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Abstract

To validate sea ice models, basin wide sea ice thickness measurements with an accuracy of 

± 0.5 m are required; to analyse trends in sea ice thickness, it is necessary to detect changes 

in sea ice thickness of 4 cm per year on a basin wide scale. The estimated error on satellite 

radar altimeter estimates of sea ice thickness is ± 0.45 m and the estimated error on satellite 

laser altimetry estimates of sea ice thickness is ± 0.78 m. The Laser Radar Altimetry 

(LaRA) field campaign took place in the Arctic during 2002. It was the first experiment to 

collect coincident radar and laser altimetry over sea ice. This thesis analyses the data from 

LaRA to explore the potential of combining radar and laser altimetry to reduce the 

uncertainties in measurements of sea ice thickness.

Two new methods to analyse the LaRA data are described. The first is the University 

College London (UCL) Delay/Doppler radar altimeter (D2P) re-tracking algorithm and the 

second is the UCL D2P power simulator. Each method is calibrated and the associated error 

is estimated. The UCL D2P power simulator reproduces the D2P returns closely, and is 

used to estimate the elevation difference between the reflecting surface of the radar and the 

laser with an accuracy of ± 0.07 m. The laser is shown to consistently reflect from a higher 

surface than the radar. The offset between the laser and the radar is consistent with 

observed snow depths and compares well to snow depth distributions from in-situ data. We 

find that reducing the error in snow depth to 7 cm reduces the radar error in sea ice 

thickness from ± 0.45 m to ± 0.37 m and the laser error in sea ice thickness from ± 0.78 m 

to ± 0.55 m.
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1) The climate system and sea ice

1.0) Introduction

The aim of the work described in this thesis is to assess the potential of combining 

coincident radar and laser altimetry to reduce uncertainties in the measurement of sea 

ice thickness from both radar and laser altimetry. This thesis analyses data from the 

LaRA field campaign, the first experiment to collect coincident radar and laser altimetry 

over sea ice. In addition, this thesis aims to understand how the experiment could be 

improved in future field campaigns, as the experiment is an important precursor to the 

airborne validation campaigns for the CryoSat satellite.

The ability to measure sea ice thickness on a basin wide scale at regular intervals 

provides a valuable resource for climate modelling and therefore for the prediction of 

climate change. In section 1.1, we describe the global climate system and how it is 

modelled. In section 1.2 we describe the influence of sea ice on the climate system and 

in section 1.3 we describe sea ice models and how they are validated. Section 1.4 

describes sea ice observations and their findings. Section 1.5 describes a recent advance 

in the measurement of sea ice thickness from satellite radar altimetry and the 

uncertainties present in the technique. Section 1.6 describes the measurement of sea ice 

thickness from satellite laser altimetry and the uncertainties present in the technique. 

Finally, in section 1.7, we outline the main aims of the work described in this thesis.

19



1.1) The global climate system

Changes in the 
Hydrological Cycle

Clouds

N ^ A r .
H20. COj.CH*. NjO. 0,. etc. 
Aerosols

Ice SheetGlacier

Human Influences

Sea la
Hydrosphere:
Ocean

Land Surface

Cryosphere:
Sea Ice. Ice Sheets, Glaciers

Hydrosphere: 
Rivers & Lakes

Changes in the Ocean: 
Circulation. Sea Level. Biogeochemistry

Changes in/on the Land Surface: 
Orography. Land Use. Vegetation. Ecosystems

Figure 1.1: The global climate system: components of the system (bold), their processes 

and interactions (thin arrows) and some aspects that may change (bold arrows) 

[Houghton et al., Chapter 1, 2001]

The climate system is composed of five major components: the atmosphere, 

hydrosphere, the cryosphere, the land surface and the biosphere. This composite system 

is subject to various external forcing mechanisms; the most important is the sun.

When radiation from the Sun encounters the Earth it is either reflected, absorbed or 

transmitted by the atmosphere. The radiation transmitted through the atmosphere is then 

either absorbed or reflected by the Earths surface The energy reaching the Earth’s 

surface is redistributed by the atmospheric and oceanic currents and radiated back to 

space at infrared wavelengths. [Houghton et al., Technical Summary, 2001]
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1.1.1) The components of the climate system

The Atmosphere

Greenhouse gases in the Earth’s atmosphere reduce the efficiency with which the 

Earth’s surface radiates energy to space. They absorb outgoing terrestrial radiation, 

which is re-emitted at low temperatures, leading to a warming of the lower atmosphere 

(a positive radiative forcing). The extent of this radiative forcing depends on the size of 

the increase in concentration of each of the greenhouse gases (water vapour, carbon 

dioxide, nitrous oxide and ozone). [Houghton et al., Technical Summary, 2001]

Ozone acts as a green house gas in the troposphere and lower stratosphere. But a natural 

layer of ozone in the higher stratosphere acts as filter against damaging solar ultra-violet 

radiation, playing an essential role in the stratosphere’s radiative balance. [Ahrens, 

1993]

Aerosols suspended in the troposphere, from both natural and anthropogenic sources, 

have a complex effect upon climate. For example, if the albedo of an aerosol particle is 

higher than that of the surface it is above, the amount of sunlight reflected back into 

space is likely to increase causing the air temperature to lower and visa versa. Certain 

aerosols, although they reflect radiation from the sun back to space, may also absorb 

outgoing infrared radiation [Ahrens, 1993]. Changes in aerosol concentrations can 

effect cloud amount and reflectivity. Volcanic eruptions eject large amounts of sulphate 

gases into the stratosphere that interfere with incoming solar radiation, producing a 

large, but transitory, cooling effect [Mcllveen, 1992].
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The Hydrosphere

Great ocean conveyor belt

Heat release 
to atmosphere

Atlantic /
Ocean A j

Warm surface 
current

Heat release 
to atmosphere

Figure 1.2: The ocean conveyor belt -  Warm surface currents (orange) and cold deep 

currents (blue) are connected in the deepwater formation areas in the high latitudes of 

the Atlantic and around Antarctica. It is at these points where the major ocean to 

atmosphere transfer of heat occurs. [Watson, 2001]

The Ocean absorbs more than half the solar radiation reaching the earth’s surface, 

largely in the top 100m. Heat from this layer is then transferred back to the atmosphere 

by evaporation, moved and mixed downwards, or remains in the surface layer and is 

transported to other areas of the ocean. Figure 1.2 illustrates the transport of heat around 

the oceans. For example: The warm surface current crossing the Atlantic Ocean (the 

Gulf Stream) transports warm water from the East coast of America, towards the NE 

Atlantic, leading to Britain’s relatively mild climate when compared to many other 

places at the same latitude. [Vaughan & Cracknell, 1994]

>
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The Cryosphere

The presence of Arctic and Antarctic ice affect ocean currents and winds and the 

transfer of heat between them. Variations in the extent and thickness of sea ice, land ice 

and snow, alter the energy fluxes at the Earth’s surface. Snow and ice have a high 

reflectivity. Therefore a decrease in their spatial coverage results in a decrease in the 

surface albedo, increasing the amount of radiation absorbed by the climate system, 

which results in a further increase in temperature, and visa versa. This is known as the 

snow/ice albedo feedback mechanism [Curry et al., 1995]. Sea ice acts as a boundary 

between the ocean and the atmosphere, effectively decoupling the two, and inhibiting 

the exchange of heat, moisture and momentum [Ledley, 1993]. Sea ice also influences 

the formation of deep water masses by salt extrusion during the freezing period and by 

generating fresh water layers during the melting period [Aagard & Carmack, 1989]. 

Indeed, changes to the vertical circulation in the northern seas due to changes in the 

melting of sea ice could affect the global ocean conveyor belt (figure 1.2) [Rudels, 

1995].

The Land Surface and Biosphere

Topography, vegetation and seasonal snow cover influence airflow, absorption of solar 

energy and the water cycle. The Biosphere helps to determine the atmospheric 

concentration of carbon dioxide [Houghton et al., Chapter J, 2001].

Variations in the Climate system

The Sun’s energy output varies by 0.1% over an 11 year cycle. A variation of 0.1% 

amounts to a variation of about 0.24 W m‘2 at the Earth’s surface. This is small 

compared to the estimated radiative forcing due to anthropogenic increases in CO2 (2 to

2.5 W m'2). However larger-amplitude solar cycles may exists and the combination of 

cycles may amplify the variation. [Reid, 2000].

Variations of the Earth’s orbit cause changes in the seasonal and latitudinal distribution 

of solar energy. These changes play a strong role in controlling variations such as 

glacial and inter-glacial periods.
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Human activities, such as the increased production of CO2 by burning fossil fuels, 

change the climate. Increases in the concentration of CO2 change the balance between 

incoming radiation from the sun and outgoing radiation from the earth, causing a 

warming in the lower atmosphere [Vaughan & Cracknell, 1994]. Changes in land use, 

such as changes in agriculture and irrigation, deforestation and urbanisation, alter the 

physical and biological properties of the land surface and therefore the climate system 

[Houghton et al., Chapter 7, 2001].

Changes in aerosol concentrations, from anthropogenic sources and from volcanic 

activity, effect the radiative balance, and therefore the climate. Aerosols scatter and 

absorb radiation and modify the radiative properties of clouds. [Houghton et al., 

Technical Summary, 2001]

Time scales o f  change

The climate system responds to changes of radiative forcing on different time scales. 

The large heat capacity of the ocean means that the transient response to a change in 

forcing may range from days (at the surface) to millennia (at depth). The atmosphere 

reacts rapidly to changes in forcing on a timescale of hours or days [Vaughan & 

Cracknell, 1994]. Sea ice has a high interannual variability [Laxon et al., 2003] whereas 

ice sheets react on timescales of millennia. Land processes react on timescales of days 

to months, and the biosphere reacts on timescales from hours to centuries [Vaughan & 

Cracknell, 1994]. As a consequence any change will alter the global hydrological cycle 

and atmospheric and oceanic circulation affecting weather patterns, regional 

temperatures and precipitation [Houghton et al., Technical Summary, 2001].

1.1.2) Modelling the climate system

To understand the climate and climate change we must study the fundamental physics 

of the processes involved in the climate system’s behaviour. Problematically, analytical 

solutions of the equations describing the climate system are not feasible due to their 

non-linear nature and complicated boundary conditions. Therefore numerical techniques
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are employed involving the use of simulation modelling. Climate models provide the 

only means of producing climate predictions.

Coupled (atmosphere-ocean), general-circulation models (CGCM) provide the best 

means of simulating the climate system, both globally and regionally. Models are 

designed on a grid, and the atmosphere and ocean sections may have different grid 

spacing and number of layers. Interaction between the atmosphere and ocean occurs at 

the sea surface, therefore the sea surface temperature and sea ice cover are key 

predictands in the model simulation. [Carson, 1999]

In 1988 the World Meteorological Organization (WMO) and the United Nations 

Environment Programme (UNEP) set up the Intergovernmental Panel on Climate 

Change (IPCC). The first report of the working group 1 (WG1) Houghton et al.,(1990) 

established a consensus on what appeared to be common to the results of most of the 

models. Further investigations have been conducted since then and we summarise the 

results below.

Based on current models

• Under the IPCC A 21 scenario, for the end of the 21st century, the mean change 

in global average surface air temperature is 3.0°C (with a range of 1.3 to 4.5°C),
'y

and 2.2°C (with a range of 0.9 to 3.4°C) for the B2 scenario. The scenarios also 

indicate that in winter the warming for all high latitude northern regions exceeds 

the global mean warming in the model by 40% [Houghton et al., Technical 

Summary, 2001]. Figure 1.3 shows the predicted change in annual average 

surface air temperature from 1960-1990 to 2070-2100, due to a doubling of the 

atmospheric concentration of carbon dioxide over the 21st century, from the 

Hadley Centre’s global, coupled, general-circulation model (HadCM3).

1 Continuously increasing population and gradual economic growth and technological 
change, rapid C 02 increase. [Houghton et al., Technical Summary, 2001].
2 Continuously increasing population, focus on environmental protection, intermediate 
economic growth and slow technological change. Much slower C 02 increase with 
values not yet doubled by 2100. [Houghton et al., Technical Summary, 2001].
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Figure 1.3: Change in the annual average surface air temperature between the late 20th 

Century and the late 21st Century. [Hadley Centre, 2004]

• A2 and B2 scenarios indicate that precipitation will increase in summer and 

winter over high latitudes. Winter increases are also seen over northern mid 

latitudes, tropical Africa and Antarctica. Summer increases in southern and 

eastern Asia. Australia, Central America and southern Africa show decreases in 

winter rainfall. [Houghton et al., Technical Summary, 2001]

• Glaciers and ice caps will continue to retreat along with Northern Hemisphere 

snow cover and sea ice. The Antarctic ice sheet is likely to increase due to 

increased precipitation, whereas the Greenland ice sheet is likely to decrease. 

[Houghton et al., Technical Summary, 2001]. Figure 1.4 shows the predicted 

decrease in sea ice volume between 2000 and 2100, from the Hadley Centre’s 

CGCM, HadCM3 predicts a decrease of 60% in sea ice volume by the end of the 

21st century.

*
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Figure 1.4: Predicted reduction in sea-ice volume 2000-2100. [Hadley Centre, 2004]

• Global average sea level rise from 1990 to 2100 lies in the range 0.11 to 0.77 m, 

due to: thermal expansion (0.11 to 0.43 m), glacier contribution (0.01 to 0.23 

m), Greenland contribution (-0.02 to 0.09 m) and Antarctic contribution (-0.17 

to 0.02 m) [Houghton et al., Technical Summary, 2001].

The differences between CGCMs and causes for uncertainty within each model, result 

from:

• The modelling of the physical processes. Uncertainty identifying the size and 

sign of feedback processes such as those due to changes in snow, ice, clouds and 

water, results in a climate sensitivity3 lying in the range 1.3 to 4.5 K. If clouds 

and ice are kept fixed the range reduces to 2 to 3 K [Carson, 1999].

• The choice of grid spacing. This varies between models and can also effect the

representation of variables within a grid cell. For example: The ocean 

component of the HadCM3 has a horizontal resolution of 1.25° by 1.25° on a 

latitude-longitude grid, and 20 vertical layers [Carson, 1999]. Sea-ice floes 

interact with each other, and the atmosphere, at scales smaller than the grid cells. 

Therefore the behaviour of sea-ice must be approximated or parameterised 

within the grid cell. Its behaviour cannot be modelled explicitly.

• The boundary conditions and their parameterisation.

• The assumptions made about the future.

[Vaughan & Cracknell, 1994]

3 Climate sensitivity -  the long-term change in globally averaged surface temperature 
following a doubling of carbon dioxide. >
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Summary

Climate sensitivity is important as both a model and a climate characteristic [Carson,

1999]. Results from CGCMs show that warming in the polar regions exceeds the global 

mean warming by 40% [Houghton et al., Technical Summary, 2001]. The largest 

increases in temperature are found over sea ice in winter and the smallest warming over 

sea ice in summer [Carson, 1999]. Changing the representation of clouds and ice in 

CGCMs results in a climate sensitivity lying in the range 1.3 to 4.5 K. Keeping them 

fixed reduces the range to 2 to 3 K. [Carson, 1999]. Knowledge of sea ice, its effect on 

the global climate and how to parameterise it within models, is therefore critical for the 

accurate prediction of future climate [Houghton et al., Chapter 14, 2001].

1.2) The influence of Arctic sea ice on the global climate

In section 1.1 the influence of the cryosphere on the global climate system was briefly 

described. In this section we take a detailed look at the influence of Arctic sea ice on the 

climate system.

1.2.1) Sea ice and the thermohaline circulation

The thermohaline circulation is the vertical, density driven ocean circulation that results 

from changes in the content of heat and/or salt. Changes in heat are caused by fluxes 

across the air-sea interface; changes in salinity are caused by the addition or removal of 

fresh water either through evaporation and precipitation or by the freezing and melting 

of ice. [Brown et al., 1998]. In the North Atlantic, warm saline water (North Atlantic 

Drift) is transported poleward due to differential heating between high and low latitudes 

[Clark et al., 2002]. This water circulates in the Norwegian and Greenland Seas, cools 

and sinks. The resulting deep water is highly saline due to the high salinity outflow 

from the Arctic Ocean that is a result of brine expulsion when sea ice is formed. The 

deep water in the Norwegian and Greenland basins outflows through the Denmark Strait 

and into the depths of the Atlantic (see figure 1.2). [Brown et al., 1998]. The circulation 

system can be altered or stopped by variations in the freshwater input from the Arctic 

Ocean. The largest export of fresh water from the Arctic Ocean is via sea ice leaving the 

Fram Strait into the Greenland Sea [Aagaard & Carmack, 1989]. Increased sea ice
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export could alter or stop the Atlantic thermohaline circulation, therefore it is important 

to monitor and model the volume of sea ice leaving the Arctic accurately. Changes to 

the Atlantic thermohaline circulation as a result of changes to the hydrological cycle are 

thought to have caused abrupt climate changes [Clark et al., 2002]. Consequences of 

change to the Atlantic thermohaline circulation include a reduction in the heat 

transported to circum-Atlantic region, as well as altering the distribution of water 

masses in the world’s oceans [Clark et al., 2002].

1.2.2) Sea ice and the radiation balance

Sea ice has an albedo ranging from 0.9 in winter after a snowfall to 0.4-0.55 in summer 

when melt ponds are present on the surface, whereas water’s albedo is about 0.1 

[Wadhams, 1996], A decrease in sea ice area exposes more water, which results in an 

increase in heat absorption and hence warming. This effect creates a positive feedback 

loop as the warming causes a further reduction in sea ice area and results in a further 

warming of the atmosphere.

Heat transfer between the ocean and the atmosphere is affected by changes to sea ice 

thickness and lead fraction. The heat flux lost to the atmosphere from an open lead is 

two orders of magnitude larger than the heat flux through thick ice cover [Comiso et al., 

2003].

1.2.3) Sea ice and greenhouse gas induced climate change

As shown in figure 1.3, many GCMs show a greater warming in the polar regions as a 

result of increased levels of CO2 . This response is connected with changes to the sea ice 

coverage [Lindsay, 2003]. Rind et al. (1995) examine the effects of sea ice on climate 

sensitivity. The temperature sensitivity of their GCM model without a sea ice response 

is 35-40% less than with a sea ice response, when running a double CO2 simulation. 

Their follow up paper, Rind et al. (1997), shows that the key parameters controlling 

temperature sensitivity are sea ice coverage in the Southern Hemisphere, and sea ice 

thickness in the Northern Hemisphere. Model simulations show warming in the high 

latitude northern regions exceeds the global mean warming by 40% at the end of the 

21st century [Houghton et al., Technical Summary, 2001]. Yet it is unknown if this
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enhanced warming is due to real physical feedback processes or to unrealistic 

simulation of sea ice in the models [Lemke et al., 1997]. The accurate representation of 

sea ice within GCMs will reduce the uncertainty in climate sensitivity predictions.

1.3) Sea ice models

1.3.1) A general description

Sea ice models can be generally divided into two categories: Thermodynamic and the 

more sophisticated dynamic-thermodynamic models. Dynamic-thermodynamic sea ice 

models seem to be less sensitive to global warming and provide the fresh-water/ salt 

flux associated with the ice motion [Lemke et al., 1997]. On a regional scale sea ice 

controls the exchange of heat and moisture between the ocean and atmosphere. Here the 

coupling between the thermodynamic processes and the dynamic process, which modify 

the ice cover (i.e. the creation of ridges and leads), are important. On a global scale the 

ice albedo feedback mechanism, and sea ice extent must be well represented within 

models. Also on a global scale, changes in the transport of ice (and therefore fresh 

water) to the Greenland and Norwegian Seas could influence the thermohaline 

circulation, therefore ice transport should be well represented. These effects can only be 

analysed by climate models that contain realistic sea ice dynamics. [Lepparanta, 1998]

Dynamic-thermodynamic sea ice models are divided into four components:

• Momentum balance to describe sea ice drift. Air and water stresses, Coriolis 

force, internal ice stress, inertial forces and ocean currents are included in the 

momentum balance.

• Ice thickness distribution to describe the redistribution of ice thickness due to 

thermodynamic and dynamic effects.

• Ice rheology relating the ice stress to the ice deformation and ice thickness.

• Thermodynamic model which defines the growth and decay rates for different 

ice thicknesses. The thermodynamic model must also include ocean and 

atmosphere boundary layers to take into account heat storage and heat fluxes. 

[Lepparanta, 1998]

30



1.3.2) A review of sea ice models

Houghton et al. {chapter 8, 2001), examine fifteen sea ice simulations from GCMs as 

part of their Coupled Model Intercomparison Project (CMIP1). Only three of the 

models have a dynamics component (sea ice is moved by ocean currents), and only 

three include ice rheology. All the models have a thermodynamic component. The 

thermodynamic formulations are mostly based on simplified schemes assuming a linear 

temperature profile through the ice as opposed to a multi-layer heat transfer scheme. 

Leads are ignored in about half of the models. Some models also ignore the 

thermodynamic effects of snow on the ice.

Gregory et al., (2002) compare the HadCM3 Atmosphere Ocean General Circulation 

Model at the Hadley Centre for Climate Prediction simulated changes in Arctic sea ice 

to observations (HadCM2 was included in the comparison described above). The 

decrease in sea ice extent simulated by the model agrees closely with observations. The 

decline in sea ice thickness is consistent with other model results but does not agree 

with observations based on submarine data. Compared to the basin wide coverage of the 

remotely sensed ice extent data, these ice thickness measurements provide a poor 

understanding of changes in sea ice thickness, and Gregory et al., (2002) anticipate the 

use of satellite altimetry to estimate sea ice thickness.

Kreyscher et al., (2000), compare four sea ice models with different rheology schemes 

with each other and with observational data in order to identify the optimal sea ice 

rheology. Verification data for the model dynamics come from buoy drift data, 

providing trajectory information and drift speed. Ice concentration data are derived from 

space borne passive microwave sensors, and limited ice thickness observations from 

submarine upward-looking sonar (ULS) and from moored ULS. Their results show that 

a viscous-plastic model achieves the best fit and that the most sensitive sea ice 

properties, with respect to rheology, are the spatial pattern of ice thickness and ice drift 

velocity on different timescales, seasons and regions. They note that basin wide 

observations of sea ice thickness would provide the opportunity for new evaluations of 

sea ice rheologies.
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Rothrock et al., (2003) compare annual mean sea ice thickness estimates from seven sea 

ice models, between 1951 and 1999 in figure 1.5.

48  52 56  60 64 68 72 76 80  84 88 92 96  00
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Figure 1.5: (Upper) Annual mean thickness from several ice models during the period 

1951 to 1999. (Lower) The thickness anomaly as compared to the mean for each 

simulation.
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Differences between model estimates arise from the way forcing data are incorporated 

into each model, the model physics, the radiative formulations and the treatment of 

albedo. [Rothrock et al., 2003]
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The results shown by Rothrock et al. (2003) illustrate the need for model 

intercomparison studies and for the assessment of models by observational data and 

they advocate satellite altimeter data as a way of updating the sea ice thickness 

observational record.

Barry et al. (1993) review the Arctic sea-ice climate system with respect to both models 

and observations. They conclude that model simulations do not adequately address 

cloud microphysics and sea ice processes; and list the measurement of the surface 

energy budget and sea ice thickness as two of the most high priority data needs.

1.3.3) Sea ice thickness measurement requirements for model validation

In order to validate the sea ice component in GCMs we require, basin wide, systematic 

estimates of the average ice thickness at the same horizontal resolution as the GCM in 

question. The models reviewed in section 1.3.2. have grid cell areas of the order 10 

km2. For example; the ocean component of HadCM3 has a 1.25° x 1.25° horizontal 

resolution [Gordon et al., 2000], which equates to a horizontal resolution of
'y

approximately 3000 km in the Arctic. The upper plot in figure 1.5 shows the annual 

mean ice thickness from eight models. The figure shows up to two metres difference 

between model predictions. From the figure it is clear that in order to determine which 

model best represents sea ice thickness, measurements of sea ice thickness need to be 

accurate to approximately 0.5 metres.
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1.4) Observations of sea ice thickness

1.4.1) Sea ice and the Arctic Ocean

tor

Chukchi
Sea

lautorl Sea

Greenland

Figure 1.6: The Arctic Ocean, [adapted from Woods Hole Oceanographic Institution, 

2004]

The sea ice has an areal coverage extending between 8xl06 (approximately the area of 

the United States) and 15xl06 km, depending on the time of year. Sea ice is divided into 

categories depending on its age. First Year (FY) ice is ice that has formed over one 

winter. It can reach thicknesses of 2m, depending on its local climate. Ice that survives 

the summer melt is known as Multi Year (MY) ice. MY ice continues to increase in 

thickness during the winter period in subsequent years until it reaches a steady state 

with a typical thickness of 3.5 to 4.5m. This final thickness may comprise of 10 or more 

annual layers as ice is ablated away each summer. However, ice thickness is not 

completely controlled by thermodynamics. The dynamic nature of the ice pack, due to 

the non-uniform forces exerted by winds and currents, leads to the build up of stresses 

within the ice. This can result in the formation of leads (open water) within the ice pack.
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Leads vary in width from a few meters to several kilometres and in length from a few 

hundred meters to several hundred kilometres. Ice that is thicker than the steady state 

MY ice floe expected maximum is also observed. Thicker ice forms by ridging (the 

closing of leads, which generally results in broken ice piling up and forming pressure 

ridges). Many small ridges form and occasionally sail and keel heights can reach up to 

13 and 47 m respectively. The area between the north coast of Greenland, the Canadian 

Arctic Islands and the south coast of the Beaufort Sea contains a particularly heavily 

deformed ice. [Weeks, 2001]

1.4.2) Arctic sea ice thickness observations

In this section we summarise the various in-situ and remote sensing techniques used for 

sea ice thickness monitoring.

There are five common techniques used for the measurement of sea ice thickness: 

Drilling, submarine sonar profiling, moored upward sonars, airborne laser profilometry 

and airborne electromagnetic techniques [Wadhams, 2000].

Drilling provided the first measurements of sea ice thickness in the Arctic. The 

technique lends itself as a good validation tool for measuring ice thickness in a specific 

area, but does not give the ice thickness distribution over a region. [Wadhams, 2000]. 

Measuring sea ice thickness via drilling may also create a bias as it is only possible to 

drill through ice floes with a certain physical structure [Strass, 1998]. Because of the 

harsh nature of the Arctic climate it is only practical to drill at certain times of year and 

in certain locations. Rothrock (1986) examines the error of commission on estimates of 

mean ice thickness derived from drilling. He concludes that the error of commission is 

negligible.

In 1958, Nautilus was the first submarine to venture to the North Pole [Wadhams,

2000]. Since then data, collected largely on nuclear submarine cruises for military 

operations, have been declassified, yielding data on sea-ice characteristics such as ice 

draught (from which ice thickness can be calculated), concentration data and pressure 

ridge characteristics. More recently the Scientific Ice Expeditions (SCICEX) 

programme has provided additional data allowing comparison between the present day
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ice cover and some of the historic cruises. Figure 1.7 shows the available submarine 

draught data over the Arctic Ocean from the National Snow and Ice Data Centre.

Figure 1.7: Map showing the locations of the submarine cruises available from the 

National Snow and Ice Data Centre [National Snow and Ice Data Centre, 1998].

Practical considerations prevent submarines surveying sea-ice over the Arctic 

continental shelves because the water is too shallow [Melling & Riedel, 1995], nor does 

this technique allow a systematic time series of ice draught at a point in space. Although 

there have been about 63 submarine cruises under sea ice by the U.S. Navy, many of the 

resulting data and locations of the tracks are classified [Rothrock et al., 2003]. The 

statistical reliability of data collected from submarine cruises is affected by two aspects, 

the first instrumental and the second results from sampling variability. The instrumental 

problem is caused by the fact that the first sonar echo received does not necessarily 

come from the point directly above the sonar beam, but from the point illuminated by 

the cone of the beam. This results in a positive bias in the record [Wadhams, 1997]. 

Correction is possible only if the beam is narrow in the athwartship direction and has 

significant beam width only in the fore-and-aft direction [Wadhams, 1981]. Sensor
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depth as well as beam orientation determine the bias so it is important to know that the 

submarine is kept at a constant depth throughout the survey, in some of the older cruises 

this is not always possible [Wadhams, 1997].The sampling problem arises when 

computing the mean ice draught over a finite region. The mean is calculated through 

measuring a finite number of points within the region, which will contain a finite 

number of leads, ridges and stretches of first and multi-year ice each with a finite spatial 

size. Re-sampling of the same area along a slightly different track will yield a slightly 

different value of the mean draught [Wadhams, 1997]. Estimates of the error on 

measurements of sea ice draught vary between cruises. For example Wadhams et al. 

(1985) estimate the error of commission to be ± 0.15 m. Bourke & McLaren (1992) give 

two estimates of the total error (commission plus omission), ± 0.06 m ± 0.15 m and 

Rothrock et al. (1999) estimate the total error on ice draught measurements, acquired 

between 1958 and 1997, to be ± 0.3 m  Bourke and Paquette (1989) show that ice 

thickness can be estimated from ice draught by multiplying the draught by a conversion 

constant equal to 1.1 and that the standard deviation of the predicted ice thickness is 

0.13 m. Assuming there is no error on their draught measurements (made by drilling), a 

typical ice draft of 2.8 m, and by propagation of errors, we estimate the conversion 

constant error to be ± 0.05 m. Therefore, by taking Wadhams et al. ’s (1985) estimate of 

the error on ice draught (0.15 m), and assuming a typical ice thickness of 3 m, and by 

propagation of errors, we estimate an error of ±0.21 m on ice thickness estimates 

derived from submarine sonar measurements of ice draught. However, most articles 

describing submarine data deal with ice draught without out applying a correction for 

thickness.

Moored Upward Looking Sonars (ULS) provide a time series of the thickness 

distribution at a fixed location in any water depth [Melling & Riedel, 1995]. ULS 

operate by transmitting pulses of sound towards the sea surface, measuring the two way 

travel time and converting this time to distance. The ice thickness calculated from the 

sonars is a point measurement with a relatively high temporal resolution, approximately 

every three hours in the polar regions. However, the sonars provide a limited spatial 

coverage. When calculating ice draught from ULS, variations in the sound speed and 

the density along the path of the pulse are estimated using an empirical model. 

Variations in surface air pressure can also affect the draught estimation. Therefore, time
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series of air pressure fields are used to correct the data. The echo can be generated by 

any interface between the ULS and the ice, which can also cause problems when 

calculating the ice draught. After processing, the residual total error in ice draught can 

be reduced to 4 cm, compared to an initial error of almost 90 cm [Strass, 1998]. Melling 

and Riedel (1995) give the accuracy of USL derived ice draft measurements as ± 5 cm. 

Using Melling and Riedel’s (1993) error estimate and Bourke and Paquette’s (1989) 

conversion from ice draught to ice thickness, and propagation of errors, we estimate an 

error of ± 0.15 m in ice thickness derived from moored ULS measurements of ice 

draught.

Airborne laser profilometry can provide a detailed picture of the spatial distribution of 

surface roughness and surface elevation. For the data to be useful the vertical motion of 

the aircraft must be removed which results in an error of about ±20cm [Comiso et al., 

1991]. Comiso et al. (1991) show a quantitative relationship between ice draught, from 

submarine measurements and ice elevation, from airborne laser measurements. This 

relationship offers the potential to deduce ice thickness from laser measurements alone.

Hvidegaard and Forsberg (2002), present a method to derive sea ice freeboard heights 

using a combination of airborne laser altimetry and a precise geoid model. To compute 

the freeboard they subtract the laser range and the geoid height from the height of the 

aircraft determined by GPS. They average the data from 50 Hz to 10 Hz to reduce 

measurement noise. The position of the measurement point is then calculated from 1 Hz 

GPS data by linear interpolation. They note that the elevation bias in their data is partly 

due to GPS errors (i.e. errors in locating the measurement points) along with possible 

laser offsets and misalignments as well as errors in the geoid and dynamic sea surface 

topography. The bias is removed by assuming that the errors have a relatively long 

wavelength and assuming that the sea surface corresponds to the lowest elevation 

values. Freeboard heights are then converted to ice thickness by multiplying by a 

constant freeboard to thickness ratio that is based on snow depth, ice density and the 

density of salt water. The estimated accuracy of this technique is ± 15 cm for the 

freeboard estimation and ± 1 m for the thickness estimation.
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Figure 1.8: Mean ice thickness for mid to late June 1998 [Hvidegaard and Forsberg, 

2002J.

The use of the term freeboard is somewhat misleading as it implies that the laser 

measures the elevation of the ice above the water, when it in-truth measures the 

elevation of the ice and snow layer above the water. Because the snow depth is variable 

the use of a constant conversion ratio introduces a large amount of uncertainty into the 

thickness estimation. The high thickness values to the north of Greenland shown in 

figure 1.8 are likely to be due to high snow depths rather than thick ice [Hvidegaard and 

Forsberg, 2002].

Airborne electromagnetic techniques were developed from technology used for mineral 

prospecting during the late 1960s. The methods involves towing a sensor platform, or 

bird, from which EM fields are transmitted and received, from a helicopter. The EM 

field transmitted from the bird induces a secondary EM field in the water beneath the 

ice, which is detected at the receiver allowing the distance between the bird and the 

water to be estimated [Rossiter & Holladay, 1994]. When combined with a laser 

profilometer to measure the depth of the snow/ice air interface, the technique can 

provide the absolute thickness of the ice plus snow in local surveys [Wadhams, 2000]. 

The footprint of the EM system has a diameter approximately equal to the bird’s height
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(15 to 30 m), therefore when rapid lateral changes in ice thickness occur (e.g. near 

ridges) the peak ice thickness tends to be underestimated [Rossiter & Holladay, 1994]. 

The nature of the apparatus used for this technique, and the low altitude required to 

achieve a suitably small footprint means that rapid coverage of large areas is unfeasible. 

The method works over ice greater than one meter thick and less than 12 meters thick, 

so is only suitable for surveying certain regions [Wadhams, 2000]. Kovacs and 

Holladay (1990) estimate that airborne electromagnetic techniques are capable of 

estimating ice thickness to within 10% of a drill hole measured value. Taking the error 

on the drill hole value of ice thickness to be zero and a typical ice thickness of 3 m, ice 

thickness measurements from airborne electromagnetic techniques are accurate to ± 0.3 

m. Man-portable electromagnetic induction sounding instruments are capable of 

estimating undeformed sea ice thickness to within about 5% of a drill hole measured 

thickness [Kovacs et al., 1996]. Eicken et al., (2000), estimate that their ice thickness 

measurements derived from man-portable EM induction techniques are accurate to ± 5 

cm for 2 m thick level ice.

Table 1.1 summarises the various techniques used for sea ice thickness observations and 

gives estimates of the errors associated with the measurement, where oc is the error of 

commission (i.e. the measurement error) and a t is the error in ice thickness which 

includes some errors in omission due to the uncertainty in the ratio between ice draft 

and ice thickness.

Technique Measures Advantages Disadvantages Error estimates

Drilling • Ice • Good • Does not • a c=Negligible

thickness validation provide

tool thickness • a t=Negligible

• Provides an distribution

absolute • Only drill

measure of through certain

thickness flows 

• Limited to 

certain months
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Submarine • Ice • Can provide • Data access is • a c=0.15

Profiling draught an ice limited [Wadhams et

draught • Cannot survey a/. (1985)]

profile over the

along large continental shelf • a t=0.21 m

transects • Instrumental

• Data is bias

available • Sampling

since the problems

1950s

ULS • Ice • High • Limited spatial • a c=0.05 m

draught temporal

resolution

coverage • (11=0.15 m

Airborne • Elevatio • Provides • Cannot measure • a c=0.15 m

Laser n of the 

ice and 

the snow 

above 

the water

rapid

coverage of 

large areas 

• Provides a 

detailed 

picture of 

ice + snow 

elevation

through cloud • a t=l m

Electromag • Distance • When • Cannot provide • a c=10% drill

netic between combined rapid coverage hole

Techniques the with laser of large areas • a t=0.3 m

sensor profiling • Only suitable

and the measures for surveying

bottom the ice + certain regions

of the ice snow

thickness

Table 1.1: Summary of the advantages and disadvantages of each method of measuring 

sea ice thickness.
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Although the techniques described above provide accurate estimates of sea ice 

thickness, an additional large omission error is introduced by under-sampling the 

temporal and spatial variability of ice thickness. Without detailed knowledge of the 

temporal and spatial covariance scales of sea ice thickness (which does not currently 

exist) it is impossible to estimate the error of omission of these measurements in 

providing an estimate of, for example, average sea ice thickness across the whole 

Arctic.

1.4.3) Knowledge of Arctic sea ice thickness and evidence for change

Basin wide maps of Arctic sea ice draught have been produced by submarine sonar 

profiling since the early 1970’s [Bourke & McLaren, 1992]. More recently Bourke and 

McLaren (1992) have updated the data set to include contour maps of the mean ice 

draught, its standard deviation, the mean keel draught and the spatial frequency of ice 

keels for summer and winter.

Figure 1.9: Contours of the mean ice draught (meters) for winter [Bourke & McLaren, 

1992]
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Data were taken from 12 submarine cruises, covering the Alaskan, Canadian and central 

Arctic regions, recorded between 1958 and 1987. Two estimates of the accuracy of the 

mean draught averaged over 50 km segments are given, the larger uncertainty is ± 15 

cm. Monthly measurements or the quantification of the spatial and temporal variability 

of the ice draught would improve the contour plots. [Bourke & McLaren, 1992]

Regional studies of ice thickness have been conducted using moored ULS. Vinje et al. 

(1998) report the findings from a time series of ULS data, between 1990 and 1996, 

moored in the Fram Strait at 75°N. The modal ice thickness has a maximum of 3.15 m 

(May) and a minimum of 2.43 m (September). Melling and Riedel (1995) report a mean 

ice thickness of the order of 3 m, across 348 km of sea ice in the Beaufort Sea.

The majority of evidence for change in sea ice thickness comes from submarine sonar 

data. McLaren (1989) compares two coincident submarine tracks from August 1958 and 

August 1970. The tracks run from the Canada Basin, via the North Pole, to the Eurasian 

Basin. The mean draught in 1958 in the Canada Basin is significantly higher than the 

mean draught recorded in 1970, with values of 3.08 m and 2.39 m respectively. No 

major changes in the mean draught were found in the transpolar or Eurasian sections of 

the track.

Wadhams (1990) compares tracks from two nearly coincident submarine tracks from 

May 1987 and October 1976. The tracks encompass a triangular region of 3000,000 

km2, between the north of Greenland and the North Pole. The mean draught in 1976 is 

5.34 m and is 4.55 m in 1987, a decrease in mean ice draught of 15% over the entire 

area. The decrease is concentrated between 30° and 50° west and south of 88° north. In 

the eastern Arctic there are no significant differences in ice thickness between the two 

years.

McLaren et al. (1992) analyse submarine measurements of sea ice draught around the 

North Pole from six cruises occurring in late April/early May, between 1997 and 1990. 

They find that the average ice draught between the late 1970s and the late 1980s 

decreased by 0.65 m, a thinning of 15%. However, statistical testing of the data set
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reveals that there is a 20% probability that the sub sample means will differ by chance 

by 0.65 m. They conclude that the data set does not provide evidence of a trend in the 

decrease of sea ice thickness.

Rothrock et al. (1999) compare submarine derived ice draught data between 1993 and 

1997, with similar data acquired between 1958 and 1976.
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Figure 1.10: Changes in the mean draught from 1958-1976 to the 1990s. The change at 

each track crossing is shown numerically. The crossings within each regional group are 

given the same shading, equivalent to their group mean. [Rothrock et al., 1999]

Rothrock and his colleagues compute that the mean draught has decreased by 1.3 m 

(40%) over the time period. If the decrease in mean draught is constant this is 

equivalent to a decrease of 15% per decade. Figure 1.10 shows a pattern of regional 

change with central and eastern areas of the Arctic displaying the greatest decrease in 

draught. It is important to note that the data used for this investigation were measured in 

two periods: the first phase between 1958 and 1976, with cruises in different months; 

USS Nautilus 1958 (August), USS Seadragon 1960 (August), USS Skate 1962 (July), 

USS Queenfish 1970 (August) and the HMS Sovereign 1976 (October). The second 

phase occurred between 1993 and 1997 and uses data from the SCICEX cruises which 

all occurred in September. The USS Nautilus 1958 and the HMS Sovereign 1976 used a
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widebeam sonar where as the other submarines used narrowbeam sonars4, this is 

corrected by multiplying the draughts by a factor of 0.84. Draught data from the earlier 

cruises are normalised to September using a model, to allow comparison between the 

data sets. Therefore the results are only as good as the assumptions inherent in the 

model.

Wadhams and Davis (2000) present results from two near coincident submarine tracks 

in the Eurasian Basin. The cruises took place in September-October 1976, and 

September 1996. A seasonal correction (the same as that used by Rothrock et al. (1999)) 

is used to standardise the data. Comparisons of the sea ice draught profiles from each 

year show a decline in sea ice draught of 41% over the 20 year period. Further 

comparison with Wadhams (1990) leads to the speculation that a substantial part of the 

thinning took place between 1976 and 1986.

Winsor (2001) compares ice draught data sets from six submarine cruises between 1991 

and 1997 (including the SCICEX cruises). His results show no trend towards thinning 

during the 1990s. The data sets are subjected to a seasonal correction as the SCICEX 

cruises took place in September 1993, 1996 and 1997 and the other cruises in April or 

May. A seasonal ice growth of 0.9 m is added to the SCICEX data, based on a coupled 

ice-ocean model.

4 Widebeam sonars cannot distinguish between peaks and troughs in the ice and 
therefore returns an echo that only records the draught at the peaks and hence could 
overestimate the mean ice draught. Narrowbeam sonars are able to pick out both peaks 
and troughs.
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Figure 1.11: Mean ice draught over the central Arctic Basin from the Beaufort Sea to 

the North Pole. The inserted figure shows the yearly mean draught based on all 

transects. [Winsor, 2001]

Tucker III et al. (2001) compare submarine ice draught measurements in a narrow band 

from offshore Alaska to the North Pole. Data from nine cruises between 1976 and 1994, 

occurring in April (with the exception of one that occurred in May), show that the ice in 

the western Arctic was significantly thicker in 1976, 1986 and 1987, than in the 1990s. 

A large fraction of ridged ice (> 3,5 m) is responsible for the large mean draughts in the 

1980s. In the 1990s the bulk of the distribution of ice draughts was between 0.3 and 3.5 

m, resulting in a lower mean. Data at the North Pole shows no similar trend.

A confused picture emerges from these studies. Table 1.2 summarises the finding of the 

papers described above. The authors only agree on one area, the Eurasian Basin.

*
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Authors Year Western

Arctic

Pole Eurasian

Basin

Eastern

Arctic

McLaren

(1989)

1958- 1978 Thinning 

(69 cm)

No Thinning N/A N/A

Wadhams

(1990)

1976- 1987 N/A N/A Thinning 

(78.8 cm)

No Thinning

McLaren et 

al. (1992)

Late 1970s 

to late 

1980s

N/A Thinning 

(65 cm) -  

but dismiss 

results

N/A N/A

Rothrock et 

al. (1999)

1958 - 1997 Thinning

(5 0 -1 0 0

cm)

Thinning

(100-150

cm)

Thinning

(100-150

cm)

Thinning

(150-200

cm)

Wadhams &

Davis

(2000)

1976- 1996 N/A N/A Thinning 

(208 cm)

N/A

Winsor

(2001)

1991 - 1997 No Thinning No Thinning N/A N/A

Tucker III et 

al. (2001)

1976 - 1994 Thinning 

(150 cm)

No Thinning N/A N/A

Table 1.2: Summary of findings from investigations into changes in sea ice draught.

The results reported above do not provide a consistent trend in sea ice thickness. 

Differences in the findings of these papers could be due to some of the corrections made 

to the data, such as seasonal corrections for ice growth and instrument corrections. 

However, differences are also due to the differences in spatial and temporal sampling of 

the data. Before applying any weight to these findings we need to address the question 

of how the different spatial and temporal samplings effect the results. In order to 

determine changes in sea ice thickness analysis by season and region, of a 

systematically collected, basin wide data set, must be performed [McLaren et al., 1990].
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1.4.4) Sea ice thickness measurement requirements for trend analysis

The evidence presented above highlights the need for basin wide, systematic 

measurements of sea ice thickness in order to differentiate between trends in sea ice 

thickness and trends due to differences in temporal and spatial sampling. In order to 

detect Rothrock et a l’s (1999) observed decrease in sea ice thickness of 15% per 

decade, a decrease of approximately four cm per year must be detected (taking the 

average sea ice thickness to be 2.7 m [Laxon et al, 2003]).

1.5) Sea ice thickness from satellite radar altimetry

1.5.1) Method

Recent developments in the monitoring of sea ice via satellite radar altimetry have been 

able to provide basin wide, systematically collected, measurements of sea ice thickness. 

Sea ice thickness is computed by measuring the elevation of the ice and the elevation of 

the water, then subtracting the first measurement from the second to provide an estimate 

of the ice freeboard (fi).

M
i i

d

Figure 1.12: The snow/sea ice system.^ is the ice freeboard, d the ice draught. hl} pt and 

hs> ps are the thickness’ and densities of the snow and ice respectively, p* is the density 

of the water. pt and p w are constants and have values of 915.1 kg m‘3 and 1023.9 kg m'3 

repectively [Laxon et al. 2003]. A monthly climatology from Warren et al. (1999) for 

snow depth and density is used.

i
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f  is converted to sea ice thickness, assuming hydrostatic equilibrium, using equation 

1. 1.

hi ^ f i — Bya--------+  . . hsPs ( l . i )

(,Pw-Pi) (Pw “ Pi)

The radar altimeter data sets used for this analysis were taken from ERS-1 and 2. ERS-1 

was launched in July 1991 and has a latitude coverage of ±81.5° and an altitude 

between 782 and 785 km, ERS-2 was launched in April 1995, into the same orbital 

plane, its location one day behind that of ERS-1. Both satellites carried a Ku band radar 

altimeter. Precise satellite radar altimetry measurements of sea ice freeboard and sea 

surface height are obtained by reprocessing the return echoes [Laxon, 1994] and 

applying corrections to orbits, tides and atmospheric effects [Cudlip & Milnes, 1994]. 

Differentiation between open ocean and sea ice is based to the fact that different echoes 

are received from each type of surface. Diffuse echoes occur over the open ocean 

caused by disturbance of the water by wind, or from the surface of consolidated ice 

(first or multi-year) whereas specular echoes occur over relatively smooth surfaces at, or 

a few cm above, sea level e.g. from leads or thin ice. Areas that contain quantities of 

both ice and water produce complex echoes, which are subsequently discarded. Diffuse 

echoes can also occur over the open ocean, even if there is no sea ice present. These can 

be distinguished from sea ice echoes by comparison with ice concentration data from 

passive microwave sensors. [Peacock & Laxon, 2004, Laxon et al., 2003]

It is assumed that the diffuse radar echoes originate from the snow/ice interface and that 

the specular echoes originate from the water. Therefore, by subtracting the elevation 

derived from the specular echoes from the elevation derived from the diffuse echoes, 

the quantity f  is measured. In order to perform the calculation, sea surface elevation 

measurements are averaged along each ground track over a four year period in order to 

compute the mean sea surface [Peacock & Laxon, 2004]. The mean sea surface is 

subtracted from the ice elevations and sea surface elevations, resulting in an ice level 

anomaly (ILA) and a sea level anomaly (SLA). The local SLA to the ILA is estimated 

by performing a linear least squares fit to all the SLA estimates within ±50  km of the 

ILA measurement. /  is given by equation 1.2:
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f i  -  h i  LA -  h sL A (1.2)

where hILA is the observed ILA and hSLA is the local SLA.

Figure 1.13 shows the average winter Arctic sea ice thickness from October 1993 to 

March 2001, derived from ERS radar altimetry.

mb— — — i
2.0 2.5 3.0 3.5 4.0 4.5 5.0

Ice Thickness (m)

Figure 1.13: Average winter (October to March) Arctic sea ice thickness from October 

1993 to March 2001. [Laxon et al., 2003]
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1.5.2) Accuracy

To first order, the variance in ice thickness (er2) is given by equation 1.3:

2 2 
£r ~ £fi

W

+£pw

(Pw Pi) / 

fi

+ £hs

fiPw

(Pw "Pi) 

h sp

+ £ps
h.

(Pw Pi) /

(Pw Pi) (Pw Pi) (Pw Pi)
fiPw + hsPs

. ( P h .  - P i ) 2 (P w - P i f /
(1.3)

where 8pl, 8pW, 8pS, 8hS and eg are the uncertainties in the density of sea ice, sea water and 

snow, and the uncertainties in the snow height and radar measured freeboard 

respectively. From Laxon et al, (2003), we take the uncertainties in the densities of sea 

ice and water to be ± 5 kg m' and ± 0.5 kg m' respectively. We take the root mean 

square (RMS) error in snow height for May5 from Warren et al, (1999) for our estimate 

in the uncertainty in snow depth (i.e. Shs = ± 0.11 m). Combining our estimate of 8hS 

with the RMS error in snow water equivalent for May from Warren et al, (1999), and 

by propagation of errors, we estimate that the uncertainty in the density of snow is ± 3 

kg m'3. Finally, we estimate the uncertainty in the measurement of ice freeboard eg = ± 

0.03 m, from equation 4.2 (chapter 4). The uncertainty is calculated assuming that 100 

echoes are included in the freeboard estimate (this is typical of a freeboard estimate 

from ERS [S. Laxon, personal communication]). Using the values given above and 

assuming that fi=0.2 m and hs=0.3 m (an ice thickness of 2.76 m), we estimate that the 

error (8r) in ice thickness, calculated using radar altimetry, is ± 0.45 m.

1.5.3) Uncertainties in the computation of sea ice thickness from radar altimetry

The snow load uncertainty

Monthly values of snow depth and density are taken from the climatology produced by 

Warren et al, (1999). Measurements were made from 31 drifting stations between 1954 

and 1991, and monthly mean values of snow depth and density are computed across the

5 The data discussed in this thesis were collected during May.
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Arctic ocean. The spatial and temporal variation of the snow depth and density is not 

well known. On an Arctic scale the departure of the snow loading from the climatology 

appear quite small, however its effect at shorter scales is potentially quite large 

[Wingham et al., chapter 4, 2001].

The density uncertainty

Uncertainty in the density of sea water and sea ice introduce an error into the ice 

thickness estimation. The variation in the density of sea water is relatively small and 

therefore has little effect on the thickness measurement. The density of sea ice varies 

according to season, and at the end of the melt season variability in sea ice density can 

introduce a variability of 40 cm into the ice thickness estimate. [Wingham et al., 

chapter 4, 2001]

The retrieval error

The ice surface is not smooth. How this affects the estimation of ice elevation depends 

on the scale of the roughness. If there are many corrugations within the radar footprint 

the echo will be sensitive to their average properties. However, if  there is a large scale 

structure within the footprint, such as a ridge, the effect on the echo will be complicated 

and result in a biased elevation estimate. [Wingham et al., chapter 4, 2001]

As stated in section 1.5.1, it is assumed that the diffuse radar echo originates from the 

snow/ice interface. This assumption is based on laboratory measurements by Beaven et 

al. (1995) and Lytle et al. (1993) and on the large scale comparison with submarine 

sonar measurements shown in figure 1.14. However there are no direct observations to 

confirm this assumption [Wingham et al., chapter 4, 2001]. If the radar return does not 

originate from the snow/ice interface then equation 1.1 is incorrect and ice thickness 

estimates will be too large.

Effect o f finite radar bandwidth '

The freeboard measurement is made by subtracting the elevation of the sea surface from 

the elevation of the ice surface. As described in section 1.5.1, the shape of the return
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from each of these surfaces is very different therefore the effect of the limited resolution 

of the system (finite radar bandwidth) on the echoes will be different. This will result in 

a bias in the elevation difference. [Wingham et al., chapter 4, 2001]

Propagation and tidal errors

The importance of propagation and tidal errors depends on how the calculation of f  is 

performed. Wingham et al. (2001) provide details of the different calculation methods 

and their associated errors.

The launch of Envisat in 2002, which carries an improved radar altimeter to those flown 

on board the ERS satellites and has been launched into the same orbital plane, will 

allow comparisons of data over the Arctic from the 1990s to the present. Therefore it is 

vital that the uncertainties in the computation of sea ice thickness are addressed in order 

to use these data sets to their full potential. CryoSat, due to be launched in 2005, carries 

an enhanced Ku band radar altimeter and will provide a latitudinal coverage of up to 

88°. Its objective, in terms of sea ice, is to measure the temporal trends in sea ice 

thickness and mass. The CryoSat Calibration and Validation Concept [Wingham, et al.

2001], describes the sources of error in the determination of sea ice thickness and the 

importance of resolving them in order to use the measurements from the CryoSat radar 

altimeter to estimate sea ice thickness.

1.6) Sea ice thickness from satellite laser altimetry

1.6.1) Method

The opertunity to measure sea ice thickness via satellite laser altimetry became 

available in 2003 with the launch of ICESat [see Zwally et al., 2002, for details of the 

mission]. As with satellite radar observations over arctic sea ice, ICESat offered the 

opportunity to provide basin wide, systematically collected, measurements of sea ice. At 

the time of writing, only the results of an initial look at deriving sea ice thickness from 

ICESat data have been published [see Kwok et al., 2004]. The method used by Kwok et 

al., (2004) is similar to sea ice thickness estimation from radar altimetry (section 1.5), 

with the exception that the laser altimeter ranges to the air/snow interface. To determine
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the elevation of the ice plus snow above the sea surface they first identified areas of 

open water or thin ice in leads. These areas correspond to local elevation minima and 

relatively flat areas along the ICESat ground track. RADARSAT imagery were used to 

estimate the age of the ice in the leads. From this, ice thickness in leads could be 

estimated. Finally the lead elevation was subtracted from the ice plus snow elevation to 

give a snow freeboard estimate. Snow depth was calculated from the climatology given 

by Warren et al., (1999). The density of ice and snow were assumed to be constant and 

taken to be 928 kg m'3 and 300 kg m'3 respectively (water density used in the 

calculation was not given). As the snow freeboard (fs) measured by ICESat is the 

elevation of the ice freeboard plus the snow layer, the equation for ice thickness 

becomes:

^ ^sPs fsPw  ~ ^sPw (14)
(Pw-P;)

Figure 1.14 from Kwok et al., (2004) shows two ice thickness profiles.

Figure 1.14: Figure 2 from Kwok et al., (2004). Showing two ICESat derived ice 

thickness profiles, (a, f) Geographic location of data, (b, g) ICESat track (dashed yellow 

line) and new leads in the RADARSAT images, (c, h) ICESat freeboard profile and 

estimated ice draught (snow: light blue; ice: dark blue), (d, i) reflectivity along the 

track, (e, j) the thickness distribution.
*
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1.6.2) Accuracy

Kwok et al, (2004) do not provide a comprehensive analysis of the accuracy of 

calculating sea ice thickness from ICESat. They estimate that calculating the thickness 

of ice in thin leads will introduce an uncertainty of 0 -  2.5 cm in the freeboard 

estimation for the data collected North of Ellesmere Island and of less than 1.5 cm in 

the East Siberian Sea. They also acknowledge that unknown snow depth is their largest 

source of error in their conversion of ice plus snow freeboard to ice thickness, and that 

it could introduce uncertainties in ice thickness of over a metre. From comparison of 

equation 1.1 and 1.4, we would expect that error in snow depth would result in a larger 

uncertainty in ice thickness when using laser altimetry as the snow depth term appears 

twice in equation 1.4 and only once in equation 1.1. Errors in the density values used 

are not estimated.

From equation 1.4 the variance in the ice thickness calculated from laser measurements

of snow freeboard (si ), to the first order, is given by equation 1.5:

el ~ efs

I

\ 2 ( 
2

+£pw

+£pi

, (Pw Pi ) / 

f s

+ £hs Pw

h.

(Pw Pi) (Pw Pi) / 

fsPw hsP

\ 2 I 
+ £%

h, X

+

(Pw Pi) / 

ŝPw
(Pw-Pi) (pw -  Pi) (P„~Pi) (Pw-Pi) (Pw-Pi y

f s P , hsP! hsPw

(Pw -Pi)2 (Pw -Pi)2 (Pw -Pi)2
(1.5)

where e& is the uncertainty in the laser measured snow freeboard. Using the error values 

given in section 1.5.2 (we assume the same values as for the radar case) and assuming 

that^=0.5 m and hs—0.3 m (an ice thickness of 2.76 m), we estimate that the error (si) in 

ice thickness calculated using laser altimetry is ± 0.78 m
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1.6.3) Uncertainties in the computation of sea ice thickness from laser altimetry

The snow load uncertainty and density uncertainty described in section 1.5.3 both apply 

to the computation of sea ice thickness from laser altimetry.

The retrieval error

As with returns from a satellite radar altimeter, the scale of the roughness with in the 

laser footprint will affect the elevation estimate. However, we expect that elevation 

estimates from IceSat will be less sensitive to this factor as IceSat’s footprint is smaller 

than that of ERS, EnviSat and CryoSat (for example, the diameter of the ERS pulse 

limited footprint is 1.7 Km where the diameter of an ICESat footprint is 60 m [Zwally 

et al, 2002]).

Sea surface estimation

Kwok et al. (2004), estimate the sea surface elevation by locating flat areas and local 

minima along the ground track and by looking at the reflectivity values over theses 

areas (they associate a low reflectivity value with thin ice or open water). Although this 

relationship between the reflectivity and the presence of open water is clear in some 

instances (see, for example, the left hand side of figure 1.14) the relationship is not clear 

in others (e.g. the plots on the right hand side of figure 1.14). There is no clear 

distinguishing characteristic between the IceSat returns over open water and ice [S. 

Farrell, personal communication], unlike the case for the radar, where diffuse echoes are 

apparent over ice and specular echoes over leads. Kwok et al., (2004), acknowledge 

that, although their method can be used on a local scale, it cannot be used on a basin 

wide scale without accurate (to the centi-metre level) estimates of the sea surface 

topography.
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1.7) Main aims of the work described in this thesis

It is clear that the combination of both radar and laser altimetry has the potential to 

reduce the uncertainties associated with the measurements of sea ice thickness from

both instruments. This thesis analyses data from the first experiment to collect

coincident radar and laser altimetry data, the LaRA 2002 field campaign. The aim of the 

work presented here is to evaluate whether the combination of laser and radar altimetry 

can tell us about the reflecting surface of the radar in the snow/ice system and whether 

we can use radar and laser altimetry to estimate snow depth. In addition, in the future it 

may prove possible to combine data from ICESat and CryoSat. However, since exact 

coincidence cannot be achieved by these satellites it may prove very difficult to 

distinguish sampling errors from those in the separate instruments. Coincident radar and 

laser data on an airborne platform can provide valuable insights into how laser and radar 

altimetry data may be combined.

1.8) Summary

• Modelling the climate system is the only way of predicting climate change. 

Changes to the parameterisation of ice (and clouds) cause the largest amount of 

variability in the climate sensitivity. Therefore, in order to obtain an accurate 

estimate of climate sensitivity, ice must be correctly parameterised. Sea ice

plays an important role in the climate system as it acts as a boundary between

the ocean and atmosphere, and can effect the thermohaline circulation. It also 

reacts relatively quickly to changes in forcing and could therefore be an early 

indicator of changes to the climate system, especially as future warming at the 

poles is predicted to be 40% greater than the global mean.

• Sea ice models are continually improving but lack basin wide, regularly 

acquired, data sets on sea ice thickness for validation.

• Current sea ice thickness observations are temporally and spatially limited, and 

provide contradicting views on recent changes in sea ice thickness.
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• Advances in the analysis of data from ERS1 & 2 have produced a method of 

monitoring sea ice thickness at regular intervals on a basin wide scale. However, 

some uncertainties exist and it is important that these are resolved in order for 

this data set, and future data sets, to be used with confidence.

• The equation for calculating sea ice thickness from satellite radar altimetry 

assumes that the radar return originates from the snow/ice interface. This 

fundamental assumption is based on limited laboratory evidence and large scale 

comparison. In order for the sea ice thickness data set to be usable this 

assumption must be investigated in greater depth.

• Combining satellite radar and laser altimetry has the potential to solve 

uncertainties associated with estimates of sea ice thickness from both 

instruments. For both the radar and the laser, the uncertainty in the snow load 

contributes an error to the estimate of sea ice thickness. If the radar indeed 

penetrates to the snow/ice surface then the elevation difference between the laser 

and the radar will give us an estimate of snow depth, provided that we can 

combine the measurements from two different sensors to the required degree of 

accuracy.

• The data presented in this thesis provides the first opportunity to quantitatively 

compare coincident airborne radar and laser data over sea ice.

• The experiment described in this thesis is an important pre-cursor to the airborne 

validation campaigns for the CryoSat satellite.
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2) The electromagnetic properties of sea ice and radar interaction with the

snow/ice system 

2.0) Introduction

In chapter 1 we described the uncertainties associated with calculating sea ice thickness 

from radar altimetry. A fundamental assumption in this calculation is that radar returns 

originate from the snow/ice interface. In this chapter we examine the electromagnetic 

(EM) properties of sea ice at radar frequencies to see if they can determine the radar 

interaction with the snow/ice system. In section 2.1 we describe what governs the EM 

properties. In section 2.2 we describe the radar equation and explain that the 

backscattering cross section (<JbS) is dependant on the specific target, and that ObS 

depends, in part, on the dielectric properties of that target. In section 2.3 we give a 

qualitative description of radar backscatter from snow covered sea ice. In section 2.4 we 

describe which dielectric properties are needed to calculate the radar interaction with a 

target. In sections 2.5 and 2.6 we look at the dielectric properties of sea ice and snow 

relating to section 2.4. In section 2.6, we then calculate the penetration depth into dry 

snow for a Ku band radar as a function of temperature. The Ku band is chosen as all 

radar altimeters discussed in this thesis operate at this frequency. In section 2.7 we 

discuss the use of theoretical models to describe radar backscatter from snow covered 

ice and the difficulty in validating them. In section 2.8 we discuss variations of o^s with 

angle of incidence. Finally, in section 2.9, we discuss the laboratory evidence for a Ku 

band radar return originating from the snow/ice interface.

2.1) Determinants of the EM properties of sea ice

Sea ice roughness, texture, chemical composition (including salinity and brine volume) 

and temperature gradient, combine to determine its EM signature. The winds, currents, 

air and water temperatures and snow fall, among other variables, influence these 

properties. The properties of sea ice listed above tend to be inhomogeneous, even over 

short length scales (tens of meters horizontally and tens of centimetres vertically). 

Therefore, EM data, collected by remote instruments, tend to rely on empirical
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relationships between an EM property (i.e. emissivity) and a geophysical property of the 

ice (i.e. ice type and concentration). [Jezek et al., 1998]

2.2) The radar equation

The starting point for our discussion on the sea ice properties that affect the power 

returned to an active microwave remote sensing instrument, is the radar equation. The 

radar equation gives the relationship between the received signal and the characteristics 

of the radar and the target. [Ulaby et al., 1982]

where Pr is the power received by the radar, Pt is the power transmitted by the radar, G 

is the antenna gain, A is the wave length, is the backscattering cross section, R is the 

range to the target and L is a loss factor, including losses due to atmospheric 

attenuation.

The backscattering cross section varies for different targets and is a function of the 

directions of the incident wave and the wave towards the receiver as well as the 

scatterer shape and its dielectric properties [Ulaby et al., 1982]. ObS is usually 

represented by equation 2.2:

footprint.

2.3) Qualitative description of backscatter from sea ice

In section 2.2 we stated that the backscattering cross section is a function of the 

direction of the incident wave. For radar altimetry the angle of incidence of the wave at 

the target is 0°, so ideally in this section we would describe backscatter from sea ice at 

0° incidence. However, very little research has been performed at this incidence angle

PtG2X2a bs
r r (2 .1)

(2 .2)

where o° is the normalised scattering coefficient of the terrain and A a is the area of the
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so we give a general description of backscatter from sea ice. Figure 2.1 is a schematic 

representation of the ice types discussed in this section.
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Figure 2.1: Schematic representation of some principal ice types. [Zwally et al., 1983, in 

Ulaby et al., 1986]

It is convenient to divide sea ice into three ice types (new ice, first year ice and multi 

year ice) in order to describe its backscatter characteristics.

2.3.1) Winter

New ice

New ice has a typical thickness of 0.01 to 10 cm, it is highly saline and has many brine 

pockets. The ice is usually quite smooth1 to microwavelengths after it is a few

1 For a surface to be smooth to electromagnetic radiation it must forfil the Rayleigh criteria 0  < ^
8 c o s0

where o s is the standard deviation of surface roughness, X, is the wavelength and 0 is the angle of 
incidence. [Schanda, 1986]
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centimetres thick (it may or may not be smooth when it first forms). [Ulaby et al.,

1986]. The smoothness of the ice and the angle of incidence of the radiation will 

determine cr°. Figure 2.2 shows how an incident wave is reflected from surfaces with 

different roughness.

b c
T T T T ^

Figure 2.2: Radiation scattered at a) a perfect plane, b) a slightly rough surface and c) a 

very rough surface. 0o is the incident angle and 0S is the angle of the reflected radiation. 

[Schanda, 1986]

In a) the incident wave is reflected from the perfectly smooth surface at an angle equal, 

but in a different direction, to the incident angle (specular reflection) [Schanda, 1986]. 

Therefore, o° would be large when the incident angle was equal to 0° and would 

decrease for increasing incident angles. In b) and c) we see the surface become rougher 

and the incident radiation more and more diffusely scattered (i.e. power is scattered in 

all directions) [Schanda, 1986]. Therefore o° becomes less for an incident angle of 0° 

and greater for larger incident angles.

First year ice (FY)

FY ice has a typical thickness of 10 to 200 cm. As the thickness increases, o° tends to 

increase as well. The high salinity of the ice means that the penetration into the ice is 

small and the return originates from the surface. [Ulaby et al., 1986]

Multi year ice (MY)

The structure of MY ice is different to F Y ice in that it has a lower salinity and contains 

many air pockets in its upper layer. This results in signal penetration into the upper
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layer and volume scattering. The effect is enhanced at higher frequencies and is greater 

than the effect of surface scattering. cr° is higher than for FY ice. [Ulaby et al., 1986]

Snow

The snow cover present on FY and MY ice contributes to some volume scattering, but 

the affect is minimal while the snow is dry, and the low attenuation of the snow does 

not effect the signal received from the ice surface. [Ulaby et al., 1986]

2.3.2) Melt season and summer

As the layer of snow begins to melt, o° increases slightly over FY ice due to 

backscattering from the snow. However the main effect of the melting snow is to 

roughen the surface of the FY ice by the introduction of superimposed ice. At this point 

o° decreases slightly over MY ice due to attenuation from the snow. [Ulaby et al., 1986]

By mid summer the snow has disappeared on the FY ice, exposing the roughened 

surface. The surface of the MY ice, at this time, is wet enough for significant 

penetration into the volume scattering region. Therefore, o° is greater for FY ice than 

for MY ice at this point. [Ulaby et al., 1986]

As melting continues, the superimposed ice on the FY ice melts and cr° decreases. On 

MY ice the melt water runs off exposing most of the ice surface, this results in an 

increase in o° over MY ice. [Ulaby et al. 1986]

In summer the wet snow can mask the return from the ice and contribute a return of its 

own. [Ulaby et al., 1986]

2.4) Equations describing radar interaction with sea ice

The backscattering cross section of a media depends on the way in which the radiation 

interacts with a media when it meets that media. It is a function of directions of the 

incident wave and the reflected wave towards the receiver as well as the scatterer shape
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and its dielectric properties [Ulaby et al., 1982]. In section 2.4.1, we describe 

qualitatively how a radar wave interacts at a boundary between two medium. In section 

2.4.2 we describe the dielectric properties that must be known to predict what happens 

to the energy of a radar wave when it meets a certain media.

2.4.1) Radar scattering

When a radar wave meets a boundary between two media, a portion of the incident 

energy is scattered back, while the rest is transmitted forward into the lower medium. If 

the lower medium is homogenous then only surface scattering is important. However, if 

the lower medium is inhomogeneous, or its constituents have different dielectric 

properties, then both surface and volume scattering must be considered. During volume 

scattering energy from the transmitted wave is redistributed in other directions, resulting 

in a loss of energy. Figure 2.3 illustrates this concept.

incomming
radiation

surface
scattering

volum e
scattering

Figure 2.3: Schematic representation of surface and volume scattering.

Energy can also be lost via absorption i.e. the energy is transformed into other types of 

energy such as heat. The total loss is referred to as extinction and is measured by the 

extinction coefficient, which is the extinction per unit length. The region within the 

medium important for volume scattering is calculated by the penetration depth, which is 

the inverse of the extinction coefficient. [Ulaby et al., 1982]

Therefore to understand where in a medium a return originates from, we must examine 

the penetration depth in that medium.

/
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The discussion in section 2.4.2 is based on Hallikainen & Winebrenner (1992).

2.4.2) Penetration depth

The penetration depth is defined as the depth 6P at which the echo power has dropped to 

\je of the power just beneath the surface:

W p )  l
 —  = -  (2.3)
P(0+) e

where P(0+) is the power just beneath the surface and P(6p) is the transmitted power at 

6P. The penetration depth can be calculated provided certain dielectric properties of the 

media are known. These properties are the complex dielectric constant and the 

extinction, absorption and scattering coefficients.

Complex dielectric constant

The complex dielectric constant (e) is given by equation 2.4:

£ = £ '- is "  (2.4)

The real part, s' (permittivity) gives a measure of how easily the energy of an 

electromagnetic wave passes across a dielectric interface. The imaginary part s" 

(dielectric loss factor), gives the electromagnetic loss of the material. If the contrast in 

s' between two media is large then large surface scattering occurs. If the contrast is 

small then energy is transmitted across the interface and can be scattered and absorbed 

in the lower media.

The amount of electromagnetic energy lost when an electromagnetic wave passes 

through a medium, is commonly represented by the loss tangent (tan 6):
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£ "
tan 5 = —  (2.5)

s'

Extinction, absorption and scattering coefficients

The total electromagnetic loss in a scattering medium is the sum of the absorption loss 

(K a)  and scattering loss ( k s). Scattering loss is caused by particles of different s 

embedded in a host medium. The extinction coefficient (total loss) is:

Ke = K a + Ks (2.6)

If scattering in the medium is ignored, K e= K a and if additionally, K a does not depend on 

depth then the penetration depth is given by:

<5 = —  = —  £ " « £ '  (2.7)
p k 0e"

where ko is the wave number and is equal to 2jt/A, where k  is the wavelength. The 

penetration depth indicates the maximum depth of the medium that contributes to the 

backscattering coefficient.

2.5) The dielectric properties of sea ice

Sea ice is a mixture of pure ice and brine. Therefore its complex dielectric constant 

(equation 2.4) of sea ice (eSi), and the penetration depth into sea ice, depend on the 

following parameters:

1) The complex dielectric constant of pure ice (ef);

2) The complex dielectric constant of the brine pockets (eb);

3 )  The fraction of brine volume ( v b ) ;

4) The shape and orientation of the brine pockets relative to the direction of the 

electric field of the wave.
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Because of its dependence on parameters 1 to 3, sSi is a function of temperature, salinity 

and frequency. In sections 2.5.1 to 2.5.4 we describe £., sb, vb and the effect of the 

shape and orientation of the brine pockets.

2.5.1) Pure ice

Ulaby et al., (1986) give £. a constant value of 3.15, based on experimental results. 

However, Hallikainen and Winebrenner (1992) give a value of 3.17 and Table 2.1, 

taken from Ulaby et al.(1986), shows a range of measured values of e'  taken at 

different frequencies and temperatures. Since the variation in s is small between 9 and 

24 GHz, we follow Ulaby et al., (1986) and take s '  to be a constant (3.15).

Frequency (GHz) Temperature Range 

(°C)

£t Reference

0.15 to 2.5 -1 to -60 2.90 to 2.95 Westphal (in Evans, 

1965)

9.375 0 to -18 3.15 Cumming (1952)

10 -12 3.17 Von Hippel (1954)

10 0 to -35 3.14 Vant et al. (1974)

10 -1 to -49 3.17 Lamb (1946)

24 0 to -185 3.18 Lamb and Turney 

(1949)

26.4 to 40.0 0 to -35 2.92 Vant et al. (1974)

94.5 -28 3.08 Perry and Straiton 

(1973)

1000 -173 3.20 Bertie et al. (1969)

Table 2.1: Measured values of the real part of the dielectric constant of pure- or fresh

water ice [Ulaby et al., 1986]

Whilst £. is very stable between 9 to 24 GHz and can be taken to be independent of 

frequency and temperature, £■' shows strong variations with both parameters. Table 2.2 

shows a range or measured values of e ”.
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Frequency

(GHz)

Temperature

(°C)

tan 6i Reference

2.7 -5 0.0012 ± 

0.00002 glacier 

ice

Westphal (inK ohl996)

2.4 -5 0.0004 ± 0.0002 

bubble free ice

Matzler & Wegmuller 

(1988)

1.8 -2.5 0.003 Koh (1996)

9.375 -12 0.0025 (from 

Sj=3.15)*2

7.8xl0'4 Cumming (1952)

9.375 0 to -18 0.0082 to 

0.0022 0025 

(from £,=3.15 as 

above)

=26x10'4 to 

7X10"4 (non- 

linear

relationship)

Cumming (1952)

Table 2.2: Measured values of the imaginary part of the dielectric constant. No 

measurements were available for the Ku band but from the findings above we would 

expect to be dependent on both frequency and temperature for Ku band frequencies.

■v•  L

u>
i
*5
I
Su.

■C

•  LT

■ L ■ LT

C: Cumming (1952)
L: Lamb (1946)

LT: Lamb and Turney (1949)
P: Parry and Straiton (1973) 
V: Vant a t a l . (1974)
W: Wastphal (In Evans, 1965)

•  -1QC Data
■ -20°C Data
Solid Linas ora Empirical Fits

Figure 2.4: Variation of s "  with frequency. [Ulaby, et al., 1986]

2 indicates that the value displayed was not given in the literature referred to, but has been calculated 
using equation 2.5. ^
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Experimental evidence (with temperature held constant) suggests that eV decreases 

with increasing frequency then changes slope at around 1 GHz and increases with 

increasing frequency (figure 2.4). The data (shown in figure 2.4) exhibits a large 

amount of variability, which is partly attributed to the difficulty in accurately measuring 

eV. [Ulaby, etal., 1982, 1986].

2.5.2) Brine

Brine is a mixture of salt and water. In sea ice, its salinity depends on its temperature. 

This is because brine exists in pockets within the ice, and a fall in ice temperature 

causes more water to freeze thereby increasing the brine salt concentration. The brine 

salinity is calculated by empirical expressions relating the salinity to temperature [see 

Ulaby et al., 1986]. These relationships mean that Sb is a function of frequency and 

temperature only.

Numerical expressions are developed by Ulaby et al. (1986) to estimate 8b from 

equations used to calculate the dielectric constant of saline water from Stogryn (1971). 

Figure 2.5 shows the real and imaginary parts of the complex dielectric constant 

calculated using these expressions. Comparison of figure 2.5 with figure 2.4 shows that 

the complex dielectric constant of brine is high compared to that of pure ice.

T -  -5*C 
S* - 8 5 . 6  */..

Frequency (GHz)

Figure 2.5: The real and imaginary parts of the complex dielectric constant for brine as 

a function of frequency. [Ulaby et al., 1986].
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2.5.3) Brine volume fraction

The brine volume fraction (vb) is given by:

(2.8)
s b Pb

where Si and Sb are the salinities of the sea ice and the brine, and pi and pb are the 

densities of pure ice and brine, respectively. Ulaby et al. (1986) formulate empirical 

expressions relating Vb to Si and temperature, with a high (0.99) correlation coefficient 

between the experimental data and their expressions.

2.5.4) The shape and orientation of the brine pockets

Because of brine’s high complex dielectric constant compared to that of ice (section

2.5.2), the shape and orientation of the brine pockets is very important when modelling, 

and measuring, EM radiation’s interaction with sea ice [Vant et al., 1978]. Perovich and 

Gow (1996) analyse thin sections of various sea ice types and measure their brine 

volumes and brine pocket shapes and sizes. Brine pocket volume ranges from KP4 to a 

few mm3 and they are shaped as elongated ellipsoids. Perovich and Gow (1996) also 

highlight the great degree of variability in ice properties between spatially coincident 

first year and multi year ice. First year ice contains brine pockets whereas multiyear 

hummocked ice contains air pockets as the brine has drained from the ice [Tucker et al.,

1987]. The orientation of the brine pockets is not described by Perovich and Gow 

(1996). However, Vant et al., (1974) describe the orientation as the elongated sides of 

the ellipsoid as being parallel to the growth direction of the ice in first year ice. 

Although the brine pockets tend to be orientated vertically they can be tilted away from 

the vertical [Golden et al., 1998], differences in orientation of the brine pockets will 

affect the dielectric constant. Hallikainen (1992) describes evidence for esi", for 

horizontally orientated brine pockets, increasing by 300% compared to esi" for 

vertically orientated brine pockets, in the 26-40 GHz range.
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2.5.5) Penetration depth into sea ice

Sections 2.5.1 to 2.5.3 show that it is possible to estimate 8j, 8b and Ub, if the 

temperature and the salinity of the ice, and the frequency of the radiation, are known. 

These parameters can then be used to estimate eSi if the shape and orientation of the 

brine pockets are known [see Ulaby et al., 1986]. However, ice properties vary on short 

spatial scales (see sections 2.1 and 2.5.4). Therefore to gain a basic understanding of the 

complex dielectric constant of sea ice ( s Si), it is simpler to used measured values of esi' 

and esi" over different types of ice rather than predict 8Si from ej, 8b and Ub and the shape 

and orientation of the brine pockets.

Over the frequency range 1 -  40 GHz most measured values of the real part of the 

dielectric constant on sea ice fall between 2.5 ^ ssi'< 8 [Ulaby et al., 1986]. Figure 2.6 

shows the variation of eJ  with temperature at a constant frequency of 10 GHz (the 

authors do not expect a different result at different frequencies), and illustrates that esi' 

is dependant on temperature and salinity [Vant et al., 1974].
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Figure 2.6: Temperature variation of the permittivity of sea ice at 10 GHz [Vant et al., 

1974, in Ulaby et al., 1986]
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5 Multi-year 0.61 0.771
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Figure 2.7 shows the variation of esi" with temperature at a constant frequency of 10 

GHz. The value of ssi" depends on ice type and brine volume. The fact that frazil ice 

has a higher ssi" could be due to the orientation of its brine pockets with respect to the 

electric field. [Vant et al., 1974]

f « 10 GHz

0.7

0.3

0.2

0.0
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f •  10 GHzF * 10 GHz
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(a) Frazil Ic«

10 20 30 40 50 *0
Tamparolura (-°C)

(b) Calviianar lea
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Temperature (-°C)

(e) Multi "year lee

Figure 2.7: Temperature variation of the loss factor for three types of sea ice at 10 GHz. 

Salinities and densities of the ice samples are given in the inset in figure 2.6. [Vant et 

al., 1974, in Ulaby et al., 1986]

Unlike esi\  esi" varies with frequency (Vant et al., (1974) only show results at 10 GHz). 

Figure 2.8 shows esi" as a function of frequency. esi" decreases with increasing 

frequency then changes slope at about 5 GHz where esi” begins to increase with 

increasing frequency (£." changes slope at 1 GHz, see figure 2.4). From this figure we 

would expect e  " to be very slightly higher at Ku band frequencies than at 10 GHz.
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Figure 2.8: ss ” as a function of frequency. [Hoekstra & Cappillino, 1971, in Ulaby et 

al., (1986).
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Ulaby et al. (1986) calculate the penetration depth in pure ice and FY and MY sea ice, 

based on the findings in sections 2.5.1 and 2.5.5. Their results are shown in figure 2.9.

P u r e  Ice

E
-oJc
8-oc
o

C

Fir st-year 
fe Sea Iceg

F re q u e n c y  1GHz)

Figure 2.9: Penetration depth into sea ice with variations frequency [Ulaby et al., 1986]. 

The super-imposed red lines point to values at a frequency of 13.8 GHz (Ku band).

£' £"
Pure ice 3.15 (section 2.5.1) Taken from figure 2.4, by 

interpolating between the -1° and -  

20° C curves, to find the value at - 

10°C

FY ice (lower boundary) 3.3 (figure 2.7) 0.25 (figure 2.7 b, chosen to give a 

high loss example)

FY ice (upper boundary) 3.0 (figure 2.7) 0.07 (figure 2.7 b & c)

MY ice 3.0 (figure 2.7) 0.03 (figure 2.7 c)

Table 2 . 3 : Sources of values used to create figure 2 . 9 .  s Sj is assumed to be frequency 

independent.
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Examining the temperature sensitivity of the real and imaginary loss factors reveals that 

the penetration depth increases with increasing negative temperature. Using figure 2.9 

as a reference, the penetration depth at 0°C would be two to three times smaller. [Ulaby 

et al., 1986]

Measurement of simulated sea ice (made from frozen sea water) and/or frozen sodium 

chloride (NaCl) solution to deduce £si' and £si", as a function of temperature for a range 

of frequency bands, have produced mixed results. Hallikainen and Winebrenner (1992) 

summarise a number of experiments, and give the penetration depth (in sea ice) in the 1- 

to 10 GHz range as between 5 and 100 cm for first year ice and 30 to 500 cm for 

multiyear ice. Sensors operating at X-band (8 to 12 GHz) provide information on sea 

ice mainly from the top most 5 to 80 cm, depending on ice type, salinity, and 

temperature. The corresponding numbers for L-band (1 to 2 GHz) sensors are 40 to 500 

cm.

2.6) The dielectric properties of snow

As shown in figure 2.1, a layer of snow sometimes covers FY and MY ice. Therefore, in 

order to understand where a microwave return originates from in the snow/ice system, 

the dielectric properties of the snow layer must also be considered. In section 2.6.1 we 

describe the composition of snow and give values of the complex dielectric constant for 

snow and discuss it’s variation with snow density, temperature and frequency. In 

section 2.6.2 we investigate the radar penetration depth into dry snow, using the 

information we have presented in previous sections. Section 2.6.3 discusses the 

dielectric properties of wet snow.

2.6.1) Dry snow

Dry snow is a mixture of ice crystals and air voids, therefore its complex dielectric 

constant (equation 2.4) is controlled by:

1) The complex dielectric constant of pure ice (S j);

2) The snow density (ps);
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A constant value for s '  was given in section 2.5.1, and was shown to be independent of 

temperature and frequency. Therefore, the real part of equation 2.4, for dry snow (eds'), 

is only a function of density. [Hallikainen & Winebrenner, 1992]

The following equations provide good agreement with experimental data:

£d '= 1.0 + 1.9p s for ps < 0.5 g cm'3 (2.9)

£ds'= 0.51 + 2.88p5 for ps > 0.5 g cm'3 (2.10)

where ps is the snow density. Because the real parts of the dielectric constants of air and

ice are independent of temperature and frequency in the microwave region, the above

equations are expected to be valid throughout the microwave region [Ulaby et al., 

1986]. Figure 2.10 shows eds' calculated from the two equations compared with 

measured values of eds\  as a function of density.

■ + 3 - 1 8  GHz (University of Kansas) 
-  a 800 MHz - 13 GHz (Nyfors, 1982)
. « 800 MHz (Hallikainen, 1978)
_ * 9 .375 GHz (Cumming, 1952)3 .0

2.6
e i , -  0.51 + 2.88 ps , p, »  0.5 g cm’3

>s

*5
1  Z 2O)a .2oc
<=> 1 ft

Eds' 1 + 1.9P,, P,<0.5g cm-3

0.4  0.6
Dry Snow Density (g cirr3)

0.20.0

Figure 2.10: Measured eds' and its variation with snow density. [Ulaby et al., 1986]

Several formulas exist to relate eds" to and the ice volume fraction. Their predictions 

for sds" (plotted as eds"Ie"),  along with measured values, from Cumming (1952), are 

shown in figure 2.11.
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Figure 2.11: Comparisons of model predictions (equations a to c) of Vs. "with 

measured data. [Ulaby et al., 1986].

Figure 2.11 shows that although different models can give reasonable predictions of 

£ds" I £"  there is not a unique solution.

As £ds' is independent of temperature and frequency examining the loss tangent 

(equation 2.5) will tell us if £ds" is dependent on temperature and frequency as well as 

density (figure 2.11). Figure 2.12 a) shows that the loss tangent for dry snow is 

dependent on temperature. Cumming (1952) (figure 2.12 b) also shows similar results. 

Therefore sds" must be dependent on temperature.
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Figure 2.12: a) Measurements of the loss tangent of dry snow as a function of 

temperature. [Nyfors, 1982 in Ulaby et al.. 1986]. b) Measurements of the loss tangent 

of dry snow as a function of temperature at a frequency of 9.375 GHz. [Cumming, 1952 

in Ulaby et al., 1986]

Figure 2.13 shows the loss tangent for dry snow is dependent on frequency. Therefore 

£ds" must be dependent on frequency.
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Figure 2.13: The loss tangent of dry snow as a function of frequency with temperature 

as a parameter. ps is 0.45 g cm'3. [Nyfors, 1982 in Ulaby et al., 1986]
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2.6.2) Investigation into the penetration depth for dry snow

Using the data described in section 2.6.1, we calculate the penetration depth into dry 

snow, for a 13.83 GHz radar, in three steps:

Step 1: Penetration depth at 9.375 GHz

We used data inferred from Cumming (1952), figure 2.10 b), to obtain values of the loss 

tangent for dry snow at different densities; equations 2.9, 2.10 to find values for sds'; 

equation 2.5 to find values for eds"; and equation 2.7 to calculate the penetration depth. 

Figure 2.14 shows how the penetration depth at 9.375 GHz changes with temperature, 

for different densities of snow.
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Figure 2.14: Penetration depth into dry snow at 9.375 GHz with respect to temperature 

and snow density.

Figure 2.14 shows that snow depths would have to be greater than 1 m (for high density 

snow) for a 9.375 GHz wave not to reach the ice surface.

3 The frequency o f the radar altimeters onboard ERS1/2
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Step 2: Variation o f the loss tangent with frequency

Figure 2.12 a) shows that the loss tangent of dry snow varies with frequency and 

temperature. Figure 2.12 a) shows this variation for frequencies of 5.62 GHz and 12.6 

GHz. This plot was used to estimate the loss tangent for 13.8 GHz by assuming a linear 

relationship between frequencies. Figure 2.15 shows the loss tangent for dry snow at 

9.62 and 12.6 GHz from Nyfors (1982) in Ulaby et al. (1986), and the calculated loss 

tangent for 13.8 GHz.
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Figure 2.15: Measurements of the loss tangent of dry snow, at 9.62 and 12.6 GHz, as a

function of temperature, at constant density of 0.4 g cm' . Calculated value of the loss

tangent of dry snow at 13.8 GHz, as a function of temperature.

Step 3: The penetration depth fo r 13.8 GHz

Figure 2.16 shows the calculated penetration depth for 13.8 GHz in dry snow, for 

similar snow densities, as a function of temperature. The blue line shows the penetration 

depth calculated from the corrected loss tangent (figure 2.15), the red line shows the 

penetration depth calculated using the assumption the loss tangent does not vary at 

different frequencies. The data from 2.12(b), where the frequency is 9.375 GHz, is used

frequency
 5 .62 GHz
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to calculate this line. The blue line only extends to -5° C, as the values for the corrected 

loss tangent in figure 2.15 only extend to around -5° C. The red line extends to zero as 

the data in 2.12 b) extends to zero. As in step 1: equations 2.9, 2.10 are used to find 

values for eds'; equation 2.5 to find values for £ds"; and equation 2.7 to calculate the 

penetration depth. As figures 2.12 a) & b) and 2.13 all show the loss tangent increasing 

with increasing temperature for frequencies ranging from 0.1 GHz to 14 GHz we would 

expect that the penetration depth for 13.8 GHz would continue to decrease as the 

temperature increased (as shown by the dashed line in figure 2.16).
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Figure 2.16: Calculated penetration depth for 13.8 GHz in dry snow, for similar snow

densities, as a function of temperature. The dashed line shows the expected penetration

depth as the temperature approaches zero degrees. Note that these theoretical results do

not account for the presence of liquid water that may occur when the temperature

fluctuates above 0°C i.e. diurnal temperature variations.

The evidence presented here implies that a radar altimeter with a frequency of 13.8 GHz 

should penetrate through any reasonable snow depth4 when the temperature is below 0 

°C.

4 Monthly average snow depths on Arctic sea ice-have a maximum of 34 cm [Warren et al., 1999].
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2.6.3) Wet snow

The presence of liquid water within the snow layer strongly affects its dielectric 

properties as water has a high dielectric constant compared to ice and air. The amount 

o f water in the snow is either expressed as the volume fraction of liquid water in the 

snow (mv), or as a percentage of liquid water by weight (wM). The complex dielectric 

constant (equation 2.4), for wet snow, is controlled by:

1) The complex dielectric constant of ice;

2) The dielectric properties of water;

3) The liquid water volume fraction;

4) The shape o f the ice particles and water inclusions.

Hallikainen et al. (1986) compare dielectric measurements of wet snow made at 

frequencies between 3 and 18 GHz, with 6 dielectric models. Their Debye-like semi- 

empirical model best describes the behaviour of wet snow as a function of the dry snow 

density and m „ and the radar frequency. The model contains a number of constants, 

which are determined by fitting the model to the measured data. Figure 2.17 shows 

measured and modelled values of the real and imaginary parts o f the dielectric constant 

for wet snow as a function o f water content for 6 GHz frequency.

However, to be able to use the Debye-like model [Hallikainen et al., 1986] to predict the 

dielectric properties o f wet snow at 13.8 GHz over a large area (and hence the scattering 

characteristics), the liquid water content of the snow would have to be know across the 

area, and whether or not the empirically derived constants held across a large area 

would have to be determined. Stiles & Ulaby (1980) examine microwave response to 

snow wetness and conclude that because mv and the temperature of the snow are not 

uniform with depth, it is not possible to formulate a direct relationship between a 0 or 8, 

and mv.

8 1



D eb y e -L ik e  Model 
M easu red  D ata

1.6
-  Debye-Like Model 
• Measured Data

f  = 6 GHz 
n = 107

0 2 <4 6 8 10 12
L i q u i d  W ate r  C o n t e n t ,  my (5 )

( a )  I n c r e m e n ta l  P e r m i t t i v i t y

0 2 4 6 8 10 12
L iquid  Water Content  my (X)

(b) Loss Foctor

Figure 2.17: a) The real part o f the dielectric constant o f snow as a function of liquid 

water content, b) The imaginary part of the dielectric constant of snow as a function of 

liquid water content. [Hallikainen et al., 1986]

Hallikainen’s (1992) review of the dielectric properties o f sea ice and snow states that 

complex dielectric constant (equation 2.4) for wet snow is dominated by its liquid water 

content [also see Evans, 1965 & Cumming, 1952], and that even with a small 

volumetric water content (2%) the evidence indicates that radar measurements of the 

snow ice system will only provide information on the snow layer on top of the ice.

2.7) Modelling radar backscatter from snow covered sea ice

Sections 2.5 and 2.6 describe the physical properties o f the ice and snow that affect the 

radar interaction with the snow/ice system and consider their values at different radar 

frequencies. These parameters control how far the radiation penetrates into the snow/ice 

system and depend on a large number of snow and ice conditions (e.g. ice type, salinity
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Temperature, brine volume and brine pocket orientation, snow wetness) and on the 

frequency of the radar. The application of theoretical models to describe the backscatter 

characteristics is difficult, as it requires detailed data on the statistical properties of the 

ice and snow conditions [Drinkwater & Crocker, 1988]. The properties of sea ice tend 

to be inhomogeneous over short distances (section 2.1), and vary in time, which makes 

in-situ observations expensive and time consuming. Therefore it is not possible to 

validate the existing models for every snow and ice regime, at different radar 

frequencies. However, as shown by figures 2.10, 2.11 and 2.17, it is possible to test 

models while changing only one of the influencing parameters, and to compare the 

results to observations. These types o f tests provide valuable insights into the dielectric 

properties of snow covered sea ice.

2.8) Variations in the backscatter coefficient with angle of incidence

Before we look at measurements of radar backscatter from snow covered ice surfaces, at 

Ku band frequencies, we examine the effect o f the angle of incidence of the radiation 

with the ice surface.

A number o f studies (see Ulaby et al. 1986) have been conducted to investigate the 

variation of o° with angle o f incidence. Two examples of measurements from Ku band 

radar, over sea ice, are described below.

Gray et al. (1982) show the change in o° with angle of incidence in both summer and 

winter conditions. As the angle of incidence increases, a 0 decreases in both seasons. In 

the case of MY ice the value of o° during the summer is lower than during the winter.
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Figure 2.18: Comparison of Ku band backscatter coefficients between winter and 

summer conditions, at varying angles of incidence. [Gray et al., 1982]

Parashar et al. (1974) show the change a  for angles of incidence from 0° to 60° over 

different water and ice surfaces in April 1970. As with the data from Gray et al. (1982), 

o° decreases as the angle of incidence increases. Parashar et al. (1974) also show that 

rate of decrease with angle of incidence is greater at angles closer to nadir.
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Figure 2.19: Comparison of Ku band backscatter coefficients for different ice 

categories, at varying angles of incidence. [Parashar et al., 19741
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2.9) Measurements of radar backscatter from snow covered ice sheets, at Ku 

frequencies, at normal incidence

The evidence presented above shows that the backscattered power from snow covered 

sea ice is dependent on a number of different parameters including frequency and angle 

o f incidence. The satellite radar altimeters on board ERS1/2, Envisat and CryoSat all 

operate in the Ku band, and measurements from these satellites are taken at normal 

incidence. In order to understand the backscatter characteristics of the radiation received 

by these instruments, specific experiments and models over snow covered sea ice at Ku 

band frequencies, at normal incidence and in appropriate conditions (i.e. over different 

ice types, temperatures, salinities for the case of the sea ice and different snow densities 

and water volume for the snow), must be analysed. Logistically this is very difficult 

[Carsey et al., 1992] and very few studies incorporating even a few of the above criteria 

have been made.

Lytle et al. (1993) use laboratory grown, snow covered, thin (0 to 9 cm) urea ice5, to 

study radar backscatter data at 13.9 GHz, collected at normal incidence to 55°. They 

found that the dominant scattering mechanism was from surface scattering at the 

snow/ice interface. Beaven et al. (1995) use laboratory grown, snow covered, thin (0.5 

to 12 cm) saline ice, to study radar backscatter data at 13.4 GHz, collected at normal 

incidence to 55°. By placing a metal plate on top of the snow and measuring the radar 

return from this plate they provide a ‘range marker’ to the snow surface. The metal plate 

was then removed and the return from the snow covered saline ice sheet recorded. Their 

result is shown in figure 2.20. The peak of the return from the snow covered ice appears 

20 cm further in range, corresponding to the snow/ice interface.

5 Urea ice has a similar structure to sea ice but does not corrode the equipment like salt water does.
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Figure 2.20: Comparison of Ku band radar returns at 0° incidence angle from a 21 cm 

snow pile over laying 12 cm of saline ice and a metal plate on top of the snow pile. This 

demonstrates that the return from the snow-covered saline ice is dominated by 

scattering from the snow/ice interface. [Beaven et al., 1995]

2.10) Summary

• The electromagnetic properties of sea ice depend on the electromagnetic 

properties of ice and brine, the volume of brine and the shape and orientation of 

the brine inclusions. Changes in frequency, angle of incidence, temperature, 

salinity and ice type (i.e. FY or MY), can all alter the electromagnetic properties 

of sea ice.

• The electromagnetic properties of snow depend on the electromagnetic 

properties of ice and water, the snow density, the ice particle shape and the 

water volume. Changes in frequency and temperature can alter the 

electromagnetic properties of snow.

• We have shown that radiation from a radar altimeter with a frequency of 13.8 

GHz should penetrate through any reasonable dry snow depth, provided that the 

temperature is constantly below 0°C.
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• Laboratory evidence suggests that the dominant scattering mechanism in snow 

covered sea ice is surface scattering from the snow/ice interface. However, these 

experiments were performed on a small section of saline ice or urea ice. The 

evidence presented above indicates that electromagnetic properties of snow 

covered sea ice change with a large number of parameters, which were not 

varied in the experiments by Lytle et al. (1993) and Beaven et al. (1995).

• Models of the radar interaction with the snow/sea ice system do exist. However, 

they are difficult to validate without detailed data on the statistical properties of 

the ice and snow conditions. In-situ observations to collect such a data set would 

be expensive and time consuming. Therefore other methods to investigate the 

radar interaction with the snow/ice system must be considered.

• The alternative to collecting vast amount of in situ data on the ice and snow 

conditions, and using it to validate models, is to conduct an airborne field 

campaign. Taking simultaneous measurements from radar and laser altimeters 

over snow covered sea ice will allow us to gain further insight into the scattering 

problem.
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3) Principles of radar and laser altimetry and the Laser Radar Altimetry 

(LaRA) field campaign 

3.0) Introduction

In this chapter we describe the principles of radar and laser altimetry, give examples of 

their uses, and advantages and disadvantages (sections 3.1 and 3.2). In section 3.3 we 

introduce the Laser Radar Altimetry (LaRA) field campaign, which involved 

simultaneous measurements, over sea-ice, from airborne laser and radar altimeters. 

Section 3.3.1 describes the LaRA payload. Sections 3.3.2 to 3.3.6 give detailed 

descriptions of each of the instruments carried during LaRA. Section 3.3.7 describes the 

layout of the instruments on board the aircraft and section 3.3.8 describes their footprint 

geometry. Sections 3.3.9 to 3.3.11 describe the flights that took place as part of LaRA. 

Section 3.3.12 describes the georeferencing of the measurements. Sections 3.3.14 to 

3.3.17 describe the data processing performed outside of UCL and the data format for 

each of the instruments. We end the chapter with sections (3.4. and 3.5) describing the 

Applied Physics Laboratory (APL), at John Hopkins University, calibration of the radar 

data and their initial comparison of radar data and laser data.

3.1) Radar altimetry principles

3.1.1) Elevation measurement

Radar altimeters measure the two way travel time of a radar pulse to the surface below. 

The height of the altimeter above the surface is given by:

where h is the height, tr is the round trip travel time and c is the speed of light. The 

accuracy of the height estimation is determined by the altimeters range resolution which 

is given by equation 3.2:

A/i = —  = —  (3.2)
2 2A F
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where x is the compressed pulse length, and AF is the instrument bandwidth. The signal 

to noise ratio of the measurement is improved by averaging the data. [Raney, 1999, 

Mantripp, 1996]

There are two modes of operation for a radar altimeter. Pulse limited or beam limited.

beam  limit

c i  < 2cv (min) 
\R < cv (min)

c i  < 2cv (min) 
VR >3(7s (max

\R

i------------------------►]
b eam -lim ited  footprint pulse-lim ited footprint

Figure 3.1: Beam limited and pulse limited altimeter operating modes, c is the speed of 

light, x is the compressed pulse length, h is the height of the altimeter above the surface, 

a s is the surface roughness and AR is the curvature of the beam, [redrawn from 

Mantripp, 1996]

Although beam limited altimeters are conceptually simpler, pulse limited altimeters are 

used for spaceborne earth observation due to the following. To meet the constraints 

shown in figure 3.1, a beam limited satellite altimeter, at the same altitude as ERS, 

would need an antenna of diameter greater or equal to 9.7 m, and would also require a 

pointing accuracy of less than or equal to 0.016°, resulting in a very large and expensive 

instrument. Pulse limited altimeters are therefore used in spaceborne missions, as they 

require a much smaller antenna (1.2 m for ERS) and less severe pointing requirements.
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3.1.2) Pulse limited geometry

Area

Time

Figure 3.2: Pulse limited geometry, [redrawn from Mantripp, 1996]

Figure 3.2 shows the geometry for a pulse limited operation. The pulse of energy moves 

away from the antenna as an expanding spherical shell whose thickness is the pulse 

length. As the pulse intersects the surface, the disk illuminated increases with time 

(figure 3.2: a). This continues until the rear of the pulse intersects the surface at which 

point the illuminated area is equal to the pulse limited footprint (PLF) (figure 3.2: b). 

The pulse now expands as an annulus with area equal to the pulse limited footprint 

(figure 3.2: c). The size of the PLF increases with surface roughness.

3.1.3) Pulse transmission and reception

As shown by equation 3.2, the range resolution is dependant on the pulse length. 

Therefore it is desirable to have as short a duration pulse as possible. However, a radar 

altimeter must be able to receive a signal over the receiver noise. This requires a large 

initial signal power. In order to achieve the short pulse, high power requirements, pulse
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compression techniques are used. This allows a long-duration low power, but high 

energy, pulse to be transmitted that, after compression, behaves like a short duration, 

high power pulse with the same energy [Mantripp, 1996]. The frequency of the 

transmitted pulse is increased at a constant rate over the uncompressed pulse length (V). 

The frequency change over the pulse is AF (the bandwidth) and the centre frequency is 

Ft). This process is known as a linear chirp or ramp. When the signal arrives back at the 

radar it is passed through an amplifier and mixed with a locally generated signal. The 

end result is an intermediate frequency (IF) signal whose frequency is equal to the 

difference between the received and locally generated signal. A deramping chirp, 

identical to the transmitted chirp, except that its centre frequency differs from the 

transmitted chirp by the IF frequency ( / i f ) ,  is generated at a time lag that corresponds to 

the time (tj) when the transmitted signal is expected to be received from the surface. 

[Chelton et al., 1989]. Figure 3.3 illustrates this concept.
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Transmitted
chirp

Returned
chirp
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+ Deramping
chirp

/ /
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a

Time

Figure 3.3: Schematic representation of a chirp transmitted by a radar altimeter at time 

zero. The chirp frequency, centred on F0, decreases linearly by AF over the 

uncompressed pulse length x'. A deramping chirp is generated by the altimeter at time 

td, which is the expected arrival time of the returned pulse from the surface. The 

deramping chirp is identical to the transmitted chirp except that its frequency is lower 

by an amount fiF. [redrawn from Chelton et al., 1989]
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If td is timed exactly to m atch the two-way travel time to the surface then the frequency 

of the deramped signal will be equal to fif. However, if the deramping chirp is generated 

at a time Atd earlier (later) than  the time the signal is returned (ti), then the frequency of 

the deramped signal will be higher (lower) than f IF by an amount:

Af'=QcAtd (3.3)

where Qc = AF/t ' and Atd = t\ -  td [Chelton et al., 1989]. Figure 3.4 illustrates this 

concept.
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Figure 3.4: Top plot: Schematic representation of a chirp returned from a surface at time 

tj. Ideally the deramping chirp would also start at ti but it starts at td. Bottom plot: 

Shows the desired IF signal i.e. the signal that would have been produced if the 

deramping chirp had begun at tj. The actual IF signal is shown by the solid line. It lies 

above the IF frequency by A f . [redrawn from Chelton et al., 1989]
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In this section we have imagined a single signal returned from a point on the surface. In 

reality the radar receives many signals from scatterers on the surface. The total returned 

signal is the sum of the returned chirps from all the scattering elements on the surface. 

We now describe the total signal (waveform) received from a surface, using the open 

ocean as an example.

3.1.4) Waveform convolution

When a signal is returned from a surface, its resulting shape (Pt(t)) is a convolution of 

the functions describing the radars point target response (Sr(t)) and the average surface 

impulse response (Pi(t)):

Pi(t) is given by the convolution of the height probability density function of the specula 

points on the surface (q (z)) with a term (P fs (0 ) dependant on the antenna gain, a 0, 

which varies with angle, and the range from the radar to the surface.

Figure 3.5 shows the form of these three functions over the open ocean and the result of 

their convolution. S r(t) and q(z) are assumed to have Gaussian forms, PfsO) rises to a 

maximum power when a pulse of infinitesimal width would reach the surface, and the 

trailing edge has an exponential decay to account for the antenna response pattern.

Pr(t) = Sr(t)®P,(t) (3.4)

Pi(t) -  q(z) ® Pfs(t)
[Brown, 1977]

(3.5)

A A

q(z) Pr(t)

t t t t

Figure 3.5: A typical return echo over the open ocean.
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As figure 3.5 illustrates, it is the half-power point, which gives the range to the mean 

sea level. In fact, this is true for any surface with a Gaussian height distribution.

3.1.5) Waveform averaging

Individual echoes exhibit large power fluctuations. A return from a rough surface 

consists of returns from many small specular facets, each return will have a slightly 

different phase depending on its range from the altimeter. Waveforms are therefore 

averaged to reduce the fluctuations. However, each waveform must be a statistically 

independent sample. The maximum pulse repetition frequency (prf), to ensure statistical 

independence, depends on the surface roughness and the orbital velocity.

each average must be sufficient to reduce fluctuations enough to provide a good 

estimate of height and backscatter, but not so many that the along track spatial 

resolution is degraded beyond an acceptable limit.

3.1.6) Waveform sampling

From equation 3.3 there is an equivalence between two-way travel time (and therefore 

range) and frequency. To use this relationship to determine the range, the returned 

waveform must be spectrally analysed. The waveform is sampled in the time domain 

and undergoes a Fourier transform to covert it to the frequency domain. The effective 

two-way travel time resolution is equal to 1/AF . [Chelton et al., 1989]

3.1.7) Advantages and disadvantages of pulse limited radar altimetry

Radar altimeters have been used for earth observation as the pulse attenuation at 

microwave frequencies, due to the atmosphere, is small. They also have an all weather 

capability. However, there are two main disadvantages of pulse limited operation:

max (3.6)

where Vs is the orbital velocity, and X is the wavelength. The number of echoes used for
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Firstly, the PLF diameter is less than the full antenna pattern. This means that a large 

proportion of the radiated power falls outside of the PLF, and cannot be used for height 

estimation; Secondly, over rough or sloping terrain, performance is degraded. For 

example, over rough terrain the footprint is enlarged, leading to a less optimal estimate 

of surface height. [Raney, 1998]. Over an undulating surface, the footprint tends to hop 

from one elevated region to another, rather than follow the true profile of the surface, 

resulting in a bias in the elevation estimate. The effect of a sloping surface is illustrated 

in figure 3.6.

Figure 3.6: The effect of a sloping surface to a pulse limited altimeter. The 

measurement area moves from nadir, [redrawn from Jensen, 1999]

The sloping surface moves the measurement area away from nadir because the 

measurement area always is centred around the point on the surface nearest to the 

altimeter. For example: a satellite with an altitude of 800 km and a surface slope of 0.1 °, 

the distance to the nearest point on the surface is 1.2 m less than the distance to the 

nadir point. [Jensen, 1999] This is not a problem over sea ice or the ocean as their 

surfaces are relatively flat, but it is an issue over land ice.

3.1.8) Pulse limited radar altimetry missions

The first ocean monitoring radar altimeter was flown on board NAS As Sky lab in 1973. 

Skylab had a resolution of 15 m and could identify coarse features of the marine geoid 

such as major ocean trenches. Skylab was followed by GEOS-3 in 1976, which had 

improved performance and greater global coverage than Skylab, but could only resolve 

the largest oceanographic features. [ESA, 2005]. Seasat, launched in 1978, was the first 

dedicated oceanographic satellite. Seasat was launched into a near circular polar orbit
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with measurements extending to ±72° latitude. However, only 99 days of data were 

collected during the mission as it failed due to a short circuit in the satellite electrical 

system. Nevertheless, during the short time Seasat was operational it provided 

decimetre-accurate range measurements over the ocean [JPL, 1998]. GEOSAT, 

launched in 1985, also measured up to ±72° latitude and provided information on the 

motion of large-scale ocean currents, such as the Gulf Stream. However, it could not 

resolve smaller surface height variations such as those caused by El Nino. [Vazquez, 

2002]. ERS-1, launched in 1991, and its followon mission ERS-2, launched in 1995, 

have provided estimates of surface wave height and wind speed with an accuracy of a 

few centimetres, providing information on small scale changes in sea level during 

events such as El Nino [ESA, 2003]. The ERS altimeters were the first high latitude 

spaceborne altimeters, with measurements extending up to ±81.5° latitude. 

TOPEX/Poseidon, launched in 1992, was the first altimetric satellite dedicated to 

mapping ocean topography. It provided maps of sea level changes as small as 2 cm 

[Vazquez, 2002], Envisat, launched in 2002, into the same orbit as the ERS satellites, 

carries an improved radar altimeter (RA-2) to those on board the ERS satellites. 

CryoSat, due to be launched in 2005, will carry an enhanced radar altimeter with 

synthetic aperture processing in the along track direction and two antennas to measure 

the surface slope, which will further improve measurement precision. The satellite will 

have the furthest latitudinal extent of any of the altimeters discussed here, with 

measurements between ±88° latitude The satellite is designed to measure variations in 

thickness of the continental ice sheets and sea ice cover [Wingham, 1999].

3.2) Laser altimetry principles

3.2.1) Elevation measurement

Laser altimeters operate on the same principle as radar altimeters. They transmit a laser 

pulse to a surface, and measure the two way travel time, and then convert the time to a 

distance. The travel time is measured when the return pulse triggers a threshold detector 

based on intensity. The accuracy with which the travel time can be determined depends 

on the signal to noise ratio, which depends on: the reflectivity of the surface; the range;
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the transmitted power; the amount of incident sunlight, the weather and atmospheric 

attenuation. [Rees, 2001]

Laser
Radar

B e a m  L im i te d  
F o o tp r in ts

P u ls e  L im ite d  
F o o tp r in t

Figure 3.7: Comparison of laser and radar altimetry [Bufton, 1989]

Figure 3.7 compares the footprints from laser and radar altimeters. The laser footprint 

on the target surface is small compared to the radar footprint. For example, the diameter 

of the ERS PLF is 1.7 km where the diameter of an ICESat footprint is 60 m [Zwally et 

al., 2002]. The small footprint is due to the sub-milliradian diffraction of the optical 

beam from the antenna [Bufton, 1989]. In laser altimetry the pulse- and beam-limited 

footprints are identical as the beam width is of the order of milliradians. A typical radar 

altimeter has a beamwidth of degrees, for example the ERS 3dB beam width is 1.3° 

.[Bufton, 1989]

Horizontal resolution depends on two factors: the footprint size and the spacing between 

them. Beam divergence and the altitude of the altimeter determine the footprint size; 

pulse repetition rate and altimeter velocity determine the spacing between footprints. 

[Bufton, 1989]

3.2.2) Advantages and disadvantages of laser altimetry

Laser altimeters overcome the problems of radar altimeters described in section 3.1.7. 

As the laser footprint is small in comparison with a pulse limited radar footprint it 

provides a high accuracy measurement over sloping surfaces [Ishizu, 2002], and all of 

the radiated power falls within the laser footprint [Raney, 1999]. However, atmospheric 

scattering and the effect of clouds in the path of the laser pulse, result in a potentially
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large error source for the precision of the altitude measurement. Using altimetry 

measurements made only under cloud free or optically thin cloud conditions reduces the 

altitude bias [Mahesh et ah, 2002], but result in areas with no surface measurements.

3.2.3) Laser altimetry missions

Spaceborne laser altimetry has been used for mapping planetary surfaces over the past 

10 years. Clementine, launched in 1994, provided a large scale topographic map of the 

moon, with a vertical resolution of 40 m and a horizontal resolution of 100 m 

[Williams, 2002]. In 1996, the NEAR mission's laser altimeter provided a topographic 

map of the asteroid 433 Eros, with meter-level accuracy [Luthcke et al., 2002]. Also in 

1996, NASA launched the Mars Global Surveyor, which carried the Mars Orbiter Laser 

Altimeter 2 (MOLA-2). MOLA-2 provided geoid, topographic, surface roughness and 

surface change maps of Mars, and observed clouds, snow and geographical features 

such as volcanoes. The accuracy of the height data was limited to 5 m. [Ishizu, 2002 & 

Luthcke et al., 2002]

Earth observation using laser altimeters has been limited. In the 1980s and early 1990s 

only low resolution instruments were flown on Earth orbiting platforms [Luthcke et al., 

2002]. In 1996 and 1997, the Laser Altimeters 1 and 2 (SLA-01, SLA-02) were carried 

onboard the Space Shuttles launched by NASA. These laser altimeters measured land 

and ocean elevation, cloud-top height and vegetation. [Ishizu, 2002]. With the launch of 

the Ice, Cloud and Land Elevation Satellite (ICESat) mission in January 2003, Earth 

observing laser altimetry has entered a new phase. ICESat has the potential to produce a 

time series of elevation changes of the ice sheets, measure cloud heights and the vertical 

structure of clouds and aerosols, land topography, vegetation canopy heights and 

various sea ice parameters. The predicted accuracy of the surface elevation 

measurements is 15 cm. [Zwally et al., 2002, Kwok et al., 2004]

3.2.4) Summary of radar and laser altimetry

In general, laser and radar altimeters overcome the disadvantages associated with the 

other instrument. While laser measurements may only be made in cloud free conditions, 

radar has an all weather capability. Where, the radar accuracy degrades over sloping
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surfaces the laser can provide a high accuracy measurement due to its smaller footprint. 

The smaller footprint of the laser has a second advantage in that, over sea ice, the 

radar’s large footprint results in a higher percentage of mixed water and ice returns 

within the footprint while the laser’s smaller footprint can provide a better resolution 

between water and ice.

Clearly the potential of combining measurements from laser and radar altimeters is 

desirable. In chapter 1, sections 1.5 and 1.6, we described the uncertainties associated 

with the estimate of sea ice thickness from both radar and laser altimeters. To recap: 

Firstly, the equation for calculating sea ice thickness from radar altimetry is based on 

the assumption that the radar return originates from the snow/ice interface, but the 

degree to which this assumption holds is not well known. Secondly, the uncertainty in 

the snow load contributes an error to the estimate of sea ice thickness from both radar 

and laser altimetry. In laser derived estimates of sea ice thickness the snow load is the 

largest uncertainty. Many studies using laser altimetry over sea ice are based on the 

assumption that the laser reflects from the air/snow interface over snow covered ice (see 

chapter 4, section 4.3). Therefore analysing coincident radar and laser measurements 

will allow us to investigate the relative penetration characteristics of the radar, and the 

potential of estimating snow depth from combined radar and laser altimetry data over 

snow covered sea ice.

The LaRA field campaign offered the unique opportunity to investigate coincident (in 

space and time) data from a laser and a radar altimeter.

3.3) Laser Radar Altimetry (LaRA) field campaign

LaRA took place in May 2002 and was funded by ESA, NASA and NOAA. It was an 

add on to two NASA missions; Arctic Ice Mapping (AIM) 2002 and ICESat Cal/Val. 

We begin with a description of the LaRA payload.
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3.3.1) LaRA payload

Figure 3.8: The LaRA team and the P-3 on the runway at Svalbard, May 2002.

Flights took place onboard the NASA P-3 aircraft, which carried: the John Hopkins 

University, Applied Physics Laboratory (JHU/APL) Delay/Doppler Phase-monopulse 

(D2P) Radar Altimeter; two NASA laser altimeters, the Airborne Topographic Mappers 

(ATM2 and ATM3, ATM 2 operated in profiling mode while ATM3 operated in 

scanning mode); two digital cameras mounted on the fuselage, taking images of the ice 

below. The P-3 was also equipped with a Global Positioning System (GPS) receiver and 

an Internal Navigation System (INS). Sections 3.3.2 to 3.3.6 describe the payload in 

detail.

3.3.2) The Delay/Doppler Radar Altimeter

The Delay/Doppler Radar Altimeter (D2P) was designed and built at the Johns Hopkins 

University Applied Physics Laboratory (JHU/APL). The D2P resolves some of the 

problems that occur with conventional pulse limited altimetry (section 3.1.7). The entire 

beam limited footprint in the along track direction is used to obtain height estimations 

as opposed to just using the PLF and the use of a synthetic aperture in the along track 

direction reduces the width of the post processing along track footprint. This minimises 

the terrain dependency of the footprint size and position. Figure 3.9 illustrates the 

difference between pulse limited radar altimetry and the D2P radar altimeter. [Raney, 

1998]
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Figure 3.9: Comparison of a conventional pulse limited radar altimeters (a) 

illumination geometry side view and (b) footprint plan view and a D2P (c) illumination 

geometry side view and (d) footprint plan view. [Raney, 1998]

The second advantage of the D2P over conventional pulse limited radar altimetry is that 

it has two antennas which both record the phase of the return. The difference in the 

phase between to two antennas at the re-track point indicates the angle to the point of 

first reflection from the scattering surface. [Jensen, 1999]

1 0 1



path length difference 
= D sin(ao)

electrical p h a se  difference 
=  2 k  D sin(tx ĵ)y/A.
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Figure 3.10: Angle measurement for the D2P. Without an angle measurement, the range 

is taken to be the distance to the nadir point. However, with two receiving antennas, the 

phase difference can determine the horizontal and vertical position of the measurement 

point. [Jensen, 1999]

The radar altimeter on board CryoSat also employs synthetic aperture processing in the 

along track direction and has two antennas to measure surface slope. The along track 

synthetic processing generates a footprint size of -  300 m by 1 km (as compared with -  

10 km of the pulse limited systems and 60 m of the laser systems) [Wingham2 et al., 

2004].

We now describe the synthetic aperture processing in detail:

The D2P transmits a burst of 16 coherent pulses that form a synthetic aperture in the 

along track direction. The received signals from each burst are stored and an along track 

Fourier transform is applied to these data. The result of the Fourier transform is that the 

along track location of each scatterer is known relative to the D2P nadir. The method 

relies of Fourier shift theorem, which states that a translation in position in the spatial 

domain introduces a linear phase shift in the frequency domain [Steward, 1987].
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Expanding the discussion in Raney (1998), let the along track signal history for each 

scatterer be a(x) . Let xo be the D2P nadir and xn be the along track position of the nth 

scatterer. Fourier transform theory gives us the Fourier transform pair:

/ W  = rznu)e^du 
F(« ) -  n f W e - ^ d x (3.7)

[Steward, 1987]

Let / (x) = a(x — xn + x 0 )and u become/(frequency in the along track direction) and 

therefore F(u)=A(f). By substituting into equation 3.7:

The exponential term carries the phase change (Doppler frequency) corresponding to 

the shift in position. Once the Fourier transform has been applied to all received signals 

in a burst, the result is a set of measurements whose along track position, relative to the 

D2P nadir (zero Doppler), is known in terms of a phase change. The Doppler frequency 

is equivalent to the (along track) angular offset from the nadir position. As the angular 

offset of a scatterer is known, the extra range delay for a scatterer away from nadir can 

be calculated. The result is that the range delay for scatterer away from nadir is the same 

as the range delay as if  the scatterer were at nadir. Hence the height of scatterer (h„) 
away from nadir is computed. Figure 3.11 illustrates this concept

F [ a { x - x n + x 0 ) ] =  f * 2 a ( x ~ x n + x 0)e ,2l4xdx

= r z ^ e - ^ ^ d x  

= e ~i2jrf(xn -XQ) (3.8)
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Figure 3.11: The extra delay (Sr(f)) at a scatterer, due to the curvature of the transmitted 

pulse can be calculated as it is a known function of Doppler frequency (/). hn is the 

height at nadir of the nth scatterer. [Redrawn from Raney, 1998].

As subsequent bursts overlap, each scatterer is multilooked a number of times 

(depending on the aircraft velocity and the pulse repetition rate). The looks are summed 

to produce the return waveform, reducing the signal to noise ratio.

As a consequence of the processing described above, the D2P’s flat surface response 

has a different shape to that o f a conventional pulse limited altimeter. Recall figure 3.2, 

a conventional pulse limited flat surface response is a step function because return from 

scatterers outside the pulse limited footprint arrive at the receiver later in time than 

those within the pulse limited footprint, therefore they contribute to the trailing edge of 

the return rather than to the leading edge where the range measurement is made. In 

contrast, the D2P flat surface response is an impulse like return, as shown in figure 

3.12.
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Figure 3.12: Flat surface impulse response for the D2P [Raney, 1998]

As described above, returns from scatterers away from nadir can be corrected for the 

extra delay time taken by the pulse (due to its curvature) to reach the scatterer. 

Therefore scatterers away from nadir contribute to the leading edge of the return rather 

than the trailing edge and can be use in the range measurement.

In sections 3.1.3 to 3.1.6 we described the operation of a conventional pulse limited 

altimeter. We now use these sections as a basis to describe how the D2P operates. 

Information on the D2P can also be found in Raney and Jensen, (2001) and Raney, 

(2002).

Pulse transmission

The D2P transmits a linearly frequency modulated pulse. The chirp generator has a 

fixed start frequency of 197.5 MHz and stop frequency of 152.5 MHz. The ramp rate 

depends on the pulse length. The output of the chirp generator is a 175 ± 22.5 MHz 

signal. This signal is doubled to a 350 ± 45 MHz for use by the frequency generator 

where it is mixed with a 3125 MHz waveform to produce a 3475 ± 45 MHz waveform. 

The transmitter then multiplies the waveform by four to the final Ku-band frequency of 

13900 ±180 MHz (i.e. F0= 13.9 GHz and A F= 360 MHz).
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Pulse sampling

The received signal is always sampled at 166.67 MHz (or 6 nseconds). As an example: 

for the longest pulse length (3.072 pseconds) the signal is sampled 512 times (512 x 

1/166.67 MHz = 3.072 ps).

Pulse reception

The receivers deramp the received pulse in three stages.

1) The received signals are mixed with a chirped waveform that is identical to 

the transmitted chirp other than having a centre frequency 750 MHz lower

than the transmitted chirp (i.e. f if = 750 MHz). The chirp rate is changed for

each pulse length to obtain the 360 MHz bandwidth.

2) An 1000 MHz signal is used to convert the 750 MHz signals to a 250 MHz

signal

3) A 291.667 MHz signal is used to convert the 250 MHz signal to a 41.667

MHz signal.

This down conversion is modelled after the TOPEX frequency plan [Carl Leuschen, 

personal communication].

D2P specific operations

In every coherent burst o f pulses the range word o f the first pulse is used as a reference. 

The range word describes the delay between the transmitted pulse and the deramping 

chirp (tj). If a pulse within the burst has a different range word then a frequency shift is 

applied to the pulse so that its range word is the same as the reference.

The effect of the vertical velocity of the aircraft must be removed otherwise the shift in 

phase, caused by the vertical velocity, will affect determination of the location of the 

scattering area in the along-track direction. The vertical velocity is assumed to be 

constant within a burst of pulses, and a phase shift is added to the waveforms to 

counteract this effect.
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Figure 3.13 shows a schematic representation of a burst of pulses. Each pulse within the 

burst illuminates a narrow strip on the ground, known as a Doppler bin.

Measurement areas Doppler bin

Figure 3.13: Schematic representation of a burst of pulses [redrawn from Raney & 

Jensen, 2001]

As the aircraft moves, the next burst of pulses will overlap the Doppler bins from the 

previous burst. However, the aircraft only moves a fraction of the Doppler bin width 

and therefore the centre of the Doppler bins from the consecutive bursts will not line up. 

In order to sum the measurements from consecutive bursts over each Doppler bin the 

bins must be shifted so that they overlap. This is achieved by applying a phase shift to 

each consecutive burst, and is known as beam steering.

The processing steps, after the deramp, are as follows:

A burst of pulses is read in and corrected for changes in the range word and the vertical 

velocity of the aircraft, and the burst is beam steered so that its Doppler bins coincide 

with adjacent bursts Doppler bins. The burst then undergoes an FFT in the along-track 

direction that relates the along-track position of all scatterers, relative to the radar nadir, 

to a phase shift (as described above). As the position of the scatterers in the along-track 

direction is now known the extra range delay due the curvature to the transmitted pulse 

can be calculated. The signals are zero-padded by a factor of 2 and undergo a range FFT 

(as in conventional pulse limited altimetry). This process is repeated for the next burst 

and the resulting signals are summed in each Doppler bin.
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3.3.3) D2P Characteristics

Table 3.1 lists the various D2P radar characteristics:

Parameter Value

Frequency (GHz) 13.9

Pulse Lengths (Microseconds) 3.072, 1.536, 0.768, 0.384

Pulse Band Width (MHz) 360

Peak Transmit Power (W) 5

Pulse Repetition Frequency (Hz) 1750

Antenna Size (cm) Cross-track 15

Along-track 30

Antenna Gain (dBi1) 27

Across-track 3dB Beam width (deg) 8

Along-track 3dB Beam width (deg) 4

Table 3.1: D2P radar characteristics [Raney & Leuschen, 2003, Raney, 2002].

3.3.4) The ATM laser altimeters

Figure 3.14: ATM mounted in the P-3.

1 The gain a given antenna has with respect to a theoretical isotropic (point source) 
antenna.
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The ATM system consists of a pulsed laser operating in the visible part of the spectrum 

(532 nm). The laser beam is directed along an oval shaped pattern by a nutating mirror, 

with adjustable off nadir settings. The shape of the scanned patterns on the ground 

depends on the position of the mirror, the topography and the speed and attitude of the 

aircraft. [Csatho et al., 1996]

During the LaRA campaign two ATM systems were carried, ATM2 and ATM3. They 

share the characteristics listed in table 3.3, but have different off nadir scanning angles. 

ATM2 scanned at 15.2° during the calibration flights, and operated in a profiling mode, 

where the beam was locked in position and directed aft of the P-3, during the sea ice 

flights. ATM3 scanned at 22.1° during both the calibration and sea ice flights. [S. 

Manizade, personal communication]

3.3.5) ATM characteristics

Table 3.2 lists the various ATM laser characteristics:

Parameter Value

Pulse Frequency (Hz) 5000

Pulse Energy (mJ) 0.1

Beam Width (mRad) ~1

Beam Divergence (mRad) 2.0

Pulse Width (nsecs) 1

Wavelength (nm) 532

Scanner Rotation Rate (Hz) 20

Table 3.2: ATM laser characteristics [Raney, 2002 and S. Manizade, personal 

communication].

3.3.6) Global Positioning System (GPS)

The GPS determines the aircraft’s location with sub-decimetre accuracy [Raney, 2002]. 

A differential phase technique is used to determine the aircraft location (see Krabill and 

Martin (1987)). Before and after each flight, GPS carrier phase data are recorded on the 

aircraft and at a near-by ground station. Many systematic errors have nearly the same
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effects on measurements made at receivers close to one another. Therefore the data 

collected is used to solve ambiguities in the carrier phase between the two receivers (i.e. 

ambiguities caused by propagation of the signal through the atmosphere). When the 

satellite ephemeris data become available they are used to determine the flight 

trajectory. The ground station location is determined by at least 24 hours of GPS data. 

The aircraft position can then be determined relative to the ground station. This 

technique removes fluctuations in the GPS signal caused by the atmosphere as the 

signal passes through it, resulting in a more accurate location estimate than that 

obtained by standard techniques. [Serdar Manizade, personal communication]

A ring laser gyro INS is use to compute the P-3’s attitude [Csatho et al., 1996].

3.3.7) The P-3 layout

GPS Antenna

—S i «*■

A TM  2
A 1X1 \

GPS Antenna

D2P Rack
240.041 cm

t  t  56.9 cm | 81 8  cm
r-»r AT* II ̂

ATM3
Bomb Bay 128.5 cmCameras ATM2

D2P Antenna

ATM3Cameras ATM2
GPS Antenna

37.5 cm

461.0 cm D2P Antenna

1088.4 cm88.9 cr i

Bomb Bay

centerline

Figure 3.15: Sensor layout in the P-3 aircraft, adapted from Raney and Leuschen 

(2003).
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Figure 3.15 illustrates the instrument layout in the P-3. When georeferencing the 

measurements it is important to know the exact location of the instruments with respect 

to the GPS antenna.

3.3.8) Footprint geometry

ATM2:
spot diameter = 1 m 
spot centre spacing = 0.03 m

Radar:
along-track = 4 m 
across track = 40 m

ATM3:
spot diameter = 1 m 
250 spots per rotation 
5 m between consecutive s| 
scan diameter = 400 m

428 m

Digital Photograph

->
642 m

Figure 3.16: LaRA footprint geometry for the P-3 at an altitude of 500 m and velocity 

150 ms'1, N.B. the figure is not drawn to scale.

Figure 3.16 shows the footprint geometry of the ATMs and D2P. At a nominal altitude 

of 500 m, and velocity of 150 ms'1, the radar footprint is 4 m in the along-track 

direction and 40 m in the across-track direction. Equation 3.9 gives the dimension of the 

along-track footprint (in meters), which depends on the Doppler processing.

Ax
h x p r f  x c

D 2 P 2 x N  x v  x f c  

[Carl Leuschen, personal communication]

(3 .9)
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where h is the altitude (500 m), p r f  is the pulse repetition frequency (1750 Hz), c is the 

speed of light (3x l08 m/s), N  is the number of pulses per burst (16), v  is the aircraft 

velocity (150 m/s) and fc  is the radar frequency (13.9 GHz). Equation 3.10 calculates 

the pulse-limited, across-track footprint (in meters).

Ay D2P = 2 V /tc r  (3.10)

[Mantripp, 1996]

The ATM2 (profiling laser) has a circular footprint with a diameter of 1 m and passes 

through the radar footprint. Individual laser spots from ATM3 also have a diameter of 1 

m but sweep out an elliptical scan pattern with a diameter of 400 m, enveloping the 

ATM2 and D2P footprints.

3.3.9) Flight history for AIM and LaRA

In this section we list the flights from calibration to the end of the LaRA field 

campaign. The flights conducted between the calibration flights and the LaRA flights 

were part of AIM and the ICESat Cal/Val missions.

3rd May 2002 Calibration flight at Wallops Flight Facility (WFF)

6th May 2002 Calibration flight at WFF/WFF beach mapping

Transit from WFF to Thule (Greenland),

15th May 2002 Thule transit to Svalbard aborted

17th May 2002 Thule transit aborted

18th May 2002 Thule transit to Svalbard

20th May 2002 Svalbard flight 1

22nd May 2002 Svalbard flight 2 (flights over land ice on Svalbard)

23rd May 2002 Svalbard flight 3

24th May 2002 Svalbard transit to Thule

3.3.10) Calibration flights

Calibration data for this study were collected on the 3rd and 6th May 2002. On the 3rd,
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the P-3 made two passes over the Wallops runway, one at 300 m and one at 600 m. The 

D2P recorded data during both passes. ATM3 collected data during the 600 m pass, no 

ATM2 data were collected on the 3rd due to an alignment problem [S. Manizade, 

personal reference]. A second calibration flight took place on the 6th May. Only ATM 

data were collected during this flight. Both ATMs were operational and three passes, at 

different altitudes, were made. Both ATMs operated in scanning mode.

A GPS truck survey of the runway was also conducted on the 3rd May. A GPS antenna 

was attached to the roof of a truck, which was driven across the runway in a grid pattern 

while data was logged on the receiver in the truck and at a stationary base station. The 

antenna position over the runway was then calculated and the height of the antenna 

above the ground subtracted to give the ground elevation above the reference ellipsoid. 

The error on the survey was less than 2 cm. [S. Manizade, personal reference]
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Figure 3.17: GPS truck survey of the Wallops runway.

3.3.11) LaRA flights

The LaRA flights took place on the 20th and 23rd May 2002 from Svalbard. Figure 3.18 

shows the flight paths, which were designed to under-fly ERS2 and Envisat passes to 

within a few hours. On the 20th May, takeoff was at 09.28 and the last sea ice data wereI
collected at 14.20, ERS over flew the LaRA flight path at 15.50. On the 23rd May, 

takeoff was at 12.00, and the P-3 arrived back in Svalbard at 18.00, ERS overflew at 

15.55. The flight line on the 23rd May was extended as far north as possible, in order to
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sample colder, thicker ice. As the latitudinal limit of ERS is 81.5°, there are no ERS 

measurements in this area.

O ,

v
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Figure 3.18: Locations of the LaRA flight lines. Top plot shows the flight line for the 

20th May 2002 and the bottom plot show the flight line for the 23rd May 2002. Times 

during the flights are shown in red.
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3.3.12) Georeferencing of measurements

All ATM, GPS and INS data and digital photographs were processed by NASA at the 

Wallops Flight Facility. The technique and coordinate transforms used to determine the 

coordinates of the point of intersection of the laser spot with the Earths surface with 

respect to the reference ellipsoid are described in Vaughn et al. (1996).

Figure 3.19: Georeferencing coordinate frame. C is the centre of the WGS-84 

ellipsoidal coordinate frame. The GPS antenna is at g, the laser at 1 and the laser 

footprint at e on the Earths surface. The ellipsoidal coordinates of e are (re, <j)e, Xe). 

[redrawn from Vaughn et al., 1996]

The position of the GPS antenna (rg) onboard the aircraft can be determined to a few 

centimetres accuracy in World Geodetic System (WGS-84) ellipsoidal coordinates, by 

combining the location from the GPS antenna and the INS measurements, which define 

the attitude of the aircraft. The vector (rgi) measures the location of the instrument with 

respect to the GPS antenna. This measurement is made in the local reference frame of 

the aircraft, and rarely changes when the instrument is installed on the same aircraft. 

The instrument is mounted in the aircraft with a bias in pitch, roll and heading (i.e. 

when the INS reads zero roll, the mounting angle of the instrument may be such that the 

roll is not zero for the instrument). This bias can change whenever the instrument or the
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INS are reinstalled. This bias is estimated and corrected for by collecting data over a 

known, relatively flat, surface.

For the case of the ATM instruments, the geometry of the laser beam in the reference 

frame of the instrument (figure 3.20) must be determined. It is defined in terms of:

1) The rotation axis angle (p), which is relative to the laser beam coming from the 

source.

2) The scanner tilt angle (a), which is normal to the scanning mirror surface and is 

measured relative to the rotation axis.

3) The angle of rotation of the scan mirror about its axis is referenced to a point, 

which corresponds to the laser beam being directed toward the starboard wing. 

This angle is recorded by the sensor but must be adjusted to make the angle 

meaningful in the scanner reference frame. An adjustment (scanner rotation 

zeroset) is added to the recorded angle of rotation to make this adjustment.

MIRROR SHAFT (at sc a n n e r  rotation zero se t)

MIRROR

P  a 4 5  d e g r e e s

oft nadir a n g le
y =  2 a MIRROR NORMAL

ROTATION AXIS

OUTGOING LASER BEAM

LASER BEAM FROM LASER 
(or TELESCOPE AXIS/ FIELD OF VIEW)

ATM NADIR

Figure 3.20: Forward looking cross-section showing the geometry of the ATMs. The 

scan mirror position is such that the laser beam is at its most starboard position (shaft 

position zero), [figure adapted from figure by Serdar Manizade, personal 

communication].

116



To calculate the position of the laser spot on the Earth’s surface the vector between the 

ATM and the Earth’s surface (rie), is used along with the information about the 

geometry of the laser beam. However, before the vector rie can be used it must be 

corrected for range bias. The range bias is measured before and after every flight by 

reflecting a laser pulse off a mirror a known distance away from the instrument. Once 

all the biases have been computed, the laser point’s location on the Earth’s surface in 

the aircraft’s reference frame are computed. These coordinates are then transformed into 

ellipsoidal coordinates by using the vector from the ATM to the Earth’s surface (rie), the 

GPS antenna to the ATM (rgi) and the vector rg that gives the location of the GPS 

antenna in ellipsoidal coordinates.

The D2P data files give the latitude and longitude of the nadir of the GPS antenna using 

the corrected GPS string from Wallops. APL found that the GPS time stamp was 

approximately 13 seconds ahead of the D2P time stamp and corrected for this offset by 

interpolating the GPS data in time. The locations are accurate to microseconds. [Carl 

Leuschen, personal communication]. Further processing must be done to locate the D2P 

footprint. This processing is described in chapter 5.

3.3.13) ATM data processing

The measurements from the ATMs, GPS and INS are processed individually at Wallops 

Flight Facility. GPS time tags are attached to each data set to synchronise them. The 

data are then combined to georeference the ATM data. All data are corrected for errors 

in time, pitch, roll and scan azimuth. The final version of the data gives the elevation of 

points on the ground, with respect to the reference ellipsoid, along with some aircraft 

information and laser parameters. The data have not been filtered so contain some 

unrealistic elevation estimates that are caused by reflection from very light clouds [Bill 

Krabill, personal communication].

3.3.14) ATM data format

The data are known as ATM QFIT data. Data are distributed as a binary file (for a 

description of the file see appendix 1), for each laser shot there is a data segment giving 

the;
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1. Relative time (msec from the start of the file),

2. Laser spot latitude (degrees xlO6),

3. Laser spot longitude (degrees xlO6),

4. Elevation (mm with respect to the reference ellipsoid),

5. Start pulse signal strength,

6. Reflected laser signal strength,

7. Scan azimuth (degrees x 1000),

8. Pitch (degrees x 1000),

9. Roll (degrees x 1000),

10. UTC time.

Both ATMs operated in scanning mode during the calibration flights. ATM2 operated 

in profiling mode and ATM3 operated in scanning mode over the sea ice.

3.3.15) Digital photographs

The photographs were processed and distributed, on a CD, by the Wallops Flight 

Facility. During the flight the two cameras took pictures alternately. The pictures are 

stored on the CD in folders corresponding to the time they were taken. Each folder 

contains two sub-folders with the pictures from each camera and a text file named 

gps.txt. gps.txt describes the order of the photographs and gives the;

1. Photograph number,

2. Date,

3. Time,

4. Latitude,

5. Longitude,

6. Time between photographs (seconds),

7. Distance between photographs (nautical miles),

8. Bearing between photographs,

9. Speed (knots)

118



Equations 3.11 and 3.12 calculate the dimensions on the ground of a photograph in 

meters:

where Axp is the along track dimension (m), Ayp is the across track dimension and h is 

the elevation of the camera above the ground in meters.

3.3.16) D2P data processing

The D2P data was processed at APL and used the GPS and INS data processed at the 

Wallops Flight Facility to locate the data and to estimate changes in the vertical velocity 

of the aircraft (section 3.3.2).

3.3.17) D2P data format

D2P data sets are available on the password protected ftp server (srbdata3.jhuapl.edu), 

files are found in directory /yyyymmdd/processed and named Pyyyymmdd.xxx [Raney 

& Leuschen, 2003]. For each echo within the file flag; time, latitude, longitude, altitude, 

heading, pitch, roll, tracking range, reference, attenuation, pulse length, and bin size are 

given. Then a 2*2 (pulse length) array where the first column is the bin 

number[0,0,l,l,2,2,....,pulse length, pulse length], and the second column is 

I[0,2,4....,(2*pulse length)-1] and Q[l,3,5,....,2*pulse length], follows. A full 

description of the data format is given in appendix 2.

3.4) APL elevation calibration of D2P data

To calibrate the D2P data, APL used a sine function to re-track the echoes recorded 

over the runway. They used the peak of the sine function to estimate the elevation and 

then compared these estimates to the GPS elevation estimates. Figures 3.21 and 3.22 

show the radar derived heights (black), after 23.98 m has been subtracted from them,

Axp = 2 x 0.642 x h 

Ayp = 0.667 x Axp

(3.11)

(3.12)
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and the GPS heights (red), as a function of distance along the runway. The GPS heights 

are averaged over the antenna footprint.
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Figure 3.21: 300 m pass. [Raney & Leuschen, 2003]

0020 4 0 6 0 100
d istan ce (m )

Figure 3.22: 600 m pass. [Raney & Leuschen, 2003]

Pass Height Pulse Length D2P-GPS(mean) D2P-GPS (std)

1 300 m 0.768 ps 23.9811 m 0.0173 m

2 600 m 1.536 ps 23.9674 m 0.0191 m

Table 3.3: Offset between D2P and GPS surveys of the Wallops runway. [Raney & 

Leuschen, 2003]
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An offset of 23.98 m between the GPS and D2P runway surveys was found. There are a 

few possible sources of delays contributing to the 23.98 m. The cables to and from the 

antennas are approximately 12 m in total length (the electrical length being slightly 

longer due to the dielectric constant of the coaxial). Cable specifications give the 

velocity of propagation at 76%, increasing the delay to 16 m. This still leaves 

approximately 8 m unaccounted for. The other sources of delay have not been 

quantified as the system would have to be disassembled and the s-parameters (complex 

transmission and reflection coefficients) of each sub-assembly measured. The radar 

controller and source code would also have to be looked at. [Carl Leuschen, personal 

communication]

3.5) Results from APL

Raney and Leuschen (2003) use the re-tracking algorithm described above to estimate 

radar elevations along the experiment flight lines. These data are compared to ATM 

height estimates, which are calculated by averaging laser elevation data that fall within 

the footprint of the D2P. The along track dimension of the radar footprint is given by 

equation 3.9 and the cross-track dimension by equation 3.10. The cross-track pointing 

direction to the first surface return determined by the cross-channel phase. The laser 

measurements are weighted by the antenna pattern. They find the difference (laser 

minus radar) between the two elevation estimates, over a section of the Greenland Ice 

Sheet is 1.8 metres. They attribute this difference to an overlying layer of snow. 

Comparisons over sea ice are less clear but the difference between elevation estimates 

from the two instruments seem to indicate the depth of the snow cover. They conclude 

that the data have been relatively calibrated in height to ± 2 cm [Carl Leuschen, 

personal communication], and that the data sets show that elevation estimates from the 

two instruments may be identical or different depending on the surface conditions. 

Therefore elevation differences are not due to differences between the instruments 

themselves.

The use of a peak-power retracker, calibrated over the runway, assumes that the runway 

has the same backscatter characteristics and topography as the ice. This is not the case 

and both the different backscatter characteristics, and the topography of the ice will
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change the echo shape. The height calibration of ± 2 cm is derived by calculating the 

standard deviation in the difference between the D2P and GPS measurements over the 

runway (see table 3.4). However, a ± 2 cm precision over the runway does not mean 

that the same error estimate applies to elevation measurements over a different surface 

with different backscatter characteristics and topography. Their investigation compares 

laser and radar elevation estimates, however, no cross-calibration of the laser and radar 

instruments over a known surface has been performed and an error estimate for the 

averaged laser data is not given. Such a calibration is fundamental to determining the 

relationship between the two instruments over the snow/ice system. Although this 

method provides a quick first look at the data sets and yields some encouraging results 

implying that the radar and laser are ranging to different surfaces, it is difficult to draw 

any firm geophysical conclusions from the investigation.

3.6) Summary

• Satellite radar altimeters can provide measurements of ocean topography, the

marine gravity field, the ocean floor topography, wave height and wind speed.

Laser altimeters can provide surface elevation maps, measure cloud heights and 

the vertical structure of clouds and aerosols.

• The LaRA field campaign has been described, the instruments used, the 

geolocation of the data and the data processing done by the Wallops Flight 

Facility and APL.

• The analysis performed by APL shows the potential of the LaRA data set to 

provide information on radar returns from the D2P and the combination of radar 

and laser altimetry. Although their investigation shows some interesting results 

it is difficult to draw any geophysical conclusions from it. It is the starting point

for a more detailed and rigorous investigation. The purpose of the following

chapters is to describe a comprehensive analysis of the LaRA data set, the 

methods used and the results produced.
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4) Comparison of soaceborne radar altimetry and airborne laser altimetry 

over sea ice

4.0) Introduction

In this chapter we describe the first comparison of satellite radar altimetry (ERS-2) and 

airborne laser altimetry over sea ice. The experiment was done in collaboration with 

Sine Munk Hvidegaard from National Survey and Cadastre (KMS), Denmark.

Section 4.1 describes the experiment and section 4.2 describes the instruments. In 

section 4.3 we describe the laser interaction with the snow covered ice surface and the 

snow freeboard measurement from the laser altimeter. Section 4.4 describes the ice 

freeboard measurement from the radar altimeter. In order to investigate the differences 

between measurements from two different instruments, in sections 4.5 to 4.7 we explore 

the statistical properties of the data and determine reasonable scales in space and time at 

which to examine the data. The results are described in section 4.8 and show that the 

laser and radar are reflecting from different surfaces and that the magnitude of the 

difference decreases with increasing surface air temperature. This suggests that the 

penetration depth of the radar signal, into the snow, varies with temperature. The results 

also show the potential for computing Arctic wide snow depth maps by combining 

measurements from laser and radar altimeters. Snow depth maps will reduce the 

uncertainty in the computation of sea ice thickness from both laser [Wadhams et al., 

1992] and radar (chapter 1, sections 1.5.3 and 1.6) measurements of sea ice freeboard, 

as well as providing a useful data set in terms of climate modelling.

4.1) The experiment

During April and May 2001 and May 2002, KMS collected airborne laser altimetry 

data, over sea ice, as part of a larger project to measure gravity on the Greenland 

continental shelf region [Forsberg et al. 2002] and as part of a joint gravity and ice 

mapping survey [Forsberg et al. 2003]. Figure 4.1 shows the locations and dates of the 

KMS airborne laser altimetry data and the ERS-2 spaceborne laser altimetry.
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4.2) Instruments

An Optech near-infrared laser altimeter was used for both KMS surveys. The altimeter 

operates at a wavelength of 904 nm, has a footprint of approximately 1 m and operates 

between 150 and 300 meters altitude. Additional data was gathered in 2002 from a 

scanning laser altimeter, operating at a wavelength of 900 nm. It provided the same 

measurements as the Optech laser but with a greater along track spacing.

ERS-2 carried a 13.8 GHz radar altimeter, further details of the altimeter specifications 

can be found in ERS (2003). ERS-2 operated at an altitude of 782 to 785 km and had a 

footprint of approximately 10 km in diameter.

4.3) Snow freeboard measurement from the laser altimeter

Many studies using laser altimetry are based on the assumption that the laser reflects 

from the first surface in its line of sight. In general, for the case of sea ice studies, the 

reflecting surface is not explicitly named. Wadhams et al., (1991), state that their laser 

profilometer (the Airborne Oceanographic Lidar operating at 355 and 532 nm) ranges to 

the sea ice surface but do not state whether the surface is snow covered. However, since 

the measurements were taken in May, between the North Pole and Greenland, and the 

Fram Strait, it is unlikely that the ice is snow free (see section 3.3.11 and table 4 in 

Wadhams et al. (1992)). Comiso et al. (1991) describe the same experiment and state 

that the laser altimeter reflects from the snow surface. Using the data from this 

experiment Wadhams et al. (1992), derive an expression relating the mean ice draft to 

mean freeboard, which can be measured by laser altimetry. Although it is not stated, it 

is inherent in their expression that the laser measures the elevation of the sea ice plus 

the snow, when it measures the freeboard. Hvidegaard and Forsberg (2002) also use this 

assumption to calculate sea ice thickness from elevation measurements their laser 

altimeter, which operates at 904 nm.

The measurement of the elevation of the snow and ice above the water (snow freeboard) 

is similar to the measurement of the sea ice freeboard described in chapter 1,section 

1.5.1
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Figure 4.2: Schematic diagram of the measurement of snow freeboard from airborne 

laser altimetry. fs is the snow freeboard, hiaser is the distance measured by the laser to 

the air/snow interface, hGps is the elevation of the aircraft above the reference ellipsoid, 

g is the geoid height with respect to the reference ellipsoid and Ah is the deviation of 

the sea surface from the geoid.

The snow freeboard (fs) is given by equation 4.1:

f s  = h GPS -  (4.1)

where hops is the height of the aircraft above the WGS 84 reference ellipsoid, hiaser is the 

laser range corrected for the effects of pitch and roll, g is the geoid height taken from a 

model derived from airborne gravity measurements by KMS and Ah describes the 

deviation of the sea surface from the geoid caused by errors in the geoid model, tides 

and mean and time variant sea surface topography. [Hvidegaard & Forsberg 2002]. 

Error estimates for individual laser measured freeboards are 13 cm (100 Hz data). This 

error reduces to 5 cm when the data are averaged as described in section 4.7 (reduced 

0.1 Hz data).
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4.4) Freeboard measurement from the radar altimeter

Coincident measurements of the freeboard were obtained from the radar altimeter 

onboard ERS2 [Laxon et al., 2003]. Section 1.5, in chapter 1, describes how these 

measurements were calculated and gives details of their accuracy and their sources of 

error. Section 1.5.3, in chapter 1, describes the retrieval error and chapter 2 discusses 

the assumption that the radar return originates from the snow/ice interface.

An approximate error on the sum of ice freeboard estimates can be obtained from 

equation 4.2:

c r |  = + 0 j LA (4.2)
n

Where o dlff is the diffuse measurement noise, and is taken to be the standard deviation 

of freeboard estimates about the mean for a contiguous sequence. o SLA is the error in 

sea level estimation, and is taken to be the standard deviation of the estimates used to 

determine the sea surface elevation (above the mean sea surface). We use values 

estimated from repeat track analysis of 0.14 m for o diff and 0.022 m for a SLA. [Peacock

& Laxon, personal communication]

4.5) Spatial scales for comparison

A series of freeboard measurements are not necessarily independent. Adjacent data 

points on a sea ice floe will exhibit similar thickness’ within a certain spatial (and 

temporal) limit. The autocorrelation function (acf) can provide information on the 

spatial structure of a sampled profile. The normalised acf (at a certain lag) is given by 

equation 4.3:

2 2 ( h , - h ) ( h J - h )

acf ( , a g )  =   ----5----------- ^ 2 ------------------------- ( 4 -3 )

where hj is the measurement at location i, hj is the measurement that occurs at location j, 

which is within a certain distance from i, h is the average measurement over the whole
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data set and cT is the variance of the measurement over the whole data set. The 

minimum distance between statistically independent data points occurs at the lag where 

the acf has its first zero [Eicken & Lange, 1989].

Few investigations have looked at the acf of sea ice elevation, thickness or draft. It is 

reasonable to assume that values given for the acf of sea ice draft and thickness would 

also be applicable to sea ice elevation as ice elevation is proportion to ice draft and 

thickness. Table 4.1 lists investigations into the acf of sea ice.

Author Data type Location Sampling Distance to 

1 st zero 

crossing

Rothrock &

Thorndike

(1980)

Submarine sonar 

(ice draft)

Beaufort Sea 6 m sampling 

interval

1100m

Melling & 

Riedel 

(1995), 

Melling et 

al., (1995)

Moored upward 

looking sonar 

(ice draft)

Beaufort Sea 2 m field of view, 

measurement 

interval 15 secs., 

total profile 

length 50 km.1

300 m

Flato (1995) Model (ice 

thickness)

Whole Arctic 160 km grid 300 km to 

1000 km 

depending on 

location

Flato (1998) Submarine sonar 

(ice draft)

Beaufort Sea lm  segments over 

15 km of track

390 m

Flato (1998) Submarine sonar 

from Wadhams 

(ice draft)

Greenland to 

the North Pole

100 km segments 

over 39,100 km 

of track

200 km

Table 4.1: Summary of acf investigations into sea ice.

1 The moored sonar relies on the motion of the ice pack to provide new targets. The 
speed of the ice pack varies. The mean speed is 0.083 ms'1 and the maximum speed is 
0.99 m s'1 in the Beaufort Sea [Melling et al., 1995]. Therefore the distance between 
samples can range between 1.25 m and 14.85 m.
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As the results listed in table 4.1 do not give a common distance at which sea ice 

measurements become statistically independent and the results from Flato (1995) 

indicate the distance to the 1st zero crossing depends on location, we computed the acf 

of the ice elevation from 5 km averages of the laser data. The distance to the first zero 

crossing ranged from 50 to 100 km. Figure 4.3 shows the acf for 3 laser tracks.
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Figure 4.3: acf for laser estimates of snow freeboard.

Due to the low spatial density of the radar data we chose to compare data within 100 km 

of each laser point.

4.6) Temporal scales for comparison

To estimate the temporal correlation of the data sets we examined the ice drift velocities 

from drifting buoys from the International Arctic Buoy Program [IABP, 2000]. Typical 

velocities of 10-15 cm/s occur in the northern part of the study area in Spring. 15 

cm/sec corresponds to about 65 km in 5 days. Considering the rapidly changing 

distribution of sea ice in the Fram Strait we chose a temporal search radius of 4 days.
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4.7) Data averaging and errors

A 100 km moving average was computed over the laser data in an along track direction. 

The average elevation was computed at each datum point by taking the average of the 

elevations from points within ±50 km of the datum point (approximately 14000 points 

in each average). The averages were filtered to reduce data volume, we kept 0.1 % of 

the data giving us an elevation estimate every 6.5 km. For each estimate of snow 

freeboard from the laser data, the average radar derived ice freeboard was computed 

from all points falling within 100 km and 4 days of the laser point. All freeboard values 

below 0.05 m were excluded from both data sets to ensure that no open water values 

were included in the calculation. The difference between the two data sets (laser minus 

radar) was then computed for all averages that included at least 30 radar points. Taking 

an estimate of 0.05 m for the error on the laser data and using equation 4.2 to estimate 

the error on the radar data, assuming that the two data sets are independent and errors 

are added quadratically, the maximum error on the difference between the laser and the 

radar data is 0.06 m.

To investigate whether changes in the difference between the laser and radar elevations 

corresponded to temperature change, the daily maximum 2 m temperatures from the 

European Centre for Medium-Range Weather Forecasts (ECMWF) operational data 

[ECMWF, 2002] were averaged over the periods of the investigation and used to create 

a temperature contour map of the region.

4.8) Results

The differences in freeboards from the 2001 and 2002 flights, along with the 

temperature contours, are presented in Figure 4.4 (a) and 4.4 (b).
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Figure 4.4: Snow freeboard minus ice freeboard for 2001 are shown in (a) and for 2002 

in (b), along with contours showing the average maximum daily 2 m air temperature 

from ECMWF.



4.8.1) Differences between the laser and radar data sets

Figure 4.4 (a) shows the difference between the snow freeboard derived from the laser 

data and the freeboard derived from the radar data in 2001. The differences range from 

0.10 and 0.35 m. The highest values are found close to the east coast of Greenland. Area 

I generally has the highest difference towards the northwest and differences decrease 

towards the southeast. In area II there is an agreement in the differences at the 

crossovers (where measurements with the laser altimeter were taken within one day of 

each other). Area III shows decreasing differences with distance as we move away from 

the coast. Here we see differences slightly below zero. They are caused by a 

combination of the measurement error and as a result of sampling differences.

Figure 4.4 (b) shows the difference between the snow freeboard derived from the laser 

data and the freeboard derived from the radar data in 2002. The differences range 

between 0.05 and 0.40 m and again the highest differences are in the west.

4.8.2) Comparisons with the temperature contours

Comparison with the temperature contours in figures 4.4 (a) and (b) show that as the air 

temperature increases the difference between the two data sets decreases.

4.8.3) Discussion

Figure 4.5 shows the snow depths predicted by Warren et al. (1999), we have annotated 

the diagram to show where the top of the experiment area is. The highest differences 

between the laser and radar elevation estimates (0.3 -  0.4 m) correspond well to the 

snow depths in figure 4.5.
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Figure 4.5: Mean snow depth for 1954-91 for May [Warren et al., 1999].

Comparing data from 2001 and 2002, we see the same size differences in area I (where 

we have data for both years), and the same relationship between the temperature and the 

differences between the two data sets. The temperatures in Figure 4.4 (b) are higher 

than those in the same location in 4.4 (a). However, comparisons of the ECMWF 

reanalysis data with observational data [Hagemann & Dumenil Gates, 2001] show 

differences between 1 and 5 degrees along the East Greenland coast. We expect similar 

differences in the operational data, however we expect the pattern of the temperature 

gradient to be correct. The results suggest that the radar signal does not penetrate to the 

snow-ice interface as the surface temperature increases towards zero. Although the 

differences between the laser and the radar measurements decrease with decreasing 

snow depth, we do not expect that the snow depth will be equal to zero over 100 km 

averages. Gow and Tucker (1987), estimate the average snow depth on multi-year ice 

floes to be 0.29 m between 78°20’N to 80°42’N latitude and 7°16’E to 7°10,W 

longitude during June and July 1984, and state that multi-year ice fraction is greater 

than 75% in that area. Evidence from Warren et al. (1999), indicates that three months 

after the formation of new-ice, snow depths on the new-ice will be equivalent to those
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on older, multi-year ice. Warren et al. (1999) also state that the average snow depth on 

multi-year ice reaches a maximum in May.

4.9) Summary

• For the first time we have compared measurements from airborne laser and 

satellite radar altimeters over snow covered sea ice. We have analysed the 

spatial and temporal properties of snow freeboards and found scales within 

which it is reasonable to compare the two types of measurement. We find that 

the two independent measurements show comparable results with differences in 

areas close to the coast of Greenland similar to expected snow depths. We see 

that at most points the laser estimates are higher than the radar as would be 

expected. The results show a correlation between negative gradients in the 

differences and positive gradients in the 2 m air temperature, which suggests 

that the reflecting surface of the radar varies with temperature.

• Our results have implications for future planning of field campaigns to assess 

the accuracy of satellite estimates of sea ice freeboard from both radar and laser 

altimeters, such as those onboard CryoSat and ICESat. Sampling difficulties in 

our study could be resolved by designing aircraft flight lines to be coincident in 

space and time with satellite ground tracks. To validate winter measurements, 

data should be taken pre melt. Sampling over more homogeneous ice conditions 

would increase the temporal and spatial correlation scales.

• In addition, our study indicates the potential for estimating Arctic wide sea ice 

snow depth climatology and an ice thickness data set from coincident laser and 

radar altimetry during winter periods.
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5) Analysis methods and cross-calibration

5.0) Introduction

In this chapter we describe the two new methods to compare the laser and radar data 

collected during LaRA. Section 5.1 describes the errors associated with the laser data. 

Section 5.2 describes the pre-processing of the radar data. Section 5.3 describes the 

UCL D2P re-tracking algorithm and section 5.4 describes the range calibration for the 

UCL D2P re-tracker. Section 5.5 discusses the limitations of the re-tracker and why it is 

necessary to build a radar simulator. Section 5.6 describes the UCL D2P power 

simulator and its calibration.

5.1) Analysis of ATM data

The georeferencing and processing of the ATM data is described in chapter 3, sections 

3.3.12 and 3.3.13 respectively. However, the accuracy of the data sets must be assessed.

5.1.1) Accuracy of the ATM data

To investigate the accuracy of the data sets a similar method was employed to that used 

by Sallenger et al. (2003), to evaluate airborne lidar as a tool for quantifying beach 

change. The repeatability of the ATM surveys was determined by calculating the mean 

difference (|i) between the survey with the most data points and each of the other 

surveys. The standard deviation (a) about the mean difference and the Root Mean 

Squared1 (RMS) error were also calculated, a  is the random error and the RMS value is 

the total error -  which reflects the mean difference and the random errors [Sallenger et 

al., 2003]. To derive the error associated with a single survey, it is assumed that every 

survey has the same sources of error. This means that, by partition of the errors, we can 

say that:

RMS = where jc is the difference between points.
n
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D fl/fC  _  R M S  COM
K M S atm ~ Ta5 (5-2)

where o Atm  is the error associated with a single survey and g»com  is the standard 

deviation of the differences between two surveys. As the footprint of the ATM pulse is 

approximately one metre, all data points lying within one metre of the comparison 

datum point were included in the calculations. Table 5.1 shows the total error (RMS 

error) for each of the ATM surveys. Therefore the maximum total error on a single laser 

point is 13 cm. When the points are averaged, as described in section 5.4.5, this error 

reduces.

ATM Survey R M S atm (m ) Number of Observations

3rd May ATM3 0.1306 8479

6th May ATM2_1 0.1116 13670

6th May ATM2_2 0.0673 15749

6th May ATM2J? 0.0630 15490

6th May ATM3_1 0.0619 8619

6th May ATM3_2 0.0708 13215

6th May ATM3_3 Comparison flight 15895

All Flights 0.0907 75216

Table 5.1: Repeatability of ATM data over the Wallops runway.

5.1.2) ATM flight data

During the flights errors in the data from the INS cause errors in the elevation estimates 

from the ATMs. Data from the INS are used to geolocate the ATM data (see chapter 3, 

section 3.3.12). Data from the INS can contain time varying errors that occur during the 

course of the flight i.e. the value of pitch from the INS will contain time varying errors. 

Errors in the value of the pitch will affect the elevation estimate and result in coincident 

data points from fore and aft scans having different elevations. However, errors in the
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pitch affect the fore and aft scans equally and oppositely and therefore can be corrected. 

Figure 5.1 shows this effect.
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Figure 5.1: (a) section of track showing the elevation data, with respect to the reference 

ellipsoid, from the forward scan of ATMS (b) same section of track showing the 

elevation data from the aft scan. Both (a) and (b) have been smoothed with a Gaussian 

smoother, (c) shows the difference in elevation between the forward and aft scans, (all 

units on the x and y axes are in metres)

Figure 5.1 shows laser elevations from ATMS with respect to the reference ellipsoid; (a) 

shows data from the forward scan, (b) shows data from the aft scan and (c) shows the 

difference between the forward and aft scans. Differences range between -0.1 and 0.5 

cm. This difference is caused by a pitch error of 0.06 degrees. Figure 5.2 shows the 

difference between fore and aft scans from a simulation of the ATM. The simulation

-1000 -500 0 500 1000
 — ——  " difference (fore-aft)

-0.2 0.0 0.2 0.4 0.6 (m)
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was performed over a flat surface, at an altitude of 600 m, with the ATM scanning at 

the same angle as ATM3. The simulator has a pitch error of 0.06 degrees added to the 

scanning geometry. The difference between the fore and aft scans calculated from the 

simulation is the same at the difference seen in figure 5.1.
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-300 -
0 100 200 300 400 500 600 700 800 900 1000

1 ■—1 —  difference (fore-aft)
-0.2 0.0 0.2 0.4 0.6 (m)

Figure 5.2: Simulated difference between fore and aft scans caused by a pitch error of 

0.06 degrees.

The pitch error has an equal and opposite affect on the forward and aft sections of the 

scan. To remove the pitch error the data must be averaged and each average must 

include a contribution from the fore and aft part of the scan. Figure 5.1 also shows that 

the difference is slightly asymmetric. This indicates that there is an error locating the 

data due to an error in the measurement of the roll of the aircraft. When the data is 

averaged we also smooth the data set and this asymmetry is no longer apparent. We 

describe how the ATM data is averaged and smoothed in section 5.6.11.

5.2) Pre-processing and filtering of P2P data

Before the re-tracker or the power simulator were applied to the data, the power and 

phase were calculated from the APL files (5.2.1), and the data was filtered (5.2.2).
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5.2.1) Power and phase calculation

The processed APL files do not give the power and phase values. These values must be 

calculated from the I  and Q values (see chapter 3, section 3.3.17). The power and phase 

are calculated by:

power[ i ]  = ^ I [ i f  + Q [ i f  (5.3)

phase[i]  = a ta n (Q[i]l I[i]) (5.4)

where i = 0 ,1 ,2 , . . . , length.

We use this equation to create data files that contain, for each pulse, a header line 

giving:

Name Type Description

Flag Integer 1 valid pulse, 0 invalid

Time Integer Seconds since 00:00

Latitude Integer Degrees x 106

Longitude Integer Degrees x 106

Altitude Integer Meters x 103

Heading Integer Degrees x 103

Pitch Integer Degrees x 103

Roll Integer Degrees x 103

Tracking range Integer Tracking range steps

Reference Integer Tracking shift

Attenuation Integer Receiver attenuation setting

Pulse length Integer Number o f samples in pulse

Bin size Integer Meters x 103

Echo number Integer Sequential number of echo in file

Data Arrays

Bin[l,...,pulse length] Integer Sample number

Power[ 1 ,...,pulse length] Float Power

Phase[l,...,pulse length] Float Phase

Table 5.2: Format o f D2P data files after pre-processing performed at UCL
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5.2.2) Filtering of D2P data

Four filters were applied to the D2P data. The number o f points removed during each 

filter is given in appendix 3.

Filter 1:

The points in the processed data files from APL are given a flag. Flag=l indicates that 

all the GPS data were available and that the radar was tracking. Flag=0 indicates that 

the GPS data were not available and/or the radar was not tracking. All points with 

Flag=0 were removed from the data set.

Filter 2:

Points with nonsensical pitch and roll values (e.g. values greater than 360°) were 

removed.

Filter 3:

Points crossing over 0° longitude were removed as they contained nonsensical longitude 

values.

Filter 4:

Points where the aircraft was turning were removed.

5.3) Re-tracking the D2P returns

In this section we describe the design o f a new power re-tracking algorithm for returns 

from the D2P. Section 5.3.1 describes why re-trackers are necessary in radar altimetry 

and section 5.3.2 explains why existing re-trackers, used for other radar altimeters, are 

not suitable for the D2P radar altimeter. Section 5.3.3 describes the UCL D2P power re

tracking algorithm.
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5.3.1) The use of re-trackers in radar altimetry

There are two reasons to employ re-tracking techniques in radar altimetry. Firstly, the 

radar tracking computer does not provide precise elevation estimates and secondly the 

waveform is sampled at discrete intervals that are larger than the resolution we desire.

Radar tracking

A tracking computer is used to keep the surface reflection at a fixed point in the range 

window. It achieves this by adjusting the delay time (a tracking shift) between the 

transmitted waveform and the deramping chirp (see figures 3.3 and 3.4 in chapter 3). 

However, the delay time does not always match the time taken for the waveform to 

travel to the surface and back to the altimeter, therefore the surface reflection point does 

not always arrive at the same point in the range window. This means that the radar 

tracking shift cannot be use to give a precise elevation estimate.

Sampling o f  waveforms

The returned waveform is sampled at discrete intervals. The spacing between each 

sample is called the range resolution. For example, the range resolution of the D2P is 

0.208 m. However, we require a much better resolution to estimate the elevation of our 

surface so we rebuild the waveform using a function that closely approximates the 

waveform shape. This is known as re-tracking.

5.3.2) Existing re-tracking algorithms

Mathematically derived waveform models over the ocean [Brown, 1977] exist, 

however, there are no such models for sea ice. Although ERS collected data over sea ice 

no algorithm was specifically designed to re-track the sea ice data [Peacock & Laxon, 

2004]. Envisat has four re-tracking modes, ocean, icel, ice2 and a sea ice re-tracker. 

The sea ice re-tracker consists o f a leading edge threshold detector [Laxon, 1994]. This 

technique is useful for comparing elevation estimates from successive orbits but is not 

suitable for the accuracy we require to compare elevation estimates from two different 

instruments (the radar and laser altimeters). An additional problem arises when we
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consider using re-tracking algorithms employed by other radar altimeters. All 

operational satellite radar altimeters, to date, are conventional pulse limited altimeters. 

Therefore their waveform shape is different to data from the D2P (see chapter 3, figures 

3.2 and 3.12). In chapter 3 we explained how and why the D2P echo shape varies from 

that of a conventional pulse limited altimeter. In brief, the D2Ps synthetic aperture 

along-track processing results in the whole of the beam limited footprint, in the along- 

track direction, contributing to the leading edge of the waveform, rather than to the 

trailing edge, as in conventional pulse limited altimetry. Because of this difference in 

the shape of the waveforms between the D2P and conventional pulse limited altimeters, 

the re-tracking algorithms from ERS etc. are not suitable for the D2P waveforms.

The CryoSat radar altimeter performs synthetic aperture processing in the along-track 

direction. However, the waveform shape from CryoSat varies from that of the D2P. 

Figure 5.3 shows an example of a model of the CryoSat waveform from Wingham et 

al., (2004). We have superimposed a D2P waveform (the same waveform is shown in 

figure 5.6), and scaled the echo power so that it is the same as the CryoSat waveform.

0.5
cd
<: 0 .4
o

o  0 3

o 0.2
CD

- 10 - 5  0 5 10 15 20
ec h o  delay ns

Figure 5.3: Modelled waveform shape for the CryoSat altimeter. The solid line is the 

waveform returned from a spherical surface and the dashed line is a waveform returned 

from a surface inclined to a sphere. [Wingham et al., 2004]. We have superimposed a 

typical D2P return (red line) for comparison. The D2P waveform has been scaled so 

that its echo power is equal to the modelled waveform. The position of the 0 delay for 

the D2P waveform is not exact.
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The leading edge of the D2P waveform is steeper and the trailing edge falls off faster 

than the modelled CryoSat waveform. The differences in the shape of the waveforms 

are due to the differences in geometry of the spaceborne CryoSat altimeter and the 

airborne D2P. This means that we cannot use an approximation of the CryoSat model to 

re-track the D2P data.

5.3.3) UCL D2P re-tracking algorithm

The UCL D2P re-tracking algorithm is an empirically derived re-tracker designed to 

work with echoes conforming to the shape of typical echoes over a smooth surface, 

hereafter referred to as typical echoes. Figures 5.4 to 5.6 illustrate this type of echo.

rough ice

1 8 .3 1 5
i------------------------------------------------------------p -

18 .33  
sm o o th  ice

Figure 5.4: Photograph of sea ice showing both smooth and rough ice. Centre of 

photograph at 81.39° latitude and 18.33° longitude. The black line shows the location of 

the data shown in figure 5.5 over the smooth ice. The photograph covers an area of 770 

m by 514 m. The black area at the top of the photograph is part of the aircraft.
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Figure 5.5: Z-scope plot of D2P power over smooth ice section (figure 5.4). The power 

has been normalised.

1.2

100 105 110 115 120 125 130 135 140 145 150
bin

Figure 5.6: Echo at 18.316° longitude. The echo shape is typical of section shown in 

figure 5.5. Small rise at bin 110 appears in all data and therefore is likely to be an 

artefact of the radar.

Figure 5.7 shows the parameters used to re-track the echo.
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ran g e  bin (t)
Figure 5.7: The UCL D2P re-tracking function. The solid red line shows the shape of 

the function. The first part of the function consists of a Gaussian with peak a and width 

a. ^  is the position on the x-axis of the peak, tb is the position on the x-axis at which the

second function takes over from the Gaussian. The second function is ae~k(<t~to  ̂ where 

k is a constant.

We take our method for creating the UCL D2P re-tracker from Wingham2 et al., (2004), 

appendix 1. The technique calculates a non-linear least squares fit to the data using an 

interpolating function (re-track function) that is designed to represent the CryoSat 

waveform. The re-track function consists of three functions that describe the shape of 

the CryoSat echo, which are joined by two linking functions, consisting of polynomials, 

to ensure that the re-track function is smooth and continuous. To re-track the D2P 

echoes, we changed the design of the interpolating function to represent the D2P 

echoes. We use two functions to describe the shape of the echo (figure 5.7) and one 

linking function.

Figure 5.8 shows the processing scheme for the UCL D2P re-tracking algorithm. The 

re-tracker uses the routine mrqmin from numerical recipes in C [Press et al., 1992]. 

mrqmin attempts to minimise the chi-squared value of a least squares fit between a set 

of data points and a non-linear function. The harness for mrqmin was taken from 

Vetterling et al., (1992) and modified by David Wallis (UCL). We then changed the 

harness into a sub routine, and created a new harness to: read in the D2P data files;

145



calculate the first guess parameters for the typical echo shape (a, a, to and k); read the 

best-fit parameters from mrqmirr, and to calculate the elevation. The first guesses of the 

re-tracker parameters are described by equations (5.5) to (5.8) and the elevation is given 

by equation (5.28). We also designed a function (figure 5.7) to fit to the typical D2P 

echo shape. The algorithm to fit the echo shape uses the equations describing the typical 

echo shape and their partial derivatives. These are given by equations (5.9) to (5.27).

Sect ion 5.2

Radar data 
[input data)

1 st g u e s s  
parameters  for 

e c h o  sh a p e

Equations

m ove onto  
next echo

5.5 to 5.8

'Power values  
for e c h o  

+ parameters/

Parameters 
used to  

calculate  
elevation

Equation 5.28

Driver routine from 
Vetterling et  al., (1992) 

modified by 
David Wallis

Best fit 
parameters

covsrt (function)
w

Press et  al.,
(1992)

mrqmin (function) 
Press et al., (1992)

function to fit 
D2P echo  shape

Equations 5.9 to 5.27

gaussj  (function) mrqcof (function)
Press et al., Press et al.,
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Figure 5.8: The UCL D2P re-tracking algorithm processing scheme.
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First guess to the parameters

The function parameters are estimated from each D2P echo, a is taken to be the 

maximum power and it’s position is used to estimate to. a  is estimated from the location 

of the first power estimate that is greater than half of the highest power, the location of 

the highest power and the general formula for a Gaussian (equation 5.5).

therefore:

- ( t-tp)2
y  = ae ° 2 (5.5)

a / 2  = ae ° 2 (5.6)

where j is the (approximate) location of the half power point and i is the location of the 

peak power point. A first guess for a  is therefore given by:

where k is given by:

2 ~ t(i ) ) 2
a  = - - — (5.7)

ln ( l /2 )

. t(i) -  t ( j )
k  = (5.8)

a

If the difference in location of the peak power and approximate half power is zero then 

a  equals 4 and k equals 0.5.

Re-tracking function

The re-tracking function must be smooth and continuous for all t > t0, its first derivative 

must also be smooth and continuous. The shape of the re-tracking function, chosen to 

approximate the shape of a typical echo, consists of a Gaussian rise with a tail 

proportional to e 'kt, where k is a constant. A full description of the function is given by 

equation 5.9.
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P(t) = ae (5.9)

where

(* -  (o)

,  7 1 
f ( t )  = f \ ( t )  = a 1)( t - t oy  + a 2( t - t 0) + - ( t - t Q) t0 < t  <( tb + tQ)

a

f ( 0  = fn i t )  = -------— - ™ < t < t Q
a

where t is the delay time, to the time of the peak return and tb the time at which f i  is 

replaced by f 2 . f 1 is a linking function between/, and/? to ensure that the whole function 

is smooth and continuous. The constants a3 and a2 are derived using the following 

conditions, f x(tQ -  tb) = f 2(t0 -  tb) and f x'(t0 -  tb) = f 2'(t0 -  tb). Hence:

- 5 k o  + 4(kth) a 2 = ---------------------b (5.10)
2 otb(ktb) in

3ko -2 (k th)
a ,  7  (5.11)

2otb (ktb)

The 1st partial derivatives of the function must be smooth and continuous. The function 

has four variables a, 0 , to and k (tb is calculated directly from k and a, tb = k x  a 2). The 

partial derivatives of the re-tracking function are given by equations 5.12 to 5.27.

Partial derivatives of Pn:

dPn 2
= e a  (5.12)

da
d-to ) 1

dl H j ae ° 2 f - A t  ( 5 . 1 3 )

d o  0
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dk

Partial derivatives of constants a3 and a2 '.

Ark2

(t - t0)2
dPn 2ae ° 2 ( t - t n )

^  ( 5 J 4 )

dP-  = 0  (5.15)

da2 rjk2a 2 k ( -5 k o  + 4 ■\[k2o 2 ) 3 (-5  k o  + 4 ̂ k 2a 2)
 = ....................1—..- + ----------------------- 7 7 -----+ -----------------. ■   (5.16)

2 k a 3^ k 2o 2 l a 2{k2o 2)^2 2 k o 4^ k 2a 2

3/. 2k2a
dci'i -Jk2cr2 3ko -  2rjk2o 2 5(3ka -2^1 k2o 2)_ j _ ---------------vk. a  + ------------------------ + — ...........   (5.17)
^CT 2 k o 3^ k 2o 2 2 o 4(k2o 2)//2 2k 2o 6^jk2o z

| 4 £ a 2

^ 7  rj k 2o 2 - 5 k o  + 4-sJk2o 2 - S k o  + 4 ^ k 2o 2
 = -------------- . H--------------------- 7 7 ----- 1----------------7..—.......  ■ (5.18)
^  2 k a 3^ k 2o 2 2 o { k 2o 2)^2 2 k2o 3^ k 2o 2

3a  2 k o 2
da3 ^ k 2a 2 3ka - 2 ^ k 2a 2 _ 3ka - 2 ^ k 2o 2 re im
 = ----------------, —--I-----------------------TZ-"*-----------1 l ' ^
^  2fc2CT3V/c2a 2 2 k a 3(k2o 2)~/2 k^o^^I^o2

Partial derivatives of Pi are:

r-r0 (-5k o+ 4^k 2o 2)( t -t0)2 ( 3 k a - 2 ^ k 2a 2)(t -tQ)3 2 

dP\ _  e  cr 2k o 3^ k 2o 2 2k 2a 5^ k 2a 2 ^  20)
da
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dP\   -+(‘-to)2 a2+(,~ro)3 a3)2 t  1

- ± — 2ae  (--------
d a  (5.21)

( - £ ^  + ( , - , 0) ^  + (f _ , 0)3 ^ I )  
a  d o  do

dP\ _ “( ^+(f- ?o)2a2_(/-fo)3a3)2 1 9
— L = - 2 ae a (---------2 ( t - t 0)a2 - 3 ( t - t 0)2a^)
* 0  ‘ (5.22)

(   + (* “  *o)~a 2 + (* ”  ô) 3^3)a

(5.23)

<?/>! - ( -— +(f-<o) a2 +(t-t0  ) a3)t - 1 0  2 / n3
—L = - 2  a e  °  (----- 2-

dk

dk dk

Partial derivatives of P2 are:

—  =  e - W - ’o)(5 24)  
da
dP2 „

= 0 (5.25)
d o

—  = ae~k('~t(,)(5.26) 
dt0

^  = ae~*(r~'o) (f — #0) (5.27)
dk

The parameter to is used to calculate the elevation, along with the re/value given in the 

header for each pulse, re / when multiplied by the sampling interval (Si), gives the 

elevation of the centre of the range window above the reference ellipsoid. Therefore, to 

calculate the elevation:

elevation = (ref  x Si) + (((len/2) - t 0) x  Si) (5.28)

where Sz-0.208189 m and len is the number of bins in the range window.

150



5.4) UCL range calibration

We now describe the calibration method used for the UCL D2P re-tracking algorithm. 

We use the same method as APL. We then describe the results of the calibration.

5.4.1) Calibration method

The original offset correction of 23.98 m was calculated using a sine re-tracking 

algorithm (chapter 3, section 3.4), and assuming that the peak of the function gave the 

position of the surface. The use of the alternative UCL D2P re-tracking algorithm 

means that the elevations must be re-calibrated.

Before the elevation estimates were re-calibrated, the D2P data longitudes, latitudes and 

altitudes were corrected as the values given in the data files were for the position of the 

GPS antenna rather than the radar antenna. All GPS data falling within the D2P 

footprint, with its centre at the radar nadir and dimensions given by equations 3.9 and 

3.10 (chapter 3), were averaged. The GPS average was weighted with the antenna gain 

(see section 5.6.2 for a description of the antenna gain).

5.4.2) Calibration results

Figures 5.9 and 5.10 show the UCL, APL and GPS elevations along the runway. The 

outliers in the inset in figure 5.10 are caused by double peaked echoes of unknown 

origin (figure 5.11). The outliers were not included in the mean offset calculation in 

table 5.3.

Pass Height GPS-UCL (mean) APL-UCL (mean)

1 300 m 0.02488057 m 0.0259418 m

2 600 m 0.04400917 m 0.02996341 m

Table 5.3: Offset between UCL re-tracker and the GPS survey and the APL re-tracker.

Therefore, to correct the elevation estimate for the UCL D2P re-tracker, we add 0.034 

m to each elevation estimate.

151



-2 7 .9

-2 8

-28.1

** i 1* ■ UCL processing 
APL processing

20 40 60 80 
distance (m)

100 120 140

Figure 5.9: 300 m pass. GPS measurements averaged over radar footprint (blue). APL 

re-tracker elevation estimates with 23.98 m correction (green). UCL D2P re-tracker 

elevation estimates (red). Elevations are with respect to the reference ellipsoid.
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Figure 5.10: 600 m pass. GPS measurements averaged over radar footprint (blue). APL 

re-tracker elevation estimates with 23.98 m correction (green). UCL D2P re-tracker 

elevation estimates (red). Elevations are with respect to the reference ellipsoid. The 

inset figure shows the full data set over this section of track.
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Figure 5.11: An example of double peaked echo from calibration flight.

5.4.3) Accuracy of the D2P data

The repeatability of the D2P data was determined by the method described in section 

5.1.1. When comparing a datum point from the 300 m pass to data points from the 600 

m pass, points lying within 2.4 m of the 300 m datum point were included in the 

calculations. 2.4 m is the width of the along-track footprint at 300 m altitude. When 

comparing a datum point from the 600 m pass to data points from the 300 m pass, 

points lying within 4.7 m of the 600 m datum point were included in the calculations. 

4.7 m is the width of the along-track footprint at 600 m altitude.

D2P Survey RMSd2p (m)

300 m 0.0340

600 m 0.0355

Table 5.4: Repeatability of D2P data over the Wallops runway.

From table 5.4, we would expect a D2P repeat survey to give elevation estimates within 

0.035 meters of the original survey. However, the purpose of writing a re-tracker is to 

compare the elevation estimates from the D2P to the elevation estimates from the ATM
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data set. Therefore we must know how accurate our comparisons are. Sections 5.4.4 and 

5.4.5 discuss this matter.

5.4.4) Comparisons between the ATM, D2P and GPS data sets

When comparing data from the D2P and ATM instruments collected during the LaRA 

campaign, only data collected simultaneously will be used. For this reason only data 

collected on the 3 rd May, during the 600 m pass has been used to estimate the errors 

between the two data sets as this was the only calibration flight where data was 

recorded simultaneously.

The mean differences and standard deviations between the ATM, D2P and GPS data 

sets were computed using the same point inclusion criteria as described in section 5.4.3.

Pcom (m) Ocom (m) RMScOM (m)

0.044176 0.096870 0.106468

Table 5.5: Mean difference, standard deviation and RMS error between the ATM3 

survey taken on the 3rd May and D2P elevation estimates from the 600 m pass.

ATM/D2P Survey M-com m (m) a CoM m (m) RMScOM (m)

3rd May ATM3 0.000868 0.120563 0.120563

6th May ATM2_1 0.012273 0.065659 0.066796

6th May ATM2_2 -0.065116 0.058115 0.087278

6th May ATM2_3 -0.037140 0.054755 0.066162

6th May A T M3 1 -0.097241 0.067041 0.118111

6th May ATM3 2 -0.111895 0.055094 0.124723

6Ih May ATM3_3 -0.068139 0.054991 0.087560

All Flights -0.052654 0.089723 0.104032

D2P 300 m pass -0.016980 0.051114 0.053861

D2P 600 m pass 0.043316 0.076553 0.087958

Table 5.6: Mean difference and standard deviation between ATM or D2P elevation 

estimates and GPS elevation estimates.
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Summary o f results

The results of the accuracy study are summarised in table 5.7. The largest standard 

deviations and RMS values from tables 5.1, 5.4, 5.5 and 5.6 have been taken to be the 

error on either the individual data sets or the error when comparing data sets.

D2P ATM

D2P Pd2p =  -3 to  3 cm  a D2P =  3 cm  

RMSD2p = 3 cm

Mcom =  4  cm  Ocom =  10 cm  R M S com =  

11 cm

ATM Mcom =  4  cm  a CoM= 10 cm  

R M Scom  =  11 cm

Matm =  -5 to 12 cm  a ATM =  10 cm  

R M S atm =  13 cm

GPS M-com = -2 to  4  cm  Ocom =  7 cm  

R M Scom  =  8 cm

Mcom = -11 to 1 cm  Ocom =  12 cm  

R M Scom  = 12 cm

Table 5.7: Summary of accuracy results.

For the purpose of our study we are interested in the difference between the ATM and 

the D2P. The calibration data shows that over the runway that the maximum total error 

(RMS error) is 11 cm. This is comparing a single laser estimate within a D2P footprint.

5.4.5) Comparison of the average ATM elevation and the D2P elevation

Figure 5.12 shows two D2P footprints over the runway, and the coincident ATM data 

used to estimate the mean laser elevation over the footprint.

It is clear that, unless we observe a very smooth surface, the individual laser elevations 

will differ from the radar elevation. This sampling problem contributes to the RMS 

error between the two sets of elevations.
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Figure 5.12: Two radar footprints (dashed rectangles) from the 600 m pass, with the 

laser elevations that fall within those footprints shown as coloured dots (to scale). The 

direction of flight is from right to left. The radar elevation estimate for a is -27.928 m 

and the mean laser elevation is -27.988 m, the radar elevation for b is -27.926 m and 

the mean laser elevation is -28.003 m.

Table 5.8 shows the mean difference, standard deviation and RMS error between the 

D2P elevation estimate and the ATM elevation estimate averaged over the D2P 

footprint.

Pcom m qcom m RMScom No. points in mean

-0.001723 0.023966 0.024028 12 to 17

Table 5.8: Mean difference, standard deviation and RMS error between D2P and the 

mean ATM elevation estimates.
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Therefore the error between a D2P elevation estimate and a laser elevation estimate, 

consisting of an average of laser elevation estimates over the D2P footprint, is 2.4 cm. 

N.B. difference between the fore and aft scans (section 5.1.2) are not seen in the 

calibration data as they are caused by drift in the INS system which did not occur during 

the calibration flights. We expect the flight data to have the same error as the calibration 

data provided the differences in fore and aft scans are corrected for.

5.5) Limitations of the re-tracker

There are two major assumptions used in the re-tracker that could affect our elevation 

estimate. These are the assumption that the re-track point is at the peak of the return and 

that all echoes conform to the shape of a typical echo. We will now explain the 

problems associated with these two assumptions in detail.

1) The re-track point

We assume that the re-track point is at the peak of the return, and calculate our elevation 

estimates from this point. In reality the location of the re-track point depends on the 

surface height distribution. In chapter 3 we described the power returned to a 

conventional pulse limited altimeter from the sea surface, which has a Gaussian surface 

height distribution. For such a Gaussian surface, it is well know that it’s re-track point is 

the half power point. Our re-tracker is calibrated at the peak of the return with elevation 

estimates over a runway. The surface height distribution of the runway is not the same 

as the surface height distribution over sea ice so the peak of the return may not 

correspond to the elevation of the sea ice.

2) The echo shape

We have assumed a typical echo shape for all our D2P returns. Figure 5.13 is a Z-scope 

plot of a series of returns from file number 8 on the 20th May. From the figure you can 

see that only the centre echoes on the along-track axis are typical echoes. Echoes either 

side do not have such a sharp power drop off.
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Figure 5.13: Z-scope plot of a section of track from file 8 on the 20th May.

Changes in the shape of the echo are due to changes in the pitch and roll of the aircraft 

and to the surface roughness changing (when the surface becomes rough the echoes 

tend to be wider). Our re-tracker is designed to cope with a typical echo shape, we do 

not know how it will perform when it attempts to re-track echoes wider echoes or 

indeed any echo shape that does not conform to the typical echo shape. We have seen 

the effect of applying the re-tracker to a double peaked echo shape in figures 5.10 and 

5.11; the elevation estimates are too high. It is possible that we can filter out the echoes 

that do not conform to the shape of a typical echo, but this may seriously reduce our 

data volume.

By building a power simulator we avoid both of these problems and create a method 

that will provide a good fit to much of the data. The power simulator is designed to 

investigate whether we can see the laser and radar reflecting from different surfaces. We 

use the laser data to create a surface model (the laser ranges to the air/snow interface, or 

the air/ice interface when no snow is present) and simulate the D2P return over this 

surface. As the evidence presented in chapter two suggests that the radar reflects from 

the snow/ice interface we expect the return from the simulator to arrive earlier in the 

range window than the real D2P returns over the snow covered ice. The simulator takes
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into account the pitch and roll of the aircraft, and therefore produces both typical and 

non-typical echoes. The data analysis does not require us to locate a re-track point as the 

full simulated echo shape is compared to the full real echo shape and the offset in the 

range window between them gives us an estimate of the difference in elevation between 

the laser/snow surface and the surface that the radar ranges to. The simulator creates a 

method to compare data from two different instruments that cannot be directly 

compared. In addition, by running the simulator over a flat, known surface, we will be 

able to find the re-track point for a typical D2P echo. As well as analysing the results 

from the simulator in their own right we can use the results to test the re-tracker. The re

tracker is a relatively quick and easy method to look at the LaRA data, therefore it could 

be a useful tool in comparing future data sets, but only if it provides reasonable 

elevation estimates. If the difference in elevation between the simulated echo and the 

real echo are similar to the difference between the elevation estimate from the re-tracker 

and the elevation estimate from the ATM data, then we can say that the re-tracker 

provides a reasonable elevation estimate.

The following sections describe the power simulator in detail.

5.6) The UCL D2P simulator

The UCL D2P simulator is designed to calculate a D2P radar echo from a surface 

constructed from the laser data. The position in the range window of the simulated 

echoes is then compared to the position in the range window of the real echoes (N.B. 

the size of the power of the simulated echoes is not calculated). An offset in the position 

(i.e. time) between the real and simulated echoes means that they are measuring 

different surfaces. The power integral is the basis of the simulator, and is given by 

equation 5.29:

SfAtz?G2(0’<l>)P(8l)dA (5-29)

where A is area.
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The power integral consists of three functions: P(t), describing the power envelope as a 

function of time; G(Q,<$), describing the antenna gain as a function of the facet 

orientation angles and fi(Oi), describing the weighting from the along track synthetic 

aperture processing as a function of look angle. The look angle and orientation angles 

are shown in figure 5.14.

Radar

Look ang le

Radar to facet /  v@

f a c e t . .

Figure 5.14: The facet orientation angles and the look angle.

We now describe each of the components of the power integral in detail.

5.6.1) The transmitted power envelope, P(t)

The transmitted power envelope is given by:

P (f) = sinc2(AF;r7’) (5.30)

[Carl Leuschen, personal communication]

where AF  is the instrument band width (360 x 106 Hz), and T is given by,
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T  =  t  -
2 r

c
(5.31)

where r is the range to the surface, t is the time at which the power is being measured 

and c is the speed of light, r is calculated from the magnitude of the vector between the 

D2P antenna and the facet.

r  = ^ j z 2 + ( x 2 + y 2)( 1 + z 2 /R e) (5.32)

where Re is the earth’s radius.

5.6.2) The antenna gain, G(Oy<j>)

The antenna gain (G) is a function of 0 and (j), which describe the direction between the 

antenna bore-sight and the facet.

The following discussion is based on Peebles, (1998). G(6 ,(f)) is the directive gain of 

the antenna and is defined as:

radiation intensity (W/Sr) in direction (0 ,0)
G (0 ,0 )  = ------------------------------------------------------------------  (5.33)

average radiation intensity (W/Sr)

p (0 ,0 )
(5.34)

rad.
4 tc

where Prad is the total radiated power and p{6 ,4>) is the radiation intensity pattern. 

The D2P has a rectangular antenna, the gain of which is given by p(0,0):

Prad^ 1 + cos 6
2

• 2sine ^ - s i n 0 c o s 0 sine2 b j t  • a  • * —  sin 6  sin 0 (5.35)
L 2 J L ^ J L a  J

161



where a and b are the lengths of the sides of the antenna. For the D2P a=0.3 m and 

b=0.15 m. X is the radar wavelength (0.022 m), and Aa is the area of the antenna. 

Therefore G(0,0) is given by:

G(d,<j>) = 4ltA“ 1 + c o s  6 2
2 a it  . _ 2 bji  . _ . ,

2

sine —  sin 6  co s 0  
A

sine —  s in t/ sin  (b 
. A

(5.36)

5.6.3) The beam function, P(0i)

As described in chapter 3, section 3.3.2, the D2P uses synthetic aperture processing in 

the along track direction. This means that the radar emits bursts of 16 coherent pulses, 

which form a long, synthetic aperture in the along-track direction. As the synthetic 

processing is only performed in the along-track direction, p is a function of the look 

angle (0/) only. The result of the synthetic processing is to narrow the along-track 

footprint, thereby improving the horizontal resolution of the elevation estimate. The 

signal to noise ratio of the elevation measurement is improved by multi-looks at each 

point on the ground from consecutive bursts. Each coherent pulse intersects the antenna 

gain pattern and the power envelope at a different location, this results in a slightly 

different shape of power return from each pulse.

To derive the power contribution from the synthetic processing we consider a linear 

array of N sources. Each source is separated by a distance A x , given by:

Ax = — = 0.086m (5.37)
Prf

where v is the velocity of the aircraft (150 m s'1) and p r f  is the pulse repetition frequency 

(1750 Hz).

The field equation for a linear array of sources is given by, [Peebles, 1998 & Stutzman 

& Thiele, 1998].
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i2n(kA xs'm 6i—— )

Z j
n =0

f n  ~  ^  e  N  (5.38)

2 JT
where k = — , X is the wavelength, Ax is the distance between coherent pulses, vVis the 

A

number of pulses in a coherent burst (16) and m is the pulse number in the burst for 

which the field equation is being calculated. To calculate the power contribution from 

each of the 16 pulses equation 5.38 can be simplified and converted to power as follows 

[Peebles, 1998 & Stutzman & Thiele, 1998].

Let:

irw
f} = 2(kAxsindl - — ) (5.39)

Therefore:

Fm = (5.40)
n=0

The series is:

Fm = 1 + e ip + e i2p + ..........+ e i ( N ' l ) P  (5.41)

Multiplying by eip gives:

Fmeip = e i/3 + ei2fi +  + em  (5.42)

Subtracting 5.40 from 5.41 gives:

F A  l - e ifi) = ( \ - e iNfi) (5.43)

(1 _  e iNP ) (e ^  _  1) e iNp/1 e iNpl2 -  e~iNfi/2
Fm = ( i _ ^ )  = - 1) = e W2 em _ e- m  (5'44)
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F = J W - V P / 2
sin(j8/2)

(5.45)

To find the power (Pm) we multiply by the complex conjugate:

pm =
sin 2 sin 6, -  mn-))
 _ 1 N  

sin2(£Axsin0, - Jtrr̂ ) 
1 N

as:

(5.46)

(5.47)

Figure 5.15 shows the power contribution from each beam as a function of distance, for 

the radar located above 0 on the x-axis.

meters

300
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tfT 200 c r

n  150

8  ioo ------ 12

50

40-20 -10 0 10 20 30-40 -30

Figure 5.15: Power contribution from each coherent pulse within a burst as a function of 

distance from the radar nadir. The distance along the x-axis is calculated by taking the 

tangent of the look angle and multiplying by the radar altitude.

The dimension of the along-track footprint (AxD2p) is defined as the distance between 

peaks in figure 5.15 and is given by:

164



[Carl Leuschen, personal communication]

where h is the altitude of the radar, p r f  is the pulse repetition frequency (1750 Hz), c is 

the speed of light, v is the aircraft velocity (150 m s'1) and fc  is the radar frequency (13.9 

GHz).

Our equation for the power contribution from the synthetic aperture processing is a 

simplification of the process as, although we are calculating returns from multiple 

angles we are not calculating the total number of looks over each footprint. Our 

simulator assumes that there is a distance of one across-track footprint (3.9 m at an 

altitude of 500 m) between each burst of pulses. Therefore each power return has 16 

components, one from each coherent beam. In reality there is a distance of Ax x N  

between each burst, 1.375 meters. This means that each point on the ground can be seen 

by 25 consecutive bursts, and the beams from each burst overlap. To model this effect 

we would have to include ‘beam steering’ (chapter 3, section 3.3.2) which means that 

we would locate a point on the surface, and as the aircraft moves the beams would be 

steered (i.e. the look angle is adjusted) so that the beams would always line up and 

could be easily summed. The higher look rate of the D2P serves to reduce the signal to 

noise ratio. The simulator does not have noise, and as we are comparing the shapes of 

the real and simulated echoes rather than the power value we do not think that it is 

necessary to include the extra looks. By making the assumption that the bursts do not 

overlap and by calculating 16 beams (or looks) for each footprint we still include the 

complexity that the shape of the mean power is a function of look angle.

5.6.4) Combining P(t), G(Q,<!)) and fi(Qi)

Figure 5.16 shows how the three components of the power integral combine to produce 

a power return.



1X1=10 11 12 13 14 1 5 0  1 2  3  4 5 6

-30 -20 -10 0 10 20 30
along-track (meters)

....................  gain
0 500 1000

Figure 5.16: Components of the power integral. The graded coloured area shows the 

variation of the antenna gain. The vertical lines show the width of the along-track 

footprint, due the along-track processing, f3(d/). The circles show the range rings.

Figure 5.17 shows the power returned from individual beams and illustrates how the 

change in look angle affects each power contribution.
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Figure 5.17: Power return from individual beams over a flat surface with no pitch, roll 

or yaw and no antenna mounting angle (see section 5.6.6). Beam m=0 returns the 

highest power as it passes through the centre of the gain pattern. Beams equal distance 

either side of m=0 are equal in power.

In order to produce figure 5.17 the timing of the power return from each beam was 

adjusted to account for the curvature of the pulse, as illustrated in figure 5.18 and given 

by equation 5.49.

D2P

h

Pulse

dh Surface> f

m=..-12/13/14/15/0

Figure 5.18: Illustration of time correction calculation, Axd2p, dh and h are in meters.
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if  m  <= 8 x = m x Ax D1P

if m >  8 x  = (16 -  m)AxD2P 

dh = a /x 2 + /z2 -  h 

t im e_correction  = 2 * dh IC

5.6.5) Locating the ra d a r nad ir

(5.49)

G P S  A n k iv u

ATM 2
X IM  \

l)2P

>1

GPS Antenna

D2P Rack
240.041 cm

n j 81.8 cm 
ATM3

Bomb Bay I 1 28 .5  CmCameras ATM 2

D2P Antenna

Cameras ATM2 ATM3
GPS Antenna

37.5 cm

461.0 cm D2P Antenna

1088.4 cm88.9 c n

Bomb Bay

centerline

Figure 5.19: Sensor layout in the P-3 aircraft, adapted from Raney and Leuschen 

(2003).

The processed radar data (APL) locates the return at the GPS antenna rather than at the 

D2P antenna. In order to compare results from the simulator to the processed data sets, 

the radar nadir was calculated using the information in figure 5.19.
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5.6.6) Locating the antenna boresight

The antenna is mounted as shown in figure 5.20. This means that the antenna boresight 

is not in line with the D2P nadir.

altitude j |

\*72.5 d egrees

y
 ,, I*....... >1 P2P nadir___________

/
centre o f antenna pattern

Figure 5.20: Shows the effect o f the 2.5° off pointing o f the D2P antenna (direction of 

flight coming out o f the page). For a nominal altitude o f 500 m the offset (y) o f the 

centre o f the antenna pattern from the D2P nadir is 21.8 m.

5.6.7) The pitch, roll and yaw of the aircraft

A change in pitch, roll or yaw will change the position o f the antenna boresight or the 

antenna pattern. Positive roll corresponds to the starboard wing pointing down, and 

shifts the boresight to the port side o f the antenna. Positive pitch corresponds to the 

aircraft nose up, and shifts the boresight forward o f the antenna. Positive yaw 

corresponds to a rotation to the right. A change in yaw would not shift the boresight, but 

it would rotate the antenna pattern around the boresight.
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Y a w

Yaw, the angle between the line o f flight and the direction that the aircraft is pointing 

in, is not given as a parameter in either the radar or laser data files. However, the 

heading, defined as the orientation o f the INS relative to true north, is given. To 

calculate the yaw we calculate the bearing between consecutive points, and subtract this 

value from the heading. Figure 5.21 shows the yaw values for both days of data.
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Figure 5.21: Yaw, in degrees, for all LaRA data.

The maximum yaw is -23°, figure 5.22 shows the rotation o f the antenna pattern caused 

by a yaw o f -23°. For comparison an antenna pattern with zero yaw is shown.
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Figure 5.22: a) Location of the antenna pattern for zero yaw, b) locations of the antenna

pattern for -23'3 yaw.
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Figure 5.23: Power return from individual beams over a flat surface with a yaw of 23°. 

When compared to figure 5.17, it can be seen that although the magnitude of the power 

is slightly different for each beam, the shapes of the returns are the same.
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Figure 5.23, when compared to figure 5.17, shows how the shift in the antenna pattern 

changes the magnitude of the power return but does not affect the shape of each beam 

significantly. As we are computing the shape of the return rather than the value of the 

power we do not need to include variations in yaw in the simulator.

Pitch and roll

Figure 5.24 shows the pitch and roll values from a section of track from the 20th. The 

values are typical over the whole data set.
4

Pitch
Roll

3

2

•2

■3

■4
17  18  19  2 0

Longitude (degrees)

Figure 5.24: Pitch (black) and roll (red) values for a section of track from the 20th.

The maximum pitch is approximately ±0.5°. At a nominal altitude of 500 m a pitch of 

0.5° will cause the antenna gain pattern to shift by 4.4 m in the along-track direction, 

which is greater than the along-track footprint. This alters the shape of the beams 

(figure 5.25) as m=0 is no longer located in the centre of the antenna gain pattern.
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Figure 5.25: Power return from individual beams over a flat surface with a pitch of 0.5°.

The maximum roll is approximately ±3.0°. Combined with the antenna mounting angle 

(-2.5°), the maximum offset of the antenna gain pattern in the across-track direction, at 

a nominal attitude of 500m, is 48 m. The effect on the power beams is shown in figure 

5.26.
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Figure 5.26: Power return from individual beams over a flat surface with a roll o f -3.0° 

and antenna mounting angle o f -2.5°. Note the change of x and y scales.
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Figure 5.26 shows that the magnitude of the power decreases and a lager amount of 

power is received later in time, when the aircraft experiences roll. These effects are due 

to the roll causing the centre of the antenna gain pattern to shift out of the 1st range ring. 

Therefore, returns received later in time are multiplied by a higher gain than those 

received earlier in time.

As pitch and roll affect the shape of the power returns they are both included in the 

simulator.

5.6.8) Approxim ating the power integral as a sum

The power integral (equation 5.29) can be approximated as a sum provided the surface 

area elements (facet), over which the sum is performed, are small enough. The 

simulator creates a surface grid from the laser altimeter data (described in section 

5.6.11). The grid is set up on a Cartesian coordinate system, with units of metres. For 

example, a 5 metre grid consists of elevation estimates every 5 meters in the x and y 

directions. An area element is defined by dividing a square of 4 points into two 

triangles, as illustrated in figure 5.27.
x

y

grid size (e.g. 5m)
elevation point

Figure 5.27: Surface grid and area element arrangement.

As the transmitted pulse expands over the surface the pulse annulus (see chapter 3, 

figure 3.2) decreases in width, if the facets cross over the edge of the annulus then an 

error is introduced into the power calculation. Figure 5.28 shows the power return 

(without G(6, (p) and fi(di)) for different grid sizes. A Gaussian power transmit envelope 

is used rather than a sine pulse for simplicity.
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Figure 5.28: The top plot shows the power return from 10 metre grid. The return 

becomes noisy in the trailing edge. A gradual reduction in the noise level is shown 

through the 5 metre, 4 metre and 2 metre plots. Measurements are taken with the same 

altitude, pulse lengths aircraft position and surface as for figures 5.23, 5.25 and 5.26.
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A grid size of 4 metres is used in the simulator. Although the 2 metre grid produces a 

slightly smoother return, using a 2 metre grid rather than a 4 metre grid does not effect 

our results, and the extra computing time require to run the simulator with a 2 metre 

grid is too large. Figure 5.26 shows power returns with the maximum roll offset, 

significant power is not received after 4.215 p,secs, the power return from a 4 meter grid 

is smooth after this time and therefore can be used in the simulator.

5.6.9) Sim ulator processing scheme
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Figure 5.29: The simulator processing scheme. Blue indicates processes performed on 

the input data, pink indicates processes performed for every radar point, yellow 

indicates processes performed for every beam, green for every facet and orange for each 

bin in the range window. The numbers refer to the section where the individual process 

is described.
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Filtered radar data (section 5.2.2) is read into the simulator, divided into sections to 

speed up processing time, and the corresponding laser data located. Sections 5.6.10 to 

5.6.17 describe the major processes in detail.

5.6.10) Rotating the data sets

The laser and radar data sets are transformed and rotated onto a Cartesian grid so that 

the flight line is at a constant y value. The input data consists of longitude and latitude 

of the GPS antenna (the correction for the location of the D2P antenna is applied later), 

and the longitude, latitude and elevation of the ATM3 laser points.

We use an oblique mercator projection and take our method from Snyder (1982). We 

use the spherical transform, rather than the more precise elliptical transform, to reduce 

computing time. The use of the spherical transform is justified as we transform a short 

section of track (0.2° longitude), therefore the maximum offset between a point 

transformed using the spherical transformation and a point transformed using the 

elliptical transformation is 0.04 m. Figure 5.30 shows a section of track transformed 

using the spherical transformation (top plot) and the elliptical transformation (bottom 

plot).

spherical transform

— 400

S 100

1000 2000 3000
elliptical transform
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Along track distanoe (m)
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Figure 5.30: Spherical transformation (top), and elliptical transformation (bottom). The 

black line is the aircraft nadir and the coloured area is the laser surface elevation 

measurement.
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The oblique mercator for a sphere can be pictured by wrapping a cylinder around a 

sphere so that it touches the surface along the great circle path chosen as the central line. 

We use our flight line as the great circle path. Equations 5.50 to 5.55 give the 

transformation:

Take two points that lie upon the central line, with latitudes and longitudes (fa,ki) and 

(02, A2) and longitude increasing easterly. The location o f the pole o f the transformation 

((pp,Ap) is calculated by:

Xp = ta n -1 [(cos  fa sin 0 2 cos  ^1 ~  sin fa co s  02  cos  ^ 2 ) /

(s in  fa co s  0 2 sin A2 -  cos  fa sin 0 2 sin k x)]

<;pp = tan_1[ - c o s ( A p -  A1) / t a n 0 1] (5.51)

For any point with latitude and longitude (4>,X), its x and y  position is given by:

x = 7?tan- 1 { [ t a n 0 c o s 0 p + sin (pp sin(A -  A0 )] /co s (A  -  A0)}  (5.52)

^ = ^ / n [ ( l  +  A ) / ( l - A ) ]  (5.53)

where R is the polar radius and A  and A0 are given by:

A = sin (j)p sin 0  -  cos  (j)p cos  0  sin(A -  A0 ) (5.54)

A0 = K p + y 2 (5.55)

[Snyder, 1982]

Figure 5.31 shows a section o f data in its original latitude/longitude coordinates and 

then in its Cartesian coordinates after it has been transformed and rotated. The black 

line is the location o f the GPS antenna nadir and the coloured points are surface 

elevation estimates from ATM3.
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Figure 5.31: ATM3 elevation estimates (coloured surface) and GPS antenna nadir 

locations (black line). The top plot shows the data in its original coordinate system. The 

bottom plot shows the data after it has been rotated and transformed into a Cartesian 

coordinate system.

5.6.11) The surface grid

The surface grid was created from the ATM3 laser data as follows. Section 5.1.2 

describes how differences in elevation occur in the fore and aft scans, at co-located 

points. This problem is resolved when the surface grid is created. Once the data has 

been transformed and rotated (section 5.6.10), it is separated into fore and aft scans. 

Two grids are then created, one using the elevation estimates from the fore scan and one 

using the elevation estimates from the aft scan. The grid is 4000 meters by 600 meters 

and has points every four metres (section 5.6.8). A Gaussian function is used to smooth

1000 2000 3000

Along track distanoe (m)

26.5 27.0 27.5 28.0 28.5
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the data to each grid point. The two grids are then averaged only at points where there is 

data from both fore and aft scans. Figure 5.32 shows the same data as figures 5.30 and

5.31 after it has been separated into fore and aft scans and smoothed. In figures 5.30 and

5.31 evidence of the scan pattern can be seen. In figure 5.32 this effect is no longer 

apparent.
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Figure 5.32: ATM3 elevation estimates (coloured surface) and GPS antenna nadir 

locations (black line) after the data has been transformed and rotated and the ATM data 

have been smoothed. Black areas within the surface are locations where data from both 

fore and aft scans is not available.

5.6.12) The coordinate system

In this section we describe the simulator coordinate system and how the radar and 

surface are located within it. The coordinate system is illustrated in figure 5.33. We 

already have a surface grid and the location of the GPS nadir in Cartesian coordinates. 

We also have the altitude of the aircraft for each of the GPS points. The altitude of the 

aircraft and the surface elevation are both given as elevations above the reference 

ellipsoid, therefore z=0 in the coordinate system corresponds to the reference ellipsoid.
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Figure 5.33: Simulator coordinate system.

To locate the D2P antenna we add the offset (figure 5.19) between the GPS and the D2P 

antennas. This addition is simple as the offset is given in metres and the GPS antenna 

position has been transformed into metres. The location of the antenna is shown by 

vector D2P and the antenna nadir is shown by vector D2P_n (figure 5.33). Next we 

locate the antenna boresight. The pitch will change the location of the boresight in the x 

direction and the roll and antenna mounting angle will change the location of the 

boresight in the y direction. Vector D2P_b shows the location of the antenna boresight. 

Each facet is created from three points (located by r l ,  r2, and r3) on the surface grid 

(figure 5.27). Using vector calculus we calculate the location of the centre of the facet 

from r l ,  r2 and r3. The centre of the facet is shown by vector Facet (figure 5.33). Next 

we calculate the vector between the D2P antenna and the facet (vector D2P_f). As the 

D2P and Facet are both located from the origin of the coordinate system we can use 

vector calculus again to calculate D2P_f. The antenna gain is a function of 0 and (j). 0 is 

the angle between D2P_b and D2P_f and can be calculated from vector calculus. The 

method used to calculate (j) is shown in figure 5.34:
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Figure 5.34: (j) calculation.

a) calculate the vector (b_f) between the boresight (D2P_b) and the facet 

(D2P_f) using by subtracting D2P_b from D2P_f.

b) Project b_f onto the xy coordinate system (e.g. b_f.z = 0.0) to make the 

vector b_fn and find its angle (<{>) with the x axis.

P is a function of 0i. 0i only changes in the along-track direction (x axis). Therefore, to 

calculate it, we take the D2P_n and set the y coordinate to zero and take the D2P_f and 

set the y coordinate to zero then calculate the angle between the modified vectors. The 

final angle we calculate is the angle for the polar response (Qpr). As we have used 

triangular facets we can compute the vector normal to the facet and then find the angle 

between it and D2P f.
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5.6.13) Timing the range window

The simulator is designed to create a range window and sample the power with the 

same timing as the D2P. In the APL processed radar data sets, each pulse has a 

reference number (ref), which gives the elevation o f the centre of the waveform above 

the reference ellipsoid. Using this number and the sampling interval (Si) we calculate 

the timing of the range window.

First we calculate the distance (in metres) to the arrival o f the centre of the range 

window at the D2P:

dc = 2(D 2P.z -  (ref x Si)) (5.56)

where 57=0.208189 metres and D2P.z is the altitude o f the D2P antenna.

We next calculate the distance to the start o f the range window:

ds = dc -  (len x  Si) (5.57)

where len is the number o f bins in the range window.

We then convert to time by dividing by the speed o f light (c). The first power value is 

recorded at time ds/c.

5.6.14) Sampling the power echo

In chapter 3, section 3.3.2 we described how the D2P samples the return waveform and 

the subsequent processing. The received signal is sampled every 6 nseconds, after pulse 

compression the sampling interval is equal to 1/AF (section 3.1.6). Before the range 

FFT is performed the waveform is zero padded by a factor of two. This means that the 

sampling interval after the FFT is 1/2AF. Therefore we also sample the power return at 

1/2AF.
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5.6.15) The polar response

The variable pitch and roll can cause the centre of the antenna gain pattern to shift away 

from the D2P nadir and out of the early range rings. This means that, in the simulator, 

we receive larger amounts of power at later times in the range window. This situation is 

unrealistic over a smooth ice surface. In reality, as we moved away from the antenna 

nadir, and the pulse intersected the facets at angles decreasing from 90°, we would 

expect to see less energy returned despite the shifted gain pattern. Over a rough ice 

surface the situation could change depending on the orientation of the facets. If the 

facets were orientated in such a way as to direct energy back toward the antenna then 

we would expect larger power returns later in time and visa versa. Figures 5.35 to 5.38 

show an example of a power return over a rough section of ice, with a pitch o f -0.208° 

and roll -1.18° (N.B. there is also an antenna mounting angle of -2.5° that is added to 

the roll angle and offsets the centre of the gain pattern in the y direction). Figure 5.35 

shows the surface and the D2P nadir (black square). The elevation of the surface varies 

by three meters.

400

c* 300

200  -

toTD
.x:oCOi—
CO
COo
g 100

100 200 300 400
along track distance (m)

Im— —  i  surface elevation (m)
26 27 28 29

Figure 5.35: Section of the data centred on 81.34° latitude and 20.94° longitude. The 

black square in the centre of the figure, is the D2P nadir, and elevations are with respect 

to the reference ellipsoid.
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Figure 5.36 shows the off set of the gain pattern due to -0.208° in pitch (-5.69 m in the 

x direction from the nadir location) and the offset due to the roll (-1.18°) and the 

antenna mounting angle (-2.5°) in the y direction (62.74 m from the nadir location).
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= = = = =  antenna gain
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Figure 5.36: The antenna gain pattern shifted from the nadir of the D2P (black square) 

because of the pitch, roll and antenna mounting angles.

Figure 5.37 shows the real echo returned from the surface (blue) and the simulated echo 

(red). No polar response has been included in the calculation. The simulated echo 

initially has the same form as the real echo but peaks much later in time (increasing bin 

number corresponds to increasing time i.e. distance from the D2P nadir). This is 

because as we move further away from the nadir the gain increases making the power 

received later in time greater than the power received earlier in time. This effect is 

mitigated in the real echo as the polar response decreases (in general) as we move away 

from the nadir.
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Figure 5.37: Real D2P echo (blue) and simulated echo with no polar response (red).

It is clear that we need to model the polar response in the simulator to approximate the 

shape of the real echoes. To achieve this we calculate the angle between the normal to 

the facet and the D2P antenna (0pr) and set a polar response angle (<j)pr), which governs 

the rate of decrease o f the polar response (Pr), i.e. as we move further away from the 

D2P nadir, 0pr increases and Pr decreases. Pr is given by equation 5.58:

e \ 2
pr

Pr = e (5.58)

Figure 5.38 shows the real echo and three simulated echoes, each with a different polar 

response angle.
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Figure 5.38: Real echo (dark blue) and simulated echoes with varied polar response 

angles. <J>pr=1.5° for the pink echo, 5° for the orange echo and 8° for the light blue echo.

The echoes with <j>pr=1.5° and 5° approximate the shape of the real echo better than 

<j)pr=8°, both peaks are in line, and both have smaller second peaks. The position of the 

second peak for <t>pr=5° is in line with the real echoes second peak where the second 

peak for <j)pr=1.50 occurs too early. (j>pr=8° bears a close resemblance to the simulated 

echo with no polar response, with its second peak larger than its first. We do not know 

the exact polar response of each surface reflector so recreating the real echo perfectly is 

not possible in this context. We have chosen a polar response angle of 5° for our 

simulator as this angle will allow the simulator to create both typical and non-typical 

echoes.

5.6.16) Re-sampling the echoes

As described in figure 5.17, the simulator produces m power arrays. These power arrays 

are summed to produce the total power array for the radar point. However, due to the 

curvature correction, each of the m power array bins occurs at a slightly different time.
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We have to re-sample the power arrays at the same time, so we can sum the power 

contribution at each bin to produce the total power array.

We take our method from Porat (1997). To re-sample the power array we use 

Shannon’s Reconstruction Theorem, which states that for a function x(t) can be 

represented by its periodic samples x(nTs), where n is the sample number and Ts is the 

sampling interval:

+00

x(f) = 2, *(«r,)sinc
t - n T ^

\ Ts /
(5.59)

If  we consider a point in time that coincides with a sample point, say t=noTs then:

and

sine

+00

fn0Ts -n T s x

Ts )
= 8\n -  «o ] (5.60)

^x^T^sinc ' t ~ n T s '

Ts /
= x(nT ) (5.61)

If  we now chose a point t located between noTs and (no+l)Ts then none of the values in 

the sine function will be zero, but the points closer to noTs will contribute more to the 

sum than the points father from noTs, since sine is a decaying function.

However, in equations 5.59 to 5.61 the sine function must be computed between minus 

infinity and infinity and therefore cannot be used in its current form. To overcome this 

problem we use a windowed sine function, i.e. we multiply the sine function with a 

function that is zero outside some extent. There are many functions that exist to this 

purpose (see Poularikas (1999), for examples), after trying different windows we found 

that the results were the same, and chose to use a cos window as it was simple to 

compute. Figure 5.39 shows an example o f a return from m=4, re-sampled at the times 

from m=0.
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Figure 5.39: Example of a re-sampled power return. Plot shows the power return at m=0 

(blue), lines between points are draw for ease of viewing. The red points show the 

original power return from m=4 and the green points show the re-sampled m=4 at the 

m=0 times.

5.6.17) The final simulated power echo

Once the power contributions from all 16 beams have been summed the total power 

echo is printed to an output file. Figure 5.40 shows an example of a power echo over a 

flat surface with no pitch and roll or antenna mounting angle. The re-track point is also 

shown (red line), and lies between the half power point and the peak.
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Figure 5.40: Total power return over a flat surface, with no pitch and roll and no 

antenna mounting angle. The red line shows the re-track point.

5.6.18) Com paring the real and simulated echoes

In sections 5.5 and 5.6 we explained that our method to compare the simulated echoes 

would involve comparing the echo shape across the whole range window, and 

calculating the offset between the simulated and real power returns. An offset in the 

position of the real and simulated echoes, corresponds to an offset in time, which 

corresponds to an offset in range (i.e. an offset means that the power returns are coming 

from different surfaces). Figure 5.41 shows the echo comparison processing scheme.
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Figure 5.41: The echo comparison processing scheme.

The echoes are compared by calculating their correlation coefficient (cc), which is given 

by equations 5.62 and 5.63. [Bevington & Robinson, 1992]

cc =
cov(x,y)

O x O y
(5.62)

where x is the real echo array, y  is the simulated echo array, cov(x,y) is the covariance of 

x  and y, and a x and a y are the standard deviations of x andy. cov(x,y) is given by:
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Y i=n
c o v  = - y  (x ; -  x)(yt -  y) (5.63)

n M

where x  and y  are the mean values of x and y.

For each pair o f echoes, the power values from the real echo are shifted bin by bin, 

between -2  bins and 8 bins. At each shift the correlation coefficient between the real 

and simulated echoes is calculated. When all the integer bin shifts have been completed, 

the highest and second highest correlation coefficients (bin2) are found. The bin shift 

pertaining to the second highest correlation coefficient provides the starting point for 

the factional bin shifts. The power values in each array are re-sampled at a frequency 40 

times higher than the original sampling frequency (i.e. samples are taken every 0.005 m 

in range). The real array is repositioned at the bin2 shift. It is then shifted along each of 

the newly sampled points, and the correlation coefficient calculated at each shift. The 

highest correlation coefficient marks the point where the two echoes match the best. 

The value o f the highest correlation coefficient and at which shift it occurs are printed 

to the output file and the process is repeated for the next echo.

5.6.19) Calibrating the simulator

In section 5.6.18 we described how the simulated echoes are compared to the real 

echoes. For this method to provide an accurate estimate of the difference in elevation 

between the laser surface and the surface measured by the radar over sea ice, the 

position of the echoes in the range window must match when the radar and the laser are 

measuring the same surface. As we described in chapter 3, section 3.3.10, only one 

calibration flight simultaneously collected ATM3 and D2P data over the Wallops 

runway, therefore we use these data sets to determine the bias between the real and 

simulated data. The calibration data was processed as any data over sea ice would be 

processed with the exception that we repeated the simulation ten times, varying the 

value o f the polar response angle ((ppr) between 0.5° and 5°. The variation of (j)pr was 

performed to investigate firstly, what polar response best fitted the calibration data and 

secondly, what affect an incorrect value of (ppr had on the correlation coefficient, and the 

offset between echoes. Figure 5.42 shows an example o f a real echo (black) from the 

calibration data set and simulated echoes calculated from different values of (j)pr.
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Figure 5.42: Calibration data. Real echo (black) simulated echoes (colours) for varying 

polar responses.

Figure 5.43 shows the average correlation coefficient (equation 5.62) between the real 

and simulated echoes for varying (ppr.
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Figure 5.43: Average correlation coefficient between the real and simulated calibration 

echoes, for varying (ppr.
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Figure 5.44 shows the average offset in meters between the real and the simulated 

calibration echoes, for varying (ppr.
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Figure 5.44: Average offset between the real and simulated calibration echoes, for 

varying <ppr.

0pr=1.75° provides the highest correlation coefficient and was found by fitting a 6th 

order polynomial to the data in figure 5.43, and finding the maximum of the curve. We 

use 0^=1.75° to calculate the bias between the real and the simulated echoes. For 

(f)pr—\ .75°, the offset is -0.087 m, therefore 0.087 m is added to offset between the real 

and simulated echoes over sea ice. As (f)pr=5.0 (section 5.6.15) will not provide the most 

realistic value o f (ppr for all o f the sea ice data, we will only include echoes where the 

correlation coefficient is above 0.95 in our analysis. To estimate the maximum error on 

the elevation difference calculated from echoes with a 0.95 or above correlation 

coefficient we calculate the values o f (j)pr for which the correlation coefficient equals 

0.95, and use these values o f $pr to estimate the offset error from figure 5.44. The 

correlation coefficient is equal to 0.95 at (ppr = 1.01° and 2.58° . The offset for = 

1.01°is -0.025 and for (f)pr = 2.58° is -0.133 meters. Therefore the error on the difference 

estimate for a single echo is ± 0.06 m.
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5.6.20) The effect of speckle

The D2P power echo is the result o f the summation of many returns from single 

scatterers. As scatterers are located at different positions on the surface and the D2P 

receiver is moving, the phase o f the return from each scatterer will be different causing 

the received signal to change with time. This fluctuation in the received signal is known 

as fading or speckle [Franceschetti & Lanari, 1999]. Speckle reduces with increased 

averaging. In section 5.6.3 we described how each point on the ground is seen by 16 

coherent echoes, comprising a burst, and that the velocity o f the aircraft means that each 

point can be seen by 25 consecutive bursts. Therefore the mean D2P power echo, for 

each point, is formed from 400 looks. Following Laxon and Rapley (1987), the power 

from a single bin o f a 400 pulse sum return waveform, v ^ qO), will be Gaussian 

distributed with a variance given by:

2, V(i)2
CT2 (V400 (1)) = ^ -  (5.64)

where V(i) is the mean power of the bin.

To simulate speckle on the simulated waveforms we calculate a random error with a 

Gaussian distribution in accordance with equation 5.64, and add this error to each 

power estimate. Figures 5.45 and 5.46 show Z-scope plots of (a) the real D2P data, (b) 

the simulated data without speckle and (c) the simulated data with speckle. Figure 5.45 

shows a long section o f track with varying surface types and figure 5.46 shows a short 

section of track over smooth ice with typical returns. We show two sections of track to 

examine whether adding speckle over a smooth surface with typical echoes has a greater 

effect than adding speckle over a variable surface.
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Figure 5.45: Z-scope plots over a long section of track with variable surface types.(a) 

shows the real D2P data, (b) shows the simulated data without speckle and (c) shows 

the simulated data with speckle.
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Figure 5.46: Z-scope plots over a smooth section of track, consisting of mainly typical 

echoes.(a) shows the real D2P data, (b) shows the simulated data without speckle and 

(c) shows the simulated data with speckle.
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Figures 5.45 and 5.46 show that although adding speckle makes a slight difference to 

the simulated return it does not produce the variability seen in the real data. To estimate 

the effect o f speckle on the cross correlation of the data sets, we correlate the simulated 

echo with the simulated echo with added speckle. Figure 5.47 shows histograms of the 

offset between simulated echoes with and without speckle.
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Figure 5.47: Histogram of the difference in offset in the range window between 

simulated echoes with out speckle and simulated echoes with speckle, a) shows data 

from figure 5.45 and b) shows data from figure 5.46.

Figure 5.47 shows the variability (i.e. the standard deviation of the histograms) in the 

offset caused by speckle is approximately 0.01 m. Therefore we add 0.01 m to our error 

estimate o f ± 0.06 m.
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5.7) Summary

Overview

• In this chapter we have described two new methods for analysing the data 

collected during the LaRA field campaign. The first method was a new re

tracking algorithm (the UCL D2P re-tracking algorithm) based on the typical 

shape o f a D2P return. The second method was a radar simulator (the UCL D2P 

simulator), which provided a new method to compare two coincident data sets 

collected by different instruments.

In-detail

• We have assessed the accuracy o f the ATM3 laser altimetry data set and found 

differences in the fore and aft scans due to errors in the INS value of pitch. We 

have corrected these errors by creating a surface grid from the ATM3 data with 

gird point elevations consisting of elevation estimates from both the fore and aft 

scans.

• We have designed a new re-tracking function for typical D2P echoes. We have 

described the re-tracking algorithm processing scheme. We have calibrated the 

re-tracker over a known surface and estimated an error of ± 2.4 cm when 

comparing re-tracked radar elevation estimates to ATM3 laser elevation 

estimates, averaged over the D2P footprint.

• We have discussed the limitations of the re-tracker: 1) The unknown re-track 

point and 2) the assumption that all echoes conform to the shape of a typical 

echo. We have described how the UCL D2P simulator overcomes both of these 

limitations by 1) comparing the full simulated echo shape to the full real echo 

shape and using the offset between them in the range window to estimate the 

difference in elevation between the laser/snow surface and the surface the radar 

ranges to, and 2) by including pitch and roll, and by simulating echoes over a 

real surface, the simulator creates both typical and non-typical echoes.

• We have designed a power simulator to calculate a D2P echo from a surface 

constructed from the laser data. We have described the simulator processing
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scheme and the components o f the power simulator in detail. We have described 

a method to compare the elevation difference between the real and simulated 

echoes by computing their offset in the range window. We have calibrated the 

simulator. We have assessed the effect o f having a constant polar response angle 

for all facets on the offset between the real and simulated echoes. We have 

estimated an error on the offset of ± 0.06 m. We have assessed the effect of 

speckle on the offset and found that it introduced an additional 0.01 m to our 

error estimate, therefore the total error estimate on the offset is ± 0.07 m.
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6) Comparison of simulated and observ ed radar echoes over sea ice

6.0) Introduction

In this chapter we take 6 example sections, and discuss how well the simulator 

reproduces the real data, and where the simulator fails to reproduce the real data. We 

look at how the real and simulated data change when the aircraft experiences large 

amounts o f pitch and roll. We examine the offset in the range window between the real 

and simulated returns. The offset will indicate if the radar and the laser are measuring 

different surfaces (chapter 5,sections 5.6.18 and 5.6.19). We calculate the correlation 

coefficient between the offset and the aircraft parameters of pitch, roll and altitude to 

examine whether the offset is due to the simulator not modelling the effects of these 

parameters correctly. Finally we look for drifts in the calibration of the radar data (recall 

the D2P was calibrated once over a runway, 17 days before the LaRA flights).

6.1) Location of comparison areas
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Figure 6.1: Location of study areas.
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Due to the large number o f data points we have chosen to show sections of the track 

over different ice regimes, from both days o f data collection, rather than the whole data 

set. Figure 6.1 shows the location o f each of our study areas.

For each area we show Z-scope plots o f the normalised power for the real and simulated 

data. The top axis o f the Z-scope shows the location o f the data in longitude and along 

track distance (m). The side axis shows the bin number. The bin number has been 

adjusted according to the r e f  value, given for each data point. The adjustment is the 

same for the real and simulated data and means that all the range windows line up. 

Power at a higher bin number corresponds to a lower elevation with respect to the 

reference ellipsoid. Each bin corresponds to 0.208189 m in elevation. For areas 1,3,4,5 

and 6 we show the offset between the real and the simulated data. A positive offset 

means that the simulator is measuring a higher surface (with respect to the reference 

ellipsoid) than the radar i.e. the laser is reflecting from a higher surface than the radar. 

Only offsets with a correction coefficient o f 0.95 or greater are shown (see section 

5.6.19, chapter 5). The calibration offset o f 0.087 m has been added, the offsets have 

not been smoothed and adjacent offsets are connected by a straight line.

6.2) Area 1

Area 1 is a slightly extended section o f the smooth ice shown in chapter 5, figure 5.4. 

Figure 6.2 shows zscope plots o f (a) the D2P data, (b) the simulated data and (c) the 

offset between the simulated and real echo and d) digital imagery of the ice over which 

the measurements were taken.
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Figure 6.2: Z-scope plots a) from the D2P and b) from the simulator, c) shows the offset 

between the real and simulated echoes, d) is the digital imagery of the ice over which 

the measurements were taken. The black line shows the flight path. The imagery has 

been stretched in the along track direction and cropped in the across track direction.
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Comparing the real data (a) and the simulated data (b), we see a faint purple line 

extending across the plot at bin 109 in the real data but not in the simulated data. This 

line is an artefact o f the radar (chapter 5, figure 5.6) rather than a return from the 

surface, therefore the simulator does not recreate it. Looking at the return, the peak of 

the return occurs in the same bin for the real and simulated data, which implies they are 

measuring the same surface. In fact this may not be correct, elevation difference 

inferred from the Z-scope plots is quantised at the bin width of 0.208 m, therefore there 

could be an elevation difference between the simulated data and the real data of up to

0.208 m. This is why we must either retrack the data or correlate the two echoes at a 

higher sampling frequency than the D2Ps sampling frequency of 0.208 m, and then 

compare the difference between the two. It is also noticeable that the leading edge of the 

simulated data is narrower and the trailing edge wider than the real data by one bin. The 

wider trailing edge can be explained by the polar response angle. We applied a polar 

response angle o f five degrees to all our data (see chapter 5, section 5.6.15), we chose 

this value as it would allow us to create echoes over both smooth and rough surfaces, 

and to recreate the effects o f roll on the return (i.e. if  the polar response angle were 

smaller then we would not get a high return from off nadir locations when the aircraft 

underwent roll). The trailing edge is too wide over this section of data as the polar 

response angle is too large over the section. Figure 6.3 shows profiles of a real and 

simulated echoes. The re-sampled (bottom) plot on figure 6.3 shows that although the 

leading edge simulated echo is slightly narrower that the real echo, the difference is 

very small.

The final feature to note in figure 6.2 is the change on the right hand side of the 

simulated data from a smooth surface to a rougher surface. The change corresponds to 

the area in the photograph where the smooth snow changes to rougher snow. The real 

data does not show this. The change in the simulated data is consistent with the depth of 

the snow increasing over this section (measured by the laser) and the radar continuing to 

measure the ice underneath. However, without in-situ snow depth measurements, it is 

not possible to confirm this.
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Figure 6.3: A real (red) and simulated (blue) echo positioned at 18.316° longitude. The 

top plot shows the data point at each range bin and the bottom plot shows the re-sample 

echoes sampled 40 times per bin.
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6.3) Area 2

We have chosen area 2 to show an example of how the real data and the simulated data 

behave when we have large variations in the aircraft parameters of pitch, roll and 

altitude.

Figure 6.4 a) and b) shows that the simulator recreates the effect of a large change in the 

pitch, roll and altitude. The trailing edge of the simulated data is too narrow in this case. 

This is because the polar response angle is too small over this section of track. 

However, the main shape o f the return echo and the variability in its shape and position 

on the range window is simulated well.

Where the aircraft experiences large values of pitch and roll the centre of the antenna 

gain pattern is shifted away from the nadir position and out of the first pulse ring. For 

example: At longitude 14.85° the aircraft roll is -14°, with the antenna mounting angle 

of -2.5°, the offset o f the centre o f the antenna pattern is 183 m to the starboard side of 

the nadir position. The antenna gain pattern tends to zero at approximately 60 m from 

its centre (see chapter 5, figure 5.16), so this means that the power returned from facets 

at nadir is negligible compared to the power returned from facets located at the centre of 

the shifted gain pattern. The travel time for the power from facets at the centre of the 

gain pattern is longer than the travel time from facets at nadir, therefore the main return 

occurs at a higher bin compared to the data that is not subjected to large roll values.
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Figure 6.4: Z-scope plots show the normalised power a) from the D2P and b) from the 

simulator, c) shows the pitch of the aircraft d) shows the roll of the aircraft and e) show 

the altitude of the aircraft.
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We would expect some differences in the shape of the real and simulated echo due to 

the position of the laser data relative to the aircraft nadir during large variations of the 

roll. When the aircraft experiences positive/negative roll the instruments see the surface 

to the port/starboard side of the aircraft rather than being centred on nadir. Figure 6.5 

shows the nadir position of the aircraft (black line) and the laser surface elevation 

estimates (coloured points), for the section of track shown in figure 6.4.

flight direction

14.2* 14.4* 14 6 *  14 8* 15* 15.2* 1 5 4 *

Longitude (degrees)

Figure 6.5: Laser elevations and aircraft nadir position for section of track shown in 

figure 6.4.

Figure 6.5 shows that, at 14.85° longitude, the laser data is almost entirely to the 

starboard side of the aircraft. In reality the D2P will record returns from both the port 

and starboard side of the aircraft but as we do not have surface data (laser data) to the 

port side of the aircraft we cannot simulate the return from this part of the surface. 

Therefore we would not expect the simulated and real return to be exactly the same. 

This issue illustrates a limitation of the simulator: we cannot simulate an echo 

realistically in an area where we have insufficient laser data.

The variation in pitch is much smaller than the variation in roll over this section (± 1 ° 

compared with ± 16°). ± 1° will shift the centre of the antenna pattern fore or aft of the 

nadir position by only 10.5 m. This will alter the shape of the return from individual 

beams (see chapter 5, figure 5.25), and can be easily simulated. The change in altitude 

will cause the timing of the range window to shift. The simulator is designed to create a 

range window and sample the power with the same timing as the D2P (chapter 5, 

section 5.6.13), therefore the simulator is able to re-create the effect of changes in 

altitude on the return echo.
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In chapter 5, section 5.2.2, we described how the D2P data was filtered. From the 

evidence presented above it is clear that we should also remove data where we have 

large values o f roll. Figure 6.6 shows a histogram of the roll values for the two LaRA 

flight days.
3200

3000 -

2800

2600

2400

2200  - 

^  2000  - 

5  1800 

q - 1600
ai
■ 1400

1200

1000

800

600

400

200

■20 -15 -10 -5 0 5 10 15 20

roll (degrees)

Figure 6.6: Histogram o f roll values from the two days o f LaRA flights.

Based on figures 6.4 and 6.6 we have decided to remove data points with a roll greater 

than ± 5°.

6.4) Area 3

Area 3 is a long, continuous section o f ice only broken by one lead. We chose this 

section to look at the offset between the real and the simulated echoes and to see if the 

offset was related to the aircraft parameters of pitch, roll and altitude. The purpose of 

this comparison was to check that the offset between the real and simulated data was 

not simply due to the simulator incorrectly modelling the effects of these parameters. 

Figure 6.7 shows the Z-scope plots of the real and simulated data and the offset between 

the real and simulated echoes. Figure 6.8 shows two examples o f the digital imagery 

over area 3. Image 1 is typical o f the whole section and image 2 shows the only lead of 

the section. Their locations are shown in figure 6.7 on the lower x-axis in b).
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Figure 6.7: Z-scope plots show the normalised power from a) the D2P and b) the 

simulator. Lines on the bottom x-axis mark the locations of the digital imagery shown
t

in figure 6.8. c) shows the offset between the real and simulated data.
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im age 1 im age 2

Figure 6.8: Digital imagery. Image 1 shows a typical view of the snow/ice (355.87° 

longitude). Image 2 shows the one lead (356.49° longitude) of the section. Locations of 

the images are shown in figure 6.7.

Comparing figure 6.7 a) and b), the simulator reproduces the change in position of the 

peak bin over the section. It is noticeable that the real data (a) is more variable than the 

simulated data (b), we attribute this variability to a fluctuating polar response over the 

surface which is not modelled in the simulator.

Figure 6.9 shows the offset between the real and simulated echoes vs. a) roll, b) pitch 

and c) altitude. There is no significant correlation between the offset and the aircraft 

parameters. We repeat this experiment with data from the 23rd ,in a different area, in 

section 6.5
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Figure 6.9: The offset vs. a) roll, b) pitch and c) altitude. The correlation coefficient for 

a) is -0.10974, b) -0.013954 and c) -0.057493.
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6.5) Area 4
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Figure 6.10: Z-scope plots show the normalised power from a) the D2P and b) the 

simulator. Lines on the bottom x-axis mark the locations of the digital imagery shown 

in figure 6.11. c) shows the offset between the real and simulated data.
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Area 4 is situated to the north of Greenland and is a long, continuous section of ice 

broken only by two leads (located at 322.58° longitude and 333.32° longitude).

im age 1 im age 2

Figure 6.11: Digital imagery. Image 1 shows the lead positioned at 322.58° longitude. 

Image 2 shows a typical view of the snow/ice (333.98° longitude). The location of the 

imagery is shown in figure 6.10 b) on the lower x-axis.

Figure 6.12 shows that, again, we see no significant correlation between the offset and 

the aircraft parameters.
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Figure 6.12: The offset vs. a) roll, b) pitch and c) altitude. The correlation coefficient 

for a) is -0.170826, b) 0.119072 and c) 0.001077.
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6.6) Area 5

Figure 6.13 shows a section of track over a mixed surface regime, consisting of snow 

covered ice and bare ice.
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Figure 6.13: Z-scope plots show the normalised power a) from the D2P and b) from the 

simulator, c) shows the digital imagery of the ice over which the data shown in a) and b) 

were collected. The imagery is shown in clearer detail in figure 6.14.
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Figure 6 .14 : Photographs over area 5 divided into a) snow covered ice, b) thin ice and 
c) mixed thin and snow covered ice. The longitudes locate the centre o f each photograph.



Section a), figure 6.14 shows snow covered ice between 17.7° longitude and 17.5° 

longitude. The Z-scope plots from this section show both variable position of the peak 

bin in the range window, indicating a rough surface and constant position of the peak 

bin in the range window, indicating a smooth surface. Careful inspection of the 

photographs in section a) shows a variable surface but it is difficult to see the roughness 

o f the surface and to tie it to the Z-scope plots.

Section b), figure 6.14 shows thin, snow free, ice between 17.5° longitude and 17.29° 

longitude. Across this section the position of the peak in both the Z-scope plots is 

constant, indicating a smooth surface

Section c), figure 6.14 shows a mixture of thin ice and snow covered ice. Comparison 

with the Z-scope plots shows that, as before, the peak o f the return over the snow 

covered ice changes position in the range window and is at a constant position over the 

thin ice.

Figure 6.15 shows the offset between the real and the simulated data, a) shows the 

offset and b) shows the digital imagery over the section.

From figure 6.15 we see that the laser surface appears to be lower than the surface 

measured by the D2P over the thin ice. In reality we would expect both the laser and the 

radar to measure the top o f the thin ice and therefore the offset between them to be zero 

over this section. There are two possible reasons for this offset:

1. The polar response angle o f five degrees is too wide for the returns over thin ice 

and this effects the estimate of the offset between the real and simulated data.

2. The calibration o f the radar has drifted in the 17 days between the calibration 

flights at Wallops and the LaRA flights in the Arctic.
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Figure 6.15: Offset between the simulated and the real data. A positive offset means that 

the surface measured by the simulator (i.e. the laser surface elevation map) is higher 

than the surface measured by the D2P. a) shows the offset, b) shows the digital imagery.

To test 1. we took the thin ice section and simulated the returns, changing the polar 

response angle (far) to find the most appropriate value. We then calculate the offset 

between the simulated and real data, for each polar response angle.

As in chapter 5, section 5.6.19, we found the highest correlation coefficient by fitting a 

sixth order polynomial to the plot of (ppr vs. correlation coefficient. We use the same 

method here and find that a polar response angle (<ppr) of 2.82° provides the highest 

correlation coefficient. ^.=2.82° corresponds to an offset of -0.171 m. This means that 

the average offset between the simulated and the real data, over the thin ice is -0.171 m. 

It is important to note that the offsets shown in figure 6.15 have had the calibration 

offset of 0.087 m added to them and therefore, when we include the calibration offset, 

the average offset over the thin ice is approximately -0.084 m. Using (f)pr=5°, we get an
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offset o f -0.207 m, therefore only 0.036 m (from -0.171— 0.207) of the difference 

between the real and the simulated data, over the thin ice can be explained by the use of 

a greater polar response angle. 0.036 m is well within our error estimate of ± 0.06 m 

calculated in chapter 5, section 5.6.19. Therefore we have 0.048 m of offset 

unaccounted for. Area 6, described in section 6.7, shows another example of 

measurements over thin ice.

6.7) Area 6

Figure 6.16 shows two zscope plots of real data at the same longitude, a) shows the out 

bound pass and b) shows the return pass.

Figure 6.16 shows that although the outbound and return pass were separated by 2 

hours, features in the Z-scope plot from the outbound pass are also seen in the Z-scope 

plots for the return pass. In particular, the flat section between 17.5° and 17.7° longitude 

in a) can be seen between 17.4° and 17.6° longitude in b). Figure 6.17 shows the digital 

imagery over this section from the outbound pass a) and the return pass b).
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Figure 6.16: Z-scope plots of the normalised power from the D2P at the same longitude, 

a) shows the outbound pass and b) show the return pass. The two passes are separated 

by 2 hours.
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a) Flight direction

17.551 17.591 17.630
17.472 17.512

b) Flight direction

17.536 17.575 17.613

Figure 6.17: digital imagery over flat section of ice a) shows the outbound flight and b) 

shows the return flight. The longitude is given for the centre of each photograph.

Unfortunately, cloud cover obscured the photographs over much of the return pass and 

meant that laser data was only collected over a short section of the thin ice. Comparison 

of 6.17 a) and b) tells us that the return flight did not pass over exactly the same ice and 

the outbound flight, but due to the similar patterns on the ice from both passes and to 

the similar shape of the edge of the thin ice (seen in the far right imagery), we believe 

that we a seeing the same area of ice in both passes. The black line in b) marks the 

section of track over which we have data from the return pass. In order to compare data 

from the two passes we selected a section of track from the outbound pass that was the 

same distance away from the thin ice edge as the section of track from the return pass. 

The section is marked by the black line in a).

Figure 6.18 shows the offset for a) the outbound pass and b) the return pass. Comparing 

figure 6.18 with 6.15, the offset in all three cases over thin ice is negative and in most 

cases is between -0.10 m and -0.20 m. To check the effect of an incorrect polar response 

angle we repeat the experiment described in section 6.6 over the outbound pass. We use 

the outbound pass as it contains more data and we can extend the study area over the 

whole section of thin ice.
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Figure 6.18: Offset between the simulated and the real data. A positive offset means that 

the surface measured by the simulator (i.e. the laser surface elevation map) is higher 

than the surface measured by the D2P.

The offset over the section for the best fit polar response angle (<ppr= 4°) is -0.172 m (for 

area 5 it was -0.171 m). Using the 5° polar response angle we get an offset o f -0.19 m. 

Therefore, after adding the calibration offset and taking into account the fixed polar 

response angle, the unaccountable offset over the thin ice is -0.067 m (for area 4 it was -

222



0.048). Both areas show similar offsets, therefore a drift in calibration could be the 

cause. However, as no calibration o f the D2P was performed in the Arctic, we cannot 

confirm this and as the unaccountable offset is small compared to the offset between the 

laser and the radar over snow covered ice, we have not adjusted our data.

6.8) Summary

• The simulator reproduces the shape to the real echoes well compared to the

retracker. It is able to model the effects o f variable aircraft parameters and

produce typical and non-typical echo shapes.

• The use o f a constant polar response means that the simulator does not

reproduce all o f the variability seen in the real data and that the trailing edge of

the simulated echo is often too wide or too narrow compared to the real data. 

However, our error estimates for the measurement of the offset between the real 

and simulated data have taken this into account (chapter 5, section 5.6.19). The 

error on an offset estimate is ±0.07 m. As the offsets between the simulated data 

and the real data, shown in this chapter, are typically 0.2 m, we believe that we 

are seeing an elevation difference between the real and simulated data.

• We have shown that the elevation difference we see between the real and 

simulated data is not due to the simulator incorrectly modelling the effects of 

changes in the aircraft parameters. Sections 6.4 and 6.5 showed long sections of 

track over mainly unbroken ice. There was no significant correlation between 

the aircraft parameters and the offset.

• By locating areas of, thin, snow free ice we have examined the offset between 

the simulated and real data to attempt to determine any drift in the calibration of 

the radar. The results imply that the radar calibration drifted by between 0.05 

and 0.07 m between the calibration flights and LaRA. However, as no 

calibration o f the D2P was performed in the Arctic, we cannot confirm this and 

we have not adjusted our data.

223



7) Elevation differences between radar and laser altimeter data over sea ice

7.0) Introduction

In this chapter we take a wider look at the offset between the simulated and real echoes. 

We have divided the study area into three regions, as shown in section 7.1, and have 

taken examples from each region. Dividing the study area allows us to look for regional 

variations in the offset. Section 7.2 describes the data presented in this chapter and the 

analysis methods used. Section 7.3 shows a map of sea ice drift, used to estimate the ice 

drift between outbound and return passes with coincident longitudes. Sections 7.4 to 7.6 

analyse data from each of the regions shown in figure 7.1. Section 7.7 compares 

measured snow depth distributions to the offset between the laser and the radar. Section

7.8 shows offset maps for the whole of the processed data set. In section 7.9, we 

evaluate the UCL D2P re-tracker. Finally, in section 7.10, we estimate the impact of 

using the laser/radar difference on the ice thickness calculation.

7.1) Study regions
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Figure 7.1: Map showing study regions.
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We have divided the data into three study regions. Region 1 is situated to the north of 

Greenland and includes data between 330° and 350° longitude and 83° and 85° latitude. 

Region 2 is in the west Fram Strait and includes data between 350° and 5° longitude and 

80.5° and 81.5° latitude. Region 3 is in the east Fram Strait and includes data between 

5° and 22° longitude and 80.5° and 81.5° latitude.

7.2) Data description and analysis methods

During our discussion about the offset in each region we show various plots of the 

offset between the real and the simulated data. The offset is the position of the 

simulated data in the range window minus the position o f the real data in the range 

window. Therefore a positive offset tells us that the laser is measuring a higher surface 

(with respect to the reference ellipsoid) than the radar. The offset is given in meters and 

the calibration adjustment o f 0.087 m has been added. The offset has not been averaged 

and the error estimate on each offset is ±0.07 m (see chapter 5). The plots and 

histograms o f the offsets show both positive and negative offsets. Negative offsets arise 

from areas over thin ice where there is little or no snow cover (see chapter 6, sections 

6.6 and 6.7), and as a result o f the ± 0.07 m error estimate. Gaps in the data are caused 

by: the filtering applied to the radar data set (chapter 5, section 5.5.2); the additional 

filtering of points with a roll greater than 5° (chapter 6, section 6.3); a lack of laser data 

caused by the presence o f cloud cover or open leads. At the ATM wavelength of 532 

nm, energy is not returned from the surface of calm water, but is forward scattered into 

the water column, therefore the energy returned to the altimeter will give an elevation 

estimate that is lower than the surface of the water or no energy at all will be returned to 

the altimeter. If the water surface is rippled then the altimeter may receive a strong 

return from the surface. When the altimeter is operating in scanning mode it more 

susceptible to these problems. [Bill Krabill, personal communication]. While looking at 

the laser data we found no scanning laser returns over open water.

During our analysis we compute the autocorrelation function of the offset using 

equation 4.3 in chapter 4. We also compute the correlation coefficient of the offset 

between spatially coincident tracks using equations 5.62 and 5.63, in chapter 5. The 

correlation coefficient was computed by taking the longitude values from shorter pass
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and finding the offset at those longitude values in the longer pass, by linear 

interpolation.

7.3) Sea ice drift

Figure 7.2 shows sea ice drift velocities from derived from the NASA 

QuickSCAT/SeaWinds scatterometer and the SSM/I brightness temperature maps from 

the NSIDC. This figure is used to estimate sea ice drift between outbound and return 

passes located at the same longitudes.
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Figure 7.2: Sea ice drift velocities. The arrows show the 3-day drift between 20/05/02 

and 23/05/02. [Ezraty & Piolle, 2004]

7.4) Region 1

Figure 7.3 shows the locations of the data points north of Greenland for the outbound 

and return passes on the 23rd May. The colour scale indicates the value of the offset at 

each of these points. The passes are separated by approximately 30 minutes.
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Figure 7.3: Region 1, north of Greenland, offset between the simulated data and the real 

data.
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The outbound and return passes are separated by 36 m with the return pass located at a 

slightly higher latitude than the outbound pass. From figure 7.2, we estimate that the ice 

would have drifted north by 50 m in the time between the passes. Therefore we estimate 

that the across track distance between passes was approximately 14 meters. Figure 7.4 

shows the offset between the real and simulated data as a function of along track 

distance.
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Figure 7.4: Region 1, north of Greenland, offset between the simulated data and the real 

data as a function of along track distance.
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The average offset for the outbound pass is 0.187 m and its standard deviation is 0.267 

m. The average offset for the return pass is 0.2 m and its standard deviation is 0.221 m. 

The correlation coefficient between the outbound and return pass is 0.126.
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Figure 7.5: Region 1, offset frequency histograms.
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Figure 7.6: Region 1, the offset acf.
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Figure 7.6 shows the acf for region 1. It shows that in the along track direction the 

offset between the radar and the laser de-correlates over a relatively short distance. The 

correlation coefficient (0.126) calculated for the data shown in figure 7.4 is the across 

track correlation coefficient, as the outbound and return passes were separated by 

approximately 14 m. It is interesting to note from figure 7.6, that the acf at 14 m is 

approximately 0.2, indicating that the offset in the along track direction de-correlates at 

approximately the same rate as the offset in the across track direction.

7.5) Region 2

Figure 7.7 shows the location of the data points and their offset, for region 2. The data 

were collected on the 20th May and separated in time by approximately 1 hour.
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Figure 7.7: Region 2, west Fram Strait, offset between the simulated data and the real 
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The outbound and return passes are separated by 30 m with the outbound pass located at 

a slightly higher latitude than the return pass. Figure 7.2 suggests very little ice drift in 

this region, therefore we estimate that the across track separation between passes is 30 

meters. Figure 7.8 shows the offset between the real and simulated data as a function of 

along track distance.
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Figure 7.8: Region 2, west Fram Strait, offset between the simulated data and the real

data as a function of along track distance.
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The average offset for the outbound pass is 0.176 m and its standard deviation is 0.224 

m. The average offset for the return pass is 0.260 m and its standard deviation is 0.223 

m. The correlation coefficient between the outbound and return pass is 0.012.
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Figure 7.9: Region 2, offset frequency histograms.
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Figure 7.10: Region 2, the offset acf.
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Figure 7.10 shows the acf for region 2. As for region 1, it shows that in the along track 

direction the offset between the radar and the laser de-correlates over a relatively short 

distance. The across track correlation coefficient calculated for the data shown in figure

7.8 is 0.012, with an across track separation between passes of approximately 30 m. 

From figure 7.10, that the acf at 30 m is approximately 0.15 (outbound pass) or 0.21 

(return pass), which indicates that the offset in the across track direction de-correlates at 

a faster rate than the offset in the along track direction.

7.6) Region 3

Figure 7.11 shows the locations of the data points and their offset, for region 3. The data 

were collected on the 20th May and separated by approximately 2 hours.
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Figure 7.11: Region 3, east Fram Strait, offset between the simulated data and the real 

data.

The outbound and return passes are separated by 40 m with the outbound pass located at 

a slightly higher latitude than the return pass. Figure 7.2 suggests very little ice drift in 

this region, therefore we estimate that the across track separation between passes is 40 

meters. Figure 7.12 shows the offset between the real and simulated data as a function 

of along track distance.
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Figure 7.12: Region 3, west Fram Strait, offset between the simulated data and the real 

data as a function of along track distance.

The average offset for the outbound pass is 0.141 m and its standard deviation is 0.195 

m. The average offset for the return pass is 0.239 m and its standard deviation is 0.213 

m. The correlation coefficient between the outbound and return pass is 0.15.
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Figure 7.13: Region 3, offset frequency histograms.
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Figure 7.14: Region 3, the offset acf.
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As this section of track contains many gaps we take a section that is continuous in both 

the outbound and return pass from figure 7.11, and repeat the correlation and acf 

calculations. Figure 7.15 shows the offset as a function of along track distance.
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Figure 7.15: Region 3, west Fram Strait, offset between the simulated data and the real 

data as a function of along track distance.

The average offset for the outbound pass is 0.154 m and its standard deviation is 0.215 

m. The average offset for the return pass is 0.260 m and its standard deviation is 0.266 

m. The correlation coefficient between the outbound and return pass is 0.12.
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Figure 7.16: The acf for region3, 15° to 16° longitude.

Figure 7.16 shows the acf for region 3. As for regions 1 and 2, it shows that in the along 

track direction the offset between the radar and the laser de-correlates over a relatively 

short distance. The across track correlation coefficient calculated for the data shown in 

figure 7.15 (the short section o f track) is 0.12 and for the data shown in figure 7.12 (the 

long section o f track) is 0.15. The across track separation between passes is 

approximately 40 m. From figure 7.16, that the acf at 40 m is approximately 0.14 (short 

section) and from figure 7.14, the acf at 40 m is approximately 0.15 (long section of 

track). Therefore, as for region 1, the offset in the along track direction de-correlates at 

approximately the same rate as the offset in the across track direction.
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7.7) Measured snow depth distribution over sea ice

In-situ snow depth data was not collected during LaRA so we cannot say that the offsets 

we see between the laser and the radar are due to the snow layer. However, we can 

compare the offset to snow depth measurements from other field experiments to 

investigate whether the offset has a similar size and distribution to measured snow 

depth.

Figures 7.17 and 7.18 show measured snow depth distributions. Figure 7.17 is taken 

from Colony et al., (1998), and shows snow depth measurements from the Russian 

North Pole drifting station program. Stations were situated at locations over the Arctic 

basin (see figure 1, Colony et al., 1998) and the program ran between 1954 and 1991. 

Figure 7.18 is taken from Sturm et al., (2002), and shows snow observations taken 

between October 1997 and October 1998 in the Beaufort Sea as part of the Surface Heat 

Budget of the Arctic Ocean (SHEBA) experiment.

100   ------------------------------------------------------------------------------------

co 90 c  
.2  80 
05
£  70 
CD 
CO -Q
O
CD 
C

o  c
CO

30

20

10

0
30 40 50 60 70 80 90 100 110 120

Snowline Height (cm)

Figure 7.17: Distribution of snow heights from snow lines in April. The mean value is 

31.4 cm and the standard deviation is 15.5 cm. [Coloney et al., 1998]
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Figure 7.18: The probability distribution function (PDF) for all SHEBA snow depths, 

compared with a PDF for snow on ice in the Bellinghausen, Ross and Admundsen seas 

in the Antarctic. The mean depth is 33.7 cm and the standard deviation is 19.3 cm. 

[Sturm et al., 2002]

The mean snow depth in figure 7.17 is 0.314 m and 0.337 m in figure 7.18. The mean 

offset is 0.20 m. Although it is lower than the mean snow depths, is comparable to the 

snow depth values shown in figures 7.17 and 7.18. The shape of the offset distribution 

shown in figures 7.5, 7.9 and 7.13 is similar to the PDF of snow depths in figure 7.18. 

The distributions have a steep rise to the peak and a slower falloff at higher snow 

depths. Figure 7.17 also has a similar falloff at higher snow depths but has a shallower 

rise to the peak.

In addition Sturm et al., (2002) examine the spatial variability of the snow depth. They 

found that snow depths over a flat section of multi year ice varied by a factor of six over 

distances as short as 20 m. Further investigation showed that the snow depth varied at 

20 m regardless of the ice type. The correlation coefficients and acf plots of the offset 

have also shown short correlation lengths in both the along track and across-track 

directions, similar in size to those found by Sturm et al., (2002).
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7.8) Offset maps for the LaRA field campaign

Figures 7.19 and 7.20 show the offset for the flights taken on the 20th May and the 23rd 

May respectively. The offsets are plotted with the daily maximum 2 m temperatures 

from ECMWF (see chapter 4, section 4.7). Although the temperature contours from the 

23rd are approximately 7° C higher than those from the 20th, the values of the offset on 

both days are similar. We also see no regional variation in the offset.
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Figure 7.19: Offset map showing all data from the 20th May 2002, along with contours 

showing the average maximum daily 2 m air temperature from ECMWF.
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Figure 7.19: Offset map showing all data from the 23rd May 2002, along with contours 

showing the average maximum daily 2 m air temperature from ECMWF.
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7.9) Evaluation of the UCL P2P re-tracker

simulator
400 400

300 300

QJ 200 200

100 100

0.0 0.5 1.0

offset (m)
1.5

re-tracker

0.0 0.5 1.0

offset (m)

Figure 7.21: Histogram of offsets from the simulated data and the re-tracked data from

region 1.
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Figure 7.22: Histogram of offsets from the simulated data and the re-tracked data from 

region 2.
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Figures 7.21 and 7.22 show examples of the distribution of offsets calculated from the 

simulator (simulated echo minus real echo) and from the re-tracker (average laser 

elevation over the D2P footprint minus the re-track radar elevation estimate). Both 

figures show that the offset estimates from the re-tracker have a wider distribution than 

the offset estimates from the simulator. This suggests that the re-tracker is both 

overestimating and underestimating the elevation of the D2P data. Figure 7.23 shows a 

non-typical echo (blue) and the re-tracking function fit to that echo (red).
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Figure 7.23: Example of the re-tracking function fit to a non-typical echo.

The re-racking function tends to place its self at the centre of the echo. It is the leading 

edge of the return that gives us an elevation estimate. Therefore, when re-tracking a 

non-typical echo, the elevation estimate is unrealistic. For example, the re-track echo 

shown in figure 7.23 has an elevation estimate of 14 m, where the surrounding ice has 

an elevation o f 20 m. Non-typical echoes result from large values of aircraft roll (see 

figure 5.26, chapter 5) or from rough surfaces. Figure 7.24 shows that, even if we filter 

out all points with a roll greater than 5°, the re-tracked data will still contain unrealistic 

elevation measurements due to not-typical echoes from rough surfaces.
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Figure 7.24: The difference (offset) in elevation between the re-tracked radar echoes 

and the laser elevation estimates, as a function of roll.

Future re-trackers for airborne D2P data over sea ice should take into account the 

variability of the D2P echo shape. If the re-tracker uses an interpolating function over 

the whole return, the roll of the aircraft should be a parameter of that function. 

Alternatively, a leading edge re-tracker could be used. The simulator provides a useful 

tool for designing a new re-tracker. We have already shown the position of the re-track 

point for a D2P echo over a flat surface, with the antenna pattern centred at nadir (figure 

5.40, chapter 5). By changing the surface roughness and the location of the centre of the 

antenna pattern we can investigate how the echo shape and the re-track point change.

7.10) An estim ate of the impact of using the laser/radar difference on the ice 

thickness calculation

In this section we assume that the laser-radar difference is equal to snow depth and we 

take the error on the laser-radar derived snow depth to be equal to the accuracy in 

determining the difference between the laser and the radar elevations (± 0.07 m). 

Applying this error in snow depth to the ice thickness error estimates from radar

244



altimetry (equation 1.3) and laser altimetry (equation 1.5), results in the error decreasing 

from ± 0.45 m to ± 0.37 m (a decrease o f 0.08 m) for the radar case, and the error 

decreasing from ± 0.78 m to ± 0.55 m (a decrease o f 0.23 m) for the laser case.

LaRA was designed to under-fly ERS2 (see section 3.3.11 chapter 3). Figure 7.25 a) 

shows a section o f coincident LaRA/ERS2 track where the airborne laser (elevations 

shown) and radar altimetry data are available and ERS2 sea ice freeboard estimates are 

available (red crosses). 7.25 b) shows the snow depth at each of the ERS2 freeboard 

locations. The Climatology snow depth is inferred from Warren et al, (1999) and the 

LaRA snow depth is calculated by taking a weighted average of the difference between 

the laser and radar elevations within the ERS footprint. 7.25 c) shows the sea ice 

thickness calculated using equation 1.1 and taking the ERS2 freeboard estimate, the 

constant values for water and sea ice density (given in section 1.5.1, chapter 1), the 

snow density from W arren et al., (1999) and the snow depth either from the climatology 

or from the LaRA data, b) shows that, while the climatology estimate of snow depth is 

relatively constant across the section of track, the LaRA derived snow depths are higher 

than the climatology on the left hand side of the figure and lower than the climatology 

on the right hand side o f the figure. This suggests that spatial variability in snow depth 

may exist which is not resolved by the climatology, in-situ snow depth measurements 

would be useful to confirm this. In c) we see the same relationship between with the sea 

ice thickness estimates derived from the two different snow depth estimates. However, 

without in-situ snow depth and ice thickness data, we cannot say which method 

provides the more accurate estimate of sea ice thickness.

245



3.3

b)
0.8

0 . 7

0.6

£  0 .5
CL5
I 0-4o
</5 0 .3

0.2

0.1

C) 7

3 .3

^ 6 . 5
E

(A °  
<Vc£
«  5 .5

u  5HH J
fDV
W 4 . 5

4
3 . 3

3.4 3.5

32

3.6 3.7
Laser elevation

33
_m

34

♦  ♦  ♦  ♦

3 . 4 3 . 5

C lim ato logy snow  
depth
LaRA snow depth

3 . 6 3 . 7

C lim ato logy snow  
depth
LaRA snow depth

♦

♦ ■

3 . 4  3 . 5  3 . 6
Longitude (degrees)

3 . 7

3.8

3 . 8

3 . 8

Figure 7.25: a) shows a section of coincident LaRA/ERS2 track with the laser 

elevations and ERS2 sea ice freeboard estimates (red crosses). 7.25 b) shows the snow 

depth at each of the ERS2 freeboard locations from the climatology and from the LaRA 

laser/radar difference. 7.25 c) shows the sea ice thickness calculated using the snow 

depth from either the climatology or from the LaRA data.
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7.11) Summary

• We have shown that the laser elevations are consistently higher than the radar 

elevations over snow covered sea ice. This is consistent with the hypothesis that 

the radar penetrates to the snow/ice interface. However, with out in-situ data we 

cannot confirm this.

• We have shown that the elevation difference between the laser and the radar is 

consistent with observed snow depth. And that the distribution of the offset 

compares well to snow depth distribution.

• We have shown that the offset between the laser and the radar de-correlates over 

short distances (50 meters or less), in both the along track and across track 

directions. This has implication for planning future field campaigns, in that 

extreme care must be taken, when comparing measurements for different 

platforms to ensure that they are looking at the same section of ice.

• We have, perhaps surprisingly, seen no regional variation in the offset.

• We have shown that the UCL D2P re-tracker over-estimates the offset between

the laser and the radar when re-tracking non-typical echoes. We have suggested 

that the re-tracker could be re-designed, using the simulator to explore the

effects o f surface roughness and the location o f the antenna pattern, on the

leading edge o f the return and the re-track point.

• We have shown that if  we assume an error in snow depth of ± 0.07 m (i.e. snow 

depth is equal to the laser elevation minus the radar elevation) then the over all 

error in ice thickness, derived from a satellite radar altimeter, decreases from ± 

0.45 m to ± 0.37 m (a decrease of 0.08 m) and the error in ice thickness derived 

from a satellite laser altimeter, decreases from ± 0 . 7 8 m t o ± 0 . 5 5 m ( a  decrease 

o f 0.23 m).
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8) Conclusions

8.0) Introduction

In this final chapter we summarise the work presented in this thesis. In section 8.1 we 

state the achievements o f this thesis. In section 8.2 we assess the methods used in this 

thesis. In section 8.3 we give suggestions for future field campaigns based on what we 

have learnt from LaRA. Finally, in section 8.4 we suggest directions for future work.

8.1) Achievements

• We have completed the first quantitative comparison of coincident airborne 

radar and laser altimetry over sea ice.

• We have estimate the difference in elevation estimates from a radar and laser 

altimeter with and accuracy of ± 0.07 m.

• We have shown for the first time that the laser elevations are consistently higher 

than the radar elevations over snow covered sea ice, which is consistent with the 

hypothesis that the radar penetrates to the snow/ice interface.

• We have shown that the differences in the elevations between the laser and the 

radar are consistent with observed snow depth. And that the distribution of the 

offset compares well to snow depth distribution from in-situ data.

• We have shown that if  we assume an error in snow depth of ± 0.07 m (i.e. snow 

depth is equal to the laser elevation minus the radar elevation) then the over all 

error in ice thickness, derived from a satellite radar altimeter, decreases from ± 

0.45 m to ± 0.37 m (a decrease o f 0.08 m) and the error in ice thickness derived 

from a satellite laser altimeter, decreases from ± 0.78 m to ± 0.55 m (a decrease 

o f 0.23 m). In-order to validate sea ice models, we require basin wide ice 

thickness measurements with an accuracy of ± 0.5 m, in-order to analyse trends 

in sea ice thickness we must be-able to detect changes in sea ice thickness of 4
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cm per year on a basin wide scale. Therefore, while we can use satellite radar

altimetry estimates o f sea ice thickness to validate sea ice models, the error on

the ice thickness estimation from both satellite radar and laser altimetry must be 

reduced further in-order determine trends in sea ice thickness with confidence.

• We have shown that the offset between the laser and the radar de-correlates over

short distances (50 meters). This has implications for planning future field

campaigns, in that extreme care must be taken when comparing measurements 

from different platforms to ensure that they are looking at the same section of 

ice.

• We have provided valuable insights into the complexities of combing laser and 

radar measurements over sea ice from an airborne platform, and highlighted the 

problems and solutions o f the task.

• We have developed and assessed two new methods, the UCL D2P re-tracker and 

the UCL D2P radar simulator, to compare coincident data from different 

instruments that measure different surfaces.

8.2) Assessment of methods

In chapter 5 we presented two methods for analysing coincident airborne laser and radar 

altimetry.

The first o f these methods was the UCL D2P re-tracking algorithm based on the typical 

shape o f a D2P return. We then averaged the laser elevation data over the radar 

footprint and compared the offset between the two measurements. The re-tracker 

provided a useful first look at the data and suggested that the laser and radar were 

measuring different surfaces. However, although the re-tracker gives similar offset 

estimates to the simulator when re-racking typical echoes, it gives unrealistic radar 

elevations, and therefore large offsets, when re-tracking non-typical echoes. This is due 

to the fact that the re-tracker cannot account for varying topography and, in its present 

form, does not account for the roll o f the aircraft.
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The second method was a radar simulator. The simulator provided a new method to 

compare two coincident data sets collected by different instruments. This was achieved 

by generating a surface model from the laser data, which was then used to synthesise 

the radar echo. The simulator created both typical and non-typical echoes and 

reproduced the effects of roll, pitch and variable surface roughness. Difference between 

the simulated data and the real data were due to the fact that we set a constant polar 

response over all ice types. We have shown that the range offset between the simulated 

and real data is not related to the pitch, roll and altitude of the aircraft. This adds weight 

to the argument that the offsets we see between the two instruments are of geophysical 

origin. We have shown that the calibration of the radar is likely to have drifted between 

the calibration flights and the LaRA flights, which occurred 17 days after the calibration 

flights. This cannot be confirmed as the D2P was not re-calibrated during LaRA. We 

think it is of paramount importance that the radar is regularly calibrated during the field 

work, as well as before and after.

8.3) Suggestions for future field campaigns

The work presented in this thesis has highlighted a number of issues related to the 

collection of field data over Arctic sea ice. Here we summarise these issues and suggest 

ways in which the data collection could be improved in future field campaigns.

8.3.1) Calibration of the radar

All instruments should be calibrated before and after the flights. Calibration of the laser 

altimeters was performed before and after each flight, however the radar altimeter was 

calibrated at the Wallops Flight Facility, in Virginia, USA, 17 days before the flights in 

the Arctic and no subsequent calibration was performed. Our analysis shows a possible 

offset in the radar calibration, which highlights the fact that the radar should be 

calibrated before and after each flight to reduce uncertainty in the elevation estimates. 

We suggest that, apart from using a GPS truck survey of the runway to calibrate the 

data as described in chapter 5, corner reflectors could also be placed at known locations 

on snow covered sea ice to calibrate the radar and to gain further insights into the 

degree of penetration into the snow layer. For studies comparing measurements from 

laser and radar altimeters it is important that two instruments can be cross calibrated.
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Therefore both instruments should be calibrated over the same known surface (i.e. a 

runway).

8.3.2) The laser altimeters

During LaRA the P3 carried two laser altimeters, ATM2 operated in profiling mode and 

ATMS operated in scanning mode. During our analysis we only used data from ATMS. 

The reason for this was that we saw differences in the fore and aft scans due to errors in 

the INS value of the aircraft pitch. As the fore and aft scans were effected equally and 

oppositely by the pitch error, we could correct the data for the error. However, it was 

not clear if these errors were present in the ATM2 data, and because we wanted to 

average the laser data over the radar footprint or create a surface grid, the data from 

ATM2 was not used. In future it would be better to have both lasers operating in 

scanning mode so that all of the data could be utilised.

It would also be useful to use a laser that does not penetrate into the water column such 

as the 904 nm laser used by Hvidegaard and Forsberg (2002). Laser elevation estimates 

over open water would provide extra tie points between the radar and the laser (we used 

snow free thin ice as tie points).

8.3.3) In-situ snow depth measurements

Although we have compared the difference between the laser and the radar qualitatively 

with snow depth measurements, without in-situ snow depth measurements, we cannot 

say if, by differencing the radar elevation estimate from the laser elevation estimate, we 

are measuring snow depth. We also cannot say that the radar penetrates to the snow/ice 

interface. Our results may be consistent with these hypotheses but without in-situ data 

we cannot state them as fact. In future experiments, it is desirable to collect coincident 

snow depth and temperature measurements to allow a quantitative comparison to be 

made.
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8.3.4) Date of the flights

As shown by figures 7.19 and 7.20 in chapter 7 the air temperature in May can be above 

zero degrees in the Fram Strait. In order to look at the difference between the 

penetration characteristics of the radar and the laser it is important that the snow layer 

has not melted or even partially melted. The evidence presented in chapter 2 tells us that 

the presence of even a small amount of water in the snow layer strongly effects its 

dielectric properties, and indicates that radar measurements over wet snow will only 

provide information on the snow layer and not on the ice. We suggest that March or 

April would be a more suitable time of year to perform such experiments. The mean 

temperature in the Arctic is -29°C between November and April and this period 

precludes any melting of the snow cover [Colony et al., 1998].

8.3.5) Location of the flights

The LaRA flights mainly occurred in the Fram Strait, which is a major ice out flow 

region of the Arctic. Figure 7.2 shows that the ice drift in this region is not uniform, 

which makes it difficult to sample the same section of ice in repeat passes. The ice 

motion in this region becomes an even greater issue when trying to compare 

measurements from sensors located on different platforms. Ice in the Fram Stait is very 

mixed as it comes from different regions of the Arctic. This makes interpretation more 

difficult. We suggest that area to the north west of Greenland, where we see little ice 

motion, would be a better region for such experiments.

8.4) Directions for future work

8.4.1) Design a new re-tracker for D2P measurements

LaRA provided us with a unique opportunity to study spatially and temporally 

coincident elevation estimates from laser and radar altimetry. These data sets allowed us 

to build a simulator and compare like with like (a real echo with a simulated echo) 

rather than a re-tracked elevation estimate (radar) with an averaged elevation estimate 

(laser). However, this will not always be the case. The simulator allows us to see what 

parameters influence the radar return and therefore what parameters should be included
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in a re-tracker for use when scanning laser data are not available. For example, we 

found the roll of the aircraft strongly influenced the shape of the returns and that high 

roll values gave us non-typical echo shapes. The simulator can also tell us the position 

of the re-track point over a flat surface (chapter 5, figure 5.38), further experiments 

would tell us how the position of the re-track point varies over a rough surface and with 

the aircraft parameters. The simulator has the potential to be used to design a re-tracker 

for D2P data that can be used when no laser data is present.

8.4.2) Estimate sea ice thickness from the LaRA data set

In-order to estimate sea ice thickness from the LaRA data set we would first need to 

design a new re-tracker (section 8.4.1) to estimate the elevation of the sea ice and sea 

surface. Secondly we would need to find the elevation of the sea surface. This could be 

done either by using the digital photographs to locate areas of open water and finding 

the corresponding elevation estimates over those areas or by analysing the differences in 

the returns over open water and ice and using those echo characteristics to automate the 

process. Once the sea surface elevation had been calculated then the ice freeboard could 

be found in the same way as described in section 1.5.1 (chapter 1). The ice thickness 

could then be calculated using equation 1.1 and by taking the difference between the 

laser and the radar to be equal to the snow depth.

8.4.3) Combining data from ICESat and CryoSat

Analysis of the data collected during LaRA shows the potential of combing satellite 

laser and radar altimetry measurements over sea ice from ICESat and CryoSat. 

Combination of ICESat and CryoSat data will be particularly valuable if ICESat can be 

steered onto a CryoSat ground track, and if spatially and temporally co-incident 

airborne laser and radar altimetry measurements can be acquired.
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Appendix 1: Description of ATM OFIT Output Data 

[S. Manizade, personal Communication]

The ATM data is distributed in the output format of the processing program, qfit, which 

combines airborne laser ranging data and aircraft attitude from the INS with positioning 

information from processed kinematic differential GPS trajectory. The output files are 

organised as 32-bit (4-byte) binary words, equivalent to a C or IDL long integer, which are 

scaled to retain the precision of the measurements. The qfit program is run on a Sun Sparc 

Workstation and therefore written in big-endian format.

The files are organised into fixed-length logical records. The beginning of the file contains 

a header of one or more records followed by a data segment, in which there is one record 

per laser shot.

The first word of the header (and the file) is a 32-bit binary integer giving the number of 

bytes in each logical record. The remainder of the header is generally a series of logical 

records containing the processing history of the file. In these logical records, the initial 

word contains a 32-bit binary integer with a value between 9000000 and -9000008. The 

remaining bytes in each header record are filled with a string of ASCII characters 

containing information on file processing history.

In the data segment of the file, the information contained in words one to nine of the output 

record pertains to the laser pulse, its footprint, and aircraft attitude. Words 10 to 13 pertain 

to the passive brightness signal, which is essentially a relative measure of radiance reflected 

from the earth’s surface within the vicinity of the laser pulse. This data is not calibrated and 

should only be used qualitatively. Word 14 is the time. Either the 14 word format or a 10 

word format, consisting of words one to nine and word 14, is used.
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Word Content

1 Relative Time (msec from start of file)

2 Laser Spot Latitude (degrees x 1,000,000)

3 Laser Spot Longitude (degrees x 1,000,000)

4 Elevation (mm)

5 Start Pulse Signal Strength (relative)

6 Reflected Laser Signal Strength (relative)

7 Scan Azimuth (degrees x 1,000)

8 Pitch (degrees x 1,000)

9 Roll (degrees x 1,000)

10 Passive Signal (relative)

11 Passive Footprint Latitude (degrees x 1,000,000)

12 Passive Footprint Longitude (degrees x 1,000,000)

13 Passive Footprint Synthesized Elevation (mm)

14 UTC Time packed (e.g.: 153320100 = 15h 33m 20s 100ms)
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Appendix 2: Description of D2P data files

Parameter Byte’s Format Description

Valid Pulse 0:3 long int 1: valid, 0: invalid

Seconds 4:7 long int Secs (xle3)

Latitude 8:11 long int Degrees (xle6)

Longitude 12:15 long int Degrees (x le6)

Altitude 16:19 long int Metres (x le3)

Heading 20:23 long int Degrees (x le3)

Pitch 24:27 long int Degrees (x le3)

Roll 28:31 long int Degrees (x le3)

Range 32:35 long int Tracking range steps

Reference 36:39 long int Tracking shift

Attenuation 40:43 long int Receiver attenuation setting

Length 44:47 long int Samples/Pulse

Doppler Bin Size 48:51 long int Metres (x le3)

Data Array 51:51+8*len 

gth

(float real part I, float 

imag part Q)

Array of complex numbers. 

Magnitude: cross-channel 

power

Phase: cross-channel phase

Format of D2P files [Raney & Leuschen, 2003]
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Appendix 3: P2P data filters

Date File

number

Number 

of points

Points 

after 

filter 1

Points 

after 

filter 2

Points 

after 

filter 3

Points 

after 

filter 4

Percentage 

of points 

removed

20 8 23785 23725 23717 23717 23717 0.3%

20 9 23933 23887 23879 23879 23879 0.2%

20 10 12437 12435 12427 12416 12416 0.2%

20 11 25003 23946 23937 23937 22094 11.6%

20 12 28320 27996 27996 27996 23550 16.8%

20 13 30982 30936 30928 30906 30906 0.2%

20 14 25008 24781 24772 24772 24772 0.9%

20 15 28964 28666 28658 28658 28658 1%

20 16 27737 24605 24597 24597 24597 11.3%

20 17 739 537 529 529 529 28.4%

23 5 10967 10967 10958 10958 10958 0.1%

23 6 12277 12277 12268 12268 12268 0.1%

23 7 33397 33345 33336 33336 33336 0.1%

23 8 34552 32968 32959 32959 32959 4.6%

23 10 10131 0 0 0 0 100%

23 11 38698 0 0 0 0 100%

23 12 39373 37999 37999 37999 35470 9.9%

23 13 34555 34470 34461 34461 32746 5.2%

23 14 20626 15837 15828 15828 15828 23.3%

23 15 8894 0 0 0 0 100%

23 16 8268 0 0 0 0 100%

23 17 35726 13952 13952 13952 13952 60.9%

23 18 37386 35211 35182 35166 35166 5.9%

23 19 36209 22111 22111 22111 22111 38.9%

Total 587967 443350 24.6%
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List of symbols

a peak of D2P echo (UCL D2P re-tracker)

a length of D2P antenna (along track)

a(x) along track signal history

acf auto-correlation function

A a footprint area

A a antenna area

b length of D2P antenna (across track)

b_f vector between the D2P_b and D2P_f

b_fn the projection of b_f onto the xy coordinate system

c speed of light in air (3 x 108 ms"1)

cc correlation coefficient

D2P vector describing the location of the D2P antenna

D2P_b vector between the D2P antenna and the antenna boresight

D2P_n vector between the D2P antenna and the antenna nadir

D2P_f vector the D2P antenna and the facet

dc distance to the centre of the range window (m)

ds distance to the start of the range window (m)

/  Doppler frequency

fc  radar frequency

f  ice freeboard

f IF intermediate frequency

f s snow freeboard

F0 centre frequency

AF  bandwidth

A f  frequency shift

G antenna gain

h height

hops height above reference ellipsoid

hi ice thickness

huA ice level anomaly

hiaser laser range
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List of symbols (continued^

hn height of nth scatterer

hs snow thickness

hsLA local sea level anomaly

Ah deviation of sea surface from the geoid

/  real part of power in D2P data format

k parameter of the re-tracking function

ko wave number (2jt/X)

len pulse length (bins)

L loss factor

mv volume fraction of liquid water

N  number of coherent pulses in a burst

p r f  pulse repetition frequency

Pi(t) average surface impulse response

P f s ( 0  flat surface impulse response

Pr power received by a radar

Pr polar response

Prad total radiated power

Pt power transmitted by a radar

P(t) transmitted power envelope (radar simulator)

P(Sp) transmitted power at 6P

P(0+) power just beneath a surface

Q imaginary part of power in D2P data format

Qc chirp sweep rate

q(z) height probability density function

re, (pe, K  ellipsoidal coordinates describing the position the laser footprint (e) on

the Earths surface

re vector describing the position of the laser footprint (e) in ellipsoidal

coordinates

rg vector describing the position of the GPS antenna (g) in ellipsoidal

coordinates
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List of symbols (continued)

r 8l

r ie

ref

R

Re

R M S atm

R M S co m

R M S d 2p

AR

Sb

Si

S r(t)

t

t o

t l

h

td

tr

Atd 

tan S 

tan <5, 

v

Vs

Ww

x0

xn

AXD2P

Axp

vector describing the position of the laser altimeter with respect to 

the GPS antenna

vector describing the location of the laser footprint with respect to 

the laser altimeter

gives the location of the centre of the range window above the reference 

ellipsoid

range to target from radar 

Earth radius

root mean squared error associated with a single ATM survey

root mean squared error of differences between two surveys

root mean squared error associated with a single D2P survey

beam curvature

brine salinity

sea ice salinity

radar point target response

time

position of peak of D2P echo

two way travel time between the radar and the surface (seconds) 

position where 2nd re-track function takes over from 1st re-track function 

time lag between transmitted chirp and received chirp (seconds) 

round trip travel time (seconds)

error in the time lag td between transmitted and deramping chirp

loss tangent

loss tangent of pure ice

aircraft velocity

satellite orbital velocity

percentage of liquid water

D2P nadir

along track position of nth scatterer

D2P along track footprint (m)

digital photograph along track footprint (m)
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List of symbols (continued^

Ayo2P D2P across track footprint (m)

Ayp digital photograph across track footprint (m)

a  scanner tilt angle (AMT)

p  rotation axis angle (AMT)

P(61) function approximating the along track synthetic aperture processing

dp penetration depth

Srtf) extra range delay at nth scatterer

s complex dielectric constant

e ’ real part (permittivity) of the complex dielectric constant

£ ’ ’ imaginary part (dielectric loss factor) of the complex dielectric constant

£b complex dielectric constant of brine pockets

£b ’ real part (permittivity) of the complex dielectric constant of brine

£b ’ ’ imaginary part (dielectric loss factor) of the complex dielectric of brine

£ds complex dielectric constant of dry snow

Eds ’ real part (permittivity) of the complex dielectric constant of dry snow

Eds ’ ’ imaginary part (dielectric loss factor) of the complex dielectric of dry

snow

Efi uncertainty in radar measured ice freeboard

£fS uncertainty in laser measured snow freeboard

Ehs uncertainty in snow depth

Ei complex dielectric constant of pure ice

Si ’ real part (permittivity) of the complex dielectric constant of pure ice

Si ’ ’ imaginary part (dielectric loss factor) of the complex dielectric of pure

ice

Ei uncertainty in laser derived sea ice thickness

£r uncertainty in radar derived sea ice thickness

£si complex dielectric constant of sea ice

£sl ’ real part (permittivity) of the complex dielectric constant of sea ice

£sl ’ ’ imaginary part (dielectric loss factor) of the complex dielectric of sea ice

£pi uncertainty in sea ice density
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List of symbols (continued)

uncertainty in snow density

£p\v uncertainty in sea water density

<j>],2, ^1,2 centre line latitudes and longitudes for rotating the data sets

4*p> hp latitude and longitude of the transformation pole

<Ppr polar response angle

K a absorption loss

K e extinction coefficient

scattering loss

A wavelength

0,0 facet orientation angles

e , look angle

Opr angle between the normal to the facet and the D2P antenna

a width of Gaussian re-tracking function

normalised scattering coefficient

&bs backscattering cross section

°d\ff diffuse measurement noise

Os surface roughness

Oa TM error associated with a single ATM survey

OCOM standard deviation of differences between two surveys

OD2P error associated with a single D2P survey

Pb density of brine

Pi density of pure ice

Ps density of snow

Pw density of sea water

T compressed pulse length

r ’ uncompressed pulse length

Vb brine volume fraction
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