198 research outputs found

    Occupational radiation exposure assessment during the management of [68Ga]Ga-DOTA-TOC

    Get PDF
    Background: Since it was first approved in Europe in 2016, the gallium-68 (68Ga) radiopharmaceutical [68Ga]Ga-DOTA-TOC has been widely used for imaging of somatostatin receptor (SSTR) positive tumours using positron emission tomography-computed tomography (PET/CT). Significant patient benefits have been reported, so its use is rapidly increasing. However, few studies have been published regarding occupational doses to nuclear medicine personnel handling this radiopharmaceutical, despite its manual usage at low distances from the skin and the beta-emission decay scheme, which may result in an increased absorbed dose to their hands. In this context, this study aims to analyse the occupational exposure during the administration of [68Ga]Ga-DOTA-TOC for PET/CT imaging. For this purpose, extremity, eye lens and whole-body dosimetry in terms of Hp(0.07), Hp(3) and Hp(10), respectively, was conducted on six workers with both thermoluminescent dosimeters, and personal electronic dosimeters. Results: The non-dominant hand is more exposed to radiation than the dominant hand, with the thumb and the index fingertip being the most exposed sites on this hand. Qualitative analysis showed that when no shielding is used during injection, doses increase significantly more in the dominant than in the non-dominant hand, so the use of shielding is strongly recommended. While wrist dosimeters may significantly underestimate doses to the hands, placing a ring dosimeter at the base of the ring or middle finger of the non-dominant hand may give a valuable estimation of maximum doses to the hands if at least a correction factor of 5 is applied. Personal equivalent doses for the eyes did not result in measurable values (i.e., above the lowest detection limit) for almost all workers. The extrapolated annual dose estimations showed that there is compliance with the annual dose limits during management of [68Ga]Ga-DOTA-TOC for diagnostics with PET in the hospital included in this study. Conclusions: Imaging with [68Ga]Ga-DOTA-TOC is a safe process for the workers performing the administration of the radiopharmaceutical, including intravenous injection to the patient and the pre- and post-activity control, as it is highly unlikely that annual dose limits will be exceeded if good working practices and shielding are used.Euratom research and training programme 2019?2020 under Grant Agree? ment N? 945196 (SINFONIA Projec

    Aportes de soft computing en las energías renovables eólicas

    Get PDF
    La Soft Computing es un conjunto de metodologías que fundamentalmente sirve para resolver problemas provenientes de situaciones inciertas, imprecisas, y otras situaciones en las que con las metodologías clásicas no se pueden abordar, por su dificultad en su representación y modelación así como por su complejidad. En la generación de la energía eólica se presentan diversas situaciones complejas de naturaleza incierta e imprecisa, que han necesitado y necesitan el uso de la soft computing. En este ensayo se hace la recopilación de los artículos publicados en los que se resuelve los problemas asociados con las energías eólicas utlizando las metodologías soft computing. Se ha encontrado gran número de trabajos que utilizan las metodologías fuzzy, redes neuronales artificiales y algoritmos genéticos; escasos trabajos que utilizan los métodos híbridos y ningunos los recientes métodos de búsqueda y relajación.    Palabras clave: Soft computing,  energía eólica

    September 22, 1997

    Get PDF
    The Breeze is the student newspaper of James Madison University in Harrisonburg, Virginia

    Network-Based Biomarker Discovery : Development of Prognostic Biomarkers for Personalized Medicine by Integrating Data and Prior Knowledge

    Get PDF
    Advances in genome science and technology offer a deeper understanding of biology while at the same time improving the practice of medicine. The expression profiling of some diseases, such as cancer, allows for identifying marker genes, which could be able to diagnose a disease or predict future disease outcomes. Marker genes (biomarkers) are selected by scoring how well their expression levels can discriminate between different classes of disease or between groups of patients with different clinical outcome (e.g. therapy response, survival time, etc.). A current challenge is to identify new markers that are directly related to the underlying disease mechanism

    Radiobiology Textbook:Space Radiobiology

    Get PDF
    The study of the biologic effects of space radiation is considered a “hot topic,” with increased interest in the past years. In this chapter, the unique characteristics of the space radiation environment will be covered, from their history, characterization, and biological effects to the research that has been and is being conducted in the field. After a short introduction, you will learn the origin and characterization of the different types of space radiation and the use of mathematical models for the prediction of the radiation doses during different mission scenarios and estimate the biological risks due to this exposure. Following this, the acute, chronic, and late effects of radiation exposure in the human body are discussed before going into the detailed biomolecular changes affecting cells and tissues, and in which ways they differ from other types of radiation exposure. The next sections of this chapter are dedicated to the vast research that has been developed through the years concerning space radiation biology, from small animals to plant models and 3D cell cultures, the use of extremophiles in the study of radiation resistance mechanisms to the importance of ground-based irradiation facilities to simulate and study the space environment

    EJP-CONCERT. D3.7 Second joint roadmap for radiation protection research

    Get PDF
    EJP-CONCERT Work Package 3, Deliverable 3.7
    corecore