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Abstract: Machine and deep learning have proven their utility to generate data-driven models with
high accuracy and precision. However, their non-linear, complex structures are often difficult to
interpret. Consequently, many scholars have developed a plethora of methods to explain their
functioning and the logic of their inferences. This systematic review aimed to organise these methods
into a hierarchical classification system that builds upon and extends existing taxonomies by adding
a significant dimension—the output formats. The reviewed scientific papers were retrieved by
conducting an initial search on Google Scholar with the keywords “explainable artificial intelligence”;
“explainable machine learning”; and “interpretable machine learning”. A subsequent iterative search
was carried out by checking the bibliography of these articles. The addition of the dimension of the
explanation format makes the proposed classification system a practical tool for scholars, supporting
them to select the most suitable type of explanation format for the problem at hand. Given the
wide variety of challenges faced by researchers, the existing XAI methods provide several solutions
to meet the requirements that differ considerably between the users, problems and application
fields of artificial intelligence (AI). The task of identifying the most appropriate explanation can be
daunting, thus the need for a classification system that helps with the selection of methods. This work
concludes by critically identifying the limitations of the formats of explanations and by providing
recommendations and possible future research directions on how to build a more generally applicable
XAI method. Future work should be flexible enough to meet the many requirements posed by the
widespread use of AI in several fields, and the new regulations.

Keywords: explainable artificial intelligence; method classification; systematic literature review

1. Introduction

In recent years, many scholars have devoted their efforts to the search for novel
methods that are capable of exposing and explaining the logic followed by data-driven
machine-learned models, thus creating a new subfield of artificial intelligence (AI) known
as explainable artificial intelligence (XAI). The rapid growth in the XAI research outputs
of the last decade is prominently due to the fast increase in the popularity of machine
learning (ML), particularly of deep learning (DL) models, because of the astonishing levels
of prediction accuracy that they can reach [1]. These models are nowadays applied in
several types of knowledge and business areas, spanning from autonomous vehicles [2]
to games [3] and including criminal justice, healthcare [1] and battlefield simulations [4],
just to mention a few. Unfortunately, most of the ML and DL models are considered as a
“black-box” by scholars, and more so by the lay public, because of their complex, non-linear
underlying structures that make them opaque and unintelligible. This opacity has created
the need for XAI architectures, mainly motivated by three reasons [4]: (i) the request to
increase the transparency of the models; (ii) the necessity to allow humans to interact with
them; and (iii) the demand for the trustworthiness of their inferences. This has led to the
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development of a plethora of domain-dependent and context-specific methods for dealing
with the interpretation of ML models and the formation of explanations for humans. This
trend is far from being over, with an abundance of novel XAI methods that are scattered
and need organisation. The goal of this article was to systematically review research works
aimed at developing new methods for XAI, to make a comprehensive survey and define a
novel classification system of a larger scope built on the efforts of other scholars to organise
the vast number of XAI methods proposed so far [5]. The analysis of more than 200 scientific
articles exposed a research gap in the literature. None of the existing classification systems
considered the format of the explanations generated by the XAI methods. Thus, the system
proposed in this manuscript includes this brand-new dimension, the format of explanations,
in harmony with other categories. This new dimension enhances the practical character
of the proposed system as it allows scholars and practitioners to select the most relevant
XAI method from the most suitable type of explanation for the problem at hand. The
conceptual framework at the basis of the proposed system is represented in Figure 1. Most
of the XAI methods focus on interpreting and making the entire process of building an
AI system transparent, from the inputs to the outputs via the application of a learning
approach to generate a model. The outcome of these methods are explanations that can be
of different formats, such as rules, numerical, textual or visual information or a combination
of the former ones (see Figure 2). The different formats of explanations are the natural
consequence of the widespread application of AI-powered technologies that are utilised
by different users in various fields to solve distinct problems [6–8]. As pointed out in [9],
system designers, developers and AI practitioners find useful explanations that accurately
reflect the logic implemented within a model. In this case, rule-based explanations represent
a structured, compact yet comprehensible way to represent a set of logical instructions.
On the other hand, end-users belonging to the lay public prefer reconstructive explanations
that build a ‘story’, exposing which input features contribute the most to the model’s
prediction. Visual and textual explanations can tell why, for example, the image of an
animal was assigned to a certain class in an intuitive way, such as “this image represents a
penguin because it is white and black and it has a beak”.

Figure 1. Diagrammatic view of how an explainable artificial intelligence (XAI) solution is typically constructed.

From several hundreds of research articles, more than 200 were considered for review
by searching on Google Scholar papers related to “explainable artificial intelligence”;
“explainable machine learning”; and “interpretable machine learning”. Subsequently,
the bibliographic section of these articles was thoroughly examined to retrieve further
relevant scientific studies. The remainder of this paper is organised as follows. Section 2
provides a detailed description of the methodology followed to search for relevant research
articles. Section 2.1 proposes a classification structure of the XAI methods describing
top branches while Sections 3–7 expand this structure. Eventually, Section 8 concludes
this review by summarising the gaps in the field highlighted by this survey, as well as
suggesting future research work and challenges.
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Figure 2. Classification of XAI methods into a hierarchical system.

2. Research Methods

The organisation of the scientific literature concerning new XAI methods within AI in
a comprehensive and precise way and setting clear boundaries is far from being an easy
task. This is the consequence of the multidisciplinary applications of these new techniques.
Nonetheless, some constraints had to be defined, and the following publication types
were excluded:

• Articles or technical reports that have not been peer reviewed;
• Scientific studies that applied existing XAI methods to specific problems, such as

interpreting the forecasts made by DL models on images of cancers, and do not
expand the XAI as a field. This exclusion was also necessary to drastically reduce
the number of articles to something more manageable. Similarly, articles related to
tutorials on XAI were discarded [10–13];

• Methods that could be employed for enhancing the explainability of AI techniques
but that were not specifically designed for this purposes. For example, a consid-
erable number of articles were devoted to methods designed for improving data
visualisation or feature selection. These methods can indeed help researchers gain
deeper insights into computational models, but they were not specifically designed
for producing explanations.

Taking into account the above constraints, this review was carried out in two phases:

1. Google Scholar was queried to find articles discussing the explainability by using
the following terms: “explainable artificial intelligence"; “explainable machine learning";
and “interpretable machine learning". The search returned several thousands of results,
but only the first ten pages contained relevant articles. Altogether, these searches
provided a basis of around 170 peer-reviewed publications;

2. The bibliographic section of these articles was thoroughly reviewed. This led to the
selection of further 50 articles whose bibliographic section was recursively analysed.
This process was iterated until it converged and no more articles were found.

2.1. Classification of XAI Methods by Output Formats

More than 200 scientific articles were found that aimed to develop new XAI methods.
Over time, researchers have tried to comprehend and unfurl the inner mechanics of data-
driven and knowledge-driven models in various ways. From an examination of these
articles, it was possible to identify the five main criteria for discriminating XAI methods.
The first four have been already identified and analysed in the literature [5]. First, the scope
of an explanation can be either global or local. In the former case, the goal is to make
the entire inferential process of a model transparent and comprehensible as a whole.
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In the latter case, the objective is to explain each inference of a model [14,15]. The second
dimension refers to the stage at which a method generates explanations. Ante hoc methods
aim to consider the explainability of a model from the beginning and during training to
make it naturally understandable whilst still trying to achieve optimal accuracy [16–18].
Post hoc methods keep a trained model unchanged and mimic or explain its behaviour
by using an external explainer at testing time [15,16,19,20]. The third dimension refers
to the problem type. XAI methods can vary according to the underlying problem, either
classification or regression. Finally, the mechanisms followed by a model to classify images
can substantially differ from those used to classify textual documents, thus, the input data of
a model (numerical/categorical, pictorial, textual or times series) can play an important role in
constructing a method for explainability. Taking into account the articles examined in this
systematic review, we propose an additional criteria, namely output format [21]. Similarly
to input data, different circumstances can demand different formats of explanations to
be considered by a method for explainability: numerical, rules, textual, visual or mixed.
Figure 2 depicts in a graphical manner the structure of the proposed classification system
of the XAI methods as a tree, whereas Figure 3 shows the distribution of the articles across
its branches.

Figure 3. Distribution of XAI methods by output format across scope, stage, input type and problem type categories.

The output format category represents the main novelty of the proposed classification
system that has not been considered yet in published surveys and it refers to the format
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of the explanations produced by an XAI method. Visual explanations are probably the
most natural way of communicating things and a very appealing manner to explain them.
Scholars have analysed various types of visualisation tools to determine which ones are
the most suitable for certain applications or meet the favour of scholars and practitioners.
An example of these tools are heat-maps which highlight the specific areas of an image
or specific words of a text that mostly influence the inferential process of a model by
using different colours [22,23]. Visual explanations can also be used to illustrate the inner
functioning of a model via graphical tools, such as the graphs proposed in [24], where
each node is a layer of the network and the edges are the connections between layers.
Another intuitive form of explanation for humans is textual explanations, natural language
statements which can either be written or orally uttered. An example is a phrase “This is a
Brewer Blackbird because this is a blackbird with a white eye and long pointy black beak”
shown by an explainer of an image classification model [25]. Rules are a schematic, logical
format, more structured than visual and textual explanations but still intuitive for humans.
Rules can be in the form of “IF . . . THEN” statements with AND/OR operators and they are
very useful for expressing combinations of input features and their activation values [26,27].
Technically, rules of these types employ symbolic logic, a formalised system of primitive
symbols and their combinations (example: ‘(Country = USA) ∧ (28 < Age ≤ 37) →
(Salary > 50K)’ [28]). The parts before and after the→ logical operator are, respectively,
referred to as antecedent and consequent. Given this logic, rules can be implemented as
fuzzy rules, linking one or more premises to a consequent that can be true to a degree,
instead of being entirely true or false. This can be obtained by representing each antecedent
and consequent as fuzzy sets [29]. Combining fuzzy rules with learning algorithms can
become a powerful tool to perform reasoning and for instance, explain the inner logic of
neural networks [30]. Similarly, the combination of antecedents and consequents can be
seen as an argument in the discipline of argumentation, and a set of arguments can be put
together in a dialogical structure by employing attacks, the link between arguments that
model’s conflicts [31,32]. Arguments and attacks form a complex structure but with high
explanatory power, suitable for explaining the inner functioning of data-driven models.
Explanations can also be constructed by only employing numerical formats as crisp values,
vectors of numbers, matrices or tensors to highlight which input attributes and/or features
of the model have the largest effect on the prediction of the output as in Probe [33] and
concept activation vectors (CAVs) [34]. Numbers are capable of conveying information
in a compact format, but they are perceived as dull and difficult to understand by many
people. Eventually, some methods produce explanations based on a combination of the
other four formats in the attempt to exploit their strengths and overcome their weaknesses,
as performed by Image Caption Generation with the Attention Mechanism which jointly
employs visual and textual explanations [35].

The following sections try to succinctly describe the XAI methods found during this
systematic review grouped by the formats of the explanations generated by them. This is
accompanied by tables for further classifying them according to their stage, scope, problem
type and input data in alphabetic order. Given the large number of methods found for
each output format, it was decided to further group them according to which learning
approaches they can be applied to. Note that some of the XAI methods found in this study
were designed to expose the logic of learning algorithms based on rules, such as decision
trees, however the output explanations are not themselves rules but other formats, such
as text or a graph. These methods can be found in the sections related to the appropriate
explanation format. An example is a method called Feature Tweaking [36] which explains
the logic of random forests, itself a learning algorithm built with rules, but it returns a
numeric explanation corresponding to the size of a linear shift that must be applied to an
input instance to be classified under another class. Thus, this method is classified under
numeric explanations for ensemble algorithms. Indeed, the post hoc XAI methods can be
further divided into model-agnostic and model-specific methods [5]. The former methods
do not consider the internal components of a model, such as weights, therefore they can
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be applied to any learning approach. The latter methods are instead limited to specific
classes of models. For instance, the interpretation of the weights or activation values of a
neural network model is specific to this learning approach (neural network) [14]. Model
agnosticism and specificity do not apply to ante hoc methods because their goal is to
make the functioning of a model transparent, so they are intrinsically model-specific [16].
Figure 4 shows the distribution of the scientific articles across the output formats and
learning approaches.

Figure 4. Distribution of the scientific articles of the XAI literature split by output format and learning approach.

3. Numeric Explanations
3.1. Model Agnostic XAI Methods

A few model agnostic XAI methods produce numerical explanations (see Table 1 and
Figure 5 for some examples). Most of them focused on measuring the contribution of an
input variable (or a group of them) with quantitative metrics. Distill-and-Compare [37]
trains a transparent, simpler model, called a student, on the output obtained from a larger,
complex model, considered as a teacher, to mimic its inferential process. In this study,
the student model was constrained to be generalised additive models (GAMs) which
easily allow estimating the contribution of each feature in a numerical format. Similarly,
Shapley Additive Explanations (SHAP) [38] utilises additive feature attribution methods,
which are basically linear combinations of the input features, to build a model which is
an interpretable approximation of the original model. The authors recently proposed a
modified version of SHAP, called TreeExplainer [39], specific for tree-based ML models such
as those trained with random forests and gradient boosting. The SHAP algorithm is based
on the assumption of features’ independence, but [40] proposed a way to improve it by
relaxing this assumption. Alternatively, Ref. [41] proposed to combine the Shapley values,
which assess the marginal contribution of each input feature to the model’s predictions,
with the Lorenz Zonoids decomposition, which can be seen as a generalisation of the
receiver operating characteristic (ROC) curve in a multidimensional setting, to determine
the relevant features.

Some XAI methods are based on an “input perturbation” approach, and generally
speaking, they work by modifying the reported values of the variables of an input instance
to cause a change in the model’s prediction. Explain and Ime [42,43] assess, respectively,
the contribution of a particular input variable or a set of variables by quantifying their
effects on the predictions of a given model when they are varied through their range
of values. Global Sensitivity Analysis (GSA) method [44,45] follows the same process
to rank input features according to their contribution to the predictions. Refs. [46–50]
proposed a method to explain the prediction of a model at the instance level, also based on
the contribution of each feature estimated by comparing the model output when all the
features are known and when one or more of them are omitted. The contribution is positive
for the features that lead to the prediction towards a class, negative for those that push the
prediction against a class, and zero when they do not have influence. Four methods, namely



Mach. Learn. Knowl. Extr. 2021, 3 621

Quantitative Input Influence (QII) functions [51]; Gradient Feature Auditing (GFA) [52];
Influence functions [53]; and Monotone Influence Measures [54], utilise influence functions
to assess the contribution of each feature to certain predictions. An influence function is
a classic technique from statistics measuring the sensitivity of a model to changes in the
distributions of the independent variables [53]. The perturbation of the input can be done
in different ways such as applying a constant shift (influence functions), obscuring parts
of the input (GFA), rotating, reflecting or randomly assign labels to the input (monotone
influence measures). Feature Importance [55] and Feature Perturbation [56] are also based
on algorithms that modify subsets of the input features to find groups of interacting
attributes used by different classifiers and determine the extent to which a model exploits
such interactions.

(a) (b)
Figure 5. Examples of numerical explanations generated by three model-agnostic XAI methods that highlight the contribu-
tion of the input features to the model’s prediction and can be presented to the users as (a) surface charts (GSA [44]); or (b)
bar plots (Explain and Ime [42]).

Table 1. Post hoc model-agnostic XAI methods generating numerical explanations, classified according to the type of
problem (C: classification; R: regression), scope (G: global; L: local) and input data (NC: numerical/categorical; P: pictorials;
T: textual; TS: time series) of the underlying model.

Method for Explainability Authors Ref Year Scope Problem Input

Distill-and-Compare Tan et al. [37] 2018 G C/R NC
Explain and Ime Robnik-Šikonja [42,43] 2008, 2018 L C NC
Feature Contribution Kononenko et al., Štrumbelj et al. [46–48] 2010, 2013, 2009 L C/R NC
Feature Contribution Štrumbelj et al. [49,50] 2008, 2010 G C/R NC
Feature Importance Henelius et al. [55] 2014 G C NC
Feature Perturbation Štrumbelj and Kononenko [56] 2014 G C/R NC
GSA Cortez and Embrechts [44,45] 2011, 2013 G C/R NC
GFA Adler et al. [52] 2018 G C/R NC
Influence Functions Koh and Liang [53] 2017 G C P
Monotone Influence Measures Sliwinski et al. [54] 2017 L C P
QII functions Datta et al. [51] 2016 G C NC
SHAP Lundberg and Lee, Janzing et al. [38,40] 2017, 2020 G C P
Shapley–Lorenz–Zonoid Decomposition Giudici and Raffinetti [41] 2020 G R P
TreeExplainer Lundberg et al. [39] 2020 L C NC
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3.2. Model-Specific XAI Methods Based on Neural Networks

A few XAI methods produce pure numerical explanations for neural networks (see
Table 2 and Figure 6). Concept activation vectors (CAVs) [34] separate the activation values
of a hidden layer into two sets. The first set is relative to the instances belonging to a
class of interest whereas the second set contains the activation values generated by the
remaining part of the dataset. Then, it trains a binary linear classifier to distinguish the
activation values of the two sets and compute directional derivatives on this classifier to
measure the sensitivity of the model to changes in inputs towards the class of interest.
This is a scalar quantity, calculated for each class over the whole dataset, which quantifies
how important a user-defined concept is to classify the input instances in each class.
For example, CAVs measure how sensitive the class “zebra” is to the presence of stripes in
an input image. Probe [33] consists of a linear classifier fitted to a single feature learned by
each layer of a deep neural network (DNN) to predict the original classes. The numerical
explanations are the probability scores assigned by the probes to each class. Singular
Vector Canonical Correlation Analysis (SVCCA) [57] returns the correlation matrix of the
neurons’ activation vectors, calculated over the entire dataset, of two instances of a given
DNN trained separately. The first network’s instance is obtained at the end of the training
process, whereas the latter consists of multiple snapshots of the network during training.
Causal importance [58] is computed by summing up the variations in the output when
the values of a variable are perturbed, instance by instance, whilst all the other variables
are kept fixed. The predictive importance of each variable is the absolute difference
between the predictions made by a DNN with the original and the perturbed variables.
Irrelevant variables are suppressed. The network is then trained with the relevant variables
only and data are clustered according to their hidden layer representation by training an
unsupervised Kohonen map on the matrix containing the activation values of each instance
of a neuron/input pair. Finally, causal importance is measured on a cluster-by-cluster
basis. Ref. [59] proposed to measure the contextual importance and contextual utility
of input on the output variable. The former metric is the ratio between the range of the
output values covered by varying a variable throughout its range of values and the whole
output space. For example, a neural network was trained to predict the price of a car over
a set of variables, among which there is the engine size. By varying the engine size alone,
the price varies only within a certain range. Contextual utility represents the position
of the actual output within contextual importance. The price of cars with big engines,
produced by the same manufacturer, are towards the upper end of the manufacturer’s price
range. LAXCAT [60] identifies the features of input time-series data as well as the time
intervals deemed relevant by a CNN to determine the output class. The CNN is coupled
with a variable attention module that assigns weights to the input features according to
their relevance and a temporal attention module that identifies the time intervals over
which the features selected by the previous module inform the model’s prediction. Finally,
Recurrent Lexicon Network (RELEXNET) [61] combines the transparency of lexicon-based
classifiers with the accuracy of recurrent neural networks (RNNs). Lexicons are linguistic
tools for classification and feature extraction which consist of a list of terms weighted by
their strength of association with a given class. RELEXNET uses lexicons as inputs of a
naive gated RNN which returns the probability that the input belongs to a certain class.
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(a) (b)
Figure 6. Examples of numerical explanation generated by a method for the explainability of neural networks showing
the contribution of the most relevant features to the network’s predictions: (a) Concept Activation Vectors [34]; and (b)
contextual importance and utility [59].

Table 2. XAI methods for neural networks generating numerical explanations, classified according to the stage (AH: ante
hoc; PH: post hoc), the type of problems (C: classification; R: regression), scope (G: global; L: local) and input data (NC:
numerical/categorical; P: pictorials; T: textual; TS: time series) of the underlying model.

Method for Explainability Authors Ref Year Stage Scope Problem Input

Causal Importance Féraud and Clérot [58] 2002 PH G C NC
CAVs Kim et al. [34] 2018 PH G C P
Contextual Importance and Utility Främling [59] 1996 PH G/L C NC
LAXCAT Hsieh et al. [60] 2021 PH G C TS
Probes Alain and Bengio [33] 2017 PH G C P
RELEXNET Clos et al. [61] 2017 AH G C T
SVCCA Raghu et al. [57] 2017 PH G C/R P

3.3. Other Model-Specific XAI Methods

Scholars proposed other XAI methods generating numeric explanations for ML models
that are not strictly based on neural networks (see Table 3).

3.3.1. Ensembles

Feature Tweaking [36] modifies a variable (or a set of variables) of an input instance by
applying a linear shift, capped to a global tolerance value until all the trees in the ensemble
assign it to another target class. The delta between the original and the tweaked value
represents the “tweaking cost” required to move the instance into the target class. Random
forest model and sample explainer (RFEX) [62] returns numerical explanations, formatted
as tables, of the predictions made by random forests in binary classification problems.
The table contains the features of the dataset ranked according to their predictive power,
measured by their mean decrease in accuracy, cumulative F1 score and Cohen distance.
The Cohen distance indicates the degree of separation in the feature values between the two
output classes. It is the absolute difference of the average feature values’ relative calculated
over the samples belonging to the two classes divided by the feature’s standard deviation.

3.3.2. Support Vector Machines

Important support vectors and border classification [63] are two methods for provid-
ing insight into local classifications produced by an SVM. The former reports the most
influential support vectors for the final classification of a particular data instance, thus
determining the closest samples to the test point belonging to the same class. The latter
determines which features of a testing instance would need to be altered (and by how
much) to be classified on the separating surface between two classes. This provides a
measure of the cost required to change a model’s prediction. Weighted linear classifier [64]
generates weighted linear SVM classifiers on random hyperplanes to obtain models whose
accuracy is comparable to that of a non-linear SVM classifier and whose results can be
readily visualised being projected on separating hyperplanes and decision surfaces. These
projections are considered as a sort of explanation.



Mach. Learn. Knowl. Extr. 2021, 3 624

Table 3. XAI methods for data-driven approaches generating numerical explanations, classified according to the construction
approach (learning algorithm), stage (AH: ante hoc; PH: post hoc), type of problems (C: classification; R: regression), scope
(G: global; L: local) and input data (NC: numerical/categorical; P: pictorial; T: textual; TS: time series).

Method for Explainability Authors Ref Year Construction
Approach Stage Scope Problem Input

Feature Tweaking Tolomei et al. [36] 2017 Ensembles PH L C NC
Important Support Vectors and Border Classification Barbella et al. [63] 2009 SVM PH L C NC
RFEX Petkovic et al. [62] 2021 Ensembles PH G C NC
Weighted Linear Classifier Caragea et al. [64] 2003 SVM PH G C NC

3.4. Self-Explainable and Interpretable Methods

Naturally interpretable models, sometimes referred to as “white-box models”, are
inherently “ante hoc” (see Table 4). Their output format depends on their architecture
and input format. Gaussian process regression (GPR) [65] is a non-parametric regression
algorithm which is interpretable because the weights assigned to each feature provide a
measure of its relevance. Oblique Treed Sparse Additive Models (OT-SpAMs) [66] divide
the input feature spaces into regions with sparse oblique tree splitting and assign local
sparse additive predictive models to individual regions. Supersparse linear integer model
(SLIM) [67] generates a scoring system from an input dataset by assigning a score to each
variable. These scores are multiplied by a set of coefficients inferred from the training
dataset and then added, subtracted, and/or multiplied to make a prediction. The scores are
generated by solving a discrete optimisation problem that minimises the 0–1 loss to reach a
high level of accuracy, regularises a `0 − penalty to encourage a high level of sparsity and
constrains coefficients to a set of user-defined meaningful and intuitive values.

Table 4. Ante hoc XAI methods generating white-box models generating numerical explanations, classified according to the
type of problem (C: classification; R: regression), scope (G: global; L: local) and input data (NC: numerical/categorical; P:
pictorial; T: textual; TS: time series) of the underlying model.

Method for Explainability Authors Ref Year Scope Problem Input

GPR Caywood et al. [65] 2017 G R TS
OT-SpAMs Wang et al. [66] 2015 G C NC
RELEXNET Clos et al. [61] 2017 G C T
SLIM Ustun et al. [67] 2014 G C NC

4. Rule-Based Explanations
4.1. Model Agnostic XAI Methods

A few model-agnostic XAI methods produce rule-based explanations by exploiting
several rule-extraction techniques (see Table 5 and Figure 7 for examples of this format).
Generally, these rules approximate a black-box model but have higher interpretability.
The method presented in [68] extracts logical formulas as decision trees by combining split
predicates along paths from inputs to predictions into logical conjunctions and all the paths
related to an output class into logical disjunctions. These rules can be analysed with logical
reasoning techniques to extract information about the decision-making process. Similarly,
Genetic Rule Extraction (G-REX) [69,70] employed genetic algorithms to generate IF-THEN
rules with AND/OR operators. A genetic algorithm is also employed in GLocalX [71,72] to
generate local rules that explain the prediction made by a classifier on a specific instance.
The extracted rules exhibit the factual reasons of the classifier’s predictions and suggest a
set of counterfactuals consisting of changes to the instance features that lead to a different
outcome. Afterwards, these local rules are hierarchically aggregated into a ruleset that
covers the entire input space, thus representing a global explanation of the underlying
model. Anchor [28] uses two algorithms to extract IF-THEN rules which highlight the
features of an input instance, called “anchors”, which are sufficient for a classifier to make
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a prediction. In an analogical manner, the words “not bad” are often used in sentences
expressing a positive sentiment. Thus, they can be considered anchors in sentiment
analyses. These two algorithms, a bottom-up formation of and a beam-search for anchors,
identify the candidate rules with the highest estimated precision over a dataset where
precision is equal to the fraction of correct predictions. The first algorithm starts from an
empty set of rules and adds, at each iteration, a rule for each feature predicate. On the
other hand, the second one begins with a set containing all the possible candidate rules and
then selects the best ones in terms of precision. Model Extraction [73] and Partition Aware
Local Model (PALM) [74] utilise decision trees (DTs) to approximate complex models
with the assumption that, as long as the approximation quality is good, the statistical
properties of the complex model are reflected in the interpretable ones. End-users have
the faculty to examine the DT’s structure and determine whether the rules match intuition.
Model Extraction generates DTs by using the Classification Furthermore, Regression Trees
algorithm (CART) and trains them over a mixture of Gaussian distributions fitted to the
input data using expectation maximisation. PALM uses a two-part surrogate model: a
meta-model, constrained to be a DT, which partitions the training data, and a set of sub-
models fitting the patterns within each partition. Mimic Rule Explanation (MRE) [75]
returns a set of symbolic rules that behaves similarly to an underlying black-box model.
First, the algorithm selects a set of prototype samples that covers the input space and
records the label assigned by the model. Then, it perturbs each prototype to determine the
maximum region where the class assigned by the model remains unchanged. The resulting
ruleset consists of the Cartesian product of finite intervals limiting the regions surrounding
the prototypes.

(a) (b)
Figure 7. Examples of rule-based explanations generated by model-agnostic methods which can be visualised as: (a) G-
REX [69], a decision tree, or (b) Anchor [28], a list of rules accompanied by textual and visual examples.

Table 5. Post hoc model-agnostic XAI methods generating rule-based explanations, classified according to the type of
problem (C: classification; R: regression), the scope (G: global; L: local) and input data (NC: numerical/categorical; P:
pictorials; T: textual; TS: time series) of the underlying model.

Method for Explainability Authors Ref Year Scope Problem Input

Anchors Ribeiro et al. [28] 2018 G/L C T
Automated Reasoning Bride et al. [68] 2018 G C NC
GLocalX Guidotti et al., Setzu et al. [71,72] 2019, 2021 G/L C NC
G-REX Johansson et al. [69,70] 2004 G C/R NC
Model Extraction Bastani et al. [73] 2017 G C/R NC
MRE Asano and Chun [75] 2021 G C NC
PALM Krishnan and Wu [74] 2017 G C/R NC



Mach. Learn. Knowl. Extr. 2021, 3 626

4.2. Model-Specific XAI Methods Based on Neural Networks

Several XAI methods are focused on rule-based explanations of the inferential process
of neural networks, usually in the form of IF-THEN rules (see Table 6 and Figure 8 for some
examples). Scholars divided these methods into three classes [76,77]: (I) decompositional
methods, which work by extracting rules at the level of hidden and output neurons by
analysing the values of their weights; (II) pedagogical methods, which treat an underlying
neural network as a black-box and the extracted rules mimic the function computed by
the network—where weights are not considered; and (III) eclectic methods, that are a
combination of the decompositional and pedagogical ones. In contrast to previous sections,
this section groups the XAI methods by employing the above three classes and not by the
architectures of the neural networks.

Decompositional methods: Discretising Hidden Unit Activation Values by Clustering [78]
generates IF-THEN rules by clustering the activation values of hidden neurons and re-
placing them with the cluster’s average value. The rules are generated by examining the
possible combinations in the outputs of the discretised network. Similarly, Neural Network
Knowledge Extraction (NNKX) [79] produces binary decision trees from multi-layered
feed-forward sigmoidal neural networks by grouping the activation values of the last layer
and propagating them back to the input to generate clusters. Interval Propagation [30]
is an improved version of Validity Interval Analysis (VIA) [80] to extract IF-THEN crisp
and fuzzy rules. VIA finds a set of validity intervals such that the activation values of
each unit (or a subset of units) of a DNN lie in these intervals. The precondition of each
extracted rule consists of a set of validity intervals, and the output is a single target class.
According to [30], sometimes VIA fails to decide whether a rule is compatible or not with
the network. Additionally, the intervals are not always optimal. Interval Propagation
overcomes these limitations by setting intervals to either the input or output and feed- or
back-propagating them through the network. However, some neural networks require
several crisp rules to approximate it and reach similar performance in terms of prediction
accuracy. Then, Ref. [30] proposed to compact these crisp rules into fuzzy rules by using
a fuzzy interactive operator that introduces the OR operators between rules. Discretised
Interpretable Multi-Layer Perceptrons (DIMLPs) [27,77,81,82] returns symbolic rules from
Interpretable Multi-Layer Perceptrons (IMLPs) which are convolutional neural networks
(CNNs) where each neuron of the first hidden layer is connected to only an input neuron
and has a step activation function while the remaining hidden layers are fully connected
with a sigmoid activation function. In DIMLPs, the step activation function becomes a
staircase function that approximates the sigmoid one. The rule extraction is performed
after a max-pool layer by determining the location of relevant discriminative hyperplanes,
which are the boundaries between the output classes. Their relevance corresponds to
the number of points passing through each hyperplane as they move to a different class.
An example of a ruleset generated with DIMLP from a neural network with thirty neurons,
represented as xi with i = 1, . . . , 30, in a unique hidden layer and three output neurons
is: Rule 1: (¬x3) (¬x8) (x17 > 0.0061) (x19 < 0.151) (x21 > 0.065) Class_1, Rule 2:
(x17 > 0.0061) (x21 < 0.065) Class_2, Default: Class_3. Rule Extraction by Reverse
Engineering (RxREN) [83] relies on a reverse engineering technique to trace back input
neurons that cause the final result, whilst pruning the insignificant ones, and to determine
the data ranges of each significant neuron in the respective classes. The algorithm is recur-
sive and generates hierarchical rules where conditions for discrete attributes are disjoint
from the continuous ones. Rule Extraction from Neural Network using Classified and
Misclassified data (RxNCM) [84] is a modification of RxREN. It also incorporates the input
instances correctly classified in the range determination process, not only the misclassified
ones as RxREN does.
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Most of the rule-based XAI methods are monotonic, which means they produce an
increasing set of rules. However, sometimes adding new rules might lead to the invalida-
tion of some conclusion inferred by other rules. A method that captures non-monotonic
symbolic rules coded in the network was presented in [85]. The algorithm starts by partially
ordering the vectors of a training dataset according to the activation values of the output
layer. Then, it determines the minimum input point that activates an output neuron and cre-
ates a rule whose antecedents are based on the feature values of the selected instance. Thus,
the expected set of rules has the following form: L1, . . . , Ln,∼ Ln+1, . . . ,∼ Lm → Lm+1
where Li(1 ≤ i ≤ m) represents a neuron in the input layer, Lm+1 represents a neuron
in the output layer, ∼ stands for default negation and→ means causal implication. Fi-
nally, Refs. [86,87] proposed two algorithms that extract DTs from the weights of a DNN.
The former method produces a soft DT trained by stochastic gradient descent using the
predictions of a neural network and its learned filters to make hierarchical decisions on
where to split the data and how to create the paths from the root to the leaves. The latter,
which is designed only for image classification tasks, aims to explaining an underlying
CNN semantically, meaning that the nodes of the tree should correspond to parts of the
objects that can be named. To build such DTs, the network’s filters are forced to represent
object parts by a special modification of the loss function. The DT is then recursively built
on the part/filter pairs on an image-by-image basis.

Pedagogical methods: Rule Extraction From Neural Network Ensemble (REFNE) [88]
extracts symbolic rules, limited to only three antecedents, from instances generated by
neural network ensembles. The algorithm randomly selects a categorical attribute and
creates a rule if there is a value satisfying the condition that all the instances possessing
such a value fall into the same class. If the condition is not satisfied, the algorithm selects
another categorical attribute and examines all the combinations of the two attributes. When
all the categorical attributes have been analysed, continuous attributes are considered
and the process terminates when no more rules can be created. Continuous attributes
are discretised and a fidelity evaluation mechanism checks that this process does not
compromise the relationship between the attribute and the output classes. An alternative
method to extract IF-THEN rules from trained neural network ensembles, called C4.5Rule-
PANE [89], uses the C4.5 rule induction algorithm. To mimic the inferential process of the
ensemble, the C4.5Rule-PANE extracts a ruleset from the modified version of the training
dataset where the original labels are replaced by those predicted by the ensemble. The
DecText method [90] extracts high fidelity DTs from a DNN. It sorts input instances by
increasing order according to the values of each feature and split an input dataset by
placing the cutpoint at the midpoint of the range. Then, DecText chooses the best partitions
according to four criteria. The first, called SetZero, selects the most discriminative features
of the target variable. The other three, SSE, ClassDiff and Fidelity, respectively, choose
the feature which maximises the possibility that a single class dominating each partition
is created, the quality of the partition and the fidelity between the DNN and the tree.
TREPAN [91,92] induces a DT that, such as DecText, maintains a high level of fidelity to
a DNN while being comprehensible and accurate. It queries an underlying network to
determine the predicted class of each instance and selects the splits for each node of the tree
by using the “gain ratio criterion” and by considering the previously selected splits that
lie on the path from the root to that node as constraints. Tree Regularisation [93] consists
of a penalty function of the parameters of a differentiable DNN which favours models
whose decision boundaries can be approximated by small binary DTs. It finds a binary
DT that accurately reproduces the network’s prediction and measures its complexity as
the “average decision path length”. It then maps the parameter vector of each candidate
network to an estimate of the average-path-length and chooses the shortest one. Word
Importance Scores [94] visualises the importance of specific inputs for determining the
output of an LSTM. By searching for phrases with consistently high importance scores,
the method extracts simple phrase patterns of one to five words. To concretely validate these
patterns, they are inputted to a rule-based classifier which approximates the performance
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of the original LSTM. Iterative Rule Knowledge Distillation [95] and Symbolic Logic
Integration [96] are the only ante hoc methods producing rule-based explanations for
DNNs. The former combines DNNs with declarative first-logic rules to allow integrating
human knowledge and intentions into the networks via an iterative distillation procedure
that transfers the structured information of logic rules into the weights of DNNs. This is
achieved by forcing the network to emulate the predictions of a rule-based teacher model
and evolving both models throughout the training. The latter instead encodes symbolic
knowledge in an unsupervised neural network by converting background knowledge,
in the form of propositional IF-THEN rules and first-order logic formulas, into confidence
rules which can be represented in a restricted Boltzmann machine.

(a) (b)
Figure 8. Examples of rule-based explanations generated by XAI methods for neural networks and visualised as (a) decision
trees (Decision Tree Extraction [86]), or (b) by showing the most relevant input (Word Importance Scores [94]).

Table 6. Post hoc XAI methods for neural networks generating rule-based explanations, classified according to the type of
problem (C: classification; R: regression), scope (G: global; L: local) and input data (NC: numerical/categorical; P: pictorials;
T: textual; TS: time series) of the underlying model.

Method for Explainability Authors Ref Year Scope Problem Input

C4.5Rule-PANE Zhou and Jiang [89] 2003 L C/R NC
DecText Boz [90] 2002 G C NC
DIMLP Bologna and Hayashi [27,77,81,82] 2017, 1998, 2018 G/L C P; NC; T
Discretising Hidden Unit Activation
Values by Clustering Setiono and Liu [78] 1995 G C NC

DT Extraction Frosst and Hinton, Zhang et al. [86,87] 2017, 2019 G C P
Interval Propagation Palade et al. [30] 2001 G C NC
Iterative Rule Knowledge Distillation Hu et al. [95] 2016 G C T
NNKX Bondarenko et al. [79] 2017 G C NC
REFNE Zhou et al. [88] 2003 G C/R NC
RxNCM Biswas et al. [84] 2017 G C NC
RxREN Augasta and Kathirvalavakumar [83] 2012 G C/R NC
Symbolic Logic Integration Tran [96] 2017 G C/R NC
Symbolic Rules Garcez et al. [85] 2001 G C/R NC
Tree Regularisation Wu et al. [93] 2018 G C NC
TREPAN Craven and Shavlik [91,92] 1994, 1996 G C/R NC
VIA Thrun [80] 1995 G C/R TS
Word Importance Scores Murdoch and Szlam [94] 2017 G C T

4.3. Model-Specific XAI Methods Related to Rule-Based Systems

XAI was ignited by the interpretability problem of machine learning, particularly of
the DL models. However, this problem existed even before the advent of neural networks.
Many rules-based learning approaches that already existed were interpreted with ante hoc
methods that act during the model training stage to make them naturally explainable (see
Table 7 and Figure 9).



Mach. Learn. Knowl. Extr. 2021, 3 629

Ant Colony Optimisation (ACO) [97] follows a sequential covering strategy, one-rule-
at-a-time or also known as separate-and-conquer, to generate unordered sets of IF-THEN
classification rules which can be inspected individually and independently from the others,
thus they are easier to be interpreted. At each step, ACO creates a new unordered set of
rules and compares it with those of previous iterations. If the new set contains fewer rules
or has a better prediction accuracy, it replaces the previous one. AntMinter+ [98] uses an
iterative max–min ant system to construct a monotonic ruleset of IF-THEN rules, starting
from an empty set, and allows the inclusion of domain knowledge via the definition of a
directed acyclic graph representing the solution space. The nodes at the same depth in the
graph represent the splitting values related to an input variable; the edges represent which
values of the following variable can be reached from a node. A rule represents a path from
the start to the end nodes. The algorithm stops when either a predefined percentage of
training points is covered or when the addition of new rules does not improve the accuracy
of the classifier. AntMinter+ can be combined with a non-linear SVM in a method called
active learning-based approach (ALBA) to generate comprehensible and accurate rule-
based models. Interpretable decision set [99] and the Bayesian rule lists (BRLs) [100–102]
create unordered sets of IF-THEN rules. The former method is based on an objective
function that simultaneously optimises accuracy and interpretability by learning short
and non-overlapping rules that cover the whole feature space and pay attention to the
small but important classes. BRLs produce a posterior multinomial distribution over the
permutations of rules, starting from a large set of possible rules, to assess the probability
of predicting a certain label from the selected rules. The prior is the Dirichlet distribution
and the permutation that maximises that the posterior is included in the final decision set.
Bayesian rule sets (BRSs) [103,104] are similar to BRL but it uses a Bernoulli distribution
as a posterior, and a Beta distribution as a prior whose parameters can be adjusted by
end-users by specifying the desired balance between the size and length of rules. First
Order Combined Learner (FOCL) [105] inductively constructs a set of rules in terms of
predicates where each clause body consists of a conjunction of predicates that cover some
positive and no negative examples. The rules are displayed in a tree where the nodes are
the predicates, the edges are the conjunctions and the leaves are the conclusions. Non-
monotonic argumentation-based approaches for increasing explainability and dealing with
conflictual information were proposed in [31,32,106]. They are based upon the concepts of
defeasible arguments, in the form of rules, each composed of a set of premises, an inference
rule and a conclusion as well as the notion of attacks between arguments to model’s
conflicts and the retraction of a final inference.

Four methods based on fuzzy reasoning to generate interpretable sets of rules that
show the dependencies between inputs and outputs were presented in [107–110]. A multi-
objective fuzzy Genetics-Based Machine Learning (GBML) algorithm [107] is implemented
in the framework of evolutionary multiobjective optimisation (EMO) and consists of a
hybrid version of the Michigan and Pittsburgh approaches. Each fuzzy rule is represented
by its antecedent fuzzy sets as an integer string of fixed length and the resulting fuzzy
rule-based classifier, consisting of a set of fuzzy rules, is represented as a concatenated
integer string of variable length. Multi-Objective Evolutionary Algorithms-based Inter-
pretable Fuzzy (MOEAIF) [110] instead consists of a fuzzy rule-based model engineered to
classify gene expression data from microarray technologies. GBML and MOEAIF maximise
the accuracy of rule sets, measured by the number of correctly classified training pattern,
and minimise their complexity, measured by the number of fuzzy rules and/or the total
number of antecedent conditions of fuzzy rules. The method in [108] is based on a five-step
algorithm. First, it generates fuzzy rules that cover the extrema directly from the data.
Second, it checks rule similarity to delete the redundant and inconsistent rules. Third, it
optimises the rule structure using genetic algorithms based on a local performance index.
Fourth, it performs further training of the rule parameters using the gradient-based learn-
ing method and deletes the inactive rules. Finally, it improves interpretability by using
regularisation. The fourth method presented in [109] generates fuzzy rules by starting from
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a set of relations and properties, selected by an expert, of an input dataset. It then extracts
the most relevant ones by employing a frequent itemset mining algorithm. The authors did
not provide a specific metric for evaluating the relevancy of a relation, but they suggested
using “measures like the number of relations and properties in the antecedent or the value
of their support”.

Interpretable Classification Rule Mining (ICRM) [111] consists of a three-step evolution-
ary programming algorithm producing comprehensible IF-THEN classification rules, where
comprehensibility is achieved by minimising the number of rules and conditions. First, it
creates a pool of rules composed of a single attribute-value comparison. Second, it utilises
evolutionary processes, designed to use only relevant attributes to discriminate a class from
the others and improve the accuracy of the ruleset, based on the Iterative Rule Learning (IRL)
genetic algorithm (also known as the Pittsburgh approach). IRL returns a rule per output
class except for one class which is set as default. The third step optimises the accuracy of the
classifier by maximising the product of sensitivity and specificity. Linear Programming Relax-
ation [112,113] extracts two-level Boolean rules in conjunctive normal form (AND-of-ORs) or
disjunctive normal form (OR-of-ANDs). The first version uses a generalisation of a linear pro-
gramming relaxation from one level to two-level rules whose objective function is a weighted
combination of the total number of errors and features used in the rule. In a second version,
the 0–1 classification error is replaced with the Hamming distance between the current rule
and the closest rule that correctly classifies a sample instance. The main advantage of the
explainability of the Hamming distance is that it avoids identical clauses in the ruleset, and
thus repetitions, by training each clause with a different subset of input instances. Ref. [114]
proposed to use constrained interval type-2 (CIT2) fuzzy sets to generate self-explainable
rule-based classifiers. Transparent Generalised Additive Model Tree (TGAMT) [115] uses a
CART-like greedy recursive search to grow a DT. Probabilistic sentential decision diagrams
(PSDD) [116] can be described as circuit representations where each parameter represents a
conditional probability of deciding the input variables and each node is either a logical AND
gate with two inputs or a logical OR gate with an arbitrary number of inputs. The PSDD
structure can be visualised as a binary tree.

(a) (b)
Figure 9. Examples of rule-based explanations generated by ante hoc XAI methods aiming to make rule-based inference
systems transparent by construction: (a) Bayesian rule lists [102]; and (b) fuzzy inference systems [117].
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Table 7. Ante hoc XAI methods for rule-based inference systems generating rule-based explanations, classified according to
the type of problem (C: classification; R: regression), scope (G: global; L: local) and input data (NC: numerical/categorical; P:
pictorials; T: textual; TS: time series) of the underlying model.

Method for Explainability Authors Ref Year Scope Problem Input

ACO Otero and Freitas [97] 2016 G C NC
AntMiner+ and ALBA Verbeke et al. [98] 2011 G C NC
Argumentation Rizzo and Longo [31,32] 2018 G C NC
Argumentation Zeng et al. [106] 2018 G C/R P
BRL Letham et al. [100–102] 2012, 2013, 2015 G C NC
BRS Wang et al. [103,104] 2016, 2017 G C NC
CIT2 fuzzy sets D’Alterio et al. [114] 2020 G C NC
Interpretable Decision Set Lakkaraju et al. [99] 2016 G C NC
FOCL Pazzani [105] 1997 G C NC
Fuzzy logic Pierrard et al. [109] 2018 L C NC
Fuzzy system Jin [108] 2000 G C NC
GBML Ishibuchi and Nojima [107] 2007 G C NC
ICRM Cano et al. [111] 2013 G C NC
Linear Programming Relaxation Malioutov et al., Su et al. [112,113] 2017, 2016 G C NC
MOEAIF Wang and Palade [110] 2011 G C NC
PSDD Liang and Van den Broeck [116] 2017 G C/R NC
TGAMT Fahner [115] 2018 G C NC

4.4. Other Model-Specific XAI Methods

Some methods generate rule-based explanations for learning approaches other than
neural network and rule-based systems (see Table 8).

4.4.1. Ensembles

Five global methods for extracting a single DT from ensemble models were presented
in [118–122]. In detail, Ref. [118] proposed a three-step algorithm to efficiently merge a
set of DTs, each trained independently on distributed data, into a single tree. First, each
DT is converted into a ruleset where each rule replicates a path from the root to a leaf and
defines a region in the output space. All the regions are disjoint and they cover the entire
feature space. Second, the regions are combined by using a line sweep algorithm which
sorts the limits of each region and merges adjacent regions. Finally, a DT is extracted from
the regions with an algorithm that mimics C5.0. inTrees [119] iteratively extracts, prunes
and selects rules from a tree ensemble. The algorithm starts from the set of all the rules in
the ensemble and excludes those covering a small number of instances. At each iteration,
it selects the rule with the minimum error and shorter condition, and then it removes the
instances satisfying this rule from the dataset and updates the initial ruleset according
to the instances left while discarding rules that at this stage cover just a few, if not any
instances and recalculating the error of the surviving rules. Ref. [120] uses the solution
obtained from combining several hypotheses (or models) of the ensemble as an oracle,
and it selects the single hypothesis that is most similar to the oracle. The similarity is
measured according to three formal metrics: “θ-measure” which determines the probability
that both classifiers agree; “κ-measure” which assesses the probability that two classifiers
agree by chance; and “Q-measure” which assigns values between 0 and 1 to classifiers
that correctly predict the same input instances and values between −1 and 0 to classifiers
that commit errors on different instances. Ref. [121] creates a set of rule conjunctions
representing the original random forest which is then hierarchically organised as a decision
tree, whereas the method presented in [122] uses a divide-and-conquer algorithm analogous
to the C4.5 algorithm. Factorised asymptotic Bayesian (FAB) [123] consists of a Bayesian
model selection algorithm that simplified and optimised a tree ensemble. FAB estimates
the model’s parameters and the optimal number of regions of the input space (ensemble
methods often split the input space into a huge number of regions) to derive a simplified
model with appropriate complexity and prediction accuracy.
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Table 8. Post hoc XAI methods for data-driven approaches generating rule-based explanations, classified according to the
construction approach (learning algorithm), type of problem (C: classification; R: regression), scope (G: global; L: local) and
input data (NC: numerical/categorical; P: pictorials; T: textual; TS: time series).

Method for
Explainability Authors Ref Year Construction

Approach Scope Problem Input

DT extraction Andrzejak et al. [118] 2013 Distributed DTs G C/R NC

DT extraction Ferri et al., Sagi and Rokach,
Van Assche and Blockeel

[120–122] 2002, 2020, 2007 Ensembles G C NC

EBI Yap et al. [124] 2008 Bayesian networks G C NC

ExtractRule Fung et al. [26] 2005 Hyperplane-Based
Linear Classifiers G C P; NC

FAB inference Hara and Hayashi [123] 2018 Ensembles G C NC
inTrees Deng [119] 2018 Ensembles G C/R NC

4.4.2. Support Vector Machines

ExtractRule [26] convert hyperplane-based linear classifiers, such as SVMs, into a
set of non-overlapping symbolic rules which display, in a compact format, the infer-
ential process of the underlying classifier. For example, a rule extracted from a classi-
fier trained to distinguish between malign and benign tumours is “(Cell Size ≤ 3) ∧
(Bare Nuclei ≤ 1) ∧ (Normal Nucleoli ≤ 7) =⇒ mass is benign”. Each rule can be
seen as a hypercube in the multidimensional space generated by the input variables with
edges parallel to the axis. To define these hypercubes, each iteration of this algorithm is
formulated as one of two possible optimisation problems. The first formulation seeks to
maximise the volume covered by each rule whereas the second maximises the number of
samples covered.

4.4.3. Bayesian and Hierarchical Networks

Explaining Bayesian Network Inferences (EBI) [124] produces a DT showing how the
variables of a Bayesian network interact to make predictions and compensate missing and
erroneous values. In detail, EBI explains the value of a target node in terms of its causal
relationships with the influential nodes in the target’s Markov blanket which include the
target’s parents, children and the children’s other parents by working backwards from the
target node.

5. Textual Explanations

Some scholars proposed post hoc XAI methods generating textual explanations for
neural networks (see Table 9) and other learning algorithms.

Table 9. Post hoc XAI methods for neural networks generating textual explanations, classified according to the type of
problem (C: classification; R: regression), scope (G: global; L: local) and input data (NC: numerical/categorical; P: pictorials;
T: textual; TS: time series) of the underlying model.

Method for Explainability Authors Ref Year Scope Problem Input

InterpNET Barratt [125] 2017 L C P
Most-Weighted-Path, Most-Weighted-Combination
and Maximum-Frequency-Difference García-Magariño et al. [126] 2019 L C TS

Neural-Symbolic Integration Bennetot et al. [127] 2019 L C P
Rationales Lei et al. [128] 2016 L C T
Relevance and Discriminative Loss Hendricks et al. [25,129] 2018, 2016 L C P

5.1. Model-Specific XAI Methods Based on Neural Networks

InterpNET [125] utilises the activation values of a DNN to generate natural language
explanations of classifications done by external models and produces statements such as
“This is an image of a Red Winged Blackbird because. . . ” (see Figure 10). Three similar
methods were proposed by [126]: Most-Weighted-Path, Most-Weighted-Combination and
Maximum-Frequency-Difference. Most-Weighted-Path starts from the output neuron and
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selects the corresponding input passing, layer-by-layer, via the neuron connected with the
highest weight. Then, it auto-generates a natural language explanation indicating the most
relevant feature for predicting the output category. Most-Weighted-Combination selects
the two most-weighted input features. Maximum-Frequency-Difference retrieves, for each
instance of the training dataset, its most similar cases. Then, it calculates the difference
between the percentages of samples sharing or not the same output. The explanation
is based on the input with the highest difference and is a statement such “the smart
kitchen estimates that you are sad because you are eating chocolate, which is 50% more
frequent in this emotional state than people in other emotional states”. The integration
of symbolic rules and neural networks to generate a natural language explanation of the
network’s predictions was analysed in [127]. The rules are extracted from a first neural
network as a knowledge graph and then used to influence the learning process of a second
network by modifying its hyperparameters. The rules and the network’s predictions are
fed into an automated reasoning system combined with a natural language generator.
Rationales [128] justify the predictions made by DNNs in NLP tasks, such as sentiment
analysis, by extracting pieces of the input text as justifications or rationales. These rationales
must contain the words leading to the same prediction of the entire input text. They are
selected via the combination of a “rationale generator” function, tagging all the words to
be or not to be included in the rationale, and an “encoder” function that maps a string
of words to a target class. Relevance and discriminative loss [25,129] generates textual
explanations for an image classifier such as “The bird in the photo is a White Pelican
because. . . ”. It consists of a CNN that extracts visual features from the images, such
as colours and object parts, and two LSTMs that produce a description of each image
conditioned on visual features. The training process aims to reduce two loss functions
called, respectively, “relevance” and “discriminative”, which assure that the generated
sentences are both image relevant and category specific.

Figure 10. Examples of textual explanation generated by InterpNET [125], a XAI method for neural networks that utilises
their activation values to extract the most significant input features and translates them into a statement.

5.2. Other Model-Specific XAI Methods

Table 10 summarizes the XAI methods designed for models based on rule-based,
ensembles, bayesian and hierarchical networks.

5.2.1. Rule-Based Systems

Mycin [130], probably the first XAI method ever developed, is a backward chaining
expert system. It consists of a knowledge basis of IF-THEN rules composed by an expert,
a database of the facts that satisfy the condition part of the rules, and an inference engine
that interprets these rules. It also includes a natural language interface that allows end-users
to interact with the system by asking English questions. This system responds to them by
using its inference engine and performing the reasoning involved in composing an answer.
In detail, it searches for facts that match the condition part of the productions that match
the action part of the question. This method allows the system to explain its reasoning and
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final inferences by using AND/OR trees created during the production system reasoning
process, thus showing an element of explainability. Similarly, the Sugeno-type fuzzy
inference system [117] consists of an explicit declarative knowledge representation of the
rules fired at the same time by a given input to produce a final inference. The system
includes an explanatory tool that shows a numerical representation of the input variables,
sets of co-fired rules and an English statement exposing the reasoning process. In an
example taken from the application to an unmanned aerial vehicle (UAV) sent on a fight
mission, an explanation is a statement such as “UAV aborted the mission because the
weather was a thunderstorm and the distance from the enemy was too close”.

Table 10. Post hoc XAI methods for data-driven approaches generating textual explanations, classified according to the
construction approach (learning algorithm), type of problem (C: classification; R: regression), scope (G: global; L: local) and
input data (NC: numerical/categorical; P: pictorials; T: textual; TS: time series).

Method for Explainability Authors Ref Year Construction Approach Scope Problem Input

DT Extraction Alonso et al. [131] 2018 Ensembles L C NC
Discriminative Patterns Gao et al. [132] 2017 Ensembles G C T
Fuzzy Inference Systems Keneni et al. [117] 2019 Rule-Based System L C TS
Mycin Shortliffe et al. [130] 1975 Rule-based system L C NC
Scenarios Vlek et al. [133] 2016 Bayesian networks L C NC

5.2.2. Ensembles

Ref. [131] combined an opaque learning algorithm (random forest), with a more
transparent and inherently interpretable algorithm (decision tree). The opaque algorithm
represents the oracle that searches for the most relevant output. A natural language gener-
ation approach composes a textual explanation for this output which is the interpretation
of the inference process carried out by the correspondent decision tree if the outputs of
both the learning algorithms coincide. Discriminative Patterns [132] interprets a random
forest model that classifies sentences according to their contents. It extracts a ruleset that
highlights discriminative sequential patterns of words or sentences that determine the
predicted class.

5.2.3. Bayesian and Hierarchical Networks

An explanation method for interpreting Bayesian networks in terms of scenarios was
proposed in [133]. Narrative approaches to reasoning with legal evidence, for instance,
are based on the formulation of alternative scenarios which are subsequently compared
according to two aspects: the relations with the evidence and the quality that depends
on the completeness, internal consistency and plausibility of the scenario itself. The aim
is to explain the content of a Bayesian network by reporting the modelled scenarios and
evaluating their evidential support and quality.

6. Visual Explanations
6.1. Model Agnostic XAI Methods

Several model-agnostic XAI methods exploit graphical aids to explain the inner func-
tion of a model (see Table 11 and Figure 11 for examples of visual explanations). “Salient
masks” are one of the most widely used graphical aids. Layer-Wise Relevance Propagation
(LRP) [134] was developed as a solution to the problem of understanding image classifica-
tion predictions by the pixel-wise decomposition of non-linear classifiers. In its general
form, LRP assumes that the classifier can be decomposed into several layers of computation,
and it traces back contributions of each pixel to the final output, layer by layer, to attribute
relevance to individual inputs. The pixel contributions are visualised as heat-maps. Middle-
Level Feature Relevance (MLFR) [135] is a variation of LRP. It returns the relevance values
for a given set of middle-level features that consist of sets of pixels representing areas of the
input images interpretable by humans. Spectral Relevance Analysis (SpRAy) [3] consists of
spectral clustering on a set of LRP explanations to identify the typical and atypical decision
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behaviours of an underlying data-driven model. For example, to explain a classifier trained
on a dataset of images of animals, SpRAy produces an LRP heat-map for each image. Then,
it checks if the heat-maps highlight the area representing the animal or if, for a specific
animal, the classifier is focusing on other parts, such as the presence of a rider in case the
animal is a horse. Image Perturbation [136] produces saliency maps by blurring different
areas of the image and checking which ones most affect the prediction accuracy when
perturbed. Similarly, Restricted Support Region Set (RSRS) Detection [137] visualises a set
of size-restricted and non-overlapping regions of an image that are critical to its correct
classification. The explanation consists of the original image with its critical regions greyed
out. IVisClassifier [138] is based on linear discriminant analysis (LDA). It tries to reduce
the dimension of the input data and produces heat-maps that give an overview of the
relationship among the clusters in terms of pairwise distances between cluster centroids,
both in the original and reduced dimensional spaces. The saliency detection method [139]
uses a U-Net neural network trained to generate a saliency map, in a single forward pass,
for any image and classifier received as inputs. The output map then highlights the parts
of an image considered discriminative by the classifier.

Some methods use other visual aids, such as graphs and scatter-plots. Sensitivity
Analysis [140] generates explanations that correspond to local gradients indicating which
features of a sample must be modified to change its predicted label. The explanations are
either scatter-plots or heat-maps of the gradient vectors showing the degree of sensitivity of
the sample’s features. Individual Conditional Expectation (ICE) plots [141] are line charts
graphing the functional relationship between a predicted response and a feature for each
observation when keeping all the other features fixed and varying the value of the feature
under analysis. Two alternatives to ICE plots, called Partial Importance (PI) and Individual
Conditional Importance (ICI) plots [142] show how changes in a feature affect model
performance. ICI works at the local level by presenting changes for each observation.
PI instead shows the point-wise average of all ICI curves across all observations, thus
giving a global explanation. The importance of each feature is assessed with the Shapley
Feature Importance measure that fairly distributes the model’s performance among them
according to their marginal contribution. Explanation Graph [143] is also based on the
perturbations of the input features. It works by training a model on both the original
and the perturbed data. Subsequently, it compares the original and perturbed input–
output pairs to infer causal dependencies between the input and output. This method was
tested across several word sequence generation tasks in natural language processing (NLP)
applications. The perturbed input contains statements that are semantically similar to the
originals but differ in some elements (words and punctuation) and their order. The inferred
dependencies are displayed as graphs where the nodes contain the words of the original
and perturbed inputs with their relative outputs and the edges represent the connections
between them. A Worst-Case Perturbation [144] corresponds to the smallest perturbation
of the input that leads to an incorrect answer with high confidence. This method was
only applied to images, and the explanation consists of the perturbed images. Class
Signatures [145] is an analytic interface that allows end-users to detect and interpret input–
output relationships by presenting a mix of charts (line, bar charts, and scatter-plots) and
tables organised in such a way that relationships become evident. Similarly, ExplainD [146]
was designed to explain predictions made by classifiers that use additive evidence, such
as linear SVMs and regressors. The explanatory graphs represent the contribution of each
feature to the prediction and how the prediction changes when the value of a feature
varies across their value ranges. Manifold [147] and MLCube Explorer [148] are two visual
analytical tools that provide comparative analysis for multiple models. They also enable
end-users to define the subsets of the input dataset using feature conditions to identify
instances that generate erroneous results. The scope is to determine the reasons for these
errors and to iteratively refine the performance of a model by using different graphical aids
such as scatter-plots as well as bar and line charts.
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(a) (b)
Figure 11. Examples of visual explanations generated by model-agnostic methods such as (a) Explanation Graph [143]
graphs; or (b) RSRS [137] restricted support regions and heat-maps.

Table 11. Post hoc model-agnostic XAI methods generating visual explanations, classified according to the type of problem
(C: classification; R: regression), scope (G: global; L: local) and input data (NC: numerical/categorical; P: pictorials; T: textual;
TS: time series) of the underlying model.

Method for Explainability Authors Ref Year Scope Problem Input

Class Signatures Krause et al. [145] 2016 G C/R NC
ExplainD Poulin et al. [146] 2006 G C NC
Explanation Graph Alvarez-Melis and Jaakkola [143] 2017 L C T
Image Perturbation Fong and Vedaldi [136] 2017 L C P
ICE plots Goldstein et al. [141] 2015 G C/R NC
iVisClassifier Choo et al. [138] 2010 G C NC
LRP Bach et al. [134] 2015 L C P
Manifold Zhang et al. [147] 2019 G C/R NC
MLFR Apicella et al. [135] 2021 L C P
MLCube Explorer Kahng et al. [148] 2016 G C NC
PI and ICI plots Casalicchio et al. [142] 2018 G C/R NC
RSRS Detection Liu and Wang [137] 2012 L C T
Saliency Detection Dabkowski and Gal [139] 2017 L C P
Sensitivity Analysis Baehrens et al. [140] 2010 L C P; NC
SpRAy Lapuschkin et al. [3] 2019 G C P
Worst-Case Perturbations Goodfellow et al. [144] 2015 L C P

6.2. Model-Specific XAI Methods Based on Neural Networks

A considerable portion of the reviewed scientific articles about new XAI methods is
focused on interpreting deep neural networks (DNNs) with visual explanations. Given the
large number of such methods proposed so far, it was decided to group them according to
the type of visual explanation and the architecture of the underlying neural network.

6.2.1. Visual Explanations as Salient Masks

Most of the visual explanations of DNNs are in the form of salient masks (see Table 12
and Figure 12).

Convolutional neural networks: Class-Enhanced Attentive Response (CLEAR) [149]
produces attention maps of the regions, along with their attentive levels, responsible for
the correct classification of images by back-propagating the activation values of the output
layer. GradCam [150] and DeepResolve [151] are two gradient ascent-based methods.
GradCam uses the gradients of any target concept (say “dog” for instance) flowing into the
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final convolutional layer to generate a heat-map highlighting the influential regions in the
image for predicting that concept. GradCam returns the heat-maps produced by the last
convolutional layer because the fully connected layers do not retain spatial information and
it is expected that it has the best compromise between high-level semantics and detailed
spatial information. DeepResolve computes and visualises intermediate layer feature maps
that summarise how a network combines elemental layer-specific features to predict a
specific class. Similarly, Integrated Gradients [152] attributes the prediction of a CNN
or a RNN to specific parts of the input. The attribution is measured as the cumulative
sum of the gradients of the classification function representing the network calculated at
all points along the straight-line path from a baseline input (a black image or an empty
text, for example) to a specific input instance. SmoothGrad [153] was designed to sharpen
gradient-based sensitivity maps, which are often visually noisy as they highlight pixels
that, to a human, seem randomly selected. It generates individual saliency maps of an
image of interest by using other XAI methods such as GradCam, and then it considers
the average of these maps. Alternatively, the joint mask method (JMM) [154] integrates
two saliency masks to obtain faithful maps that focus on the essential parts of an object
whilst removing noises. The first mask highlights the positive region of an input image
that maximises the target class probability. The second mask attempts to find the negative
region that significantly decreases the target class probability. The XAI method proposed
in [155] attempts to highlight the salient features of the input images by averaging the
activation values of a set of test images, thus identifying the relevant layer/filter pairs
for every output class, and projecting them onto the image of interest as a saliency mask.
Stacking with Auxiliary Features (SWAF) [156] utilises heat-maps generated by GradCam
to interpret and improve stacked ensembles for visual question answering (VQA) tasks.
VQA answers a natural language question about the content of an image by returning,
usually, a word or phrase or, in this case, a heat-map highlighting the relevant regions.
Guided BackProp and Occlusion [157] find what part of an input (pixels in images or words
in questions) the VQA model focuses on while answering the question. Guided BackProp is
another gradient-based technique to visualise the activation values of neurons in different
layers of CNNs. It computes the gradients of the probability scores of predicted classes but
restricts negative gradients from flowing back towards the input layer, resulting in sharper
images showcasing the activation. Occlusion masks, or occludes, subsets of input (a region
of the image or a word of the question), then forward propagate it through the VQA model
and compute the change in the probability of the answer predicted with the original input.
A similar method, Occlusion Sensitivity [158] maps those features considered relevant in
the intermediate layers of a DNN by projecting the top nine activation values of each layer
down to the input pixel space and masking the rest of the image. Net2Vec [159] maps
semantic concepts to a corresponding individual CNN filter responses. It returns images
that are entirely greyed out except in the region related to a semantic concept, such as the
area representing the door of a building, for instance. The pixels of this region generate
activation values that are above the 99.5th percentile of the distribution of all the activation
values. Similarly, automated concept-based explanation (ACE) [160] extracts semantic
concepts critical for determining the output class by segmenting the input images into
objects and background as well as assigning to each segment an importance score based
on the gradient of the prediction with respect to its pixels. Inverting representations [161]
inverts the representations of images produced by the inner layers and projects them onto
the input image as heat-maps. A representation can be thought of as a function of the
image that characterises the image information. By reconstructing an approximate inverse
function, it should be possible to reproduce the representations built by the layers. This
method is based on the hypothesis that the layers only consider the relevant features
and consist of a reconstruction problem solved by optimising an objective function with
gradient descent. Similarly, Guided Feature Inversion [162] generates an inversion image
representation consisting of the weighted sum between the original image and another
noisy background image, such as a grey-scale image with each pixel set to an average
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colour, a Gaussian white noise or a blurred image. The weights are computed to highlight
the smallest area that contains the most relevant features and to blur out everything else.

Deep Learning Important Features (DeepLIFT) [163] calculates the importance scores
of input features based on the difference between the activation of each neuron to a “refer-
ence activation” value, computed by propagating a “reference input” through the network.
This represents a default or neutral input, such as a white image, chosen according to
the problem at hand. Ref. [164] proposed to generate saliency maps by computing the
first-order Taylor expansion of the function that links each pixel of an input image, thus
representing the neural network, and assigns a probability score to each output class.
Similarly, Ref. [165] analysed the use of Taylor decomposition for interpreting generic
DNNs by decomposing the network’s output classification into the contributions of its
input elements and back-propagating them from the output to the input layer, which is
then visualised as heat-maps. Receptive Fields [166] focus on visualising the input patterns,
called precisely receptive fields, that are most strongly related to individual neurons by
reconstructing these from the highest activation values of each layer. Feature Maps [167]
and Prediction Difference Analysis [168] produce, respectively, feature- and heat-maps
highlighting areas in an input image that gives evidence for or against a predicted class.
Feature Maps utilises a loss function that pushes each filter in a convolutional layer to
encode a distinct and unique object part, exclusive of the object class under analysis. Predic-
tion Difference Analysis is instead based on Explain [42], which was designed to evaluate
the contribution of a feature at a time. In this case, a feature should correspond to a pixel
of the image, but the authors proposed to consider patches of pixels. The assumption is
that the value of each pixel is highly dependent on the surrounding pixels. The patches are
overlapping so that, ultimately, an individual pixel’s relevance is calculated as the aver-
age relevance of the different patches it was in. PatternNet and PatternAttribution [169]
measure the contribution of the input “signal” dimension, which is the part of the in-
put that contains information about the output class, to the prediction as well as how
good the network is at filtering out the “distractor”, which is the rest of the input (like
the image background). PatternNet yields a layer-wise back-projection of the estimated
signal to the input space whereas PatternAttribution produces explanations consisting of
neuron-wise contributions of the estimated signal to the classification scores. Relevant
Features Selection [155] identifies the set of relevant layer/filter pairs by finding those that
reduce the differences between the predicted and the actual labels at the minimum. This
results in a relevance weight for every filter-wise response, internally computed by the
network. Neural Information Flow (NIF) [170] utilises mutual information techniques for
measuring information flows through the neural networks and for identifying the crucial
pathways within and between its layers. A combination of a Neural Network and Case
Base Reasoning (CBR) Twin-systems [171,172] maps the features’ weights from the DNN to
the CBR system to find similar cases from a training dataset that explain the prediction of
the network of a new instance. To do so, the authors proposed the Contributions Oriented
Local Explanations (COLE) technique, which assumes that the feature contributions to the
model’s predictions are the most sensible basis to inform CBR explanations. COLE uses
saliency maps methods, such as LRP and DeepLift, to estimate these contributions. The
OpenBox method [173] computes exact and consistent interpretations for the family of
Piecewise Linear Neural Networks (PLNN) by transforming them into a mathematically
equivalent set of linear classifiers.

Recurrent neural networks: Two studies proposed variations of LRP to extend its ap-
plications to DNNs with non-linearities, such as LSTMs with multiplicative interactions
within their architecture [174] or networks with local renormalisation layers [175]. LRP
with Relevance Conservation [174] consists of a strategy to back-propagate the relevance of
the neurons in the output layer back to the input layer through the two-way multiplicative
interactions between lower-layer neurons of the LSTM. The algorithm sets to zero the
relevance related to the gate neuron and propagates the relevance of the source neuron only.
Instead, LRP with Local Renormalisation Layers [175] is based on first-Taylor expansion for
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non-linearities in the renormalisation layers. Compositionality [176] builds the meaning
of a sentence from the meaning of single words and phrases. This method visualises
compositionality in neural models trained for NLP tasks by plotting the salience value of
each word as saliency maps. For instance, the word “hate” and “boring” in the phrase “I
hate the movie because the plot is boring” can be considered the two most relevant ones in
a sentiment analysis problem.

Table 12. XAI methods for neural networks generating visual explanations as salient masks, classified by stage (AH:
ante hoc; PH: post hoc), type of problem (C: classification; R: regression), scope (G: global; L: local) and input data (NC:
numerical/categorical; P: pictorials; T: textual; TS: time series).

Method for Explainability Authors Ref Year Stage Scope Problem Input

ACE Ghorbani et al. [160] 2019 PH G C P
Average Activation Values Mogrovejo et al. [155] 2019 PH L C P
CLEAR Kumar et al. [149] 2017 PH L C NC
Compositionality Li et al. [176] 2016 PH L C T
DeepLIFT Shrikumar et al. [163] 2017 PH L C P; NC
Deep-Taylor Decomposition Montavon et al. [165] 2017 PH G C P
DeepResolve Liu and Gifford [151] 2017 PH G C NC
Feature Maps Zhang et al. [167] 2018 AH L C P
GradCam Selvaraju et al. [150] 2017 PH L C P
Guided BackProp and Occlusion Goyal et al. [157] 2016 PH L C P
Guided Feature Inversion Du et al. [162] 2018 PH L C P
Integrated Gradients Sundararajan et al. [152] 2017 PH L C P
Inverting Representations Mahendran and Vedaldi [161] 2015 PH L C P
JMM Jung et al. [154] 2021 PH L C P
LRP w/Relevance Conservation Arras et al. [174] 2017 PH L C T
LRP w/Local Renormalisation Layers Binder et al. [175] 2016 PH L C P
Net2Vec Fong and Vedaldi [159] 2018 PH G C P
NIF Davis et al. [170] 2020 PH G C NC; P
Neural Network AND CBR Twin-
Systems

Kenny and Keane, Kenny et al. [171,172] 2019, 2021 PH L C P

OcclusionSensitivity Zeiler and Fergus [158] 2014 PH G C P
OpenBox Chu et al. [173] 2018 PH G C P; NC
PatternNet, PatternAttribution Kindermans et al. [169] 2018 PH L C P
Prediction Difference Analysis Zintgraf et al. [168] 2017 PH L C P
Receptive Fields He and Pugeault [166] 2017 PH G C P
Relevant Features Selection Mogrovejo et al. [155] 2019 PH L C P
Saliency Maps Simonyan et al. [164] 2014 PH L C P
SmoothGrad Smilkov et al. [153] 2017 PH L C P
SWAF Rajani and Mooney [156] 2017 PH L C P

(a)

(b) (c) (d)
Figure 12. Examples of visual explanations generated by XAI methods for neural networks as salient masks (a,b) (Guided
BP [157], Twin-systems [171]) and scatter-plots (c,d) (PCA [177], t-SNE maps [178]).
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6.2.2. Visual Explanations as Scatter-Plots

Five methods explain DNNSs with scatter-plots (see Table 13 and Figure 12).

Table 13. Post hoc XAI methods for neural networks generating visual explanations such as scatter-plots, classified according
to the type of problem (C: classification; R: regression), scope (G: global; L: local) and input data (NC: numerical/categorical;
P: pictorials; T: textual; TS: time series).

Method for Explainability Authors Ref Year Scope Problem Input

Cnn-Inte Liu et al. [179] 2018 G C P
Hidden Activity Visualisation Rauber et al. [180] 2017 G C P
Principal Component Analysis Aubry and Russell [177] 2015 G C P
t-SNE maps Zahavy et al. [178] 2016 G C NC
TreeView Thiagarajan et al. [181] 2016 G C P

Convolutional neural networks: The Principal Component Analysis (PCA) method [177]
measures the variation of CNN feature responses (or activation values) in the different
layers to scene factors that occur in images such as object style, colour and lighting configu-
ration. The Convolutional Neural Network Interpretation method (Cnn-Inte) [179] uses a
two-level k-means clustering algorithm to group the activation values of the neurons in the
hidden layers relative to each input feature. Then, a random forest algorithm is trained on
each cluster. t-Distributed Stochastic Neighbour Embedding (t-SNE) maps [178] analyses
Deep Q-networks (DQN) in reinforcement learning applications, particularly for agents
that autonomously learn, for instance, how to play video games. This method extracts
the neural activation values of the last DQN layer and applies t-SNE for dimensionality
reduction and for generating cluster plots where each dot corresponding to a particular
learning phase. Similarly, Hidden Activity Visualisation [180] uses t-SNE to visualise the
projections of the activation values of the hidden neurons as a 2D scatter-plot with points
coloured according to the class of the instances originating them. Finally, TreeView [181]
consists of a scatter-plot representation of a DNN via the hierarchical partitioning of the
feature space. Features are clustered according to the activation values of the hidden
neurons. Each cluster comprises a set of neurons with a similar distribution of activation
values across the whole training set.

6.2.3. Visual Explanations—Miscellaneous

Some methods use alternative visualisation tools (see Table 14 and Figure 13).
Convolutional neural networks: Generative Adversarial Network (GAN) Dissection [182]

was designed to understand the inferential process of GANs at different levels of abstraction
(from each neuron to each object) and the relationship between objects by identifying
neurons (or groups of neurons) related to semantic classes (doors, for example). This
method adds or removes these objects from the image and observes how the GAN network
reacts to these changes. These reactions consist of a new version of the input image where
other objects or background areas are modified by the GAN. For instance, if a door is
intentionally removed from a building, the GAN might substitute it with a window or
bricks. Score Deviation Map [183] is a perturbation-based method that inhibits specific
areas of the input images according to the assigned semantic labels to determine which
labels are relevant, irrelevant or distracting for the model. The explanations are maps of the
input images assigning different colours to the various types of labels. Similarly, a recursive
division method proposed by [184] hides rectangular parts of the input images of varying
size to analyse their influence on the predictions of the underlying neural network.

Important Neurons and Patches [185] study the predictions of a DNN in terms of its
internal features by inspecting information flow through the network. Given a trained
network, important neurons are ranked according to two metrics, both measured over a set
of perturbed images (each pixel is multiplied by a Gaussian noise): (I) the magnitude of the
correlation between the neuron activation and the network output; and (II) the precision
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of the activation of a neuron by selecting those neurons whose activation values were not
significantly affected by the perturbations. The top N neurons are selected and their related
image patches are determined by using a multi-layered deconvolutional network and enclosed
in bounding boxes applied to input images. Two similar methods based on Activation
Maximisation [186–188] modify the input images in such a way to maximise the activation
of a given hidden neuron for each pixel. The modified images should provide a good
representation of what a neuron is doing. Activation maps [189] shows what features activate
the neurons in the penultimate layers. It assumes that the final prediction of a DNN is
dominated by the most highly weighted neuron activations of this layer. Similarly, Ref. [190]
proposed a three-step module that extracts the discriminative features of an image that most
influence the model’s predictions. First, a multi-attention CNN extracts a finite set of features.
Then, an auto-encoder network is trained to generate prototypes for each part of the features,
and finally, a predictor network that assigns a label per prototype. Gaussian Mixture Model
(GMM) [191] computes the components of the activation values related to both training and
test images to select the most activation-wise similar prototypes. Alternatively, Fractal View
for Deep Learning [192] calculates the Euclidean distance of the layer-wise activation values
of a set of input images and applies the Hilbert fractal curve to map similar images into a
two-dimensional space. These curves are displayed in a pixel-grid where the colour of each
pixel corresponds to the original output class of the input images.

A group of methods generates visual explanations in the form of graphs. Explanatory
Graph [193] produces graphs from CNNs. Each node represents a “part pattern” corre-
sponding to the peak activation in a layer related to a part of the input. Each edge connects
two nodes in adjacent layers to encode co-activation relationships and spatial relationships
between patterns. Similarly, Ref. [24] proposed to use data-flow graphs to visualise the
structure of CNNs (but it applies to other DNN architectures, according to the authors)
created and trained in Tensorflow. Symbolic Graph Reasoning (SGR) [194] consists of a
layer added to CNNs which performs reasoning over a group of symbolic nodes whose
outputs explicitly represent different properties of each semantic in a prior knowledge
graph. To cooperate with local convolutions, each SGR is constituted by three modules:
(a) a primal local-to-semantic voting module where the features of all symbolic nodes
are generated by voting from local representations; (b) a graph reasoning module that
propagates information over the knowledge graph to achieve global semantic coherency;
(c) a dual semantic-to-local mapping module that learns new associations of the evolved
symbolic nodes with local representations, and accordingly, enhances local features. Lastly,
And–Or Graph (AOG) [195] grows a semantic AOG on a pretrained CNN. An AOG is a
graphical representation of the problem’s reduction to conjunctions (AND) and disjunc-
tions (OR) of sub-problems (or sub-problems). It parses the part of the input images which
corresponds to a semantic concept.

Some of the visual explanatory tools described thus far are employed to create inter-
active interfaces for the lay audience. For instance, Ref. [196] used saliency maps as the
building blocks of such interfaces to explain the inferential logic of CNNs. ActiVis [197] uni-
fies instance- and subset-level inspection with flowcharts showing how DNNs’ neurons are
activated by user-specified instances or instance subsets. Deep Visualisation Toolbox [198]
depicts the activation values of every layer, produced while processing an image or video,
as heat-maps and modifies the inputs via regularised optimisation methods to enable a
better visualisation of the learned features by individual neurons. Deep View (DV) [199]
measures the evolution of a DNN by using two metrics that evaluate the class-wise discrim-
inability of the neurons in the final layer and the output feature maps. iNNvestigate [200]
compares different XAI methods, namely PatternNet, PatternAttribution and LRP. Finally,
N2VIS [201] produces interactive graphs representing the topology of feed-forward neural
networks trained with evolutionary computation that allow end-users to adjust training
parameters during adaptation and to see the results of this interaction.

Recurrent neural networks: Shifting from pictorial to textual inputs, Cell Activation
Values [202] is a method of explainability for LSTMs. It uses character-level language
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models as an interpretable test-bed for understanding the long-range dependencies learned
by LSTMs by highlighting the sequences of relevant characters. LSTMVis [23] is an analysis
tool for LSTMs that facilitates the understanding of their hidden state dynamics. It is
based on a set of interactive graphs and heat-maps of relevant words. A user can select a
range of text in the heat-maps, which results in the selection of a subset of hidden states
visualised in a parallel coordinate plot where each state is a datum item, and time-steps
are the coordinates. The tool then matches this selection to similar patterns in the dataset
for further statistical analysis. Seq2seq-Vis [203] is similar to LSTMVis, but it focuses on
sequence-to-sequence models, also known as encoder–decoder models, for the automatic
translation of texts. Seq2seq-Vis allows interactions with trained models through each
stage of the translation process intending to identify the learned pattern, detect errors and
probe the model with counterfactual scenarios.

Table 14. XAI methods for neural networks generating miscellaneous visual explanations, classified according to the stage
(AH: ante hoc; PH: post hoc), type of problem (C: classification; R: regression), scope (G: global; L: local) and input data (NC:
numerical/categorical; P: pictorials; T: textual; TS: time series).

Method for Explainability Authors Ref Year Stage Scope Problem Input

Activation Maps Hamidi-Haines et al. [189] 2019 PH L C P
Activation Maximisation Erhan et al., Nguyen et al. [186–

188]
2010,
2016

PH L C P

ActiVis Kahng et al. [197] 2018 PH G C/R NC
AOG Zhang et al. [195] 2017 PH G C P
Cell Activation Values Karpathy et al. [202] 2016 PH G/L C T
Data-flow Graphs Wongsuphasawat et al. [24] 2018 PH G C/R P; NC;

T
Deep View Zhong et al. [199] 2017 PH G C/R P
Deep Visualisation Toolbox Yosinski et al. [198] 2015 PH G C P
Explanatory Graph Zhang et al. [193] 2018 PH G C P
Fractal View for Deep
Learning

Halnaut et al. [192] 2021 PH G C P

GMM Stano et al. [191] 2020 PH L C P
GAN Dissection Bau et al. [182] 2019 PH L C P
Important Neurons and
Patches

Lengerich et al. [185] 2017 PH G C P

iNNvestigate Alber et al. [200] 2019 PH L C P
LSTMVis Strobelt et al. [23] 2018 PH G/L C T
N2VIS Streeter et al. [201] 2001 PH G C/R NC
Part Prototypes Zhu et al. [190] 2021 PH G C P
Recursive Division Method Gorokhovatskyi and

Peredrii
[184] 2021 PH L C P

Saliency Maps Olah et al. [196] 2018 PH G/L C P
Score Deviation Map López-Cifuentes et al. [183] 2021 PH L C P
Seq2seq-Vis Strobelt et al. [203] 2018 PH L C T
SGR Liang et al. [194] 2018 AH G C/R P
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(a)

(b) (c) (d)
Figure 13. Examples of miscellaneous visual explanations generated by XAI methods for neural networks. Some methods
modify the input images by removing parts to check the network’s reaction—(a) GAN Dissection [182] or by maximising
the activation of a given hidden neuron with respect to each pixel—(b) Activation Max [187]. Another alternative is to
highlight the most relevant words of the input text—(c) Cell Activation [202] or to display the network’s structure as a
graph—(d) Data-Flow graphs [24].

6.3. Other Model-Specific XAI Methods

A few XAI methods generate visual explanations to interpret the logic of different
learning algorithms (Table 15).

6.3.1. Rule-Based Systems

Fuzzy Inference-Grams (Fingrams) [204] produces inference maps of sets of fuzzy
rules. These maps depict the interaction between co-fired rules, support the detection of
redundant or inconsistent rules and identify the most significant ones. This is achieved
by using network scaling methods that simplify the maps while maintaining their most
important relations. Fingrams also quantifies the comprehensibility of the ruleset, measured
as the proportion of the co-fired rules. The assumption is that the larger the number of
rules co-fired by a given input, the smaller the comprehensibility of the ruleset.

6.3.2. Support Vector Machines and Naïve Bayesian-Driven Models

Self-Organising Maps (SOM) [205], an XAI method for SVMs, is an unsupervised
network trained to detect, in a high-dimensional space of data, clusters of similar samples.
It achieves this by projecting the input samples onto a 2-dimensional map while trying
to preserve their topologies. It shows both data and the SVM models, providing an
overview of the support vector decision surface. Refs. [206–208] introduced a method for
automatically generating nomograms as visual explanations of the inferential mechanisms
of SVM and naïve, Bayesian-driven models. A nomogram is a two-dimensional diagram
designed to allow approximating the graphical computation of mathematical functions by
showing a set of scales, one for each variable (dependent and independent) in an equation.
By drawing a line connecting specific values of all the scales related to the independent
variables, it is possible to calculate the value of the dependent variable from the intersection
point between the line and the variable’s scale. The advantages of the explainability of
nomograms are the simplicity of presentation and clear display of the effects of individual
attribute values.
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6.3.3. Bayesian and Hierarchical Networks

Contribution propagation [209] is a per-instance method for hierarchical networks
that explain which components of the input were responsible (and to what degree) for its
classification. The central idea is that a node is relevant for the prediction if it was relevant
to its parents, and its parents were also discriminative. The contribution of each input
component is visualised as heat-maps.

Table 15. Post hoc XAI methods for data-driven approaches generating visual explanations, classified according to the
construction approach (learning algorithm), type of problem (C: classification; R: regression), scope (G: global; L: local) and
input data (NC: numerical/categorical; P: pictorials; T: textual; TS: time series).

Method for Explainability Authors Ref Year Construction Approach Scope Problem Input

Contribution Propagation Landecker et al. [209] 2013 Hierarchical networks L C P
Fingrams Pancho et al. [204] 2013 Rule-based system G C NC
Nomograms Jakulin et al. [206] 2005 SVM G C NC
Nomograms Možina et al. [208] 2004 Naïve Bayes G C NC
Self-Organising Maps Hamel [205] 2006 SVM G C NC
VRIFA Cho et al. [207] 2008 SVM G C NC

6.4. Self-Explainable and Interpretable Methods

Two ante hoc methods produce visual outputs (Table 16). The first one, Symbolic
Graph Reasoning (SGR) [194], was designed for CNNs and it is described in the previous
subsection. Unsupervised Interpretable Word Sense Disambiguation [210] produces inter-
pretable word sense disambiguation models that create clusters, or inventories, of words.
For example, an inventory can collect all the words related to “furniture” (such as table,
chair and bed). These words are clustered according to their co-occurrence and relative
position in a text, where close words are assumed to be highly correlated. Their syntac-
tic dependency is extracted from the Stanford Dependencies that represent grammatical
relations between words in a sentence.

Table 16. Ante hoc XAI methods generating white-box models generating visual explanations, classified according to the
type of problem (C: classification; R: regression), scope (G: global; L: local) and input data (NC: numerical/categorical;
P: pictorials; T: textual; TS: time series) of the underlying model.

Method for Explainability Authors Ref Year Scope Problem Input

Feature Maps Zhang et al. [167] 2018 L C P
SGR Liang et al. [194] 2018 G C/R P
Unsupervised Interpretable Word Sense Disambiguation Panchenko et al. [210] 2017 G C T

7. Mixed Explanations
7.1. Model Agnostic XAI Methods

Many XAI methods produce numerical explanations along with graphical represen-
tations to make them more interpretable for lay people (see Table 17 and Figure 14 for
examples of mixed explanations). Functional ANOVA decomposition [211] quantifies the
influence of non-additive interactions within any set of input variables and depicts them
with Variable Interaction Network (VIN) graphs where the nodes represent the variables,
and the edges are the interactions. Combinatorial Methods [212], based on approaches
derived from fault location in combinatorial testing, detect combinations of features that
are present in input instances belonging to a certain class, but that are absent or rare in the
rest of the input dataset. Justification Narratives [213] maps the essential values underlying
a classification (identified with any feature selection method) to a semantic space that
automatically produces narratives and shows them visually (as bar-charts reporting the
estimated relevance value of each variable) or textually. Explainer [214] and Rivelo [215]
are two user interfaces showing mixes of numerical, visual and textual explanations. Using
TensorBoard (a visualisation tool developed by Google for machine learning), Explainer
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produces an interactive graph view of a model where the nodes represent its components
(such as inputs, parameters and outputs) accompanied by textual definitions, and the
edges represent the relationships between them. Rivelo works exclusively with binary
classification problems and binary inputs. It enables end-users to interactively explore a
set of visual and textual instance-level explanations, such as lists of the most relevant input
features (in words or images) and of instances that are correctly/wrongly classified.

Other mixed explanations consist of a selection of prototypes, input samples correctly
predicted by the model that can be considered positive and iconic examples, or adversarial
examples, samples misrepresented by the model suitable to generate contrastive expla-
nations (concerning counterfactual and/or counter-intuitive events). This subset helps
end-users understand the model by leveraging the human ability to induce principles
from a few examples. These explanations are classified as mixed because their format
depends on the nature of the input data. Bayesian Teaching [216] selects a small subset of
prototypes that would lead the model to the correct inference as if trained on the overall
dataset. Sequential Bayesian Quadrature (SBQ), in conjunction with Fisher kernels, selects
salient training data points [217]. All the instances in a training dataset are embedded
in the space induced by the Fisher kernels to quantify the closeness of pairs of instances
which, if close enough, should be treated similarly by a model. The embedded instances are
fed into SBQ, an importance-sampling-based algorithm estimates the expected value of a
function under a distribution using discrete samples drawn from it. Set Cover Optimisation
(SCO) [218] selects prototypes that capture the whole structure of the training data points
in each class of the dataset. The prototypes cannot have another prototype of a different
class in their neighbourhood and must be as few as possible. This leads to a set cover
optimisation problem to be solved approximately with standard approaches such as, for in-
stance, “linear program relaxation with randomized rounding”. Neighbourhood-Based
Explanations [219] is based on a Case-Based Reasoning (CBR) approach. It presents to end-
users the entries of a training dataset that are the most similar to a novel input instance by
employing Euclidean distance. Adversarial examples are instead used by C-CHVAE [220],
Diverse Counterfactual Explanations (DiCE) [221], Evasion-Prone Samples Selection [222],
Maximum Mean Discrepancy (MMD)-critic [223] and Pertinent Negatives [224]. C-CHVAE
and DiCE perturb the input features to identify faithful counterfactuals, meaning that they
do not represent local outliers and are “connected to regions with substantial data density”,
and are diverse enough to approximate local decision boundaries. Evasion-Prone Samples
Selection detects the instances close to the classification boundaries that can be easily mis-
classified if slightly perturbed. MMD-critic utilises the maximum mean discrepancy and an
associated witness function to identify the portions of the input space most misrepresented
by the underlying model. Pertinent Negatives highlights what should be minimally and
necessarily absent to justify the classification of an instance. For example, the absence of
glasses is a necessary condition to say whether a person has good sight. The input data are
modified by removing some parts. The pertinent negatives are those perturbations that
enhance the prediction accuracy.

Finally, some XAI methods produce mixed explanations by approximating a black-
box model with simpler, more comprehensible models that the end-users can inspect to
assess the contribution of each feature. Local Interpretable Model-Agnostic Explanations
(LIME) [22] explains the prediction of any classifier by learning a local self-interpretable
model (such as linear models or decision trees), referred to as white-box models, trained
on a new dataset that contains interpretable representations of the original data. These
representations can be the binary vectors highlighting the presence or absence of certain
characteristics, such as words in texts or super-pixels (contiguous patch of similar pixels)
in images. The black-box model can be explained through the weights of the white-box
estimator that does not need to work globally, but it should approximate the black-box well
in the vicinity of a single instance. However, the authors proposed the Sub-Modular Pick
(SP-LIME) to select, from an original dataset, a representative non-redundant explanation
set of instances that is a global representation of the model.



Mach. Learn. Knowl. Extr. 2021, 3 646

(a) (b)
Figure 14. Examples of mixed explanations generated by model-agnostic XAI methods which consists of a combination of
visual and textual explanations in (a) Rivelo [215] interactive interfaces; or (b) MMD-critic [223] a selection of prototypes
from the input data.

Table 17. Post hoc model-agnostic XAI methods generating mixed explanations, classified according to the type of problem
(C: classification; R: regression), scope (G: global; L: local) and input data (NC: numerical/categorical; P: pictorials; T: textual;
TS: time series) of the underlying model.

Method for Explainability Authors Ref Year Scope Problem Input

Bayesian Teaching Yang and Shafto [216] 2017 G C NC
C-CHVAE Pawelczyk et al. [220] 2020 L C NC
Combinatorial Methods Kuhn et al. [212] 2020 L C/R NC
DiCE Mothilal et al. [221] 2020 L C NC
Evasion-Prone Samples Selection Liu et al. [222] 2018 G C T
ExplAIner Spinner et al. [214] 2019 G C/R P; NC; TS
Functional ANOVA Decomposition and Variable Interaction Network
Graph

Hooker [211] 2004 G C/R NC

Justification Narratives Biran and McKeown [213] 2014 G C NC
LIME Ribeiro et al. [22] 2016 L C P; T
MMD-Critic Kim et al. [223] 2016 L C P
Neighbourhood-Based Explanations Caruana et al. [219] 1999 L C NC
Pertinent Negatives Dhurandhar et al. [224] 2018 L C P; NC
Rivelo Tamagnini et al. [215] 2017 L C T
SBQ Khanna et al. [217] 2019 L C P; NC
SCO Bien et al. [218] 2011 L C P; NC

7.2. Model-Specific XAI Methods Based on Neural Networks

Some XAI methods have attempted at explaining the inferential process of neural
networks with mixed explanations (see Figure 15 and Table 18). Attention Alignment [2]
produces explanations in the form of attention maps, highlighting the parts of a scene that
matter to a control DNN utilised in self-driving cars in combination with a perception
DNN, and textual explanations such as “The car heads down the street because it is
clear”. The perception DNN combines the data received from cameras and other sensors,
such as radars and infrared, to ”understand” the environment and generate manoeuvring
commands. The control DNN is trained to identify the presence of specific objects, such
as road signs, and obstacles like pedestrians and bikers, that influence the output of the
perception network. Similarly, the Pointing and Justification Model (PJ-X) [225] and Image
Caption Generation with Attention Mechanism [35], both designed for VQA tasks, provide
joint textual rationale generation and attention-map visualisation. The attention-maps
are extracted from a CNN, which performs the object recognition in images, whereas the
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textual justifications are produced by an LSTM network as image captions. Refs. [226,227]
proposed two methods for replacing a DNN with a deterministic finite automaton that
can be visualised as a graph where each node represents a cluster of values in the output
space and the edges represent the presence of shared patterns in a network’s internal
layers between these clusters. Another method justifies the prediction of a new instance
by identifying the three most similar training samples based on the cosine distance of the
activation values of hidden neurons related to the training data [228]. Lastly, Representer
Points [229] selects a set of prototypes from a training set by calculating linear combinations
of the network’s activation values and by choosing the training instances with the large
values. The weights of the linear combinations are set to capture the importance of each
training instance on the learned parameters of the network.

(a) (b) (c)
Figure 15. Examples of mixed explanations, consisting of combinations of heatmaps and textual captions, generated by XAI
methods for neural networks, which highlight the most relevant parts of the input images. (a) Attention Alignment [2];
(b) PJ-X [225]; (c) Attention Mechanism [35].

Table 18. XAI methods for neural networks generating mixed explanations, classified according to the stage (AH: ante
hoc; PH: post hoc), type of problems (C: classification; R: regression), scope (G: global; L: local) and input data (NC:
numerical/categorical; P: pictorials; T: textual; TS: time series) of the underlying model.

Method for Explainability Authors Ref Year Stage Scope Problem Input

Activation Values of Hidden Neurons Tamajka et al. [228] 2019 AH L C P
Attention Alignment Kim et al. [2] 2018 PH L C P
Deterministic Finite Automaton Mayr and Yovine [226] 2018 PH L C NC
DFAs Omlin and Giles [227] 1996 PH G C NC
Image Caption Generation w/ Attention Mechanism Xu et al. [35] 2015 PH L C P
PJ-X Park et al. [225] 2018 AH L C P
Representer Points Yeh et al. [229] 2018 PH L C P

7.3. Other Model-Specific XAI Methods

Some scientific studies are devoted to develop XAI methods producing mixed-
explanations for models based on learning algorithms other than neural networks (Table 19).

7.3.1. Rule-Based System

ExpliClas [230] is a visual interface designed to explain, in an instance-based manner, rule-
based classifiers (such as those algorithms extracting DTs from data, such as C4.5 or CART).
The rules are shown as DTs and a natural language generator returns textual explanations of
the fired rules. Exception-Directed Acyclic Graphs (EDAGs) [231] is an empirical induction
tool that generates rules from the knowledge base of expert systems to create comprehensible
knowledge structures in the form of graphs. The nodes are premises, some of which have
attached conclusions, leaves are conclusions, and edges represent exceptions to some node.
The “meaning” of each node can be easily determined by following its path back to the root
and by inspecting its child nodes, whilst the rest of the graph is irrelevant.
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7.3.2. Ensembles

Tree Space Prototypes (TSP) [232] selects prototypes from a training dataset to explain
the prediction made by ensembles of DTs and gradient boosted tree models on a new
observation. The authors proposed a metric to quantify the contribution of the predictions
made by each DT to the ensemble’s prediction. The metric is based on the weighted average
of the number of trees in the ensemble, assigning the new observation to the same output
class. By following the path root-to-leaf of the most relevant DT, it is possible to determine
the values of the features deemed relevant by the tree for predicting the class of the new
instance and select a prototype having the same values.

7.3.3. Support Vector Machines

SVM+Prototypes [233] uses a clustering algorithm to detect the prototype vectors
for each class. These vectors are combined with the support vectors using geometric
methods to define ellipsoids in the input space. The ellipsoids are transformed to IF-
THEN rules as their defining mathematical equations, so a rule looks like ‘If AX2

1 + BX2
2

+CX1X2 + DX1 + EX2 + F ≤ G Then Class1”.

7.3.4. Bayesian and Hierarchical Networks

Probabilistically Supported Arguments (PSA) [234] is based on a two-phase algorithm
for extracting probabilistically explanatory supported arguments from a Bayesian network.
In the first phase, a support graph is constructed from the network for a particular variable
of interest. In the second phase, given a set of observations, arguments are built from that
support graph. To do so, the algorithm defines a logical language and a set of rules built
from the support graph by following its edges and nodes. The parents of a node are the
rule conditions, the node itself is the rule’s outcome. Only the parents supported by pieces
of evidence are considered. Then, an ASPIC+ framework for structured argumentation is
instantiated. Arguments can attack each other on the conclusion variable and defeat can
be based on the inferential strength of the arguments which can be computed with two
types of measures: “incremental measures” which assign a number to the weight of the
evidence (the likelihood ratio is an example of these measures) and “absolute measures”
which assign strength based on posterior probability, such as the posterior for instance.
Such arguments can help interpret and explain the relationship between hypotheses and
evidence modelled in the Bayesian network.

Table 19. XAI methods for data-driven approaches generating mixed explanations, classified according to the construction
approach (learning algorithm), stage (AH: ante hoc; PH: post hoc), type of problem (C: classification; R: regression), scope
(G: global; L: local) and input data (NC: numerical/categorical; P: pictorials; T: textual; TS: time series).

Method for Explainability Authors Ref Year Construction Approach Stage Scope Problem Input

EDAGs Gaines [231] 1996 Rule-based system AH G C NC
ExpliClas Alonso [230] 2019 Rule-based system PH L C NC
Probabilistically Supported Arguments Timmer et al. [234] 2017 Bayesian networks PH G C NC
SVM+Prototypes Núñez et al. [233] 2002 SVM PH G C NC
Tree Space Prototypes Tan et al. [232] 2016 Ensembles PH L C NC

7.4. Self-Explainable and Interpretable Methods

A few ante hoc XAI methods modify the structure of ML models that generate mixed
outputs (Table 20). Bayesian Case Model (BCM) [235] is a method for explainability for
Bayesian case-based reasoning, prototype classification and clustering. BCM learns proto-
types, corresponding to the observations that best represent clusters in a dataset, by per-
forming joint inference on cluster labels, prototypes and important features. Generalised
Additive Models [17] and their extension with pairwise interactions (GA2Ms) [18,236] are
linear combinations of simple models, called “shape functions”, trained on a single feature
(GAMs) or up to two features (GA2Ms). Their simple structure allows the end-user to
easily understand the contribution of individual features to the predictions and to visualise
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them, together with the shape functions, with bar- and line-charts. Multi-Run Subtree
Encapsulation, which comes from the genetic programming (GP) realm, was proposed
in [237] as a way to generate simpler tree-based GP programs. If the tree contains sub-trees
of different makeup but evaluating the same vector of results, they are to be considered as
the same sub-tree. This reduces, according to the authors, the complexity of the entire tree
structure and the resulting expressions, in favour of explainability. Mind the Gap Model
(MGM) [238] is a method for interpretable feature extraction and selection. The goal is to
split the observation into clusters while returning the list of dimensions that are important
for distinguishing them. The results are presented as a mix of numbers, which are the
relevance values of each dimension, texts and graphs that represent the dimensions them-
selves. For example, in a classification problem of images representing the four seasons,
MGM returns samples of images belonging to each class (spring, summer, autumn and
winter) together with the list of their relevant features (such as snow, sun and flowers) and
the relevance values of each feature per target class (snow has a high relevance value for
the class “winter”). A hybrid DL approach [239] uses a model to automatically identify
meaningful, hand-crafted, high-level symbolic features of the input dataset. These features
are subsequently employed by a more interpretable learning model.

Table 20. Ante hoc XAI methods generating white-box models generating mixed explanations, classified according to the
type of problem (C: classification; R: regression), scope (G: global; L: local) and input data (NC: numerical/categorical;
P: pictorials; T: textual; TS: time series) of the underlying model.

Method for Explainability Authors Ref Year Scope Problem Input

BCM Kim et al. [235] 2014 G C P; T
EDAGs Gaines [231] 1996 G C NC
GAMs Lou et al., Lou et al. [17,18] 2012 G C/R NC
GA2Ms Lou et al., Caruana et al. [236] 2015 G C/R NC
Hybrid Deep Learning Campagner and Cabitza [239] 2020 G C/R NC
MGM Kim et al. [238] 2015 G C P; NC; T
Multi-Run Subtree Encapsulation Howard and Edwards [237] 2018 G C NC

8. Final Remarks and Recommendations

The term XAI groups together the scientific body of knowledge developed while
searching for methods to explain the inner logic of either a learning algorithm, a model
induced from it, or a knowledge-based approach for inference and it is now generally recog-
nised as a core area of AI. Several studies are published every year, with many workshops
and conferences organised around the world to present novel methods and disseminate
findings. This has led to the production of an abundance of XAI methods. Scholars have
attempted to comprehensively organised them, however, all these classification systems
lack an important discriminative dimension, which is the output format of the explana-
tions generated by these methods. This review attempted to fill this gap by organising
them according to this dimension in addition to the traditional dimensions, such as scope
and stage, within a hierarchical system. Since the early 1980s and 1990s, with research
only concerned with textual explanations, to nowadays, scholars have been targeting new
explanation formats whose strengths and weaknesses are summarised in Figure 16.
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Figure 16. Summary of the pros and cons associated to each explanation format, namely numeric, rules, textual, visual and
mixed explanations.

For each of these formats, scholars designed, deployed and tested several solutions,
such as saliency masks, attention maps, heat-maps, feature maps, as well as graphs, rules
sets, trees and dialogues. These advances were aimed at meeting the needs of different
types of end-users operating in various fields, such as lay people, doctors and lawyers,
and adapting explanations to their domains of application. Despite these improvements,
there are still important gaps that must be addressed. There is not a consensus among
scholars on what an explanation exactly is and which are the salient properties that must
be considered to make it understandable for every end-user. Therefore, the search for an
effective way to learn representations of the inferential process of data-driven models is still
ongoing [240]. This holds for every explanation format, either textual, visual, numerical
or rule-based, particularly for those that are generated after a model has been induced by
employing deep-learning neural networks. In accordance with [1], we believe that scholars
have produced enough material and knowledge to construct a generally applicable frame-
work for XAI to guide the development of end-to-end XAI methods flexible enough to
adapt to various contexts, fields of application and type of end-users, rather than keep creat-
ing isolated methods that remain only fragments of a broad solution, as shown in Figure 17.
The world is complex, and thus so must be an XAI framework with a universal outlook.
Distinct users look for explanations that achieve different purposes. Domain experts, such
as doctors and bankers, require access to information that varies from that sought by
decision makers, such as managers and regulators. Consumers do not have any control
over the models but are affected by their inferences, so they need to trust them. Other users,
such as the AI practitioners or managers, might be in charge of auditing and certifying
that a model complies with regulations and quality standards. Hence, they must know
its inner functioning. Researchers instead use the models to discover novel knowledge.
The field of the application adds further complexity as it involves the search for solutions
to problems that vary considerably, even within the same field, and are experienced by
operators with distinct characteristics and needs, ranging from governments to business
enterprises and academia. These organisations operate on different domains of knowledge
and data that vary in type and quality, such as images, tables, text documents or online
posts. Furthermore, the culture and structure of the organisations adopting AI-powered
technologies must be considered to make the AI–human integration process as smooth
as possible. It is necessary to analyse all these factors in-depth to identify the explanation
requirements for each of them. These requirements include but are not limited to the five
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dimensions of the XAI methods discussed in this literature review, namely the stage, scope,
problem, input data and format of the explanation. There are several other factors relative
to the quality and effectiveness of an explanation itself that cannot be ignored [8]. Once
this analysis is finished, it will be possible to determine the best explanation format for
each situation and provide a general solution to the quest for explainability in the AI field.

Figure 17. Diagram of the factors affecting the selection of XAI methods.
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