79 research outputs found

    An Optimized Recursive General Regression Neural Network Oracle for the Prediction and Diagnosis of Diabetes

    Get PDF
    Diabetes is a serious, chronic disease that has been seeing a rise in the number of cases and prevalence over the past few decades. It can lead to serious complications and can increase the overall risk of dying prematurely. Data-oriented prediction models have become effective tools that help medical decision-making and diagnoses in which the use of machine learning in medicine has increased substantially. This research introduces the Recursive General Regression Neural Network Oracle (R-GRNN Oracle) and is applied on the Pima Indians Diabetes dataset for the prediction and diagnosis of diabetes. The R-GRNN Oracle (Bani-Hani, 2017) is an enhancement to the GRNN Oracle developed by Masters et al. in 1998, in which the recursive model is created of two oracles: one within the other. Several classifiers, along with the R-GRNN Oracle and the GRNN Oracle, are applied to the dataset, they are: Support Vector Machine (SVM), Multilayer Perceptron (MLP), Probabilistic Neural Network (PNN), Gaussian NaEF;ve Bayes (GNB), K-Nearest Neighbor (KNN), and Random Forest (RF). Genetic Algorithm (GA) was used for feature selection as well as the hyperparameter optimization of SVM and MLP, and Grid Search (GS) was used to optimize the hyperparameters of KNN and RF. The performance metrics accuracy, AUC, sensitivity, and specificity were recorded for each classifier. The R-GRNN Oracle was able to achieve the highest accuracy, AUC, and sensitivity (81.14%, 86.03%, and 63.80%, respectively), while the optimized MLP had the highest specificity (89.71%)

    Incremental learning of concept drift from imbalanced data

    Get PDF
    Learning data sampled from a nonstationary distribution has been shown to be a very challenging problem in machine learning, because the joint probability distribution between the data and classes evolve over time. Thus learners must adapt their knowledge base, including their structure or parameters, to remain as strong predictors. This phenomenon of learning from an evolving data source is akin to learning how to play a game while the rules of the game are changed, and it is traditionally referred to as learning concept drift. Climate data, financial data, epidemiological data, spam detection are examples of applications that give rise to concept drift problems. An additional challenge arises when the classes to be learned are not represented (approximately) equally in the training data, as most machine learning algorithms work well only when the class distributions are balanced. However, rare categories are commonly faced in real-world applications, which leads to skewed or imbalanced datasets. Fraud detection, rare disease diagnosis, anomaly detection are examples of applications that feature imbalanced datasets, where data from category are severely underrepresented. Concept drift and class imbalance are traditionally addressed separately in machine learning, yet data streams can experience both phenomena. This work introduces Learn++.NIE (nonstationary & imbalanced environments) and Learn++.CDS (concept drift with SMOTE) as two new members of the Learn++ family of incremental learning algorithms that explicitly and simultaneously address the aforementioned phenomena. The former addresses concept drift and class imbalance through modified bagging-based sampling and replacing a class independent error weighting mechanism - which normally favors majority class - with a set of measures that emphasize good predictive accuracy on all classes. The latter integrates Learn++.NSE, an algorithm for concept drift, with the synthetic sampling method known as SMOTE, to cope with class imbalance. This research also includes a thorough evaluation of Learn++.CDS and Learn++.NIE on several real and synthetic datasets and on several figures of merit, showing that both algorithms are able to learn in some of the most difficult learning environments

    A Survey of Adaptive Resonance Theory Neural Network Models for Engineering Applications

    Full text link
    This survey samples from the ever-growing family of adaptive resonance theory (ART) neural network models used to perform the three primary machine learning modalities, namely, unsupervised, supervised and reinforcement learning. It comprises a representative list from classic to modern ART models, thereby painting a general picture of the architectures developed by researchers over the past 30 years. The learning dynamics of these ART models are briefly described, and their distinctive characteristics such as code representation, long-term memory and corresponding geometric interpretation are discussed. Useful engineering properties of ART (speed, configurability, explainability, parallelization and hardware implementation) are examined along with current challenges. Finally, a compilation of online software libraries is provided. It is expected that this overview will be helpful to new and seasoned ART researchers

    A Systematic Review of Learning based Notion Change Acceptance Strategies for Incremental Mining

    Get PDF
    The data generated contemporarily from different communication environments is dynamic in content different from the earlier static data environments. The high speed streams have huge digital data transmitted with rapid context changes unlike static environments where the data is mostly stationery. The process of extracting, classifying, and exploring relevant information from enormous flowing and high speed varying streaming data has several inapplicable issues when static data based strategies are applied. The learning strategies of static data are based on observable and established notion changes for exploring the data whereas in high speed data streams there are no fixed rules or drift strategies existing beforehand and the classification mechanisms have to develop their own learning schemes in terms of the notion changes and Notion Change Acceptance by changing the existing notion, or substituting the existing notion, or creating new notions with evaluation in the classification process in terms of the previous, existing, and the newer incoming notions. The research in this field has devised numerous data stream mining strategies for determining, predicting, and establishing the notion changes in the process of exploring and accurately predicting the next notion change occurrences in Notion Change. In this context of feasible relevant better knowledge discovery in this paper we have given an illustration with nomenclature of various contemporarily affirmed models of benchmark in data stream mining for adapting the Notion Change

    Explainable Lifelong Stream Learning Based on "Glocal" Pairwise Fusion

    Full text link
    Real-time on-device continual learning applications are used on mobile phones, consumer robots, and smart appliances. Such devices have limited processing and memory storage capabilities, whereas continual learning acquires data over a long period of time. By necessity, lifelong learning algorithms have to be able to operate under such constraints while delivering good performance. This study presents the Explainable Lifelong Learning (ExLL) model, which incorporates several important traits: 1) learning to learn, in a single pass, from streaming data with scarce examples and resources; 2) a self-organizing prototype-based architecture that expands as needed and clusters streaming data into separable groups by similarity and preserves data against catastrophic forgetting; 3) an interpretable architecture to convert the clusters into explainable IF-THEN rules as well as to justify model predictions in terms of what is similar and dissimilar to the inference; and 4) inferences at the global and local level using a pairwise decision fusion process to enhance the accuracy of the inference, hence ``Glocal Pairwise Fusion.'' We compare ExLL against contemporary online learning algorithms for image recognition, using OpenLoris, F-SIOL-310, and Places datasets to evaluate several continual learning scenarios for video streams, low-sample learning, ability to scale, and imbalanced data streams. The algorithms are evaluated for their performance in accuracy, number of parameters, and experiment runtime requirements. ExLL outperforms all algorithms for accuracy in the majority of the tested scenarios.Comment: 24 pages, 8 figure

    Adaptive multi-classifier systems for face re-identification applications

    Get PDF
    In video surveillance, decision support systems rely more and more on face recognition (FR) to rapidly determine if facial regions captured over a network of cameras correspond to individuals of interest. Systems for FR in video surveillance are applied in a range of scenarios, for instance in watchlist screening, face re-identification, and search and retrieval. The focus of this Thesis is video-to-video FR, as found in face re-identification applications, where facial models are designed on reference data, and update is archived on operational captures from video streams. Several challenges emerge from the task of recognizing individuals of interest from faces captured with video cameras. Most notably, it is often assumed that the facial appearance of target individuals do not change over time, and the proportions of faces captured for target and non-target individuals are balanced, known a priori and remain fixed. However, faces captured during operations vary due to several factors, including illumination, blur, resolution, pose expression, and camera interoperability. In addition, facial models used matching are commonly not representative since they are designed a priori, with a limited amount of reference samples that are collected and labeled at a high cost. Finally, the proportions of target and non-target individuals continuously change during operations. In literature, adaptive multiple classifier systems (MCSs) have been successfully applied to video-to-video FR, where the facial model for each target individual is designed using an ensemble of 2-class classifiers (trained using target vs. non-target reference samples). Recent approaches employ ensembles of 2-class Fuzzy ARTMAP classifiers, with a DPSO strategy to generate a pool of classifiers with optimized hyperparameters, and Boolean combination to merge their responses in the ROC space. Besides, the skew-sensitive ensembles were recently proposed to adapt the fusion function of an ensemble according to class imbalance measured on operational data. These active approaches estimate target vs. non-target proportions periodically during operations distance, and the fusion of classifier ensembles are adapted to such imbalance. Finally, face tracking can be used to regroup the system responses linked to a facial trajectory (facial captures from a single person in the scene) for robust spatio-temporal recognition, and to update facial models over time using operational data. In this Thesis, new techniques are proposed to adapt the facial models for individuals enrolled to a video-to-video FR system. Trajectory-based self-updating is proposed to update the system, considering gradual and abrupt changes in the classification environment. Then, skew-sensitive ensembles are proposed to adapt the system to the operational imbalance. In Chapter 2, an adaptive framework is proposed for partially-supervised learning of facial models over time based on facial trajectories. During operations, information from a face tracker and individual-specific ensembles is integrated for robust spatio-temporal recognition and for self-update of facial models. The tracker defines a facial trajectory for each individual in video. Recognition of a target individual is done if the positive predictions accumulated along a trajectory surpass a detection threshold for an ensemble. If the accumulated positive predictions surpass a higher update threshold, then all target face samples from the trajectory are combined with non-target samples (selected from the cohort and universal models) to update the corresponding facial model. A learn-and-combine strategy is employed to avoid knowledge corruption during self-update of ensembles. In addition, a memory management strategy based on Kullback-Leibler divergence is proposed to rank and select the most relevant target and non-target reference samples to be stored in memory as the ensembles evolves. The proposed system was validated with synthetic data and real videos from Face in Action dataset, emulating a passport checking scenario. Initially, enrollment trajectories were used for supervised learning of ensembles, and videos from three capture sessions were presented to the system for FR and self-update. Transaction-level analysis shows that the proposed approach outperforms baseline systems that do not adapt to new trajectories, and provides comparable performance to ideal systems that adapt to all relevant target trajectories, through supervised learning. Subject-level analysis reveals the existence of individuals for which self-updated ensembles provide a considerable benefit. Trajectory-level analysis indicates that the proposed system allows for robust spatio-temporal video-to-video FR. In Chapter 3, an extension and a particular implementation of the ensemble-based system for spatio-temporal FR is proposed, and is characterized in scenarios with gradual and abrupt changes in the classification environment. Transaction-level results show that the proposed system allows to increase AUC accuracy by about 3% in scenarios with abrupt changes, and by about 5% in scenarios with gradual changes. Subject-based analysis reveals the difficulties of FR with different poses, affecting more significantly the lamb- and goat-like individuals. Compared to reference spatio-temporal fusion approaches, the proposed accumulation scheme produces the highest discrimination. In Chapter 4, adaptive skew-sensitive ensembles are proposed to combine classifiers trained by selecting data with varying levels of imbalance and complexity, to sustain a high level the performance for video-to-video FR. During operations, the level of imbalance is periodically estimated from the input trajectories using the HDx quantification method, and pre-computed histogram representations of imbalanced data distributions. Ensemble scores are accumulated of trajectories for robust skew-sensitive spatio-temporal recognition. Results on synthetic data show that adapting the fusion function with the proposed approach can significantly improve performance. Results on real data show that the proposed method can outperform reference techniques in imbalanced video surveillance environments

    Safety Performance Prediction of Large-Truck Drivers in the Transportation Industry

    Get PDF
    The trucking industry and truck drivers play a key role in the United States commercial transportation sector. Accidents involving large trucks is one such big event that can cause huge problems to the driver, company, customer and other road users causing property damage and loss of life. The objective of this research is to concentrate on an individual transportation company and use their historical data to build models based on statistical and machine learning methods to predict accidents. The focus is to build models that has high accuracy and correctly predicts an accident. Logistic regression and penalized logistic regression models were tested initially to obtain some interpretation between the predictor variables and the response variable. Random forest, gradient boosting machine (GBM) and deep learning methods are explored to deal with high non-linear and complex data. The cost of fatal and non-fatal accidents is also discussed to weight the difference between training a driver and encountering an accident. Since accidents are very rare events, the model accuracy should be balanced between predicting non-accidents (specificity) and predicting accidents (sensitivity). This framework can be a base line for transportation companies to emphasis the benefits of prediction to have safer and more productive drivers

    Multi-tier framework for the inferential measurement and data-driven modeling

    Get PDF
    A framework for the inferential measurement and data-driven modeling has been proposed and assessed in several real-world application domains. The architecture of the framework has been structured in multiple tiers to facilitate extensibility and the integration of new components. Each of the proposed four tiers has been assessed in an uncoupled way to verify their suitability. The first tier, dealing with exploratory data analysis, has been assessed with the characterization of the chemical space related to the biodegradation of organic chemicals. This analysis has established relationships between physicochemical variables and biodegradation rates that have been used for model development. At the preprocessing level, a novel method for feature selection based on dissimilarity measures between Self-Organizing maps (SOM) has been developed and assessed. The proposed method selected more features than others published in literature but leads to models with improved predictive power. Single and multiple data imputation techniques based on the SOM have also been used to recover missing data in a Waste Water Treatment Plant benchmark. A new dynamic method to adjust the centers and widths of in Radial basis Function networks has been proposed to predict water quality. The proposed method outperformed other neural networks. The proposed modeling components have also been assessed in the development of prediction and classification models for biodegradation rates in different media. The results obtained proved the suitability of this approach to develop data-driven models when the complex dynamics of the process prevents the formulation of mechanistic models. The use of rule generation algorithms and Bayesian dependency models has been preliminary screened to provide the framework with interpretation capabilities. Preliminary results obtained from the classification of Modes of Toxic Action (MOA) indicate that this could be a promising approach to use MOAs as proxy indicators of human health effects of chemicals.Finally, the complete framework has been applied to three different modeling scenarios. A virtual sensor system, capable of inferring product quality indices from primary process variables has been developed and assessed. The system was integrated with the control system in a real chemical plant outperforming multi-linear correlation models usually adopted by chemical manufacturers. A model to predict carcinogenicity from molecular structure for a set of aromatic compounds has been developed and tested. Results obtained after the application of the SOM-dissimilarity feature selection method yielded better results than models published in the literature. Finally, the framework has been used to facilitate a new approach for environmental modeling and risk management within geographical information systems (GIS). The SOM has been successfully used to characterize exposure scenarios and to provide estimations of missing data through geographic interpolation. The combination of SOM and Gaussian Mixture models facilitated the formulation of a new probabilistic risk assessment approach.Aquesta tesi proposa i avalua en diverses aplicacions reals, un marc general de treball per al desenvolupament de sistemes de mesurament inferencial i de modelat basats en dades. L'arquitectura d'aquest marc de treball s'organitza en diverses capes que faciliten la seva extensibilitat així com la integració de nous components. Cadascun dels quatre nivells en que s'estructura la proposta de marc de treball ha estat avaluat de forma independent per a verificar la seva funcionalitat. El primer que nivell s'ocupa de l'anàlisi exploratòria de dades ha esta avaluat a partir de la caracterització de l'espai químic corresponent a la biodegradació de certs compostos orgànics. Fruit d'aquest anàlisi s'han establert relacions entre diverses variables físico-químiques que han estat emprades posteriorment per al desenvolupament de models de biodegradació. A nivell del preprocés de les dades s'ha desenvolupat i avaluat una nova metodologia per a la selecció de variables basada en l'ús del Mapes Autoorganitzats (SOM). Tot i que el mètode proposat selecciona, en general, un major nombre de variables que altres mètodes proposats a la literatura, els models resultants mostren una millor capacitat predictiva. S'han avaluat també tot un conjunt de tècniques d'imputació de dades basades en el SOM amb un conjunt de dades estàndard corresponent als paràmetres d'operació d'una planta de tractament d'aigües residuals. Es proposa i avalua en un problema de predicció de qualitat en aigua un nou model dinàmic per a ajustar el centre i la dispersió en xarxes de funcions de base radial. El mètode proposat millora els resultats obtinguts amb altres arquitectures neuronals. Els components de modelat proposat s'han aplicat també al desenvolupament de models predictius i de classificació de les velocitats de biodegradació de compostos orgànics en diferents medis. Els resultats obtinguts demostren la viabilitat d'aquesta aproximació per a desenvolupar models basats en dades en aquells casos en els que la complexitat de dinàmica del procés impedeix formular models mecanicistes. S'ha dut a terme un estudi preliminar de l'ús de algorismes de generació de regles i de grafs de dependència bayesiana per a introduir una nova capa que faciliti la interpretació dels models. Els resultats preliminars obtinguts a partir de la classificació dels Modes d'acció Tòxica (MOA) apunten a que l'ús dels MOA com a indicadors intermediaris dels efectes dels compostos químics en la salut és una aproximació factible.Finalment, el marc de treball proposat s'ha aplicat en tres escenaris de modelat diferents. En primer lloc, s'ha desenvolupat i avaluat un sensor virtual capaç d'inferir índexs de qualitat a partir de variables primàries de procés. El sensor resultant ha estat implementat en una planta química real millorant els resultats de les correlacions multilineals emprades habitualment. S'ha desenvolupat i avaluat un model per a predir els efectes carcinògens d'un grup de compostos aromàtics a partir de la seva estructura molecular. Els resultats obtinguts desprès d'aplicar el mètode de selecció de variables basat en el SOM milloren els resultats prèviament publicats. Aquest marc de treball s'ha usat també per a proporcionar una nova aproximació al modelat ambiental i l'anàlisi de risc amb sistemes d'informació geogràfica (GIS). S'ha usat el SOM per a caracteritzar escenaris d'exposició i per a desenvolupar un nou mètode d'interpolació geogràfica. La combinació del SOM amb els models de mescla de gaussianes dona una nova formulació al problema de l'anàlisi de risc des d'un punt de vista probabilístic
    corecore