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Investigation of a Hybrid Algorithm for
Sea Ice Drift Measurements Using
Synthetic Aperture Radar Images
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Abstract—Areal matching by phase correlation and feature
tracking are two complementary methods used to measure sea
ice drift between synthetic aperture radar images. This paper
evaluates a new algorithm that combines the two methods. Areal
matching is improved by new methods to handle large motions and
rotated ice. It is shown that areal rotation can be resolved using a
frequency-domain approach. Image segmentation is a prerequisite
for feature tracking and achieved by a new method that performs
better than Otsu’s method for two-component Gaussian mixture
distributions. A circular weighted median filter is found to be suit-
able for the filtering of the motion field. The algorithm is evaluated
through a thorough analysis of the response and sensitivity to vari-
ous algorithm settings. The accuracy of the algorithm varies by up
to 50% for one image pair within the studied range of parameter
settings, thus indicating the need for a proper initialization of the
algorithm.

Index Terms—C-band, feature tracking, phase correlation,
rotation, sea ice motion, segmentation, synthetic aperture radar
(SAR).

I. INTRODUCTION

FROM one day to the next, an arbitrary ice floe in the Fram
Strait may drift beyond 50 km in any direction. The same

floe must thus be tracked within a search area of nearly 8000 km2.
This infers a great challenge for any motion tracking algorithm
that also has to be stable and highly efficient.

A few methods have been developed for the purpose of
mapping sea ice drift from satellite imagery. The first algo-
rithms appeared in the late 1980s and were applied to passive
microwave data from instruments such as the Special Sensor
Microwave/Imager and synthetic aperture radar (SAR) data
from, e.g., Seasat. Several algorithms were developed based
on the maximum cross-correlation (MCC) method [1]–[4]. An-
other area-based technique is known as the optical flow method
and has been demonstrated in [5].

The MCC method was taken one step further with the in-
troduction of phase correlation [6] in sea ice tracking [7], [8].
Phase correlation resembles cross-correlation but is faster as
it makes benefit of the efficient fast Fourier transform via the
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circular convolution theorem. While in the spatial frequency
domain, the phase information is preserved, and the magnitude
is normalized in order to achieve illumination invariance. In
[8], a hierarchical multiresolution processing system is utilized.
Downsampled images and large target windows are used in
the initial stage of the algorithm to find a draft motion field.
The motion field is used to align target windows to cover the
same ice even though the geographic location may differ. It
is then iteratively refined using higher resolution and smaller
windows. A basic assumption in this algorithm is that one
dominant translation, or global motion, can be estimated be-
tween the two images. For images covering large areas or highly
dynamical ice fields, this estimate will not always give a valid
representation of the true motion. Furthermore, the study does
not examine the effect on the accuracy from downsampling the
images. The motion tracking approach established in [8] has
been adopted in, e.g., [9]–[11], in which it has been evaluated
in the Weddell Sea as well as the Baltic Sea.

In contrast to area-based techniques stand feature tracking
approaches. Tracking the outlines of sea ice floes can be made
using, for example, a probability model that determines how
features in one image will appear in a latter image [12]. Another
statistical approach takes into account certain characteristics
such as the floe area, geometry, and location with reference
to neighboring floes and performs a constrained search for
matching ice floes [13].

In [14], the MCC method is used in a hybrid algorithm
together with a feature tracking approach. The cross-correlation
technique is intended to be applied within the pack ice where
the motion is mostly translational with small rotation. The
rotation is retrieved by an exhaustive search, in which one of the
images is rotated in steps and the cross-correlation is computed
for each rotation angle. The feature tracking approach is used
within the marginal ice zone (MIZ), defined as the area of pack
ice where the influence of the open ocean is directly observed
[15]. The image is segmented, and the floe-lead boundaries
are represented by so-called ψ−s curves [16], [17], which are
correlated to determine the translation and rotation for each
floe. This hybrid algorithm has been applied to SAR data also
in [18].

In this paper, we will loosely follow the areal tracking tech-
nique developed in [8], particularly in the sense of a hierarchical
processing system, and combine it with a feature tracking
approach based on the methodology described in [13]. The
former method is improved by a new rotation resolving module.
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Fig. 1. Algorithm flowchart. Processes are shown in rounded rectangles, and products are shown in squares. The motion field in the upper right corner is the final
product.

The latter method is preceded by a new straightforward method
for image segmentation. By combining these two methods in
a hybrid algorithm, the aim is to obtain a robust algorithm
that is able to cope with pack ice as well as marginal ice.
The algorithm is evaluated through a thorough analysis of the
response and sensitivity to various algorithm settings.

The next section describes the data used in the study.
Sections III and IV describe the theory, which is composed of
area-based matching and feature-based tracking. The theory is
followed by a section on algorithm validation and discussion.
Summary and conclusions are presented in the last section.

II. DATA DESCRIPTION

The data used in this study are wide swath SAR data from
the ENVISAT satellite. ENVISAT carried a C-band Advanced
Synthetic Aperture Radar (ASAR) sensor, and the used images
were acquired in wide swath mode. The images cover a swath
of 400 km and have a spatial resolution of approximately 150 m
in ground range by 150 m in azimuth and a pixel spacing
of 75 m by 75 m. The images have been acquired over the

Fram Strait in 2011 and 2012. All images were acquired with
horizontal polarization for transmission and reception (i.e.,
HH-polarization), which is preferred for operational sea ice
mapping [19].

III. AREA-BASED MATCHING

A. Overview of Implementation

This section aims to give an overview of the implementation
of the phase-correlation method and to highlight some of the
differences from the algorithm described in [8]. Fig. 1 shows
how the areal-based matching is incorporated into the algorithm
and gives an overview of the processing chain. Starting in the
upper left corner, the images are first downsampled to the reso-
lution used at the initial processing level. Next, the positioning
of the image windows from the first image is established. This
gridding is explained in more detail hereinafter. The image
windows of the second image are aligned to match the image
windows from the first image, using the best available infor-
mation about the drift. At the initial state, no such information
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is available. Instead, the image windows are colocated, and a
grid of predefined offsets is used to widen the tracking range. In
the next phase, the area-based matching takes place, and under
the conditions of low correlation at the final processing level,
a search for rotation also takes place. This is followed by the
feature-based matching which is activated at the initial process-
ing level if areal-based matching showed low correlation. The
result produced by these two tracking modules is a draft motion
field, which is filtered and upsampled to match the window grid
used by the next processing level. The process is then iterated
with a new set of parameters, including finer image resolution.
When the final processing level is reached, the draft motion
field will become the final product.

The rectangular grid used for positioning the image windows
is initially constructed using image coordinates for the first
image. The coordinates refer to the centra of the image windows
that will be processed. They are converted to geographical
latitude and longitude and, subsequently, to image coordinates
in the second image. A check is made if some part of the
window in either images appears outside the image borders
or if the land fraction is higher than a threshold value. The
exclusion of land areas does not only save processing time but
also improve the filtering of the motion field in inshore waters.
The land fraction is measured by creating a land mask based
on shoreline data from the Global Self-consistent, Hierarchical,
High-resolution Geography Database [20]. If the land fraction
is too high, processing of the particular image windows is
discontinued, and the algorithm proceeds with the next pair of
windows. If not, the drift between the two image windows will
be estimated using a frequency-domain approach to correlation.
Once the whole grid has been processed, the resulting motion
field is filtered using a circular weighted median filter [21]. The
operation of the filter at position x0 is given by

dfilt(x0) = argmin
d(x)

∑
xi:|x−x0|<R

w(xi) |d(xi)− d(x)| (1)

where d is the drift component along an axis, the weighting
w(x) consists of phase-correlation values, and R is the filter
radius. The filter is based upon the assumption that trackable
features are not homogeneously spread over the image, mean-
ing that one successfully tracked point may be the only valid
measurement over a certain area. While the motion field will
be regularized through filtering, the filter will also preserve the
displacement zones.

The resulting motion field is inherited by the next processing
level using nearest neighbor interpolation onto the denser grid
that will be used next. The whole process is repeated for the
denser grid, now using the draft motion field to improve the
alignment of the image windows. Each processing level has its
own set of parameters which, in this study, includes the window
size, the step size between the windows, the median filter radius
R, and a downsampling factor. The number of processing levels
is determined by a user-specified parameter. This study uses a
default number of three processing levels.

At the initial processing level, at the top of the hierarchical
processing system, the image windows need to be large enough
to cover the longest possible displacements. At the same time,

they should be small enough to resolve prominent spatial vari-
ations, for example, between fast ice and drift ice. These two
objectives stand against each other and constitute a problem
which has not been addressed in previous studies. A solution
and compromise that we have adopted is to match one window
from the first image with multiple windows from the second
image. One can then cover a larger area without the expense
of larger windows. Each window combination will yield one
candidate solution for the drift, and the one with highest cor-
relation will be selected. The windows in the second image
need to have an overlap in case the drift is toward the border
of one image window. The overlap in our implementation has
been set to 10% of the window side. The number of windows
is dependent on the assumed maximal drift in combination with
the window size, but generally, the number of target windows
does not exceed five along any dimension.

B. Phase Correlation

Let f1(x) and f2(x) denote two functions (or images) on
the Euclidean plane R

2 with Fourier transforms F1(ξ) and
F2(ξ), and let the second function be a translated replica of the
first function such that f2(x) = f1(x− d). According to the
shift theorem, the Fourier transform of the second function is
F2(ξ) = F1(ξ)e

−2πid·ξ. The normalized cross-power spectrum
is thus

R(ξ) =
F ∗
1 (ξ)F2(ξ)

|F1(ξ)F2(ξ)|
= e−2πid·ξ. (2)

The inverse Fourier transform of the right-hand side is a
Dirac delta function centered at the displacement vector d

r(x) = F−1 {R(ξ)} = δ(x− d). (3)

By finding the argument that maximizes r(x), one will obtain
the displacement d. It shall be noted that r(x) may contain
several peaks in the same order of magnitude, for example, if
there is an area of ice floes drifting at different speeds. In every
case, the largest peak will be selected as it likely represents
one of the dominating candidate solutions. Another issue with
impact on the phase correlation is speckle noise, which gives
rise to noise also in r(x). To reduce this noise, a Gaussian low-
pass filter is applied to r(x). The filtering is beneficial also in
terms of peak detection. One peak is, in general, spread over
several pixels, and the filter will aggregate the contributions
from many pixels so that the peak is enhanced.

C. Rotation Determination

In order to determine the rotation between two images,
we utilize the Fourier–Mellin transform under which images
exhibit translation, rotation, and scaling invariant properties
[22]. Suppose that function f2(x) = f2(x, y) is a translated and
rotated replica of function f1(x, y). Then

f2(x, y) = f1(x cos θ0 + y sin θ0 − dx,

−x sin θ0 + y cos θ0 − dy) (4)
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where the rotation θ0 is measured counterclockwise. The
Fourier transform of f2(x, y) is

F2(u, v) = e−2πi(dxu+dyv)

· F1(u cos θ0 + v sin θ0,−u sin θ0 + v cos θ0). (5)

The effects of translation and rotation have been separated
into a phase shift and a rotation of the spectrum by the angle θ0.
The log-polar coordinate transformation given by{

ρ = log
√
u2 + v2

θ = arctan v/u

yields the following expression for the magnitude of the Fourier
transforms:

|F2(u, v)| = |F ′
2(ρ, θ)| = |F ′

1(ρ, θ − θ0)| . (6)

Note that the rotation is converted to a translation by the
log-polar transformation. The rotation can then be determined
using, for example, phase correlation. In this paper, the assumed
approach will be to use the rotation signature defined by [22]

φ1(θ) =

∫
J (|F ′

1(ρ, θ)|) dρ (7)

where the subscript refers to the first image and the definition
is equivalent for the second image. J is here a pointwise
weighting function that weights different frequencies in order
to emphasize signals related to edges in the images. The next
step is to cross-correlate the two rotation signatures in order
to retrieve the rotation at the angle of maximum correlation.
Regard that the Fourier spectrum of real valued images exhibits
a 180◦ symmetry such that F (u, v) = F ∗(−u,−v). As an
effect, there will be a 180◦ ambiguity in the retrieved rotation.
The ambiguity can be resolved by performing phase correlation
two more times—the second image is rotated by each possible
rotation angle, using an affine map, and the rotation that gives
the highest correlation is selected as the most probable one.

In the finite case, (7) is a sum over discrete points from the
radius of 1 pixel to half of the side length of the image window
being studied. The sum is then taken over the largest circle
enclosed by the image window. The choice of side length of
the image window is critical. A large side length gives higher
angular resolution and more data to form a more unique signal
that is suitable for correlation measurements. On the other hand,
it will increase the risk for an ambiguous signal. If, for example,
one fraction of the ice is rotating and the other fraction is
motionless, the algorithm will face two competing solutions
and must select between them. This suggests that the window
size should be as small as possible without losing diversity and
increasing the risk of false matches.

The rotation can only be estimated when there is an accurate
estimate of the drift; otherwise, the two image windows will
cover different parts of the ice field and cannot be compared.
The outcome of the method is thus dependent on the existing
drift estimate derived from initial processing levels. In many
cases, the drift is known from the surrounding areas, and a
good estimate of the drift is achieved through interpolation
onto the area subject to rotation. The method is not as useful

Fig. 2. Example demonstrating the effect of applying an exponential weight-
ing function J on the discrete Fourier transform (DFT) magnitude. The DFT
magnitude here represents an average, computed from many image windows
over the sea ice in an ASAR image from August 2, 2011.

in areas with lower ice concentration because the drift field is
more varying and the larger fraction of open water degrades
the tracking performance. It is then more likely that the image
windows cover different parts of the ice field. The advantage
of resolving the rotation is, however, that the local ice drift
will be established, nearby regions will benefit from the drift
information, and the stability of the algorithm is enhanced.

The choice of weighting function J is crucial for the perfor-
mance of the rotation resolving method. The main purpose of
this function is to give emphasis to Fourier–Mellin coefficients
that correspond to image texture edges. The spectrum will
preferably be suppressed at low frequencies where large-scale
intensity shifts are represented, and the effect from discretiza-
tion is notable in a log-polar coordinate system. The dc offset
will be excluded so that the absolute level of the intensity
is irrelevant. At high frequencies, it is desirable to suppress
speckle. Based upon the mean frequency spectrum from many
image windows, we adopt an exponential function of the form

J (|F ′
1(ρ, θ)|) = |F ′

1(ρ, θ)| · ebρ (8)

where b is a value on the order of 5 · 10−5 [1/ log(m−1)]. In
this case, the weighting function is to be applied to images
calibrated to sigma nought and processed in decibel scale. The
effect of the weighting function is demonstrated in Fig. 2.
For uniform weighting, the figure shows how the energy is
distributed over spatial frequencies on an average. Note that the
number of samples increases with frequency, which partially
explains the falloff toward higher frequency. The result was
computed from all image windows over sea ice in a C-band
SAR image over the Fram Strait acquired by ENVISAT on
August 2, 2011.

IV. FEATURE-BASED MATCHING

Feature-based matching is activated after area-based match-
ing has been conducted. The module will be triggered if the
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computed phase correlation turns out to be below a threshold
value at the initial processing level. The main reason to the
module only being activated at the initial processing level is that
the method is suited for large image windows that are likely to
provide coverage over more than a couple of ice floes. If the
drift can be retrieved by feature tracking, it will replace the
drift estimate based on areal matching; if not, the result from
areal-based tracking will be used. The correlation threshold
is a fix number which is set experimentally. The correlation
over open water (where the radar signature is noiselike) is used
as a reference. Naturally, all open water areas should have a
correlation less than the threshold.

The method is implemented as a two-step procedure. First,
the image is segmented in order to obtain a representation of
the features that are present in the image. The next step is to
track these features from one image to the next.

A. Image Segmentation

The images are first segmented by intensity thresholding
which converts them to binary images. The resulting objects
(floes) are processed to separate amalgamated floes. A set
of properties, e.g., area and centroid, is determined for all
the large floes. The intensity threshold is determined using
a new approach developed from Otsu’s threshold selection
method [23]. Otsu’s method selects the threshold that mini-
mizes the weighted within-class variance. The performance of
this method is unsatisfying for a bimodal distribution that is a
mixture of two normal distributions with different variances.
As the difference in variance increases, the method tends to
select a threshold closer to the center of the mode with higher
variance. To overcome this, the within-class variance is scaled
with respect to the intensity range of the class. Adopting the
nomenclature in [23], the threshold k is determined using the
following measure of class separability:

ζ(k) =
σ2
0

(k − 1)2
+

σ2
1

(L− k)2
, 1 < k < L. (9)

Here, σ2
0 and σ2

1 are the class variances, L is the number of
gray levels, and k is the threshold level. ζ(k) is a measure of the
overall within-class variance with normalization to the intensity
range of the respective class. For bimodal distributions, ζ(k)
will typically have two distinct peaks separated by a local or
global minimum at the sought threshold value. In order to avoid
the selection of possible minima at the edges of the distribution,
ζ(k) will not be minimized, but rather the sum of ζ(k) and
the convex envelope of −ζ(k). The convex envelope is the
largest possible convex underestimator of −ζ(k) over the set
of intensities K = {1, . . . , L} and is defined as

η(k) = sup {c(k) : c(k′) ≤ −ζ(k′) ∀k′ ∈ K, c is convex} .
(10)

The threshold is then selected as

kthresh = argmin
k

(ζ(k) + η(k)) . (11)

Fig. 3 demonstrates the application of the thresholding
method along with Otsu’s method on a summer SAR image

Fig. 3. Example of thresholding an image window using (a) Otsu’s thresh-
olding method and (b) the new thresholding method described in this paper.
The upper panel shows the backscatter histogram with the intensity thresholds.
The center left panel shows the SAR image window being analyzed, and the
remaining panels show the binary image obtained for each threshold and the
difference between the two binary images.

acquired by the ENVISAT satellite over the Fram Strait. While
ice floes make up a fraction of the analyzed image, the largest
part is open water. It can be seen that Otsu’s method selects a
threshold that is on the slope of the peak of the distribution that
corresponds to open water pixels, whereas the new threshold
cuts the distribution close to the local minimum. The binary
image obtained by the thresholding will be further processed
before tracking is initiated. The subsequent step is to remove
all the small floes that are too difficult and not meaningful to
track. That is simply done by removing all floes with an area
less than a threshold of, e.g., 5 km2. Smaller floes that are
connected to larger floes will be removed by first making a
binary erosion using linear structuring elements in horizontal,
vertical, and diagonal directions. The binary erosion will dis-
engage the small floes from the large ones and enable their
removal. The contours of all large floes are restored through
a binary dilation once the small floes have been removed. A
morphological closing operation is performed in order to fill in
small gaps within floes. After this, all floes that are connected to
the image edges are also removed because their boundaries are
unknown.
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Fig. 4. Example showing the process of splitting amalgamated floes. (a) Identified floes and their respective solidities. One floe has low solidity and is selected
as a candidate for splitting. (b) Distance matrix representing distances between all boundary pixels (denoted by xi) of the red floe, with plus signs marking local
minima. Each indicated minimum corresponds to a cut between two border pixels, and the trapezoid defines a region of valid cuts. (c) Red floe with cuts. (d) Final
result after the red floe was split and small floes were neglected.

One more attempt will be made to separate amalgamated
floes in a process illustrated by Fig. 4. The amalgamated floes
are first identified by their low solidity, which is defined as the
ratio between the area of the floe and the area of its convex hull.
For a floe with low solidity, the distances between all pixels
on the boundary are computed, and a search is made for local
minima whose distances are shorter than a threshold value. A
minimum will occur at the waist of two merged floes where they
are just loosely holding together. Two criteria are then used to
determine whether the floe will be cut into two: The distance
from edge to edge must be below a threshold value, and the
perimeters of the two emerging floes must be longer than a
minimum length.

B. Feature Tracking

The approach used for feature tracking is, in all essentials,
based on [13] and will only be described briefly. The coor-
dinates that outline a specific floe at time t0 are denoted by
xi, i = 1, 2, . . . ,m, and those at time t1 are denoted by yi,
i = 1, 2, . . . , n. The drift is estimated floe by floe by iteratively
solving a pair of minimization problems. First, a subset of
the coordinates xi is determined so that each coordinate yi

has a matching coordinate xj(i). More specifically, xj(i) is
selected as the xr that minimizes ‖yi − α− βxr‖1. Included
in the norm are the translation α and the rotation matrix β,
which are given some initial values based on the distance
between floe centroids and an arbitrary rotation. Second, the
translation and rotation parameters are estimated by minimizing∑n

i=1 ‖yi − α− βxj(i)‖1. The parameter estimates found in
this first iteration are used to refine the selection of xj(i) in the
next iteration.

The method to deal with broken and amalgamated floes
described in [13] has not been adopted because it only applies
to consolidations of not more than two floes. As described in
Section IV-A, an extensive treatment of amalgamated floes is
instead carried out during the segmentation.

The average residual is used as a metric to evaluate a fit
between two floes. It is defined as

AR =

∑n
i=1

∥∥∥yi − α̂− β̂xj(i)

∥∥∥
2n− 3

(12)

where α̂ and β̂ are the estimated translation and rotation
parameters.

V. ALGORITHM VALIDATION AND DISCUSSION

A. Selection of Internal Parameters—Area-Based Matching

The phase-correlation method is controlled by a number of
parameters that must be determined in an appropriate way. The
parameters may interact in unforeseen ways and are preferably
tuned to optimize the final performance of the algorithm. The
internal parameters were varied in a test using two pairs of
ASAR images over the Fram Strait. One pair was acquired on
April 20 and 21, 2011, separated in time by 15 h. The ice dis-
placement was measured manually at 63 locations using image
analysis software and displacements ranged from 1.5 km up
to 9 km. The MIZ was narrow, and most points were positioned
within the dense pack ice. The second pair was acquired on
November 22 and 24, 2011, with a fairly long temporal separa-
tion of 48 h. The displacement was measured in 135 locations
and varied between 4 and 51 km. Most locations were selected
within the extensive MIZ of rather diverse ice motion. The
accuracy presented in this section is the weighted average of
the 198 drift measurements, where each image pair has equal
weight on the total accuracy.

The manual measurements were then compared to the output
from the algorithm. In order to preserve the accuracy of the
manual measurements, the algorithm’s output is adapted to
match the manual measurements rather than the opposite. The
magnitude and direction of the computed drift is interpolated
onto the positions of the reference measurements. The interpo-
lation is performed in the spatial domain belonging to the first
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TABLE I
ACCURACY OBTAINED FROM DIFFERENT SETS OF WINDOW SIZES

(SIDE LENGTHS) IN A THREE-LAYERED PROCESSING SYSTEM.
SHADED CELLS MARK NONDEFAULT VALUES. WINDOW SIZES

ARE TYPICALLY CHOSEN TO HAVE LOW PRIME FACTORS

image. The result is used to determine the new positions at the
time of the second image. It can be noted that the algorithm
tends to give either a correct drift estimate with relatively high
accuracy or a drift that has little or no correspondence with
the actual drift. Based on this fact, we measure the accuracy
as the proportion of correct drift vectors. A drift vector will be
considered as correct if the magnitude of the displacement is
correct to within 2 km and the directional offset is less than
20◦. The condition is fairly loose as the aim is to measure
the accuracy rather than the precision of the algorithm. It is a
sensitive measure because each vector will either be counted or
not, and therefore, it will likely generate some variation in the
measured accuracy.

1) Window Side Length: A key set of parameters is the one
that determines the side lengths of the image windows at each
processing level in the phase-correlation algorithm. The image
windows must be small in order to capture fine details in the
ice motion field. They also need to be large enough to comprise
a sufficient amount of image features which give the specific
image window certain characteristics, making it meaningful to
correlate with other windows. Table I shows the accuracy of
the algorithm for different combinations of window side lengths
at the different processing levels. Three processing levels have
been used in all setups, and all parameters are constant, except
for the window size and two more parameters: the step size
and the radius of the weighted median filter. The step size,
which determines the spatial density of the phase-correlation
measurements, has been set to half the window size. The filter
radius has been set equal to the window size. The window size
has been given default values of [432 192 60] pixels for the
three processing levels. These values were chosen because they
were known to give decent results.

The table shows that the accuracy is moderately affected by
the selection of window sizes. The highest accuracy is achieved
with window sizes very similar to the default values, but the
default values appear in the lower end of the scale. The window

TABLE II
ACCURACY VERSUS DOWNSAMPLING FACTOR (DF). THE PARAMETERS

ARE SET INDIVIDUALLY FOR EACH PROCESSING LEVEL. INITIAL TO

FINAL PROCESSING LEVELS ARE PRESENTED FROM LEFT TO RIGHT

size at the last processing level has no significant impact on
the accuracy within the studied interval from 40 to 74 pixels,
although a side length of 40 pixels gives the lowest accuracy
and is especially troublesome for the April images which are
dominated by dense pack ice. This low accuracy for small
windows in pack ice may be related to a lower occurrence of
features, such as ridges and cracks, compared to the ice in the
MIZ where individual floes are frequent and likely to appear
even in very small windows.

The window size at the intermediate processing level has a
small impact on the accuracy as well. Looking at the initial
processing level, window sizes just below the default value
give the highest accuracy overall. A large size is preferred
in order to catch the longest potential displacements (and to
minimize the number of target windows—see Section III-A).
Unnecessary large windows can, however, cause a problem in
heterogeneous motion fields. Because only one value of the
drift is obtained for each window, the measured displacement
may not be representative for the whole window area.

One may note the large discrepancy in accuracy between
the two image pairs, with the first pair having much higher
accuracy. This is an effect of the MIZ being wider in the second
image pair, which poses a challenge for the phase-correlation
method.

2) Downsampling: In [8] is suggested a methodology to
use downsampled images at the initial processing level and
to increase the resolution by a factor of 2 until the full res-
olution is reached at the final processing level. The purpose
of downsampling is to reduce computational load and mask
out small motion. If there is a small spread in magnitude and
direction among the candidate solutions, downsampling will
efficiently merge these solutions. The drawback is that the ice
floe edges, ridges, and other structures will be blurred and
cause a reduction in the correlation. Table II shows the effect
of varying the downsampling factor at the different processing
levels while keeping all other parameters constant (the window
size set to [432 192 60] pixels for the three processing levels,
the step size set to half the window size, and the radius of the
weighted median filter set equal to the window size). It seems
that the impact of varying the downsampling at the intermediate
processing level is small, whereas it is more sensitive at the
initial processing level. High downsampling (by a factor of 4)
or no downsampling gives some decrease in accuracy, whereas
downsampling by a factor of 2 seems adequate. It may not be
the best strategy to start with highly downsampled images—if
there is an initial error in the drift estimation, it will propagate
to lower levels in the hierarchical processing system.
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TABLE III
ACCURACY VERSUS WINDOW-TO-STEP SIZE RATIO. THE PARAMETERS

ARE SET INDIVIDUALLY FOR EACH PROCESSING LEVEL. INITIAL TO

FINAL PROCESSING LEVELS ARE PRESENTED FROM LEFT TO RIGHT

3) Step Size: The step size is set in relation to the window
side length. A window-to-step size ratio of 2, for example,
means that two adjacent windows overlap each other by half
of their side length. Table III shows the effect of varying
the step size while keeping all other parameters constant
with the aforementioned values (and downsampling factors of
[2 1 1]). The table indicates a trend toward higher accuracy for
denser sampling. The relative improvement is higher for smaller
ratios, and the benefit of very dense sampling must also be
weighed against the computational cost. For ratios above 4, the
benefit of even denser sampling is very small as the accuracy
appears to saturate. The two cases with the most and least
densely spaced windows are shown for one image pair in Fig. 6.
When sparse spacing is used, regions of homogeneous drift
appear more disconnected with sharp boundaries in between.
If a drift estimate from one phase correlation is incorrect, it
will more likely be filtered out in the case of more densely
spaced windows. For sparsely spaced windows, an incorrect
measurement may appear as an isolated rectangular region of
distinct motion that differs from the surrounding area.

4) Filtering: The radius of the weighted median filter deter-
mines how many measurements should be weighted together
in order to form a representative value of the drift in a certain
position. We choose to express the filter radius in relative units
of window side length instead of as an absolute distance. It is
reasonable because the finest resolved motion is governed by
the window size. The number of measurements within a certain
radius is dependent on the window-to-step size ratio, which
was set to 2 for all processing levels in this test. Note that the
number of measurements increases stepwise with the radius.
For example, as the radius exceeds

√
2 times the window side

length, the number of filtered measurements increases from 21
to 25.

Fig. 5 shows the results from varying the radius of the median
filter and keeping all other parameters constant. The window
size was set to [432 192 60] for the three processing levels. It
can be seen from the figure that the accuracy is less sensitive
to the radius at the final processing level than at higher levels.
Suboptimal accuracy is obtained for large radii, due to the
spatial smearing of the motion field, and for small radii when
the filter operates with few measurements. The optimal size of
the filter is found with radii in the order of the window size. As
in the previous test of the step size and observable in Fig. 6, the
marginal ice is tracked with lower accuracy than the pack ice.
It is also within the MIZ that the accuracy varies at most with
respect to filter radius.

Fig. 5. Accuracy versus radius of weighted median filter. Also shown is the
number of measurement points covered by the radius. Each curve corresponds
to one setup, shown in the legend, where the filter radius is set to either r or 1
at the three processing levels.

5) Rotation Measurement: The performance of the rotation
measurement was evaluated using the image pair acquired
by ENVISAT over the Fram Strait on November 22 and 24,
2011. The rotation was measured manually in the SAR images
and compared to the rotation derived by the aforementioned
method. The manual measurements were carried out by mea-
suring the position of two nearby points in one image and
locating the same points in a second image. If the ice does not
break between the points, the rotation can be determined as the
difference in direction between the two lines that intersect the
points in each image. 114 mutual points were marked out in
the images and used to compute the rotation in 57 locations. The
results are shown in Fig. 7. The estimated rotation is evaluated
using root-median-square errors, i.e., the square root of the
median squared error. It is preferred before root-mean-square
error because of its robustness to outliers. The error is shown for
window side lengths up to 200 pixels. The angular resolution
depends on the pixel size and can be improved through the inter-
polation of the images prior to the Fourier–Mellin transform (at
the cost of computational load). The images were oversampled
by a factor of 4, which gave a slight improvement for smaller
image windows, but the effect disappears when the side length
goes above 60 pixels. The minimum error is reached for side
lengths between 5 and 10 km (or 70 and 140 pixels). Within
this range, the root-median-square error is generally 3◦–5◦ with
a minimum of 3.1◦ at a window side length of 98 pixels. There
is a clear trend toward larger errors for side lengths larger than
140 pixels, presumably because the ice conditions vary too
much within one image window and it is not reasonable to
assume one rotation angle for the whole window. The histogram
shows that a majority of the measurements were carried out on a
length scale of less than 100 pixels. The distribution is related to
the possibility of finding rigid ice areas of different dimensions
and the frequency of such areas.
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Fig. 6. Example showing the impact of varying the spacing between the image windows for which phase correlation is computed. The velocity ranges up to
0.3 m/s and is indicated by color. Contour lines mark regions of high correlation. (a) Moderately spaced windows. (b) Densely spaced windows. (c) Reference
measurements, grouped by floe. (d) ASAR image from the first overpass on November 22, 2011.

Fig. 7. Root-median-square error of the estimated rotation as a function of
window side length computed from C-band SAR data with a pixel size of
75 m and for two different cases: for images in the original scale and for
images oversampled by a factor of 4. The angular resolution is shown for
the case without interpolation. The bar chart shows the number of rotation
measurements for a certain length of rigid ice.

B. Feature-Based Matching

This section will discuss some aspects of the feature-based
matching. The image segmentation is based on straightfor-

ward intensity thresholding. Other methods may, however, be
considered for potential improvements of the segmentation. A
number of algorithms have been developed in order to estimate
the sea ice concentration from single- and dual-polarization
C-band SAR data (see, for example, [24] and [25]). These
algorithms may be used to distinguish sea ice from open water
and perform image segmentation. It must, however, be taken
into account that the ice concentration must be convertible
to binary sea ice extent in the full resolution of the SAR
images; otherwise, there is no possibility to outline different
floes. The conversion to a binary format involves the selection
of a concentration threshold; a task that may become intri-
cate for flat ice concentration distributions. Other alternative
methods to perform segmentation include using the Markov
random field [26] or K-means clustering method [27]. The
usage of the former method is illustrated in [28] and as a
semiautomated analysis in [29]. These algorithms are able to
handle the spatial relationship among pixels within the seg-
mentation process which will reduce the sensitivity to speckle
noise.

In order to determine the effect of the feature-based match-
ing, the algorithm was tested with the corresponding module
switched on and off. The test was made with four pairs of
ASAR images over the Fram Strait from June 8 and 9 and
August 11–16 of 2011. The computed drift was compared
to 45 manual measurements, following the methodology in
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Fig. 8. Motion field computed by the algorithm with feature-based matching
module switched on and off, on top of the ASAR image from August 11, 2011.
Manual measurements of the ice drift are shown by red arrows. Switching off
the module causes erroneous drift in the eastern part of the scene.

Section V-A. All the manual drift measurements were selected
within the MIZ where the ice concentration was less than about
eight-tenths. An example of the result is shown in Fig. 8. The
resulting accuracy was 36% when the feature-based matching
was switched off and 49% when the module was switched on.
Here, it should be noted that the absolute values are dependent
on the selection of reference points and the used measure of
accuracy. The accuracy is defined as before, as the proportion
of correct drift vectors (see Section V-A). The relative im-
provement created by the feature-based matching shows that the
module gives valuable support to the algorithm. The algorithm
works reliably with feature-based matching being subordinate
to area-based matching, and the possibility for the former mod-
ule to fall back on the latter assures that the level of accuracy
is maintained or increased. There are still problematic regions
where both the area-based and the feature-based matching fail.
Typical examples are regions of heavy deformation and ice in
melt conditions near the ice edge.

Run time measurements were carried out with and without
feature-based matching. The run time is largely dependent on
the parameter settings (primarily the step size, described in
Section V-A3) and the size of the overlap between the two
images. With feature-based matching switched on, the run time
typically increases by 10% to 25%. On a standard personal
computer and with optimally selected parameters, the run time
is about 30 min for an intersecting area of 400 times 400 km2

between two ASAR images.

VI. SUMMARY AND CONCLUSION

In order for an ice drift algorithm to handle the dynamics
of marginal ice as well as pack ice, a hybrid algorithm is
necessary. By combining areal matching with feature tracking,
it is possible to determine the drift within the pack ice as
well as in the MIZ. The areal matching technique used in this

study is based on phase correlation. It has been extended with
a module that estimates the rotation of the ice. The rotation
is determined by a cross-correlation of the rotation signatures
obtained from the log-polar Fourier–Mellin transform. It was
shown that the rotation signatures are aptly weighted with
exponential functions in order to give a balanced representation
of the spatial frequency content from one image window. It is
also shown that the rotation is determined with higher accu-
racy for a certain range of window sizes. For small windows,
the angular resolution is poor, and for large windows, the
rotation may become ambiguous as the motion field is more
heterogeneous.

The phase correlation is computed within a hierarchical pro-
cessing system which uses a number of internal parameters that
set, for example, the window size at each processing level. We
have investigated how some key parameters affect the accuracy
of the algorithm. The sensitivity to window size is fairly low
which means that other factors than the accuracy, such as the
longest potential displacement, should be considered for the
window size selection.

The algorithm uses downsampling to shorten the processing
time and filter out small motion. It is shown that the amount
of downsampling at the initial processing level has an impact
on the accuracy, whereas intermediate levels are not affected
to the same extent. The spacing between image windows is
also shown to influence the accuracy, with higher accuracy for
shorter spacing. Based on the results in this study, it appears
that the effect saturates when the window-to-step size ratio is
around 4. Using a higher ratio is not motivated by the relatively
small improvement and, not less important, by the high com-
putational cost. The last parameter that has been investigated
is the radius of the weighted median filter. It appears that
the most suitable choice is in the same order as the window
size. The filter is then likely to filter out erroneous drift mea-
surements without degrading the motion field through spatial
smearing.

The influence of the feature tracking module was tested
against manual drift measurements and proved to have a pos-
itive effect within the MIZ. The additional computational load
is well matched by the increase in accuracy. Future work may
consider other methods to perform image segmentation which
may be able to handle a larger variety of ice conditions.

The perspective of this study has been centered toward the
response of the algorithm to internal parameter settings. Future
studies may provide more knowledge about the sensitivity to
temporal spacing between images, season, weather conditions,
and study region. This study will then provide an important
foundation for further analyses.
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