many scholars have developed a plethora of methods to explain their functioning and the logic of their inferences. This systematic review aimed to organise these methods into a hierarchical classification system that builds upon and extends existing taxonomies by adding a significant dimension—the output formats. The reviewed scientific papers were retrieved by conducting an initial search on Google Scholar with the keywords “explainable artificial intelligence”; “explainable machine learning”; and “interpretable machine learning”. A subsequent iterative search was carried out by checking the bibliography of these articles. The addition of the dimension of the explanation format makes the proposed classification system a practical tool for scholars, supporting them to select the most suitable type of explanation format for the problem at hand. Given the wide variety of challenges faced by researchers, the existing XAI methods provide several solutions to meet the requirements that differ considerably between the users, problems and application fields of artificial intelligence (AI). The task of identifying the most appropriate explanation can be daunting, thus the need for a classification system that helps with the selection of methods. This work concludes by critically identifying the limitations of the formats of explanations and by providing recommendations and possible future research directions on how to build a more generally applicable XAI method. Future work should be flexible enough to meet the many requirements posed by the widespread use of AI in several fields, and the new regulation
    corecore