474 research outputs found

    Investigation of a Hybrid Algorithm for Sea Ice Drift Measurements Using Synthetic Aperture Radar Images

    Get PDF
    Areal matching by phase correlation and feature tracking are two complementary methods used to measure sea ice drift between synthetic aperture radar images. This paper evaluates a new algorithm that combines the two methods. Areal matching is improved by new methods to handle large motions and rotated ice. It is shown that areal rotation can be resolved using a frequency-domain approach. Image segmentation is a prerequisite for feature tracking and achieved by a new method that performs better than Otsu's method for two-component Gaussian mixture distributions. A circular weighted median filter is found to be suitable for the filtering of the motion field. The algorithm is evaluated through a thorough analysis of the response and sensitivity to various algorithm settings. The accuracy of the algorithm varies by up to 50% for one image pair within the studied range of parameter settings, thus indicating the need for a proper initialization of the algorithm

    Radar and laser altimeter measurements over Arctic sea ice.

    Get PDF
    To validate sea ice models, basin wide sea ice thickness measurements with an accuracy of 0.5 m are required to analyse trends in sea ice thickness, it is necessary to detect changes in sea ice thickness of 4 cm per year on a basin wide scale. The estimated error on satellite radar altimeter estimates of sea ice thickness is 0.45 m and the estimated error on satellite laser altimetry estimates of sea ice thickness is 0.78 m. The Laser Radar Altimetry (LaRA) field campaign took place in the Arctic during 2002. It was the first experiment to collect coincident radar and laser altimetry over sea ice. This thesis analyses the data from LaRA to explore the potential of combining radar and laser altimetry to reduce the uncertainties in measurements of sea ice thickness. Two new methods to analyse the LaRA data are described. The first is the University College London (UCL) Delay/Doppler radar altimeter (D2P) re-tracking algorithm and the second is the UCL D2P power simulator. Each method is calibrated and the associated error is estimated. The UCL D2P power simulator reproduces the D2P returns closely, and is used to estimate the elevation difference between the reflecting surface of the radar and the laser with an accuracy of 0.07 m. The laser is shown to consistently reflect from a higher surface than the radar. The offset between the laser and the radar is consistent with observed snow depths and compares well to snow depth distributions from in-situ data. We find that reducing the error in snow depth to 7 cm reduces the radar error in sea ice thickness from 0.45 m to 0.37 m and the laser error in sea ice thickness from 0.78 m to 0.55 m

    Remote Sensing by Satellite Gravimetry

    Get PDF
    Over the last two decades, satellite gravimetry has become a new remote sensing technique that provides a detailed global picture of the physical structure of the Earth. With the CHAMP, GRACE, GOCE and GRACE Follow-On missions, mass distribution and mass transport in the Earth system can be systematically observed and monitored from space. A wide range of Earth science disciplines benefit from these data, enabling improvements in applied models, providing new insights into Earth system processes (e.g., monitoring the global water cycle, ice sheet and glacier melting or sea-level rise) or establishing new operational services. Long time series of mass transport data are needed to disentangle anthropogenic and natural sources of climate change impacts on the Earth system. In order to secure sustained observations on a long-term basis, space agencies and the Earth science community are currently planning future satellite gravimetry mission concepts to enable higher accuracy and better spatial and temporal resolution. This Special Issue provides examples of recent improvements in gravity observation techniques and data processing and analysis, applications in the fields of hydrology, glaciology and solid Earth based on satellite gravimetry data, as well as concepts of future satellite constellations for monitoring mass transport in the Earth system

    Quarterly literature review of the remote sensing of natural resources

    Get PDF
    The Technology Application Center reviewed abstracted literature sources, and selected document data and data gathering techniques which were performed or obtained remotely from space, aircraft or groundbased stations. All of the documentation was related to remote sensing sensors or the remote sensing of the natural resources. Sensors were primarily those operating within the 10 to the minus 8 power to 1 meter wavelength band. Included are NASA Tech Briefs, ARAC Industrial Applications Reports, U.S. Navy Technical Reports, U.S. Patent reports, and other technical articles and reports

    Remote Sensing of the Aquatic Environments

    Get PDF
    The book highlights recent research efforts in the monitoring of aquatic districts with remote sensing observations and proximal sensing technology integrated with laboratory measurements. Optical satellite imagery gathered at spatial resolutions down to few meters has been used for quantitative estimations of harmful algal bloom extent and Chl-a mapping, as well as winds and currents from SAR acquisitions. The knowledge and understanding gained from this book can be used for the sustainable management of bodies of water across our planet
    • …
    corecore