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ABSTRACT 

 

The trucking industry and truck drivers play a key role in the United States commercial 

transportation sector. Accidents involving large trucks is one such big event that can cause huge 

problems to the driver, company, customer and other road users causing property damage and 

loss of life. The objective of this research is to concentrate on an individual transportation 

company and use their historical data to build models based on statistical and machine learning 

methods to predict accidents. The focus is to build models that has high accuracy and correctly 

predicts an accident. Logistic regression and penalized logistic regression models were tested 

initially to obtain some interpretation between the predictor variables and the response variable. 

Random forest, gradient boosting machine (GBM) and deep learning methods are explored to 

deal with high non-linear and complex data.  

The cost of fatal and non-fatal accidents is also discussed to weight the difference 

between training a driver and encountering an accident. Since accidents are very rare events, the 

model accuracy should be balanced between predicting non-accidents (specificity) and predicting 

accidents (sensitivity). This framework can be a base line for transportation companies to 

emphasis the benefits of prediction to have safer and more productive drivers.  
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1. INTRODUCTION 

1.1. Background and Motivation 

The transportation system in the United States is the largest in the world and the 

commercial transportation industry is in an enviable position. One out of seven workers in the 

U.S. are in the transportation field (U.S. Department of Transportation 2016), serving a huge 

number of business establishments all over the country. According to the American Trucking 

Association (ATA 2016), trucks moved around 9.2 billion tons of commodities annually, which 

constitutes about 70% of total freight tonnage, requiring 3 million truck drivers.  As a result, 

truck drivers play an important role in the safe and efficient delivery of freight. With an 

inevitable need for moving commodities, statistics show that accidents involving large trucks 

continue to take a toll on truck drivers, their passengers, and other road users. Driving a 53-foot 

truck, undoubtedly involves lot of concentration and focus. Developing and continuously 

improving preventive measures of such events (accidents), is the responsibility of any trucking 

company. 

The National Highway and Traffic Safety Administration (NHTSA) reported that an 

estimate of 438,000 large-trucks was involved in traffic crashes in 2014 (NHISA 2016). Two 

federal agencies, the U.S. Department of Transportation (USDOT) and the Federal Motor Carrier 

Safety Administration (FMCSA), regulate all laws related to trucking companies and determine 

the cause and nature of an accident when occurred. Trucking companies and drivers must follow 

the laws on commercial driver licenses, hours of service, maximum weight permitted, quality 

control of trucks and hazardous waste, etc. Based on estimates by Blincoe et al. (2002), the 

average cost of highway crashes was $59,153 USD. This estimate includes costs from medical 
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and emergency services, property damage, lost productivity, and the monetized value of loss of 

quality of life that a family experiences due to death or injury (Blincoe et al. 2002).  

In addition, the trucking industry with respect to truck drivers has some serious problems 

such as driver shortage, and aging drivers. The average age of drivers in the industry has been 

steadily increasing (Short 2014). Presently, a large percentage of drivers will be retiring, and too 

few younger drivers are entering the industry (Short 2014). According to the ATA data, the 

driver shortage could rise up to nearly 240,000 by 2022 with the forecasted demand. These 

potential issues reinstate the importance of safe driving habits of the existing and future drivers.  

As safety is one of the key concerns of any transportation company, the prediction of drivers at 

risk of an accident will help a company to target the right group of drivers for safety training in 

order to reduce accidents. Based on the size of the company and the number of drivers, the 

predictions can run weekly, monthly, quarterly or bi-annually. From the drivers’ perspective, the 

act of predicting the possibility of an accident based on their history may not be well accepted, 

and so executing the training process based on the predictions needs to be done very carefully 

with the sole intention of helping the drivers. Accidents, by nature are rare events compared to 

non-accidents, and so the goal is to reduce the number of accidents or to decrease the intensity of 

non-preventable accidents with proper training in place.  

1.2. Research Objectives 

Technology has greatly transformed the trucking industry to have safer fleet and more 

productive drivers. Trucking-related safety metrics have been continuously enhanced over the 

past decade, lowering the truck-related fatality rate to a considerable extent. Achieving a high 

safety level is an increased need for the transportation industry. The high reliability of trucks for 

moving freight makes it more challenging to identify new methods that can further achieve the 
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desired safety improvements without lowering productivity. Being proactive by providing 

regular safety training and the willingness to learn from the previous mistakes would be an 

effective step towards accident prevention.  Bob Joop Goos, Chairman of the International 

Organization of Road Accident Prevention stated that “More than 90 % of road accidents are 

caused by human error. We, therefore, have to focus on people in our traffic safety programs” 

(Global Driver Risk Management – Alert Driving 2016). The key is to focus on the human 

element with the “objective of stimulating good (driving) behavior” says Goos. Many industrial 

and academic researchers have examined statistical models (Al-Ghamdi 2002, Blower et al. 

2008, Shankar et al.1997) and machine learning models (Abdelwahab & Abdel-Aty 2001, 

Mussone et al. 1999,  Xie et al. 2007) to predict accidents and their severity using drivers’ 

behaviors and various external factors (co-passengers on road, pedestrians, signals, 

intersections, etc.) associated with an accident.  

The two main methodologies of finding the relationship between the response variable 

and predictor variables are statistical methods that are regression based and machine learning 

techniques that are algorithm based. Traditional regression methods are unarguably the baseline 

for prediction. But with the increasing amount of data and availability of high computational 

capability, machine learning techniques are gaining more popularity.  

The objective of this research is to identify large-truck drivers who may meet with an 

accident in the next 30 days using prediction models including the generalized linear models, 

random forest, gradient boosting machine and deep learning. This research attempts to improve 

both driver and fleet safety by using predictive analytics to identify drivers who are prone to 

future accidents based on historical data. The safety managers can then act upon these 

predictions by training the drivers to improve their safety on road for mutual benefits. 
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1.3. Research Contribution 

To the best of our knowledge, machine learning or statistical approaches have not been 

directly applied in the prediction of future accidents. Most of the previous research focused on 

prediction of severity of the injuries, number of fatalities, accident zone like intersections, 

highway, sideway sweep and other specific type of locations (Al-Ghamdi 2002, Jovanis & 

Chang 1986, Mussone et al. 1999).  In addition, all of the accident-related predictions have been 

so far based upon the publicly available or government data, which may produce very 

generalized analysis, with missing or unreliable data. The main difference of this research from 

the others is that it concentrates on a very specific cause of accidents, “the drivers”. Excluding 

the external factors associated with the accidents, this study focuses on the influence of the driver 

on an accident (e.g., age, tenure, number of previous accidents, number of citations, etc.) using 

data from a commercial transportation organization. Most importantly, this research proposes a 

method to find the root cause of majority of the accidents for any individual transportation firm 

where driving is “an occupation” or considered to be “an expertise of a person”. Although 

commercial truck drivers are highly trained and are considered to be more cautious than most 

other road users, a deeper understanding of their concerns and an appropriate training program is 

mandatory. Once an accident occurs, the risk of life and cost involved is dramatic. While each 

transportation company operates differently, has a different size, and may require different 

training programs for their drivers, this research provides an example for an in-house system of 

prediction for accidents that would greatly improve the company’s safety performance along 

with cost saving benefits. The technology and software used in this analysis are available as open 

source, making it possible for companies to have predictions at no cost except for the manpower 

involved. This research utilizes some of the commonly used algorithms in order to gain high 

prediction accuracy. The goal is to predict a higher number of accidents by having high 
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predictive accuracy and this research does not concentrate on comparing the results of the 

various algorithms used. 

1.4.  Predictive Analytics 

Predictive analytics has become widely used in various industries as a powerful tool to 

analyze future expectations or outcomes of a specific targeted goal. It is an area of data 

mining that uses data, statistical algorithms, and machine-learning techniques to identify 

the trends and behavior patterns of historical data to predict the likelihood of future outcomes 

(SAS Institute Inc. 2016). 

The need for machine learning algorithms relies on the fact that it can accommodate more 

predictor variables with fewer assumptions and the availability of tuning parameters that act as 

internal knobs. The success of machine learning algorithms depends on handling the tradeoff 

between the learning complexity and the ability to explain the inner workings of the models 

(Johansson 2007). Higher learning complexity makes the model inner workings less explanatory 

and falls under the category of the so-called “Black-Box Techniques” (Krishna 2012) which 

includes random forests, neural networks, deep learning, gradient boosting machine (GBM), etc.  

Machine learning is a subfield of computer science while statistical modeling is a 

subfield of mathematics. In machine learning methods, there are only a few assumptions spared 

from statistical methods and less prior knowledge about the data is required. On the other hand, 

statistical methods require a good prior knowledge of the data and verification of assumptions. 

Machine learning consists of a huge variety of algorithms that suits different applications. 

Understanding the different algorithms is very important and no one single algorithm is just 

perfect. Choosing an appropriate machine learning algorithm depends on the data and the 

purpose of the study.   
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Machine learning techniques are generally applied to high dimensional data sets; the 

more data you have, the more accurate your prediction can be, which however may lead to a 

black box situation. On the contrast, statistical methods are used for low dimensional data and 

where delivery of a high-level explanation of the model is desired. Knowing the audience before 

starting the modeling would be the first step for any type of analysis.  

The remainder of this thesis is organized as follows. Section 2 covers the literature 

review for statistical methods (Section 2.1) and machine learning methods (Section 2.2) applied 

to various accident related predictions. Section 3 introduces the data used for analysis, explains 

the data preparation steps, and the techniques to balance the data. Section 4 briefly explains the 

methodologies of various models used along with the parameters tuning to obtain the best model. 

Section 5 presents the results of all the models along with the performance measure to validate 

their estimates. Finally, Section 6 summarizes the overall results including discussion on the cost 

of an accident and ways to mitigate an accident.  

 

2. LITERATURE REVIEW 

Predicting truck drivers’ future accidents in a transportation company is closely related to 

predictions for driver turnover, driver behavior models, transit bus driver distraction, and many 

more. This section summarizes the most relevant problems, compares and contrasts the modeling 

techniques used, and examines some methodologies that are used in this study such as logistic 

regression, penalized regression, random forest, gradient boosting machine, and deep learning. 

2.1. Prediction Using Statistical Models  

Regression is an integral part of data analysis when concerned about the relationship 

between the independent and the dependent variables. For the binomial classification problem 
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under study, logistic regression is appropriate. In logistic regression models, the response 

variable is binary or dichotomous (e.g., fatal or non-fatal). Jovanis & Chang (1986) studied the 

relationship of accidents to miles traveled using Poisson regression. The model was built using 

the accidents, travel mileage, and environmental data from the Indian Toll road. The model 

revealed that automobile and truck accidents are directly related to the automobile and truck 

travel mileage. As the truck Vehicle Miles Traveled (VMT) increases, the chance of collision 

also increases.  

Murray et al. (2006) developed a model for predicting a truck crash involvement using 

logistic regression where the model uses driver’s historical driving record and later used the 

significant factors identified to plan for effective enforcement actions to counteract the driving 

behaviors. The model suggested that drivers who had a past crash increase their likelihood of a 

future crash by 87%, where reckless driving and improper turn violation are the most important 

predictors.  

Al-Ghamdi (2002) used logistic regression to estimate the factors influencing accidents 

as fatal or non-fatal and used statistical interpretation of the model estimates. The accident 

location (i.e., intersection and road section) and accident cause (i.e., speed too fast, run on red 

light, wrong way, not giving priority and others) were observed to be significant causing the 

fatal accident. 

In another study using logistic regression, Blower et al. (2008) identified that driver 

errors (driver’s contribution to the accident) are related to characteristics of the driver (i.e., age, 

sex, method of payment, and previous driving record) and bus operations (i.e., operation type 

and trip type). Driver characteristic i.e., violations and crashes within the previous three years 
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and bus operation types were the only statistically significant factors for the bus driver error 

crash.  

Generally, researchers use the goodness-of-fit statistics (Shankar et al. 1997, Miaou and 

Lord 2003) to determine which statistical model fits the data the best. On the other hand, a model 

that fits the data very well does not necessarily mean that it will be able to predict crashes 

successfully. Due to the problems where predictors like drivers’ behaviors, drivers’ 

characteristics, and factors related to accidents are nondeterministic and highly nonlinear, it is 

difficult for traditional methods to embody this kind of uncertain relationship to provide high 

accuracy in prediction. 

2.2. Prediction Using Machine Learning Techniques 

Mussone et al. (1999) used neural networks to analyze vehicle accident that occurred at 

intersections in Milan, Italy. They chose feed-forward neural networks with a back-propagation 

learning paradigm. The model has 10 input units, 4 hidden units and 1 output unit. The input 

nodes were day or night, traffic flow, road surface condition, number of conflict points, type of 

intersection, accident type, and weather condition.  The output node was called an accident index 

and was calculated as the ratio between the number of accidents for a given intersection and the 

number of accidents at the most dangerous intersection. The model showed that the highest 

accident index for running over of pedestrian occurred at non-signalized intersections at 

nighttime. 

Yang et al. (1999) studied the 1997 Alabama interstate alcohol related data using the 

neural network approach to detect safer driving patterns that have less chance of causing death 

and injury when a car crash occurs. The target variable in their study had two classes: injury and 

non-injury, in which the injury class included fatalities. They found that by controlling a single 
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variable (such as the driving speed or the light conditions), they could potentially reduce 

fatalities and injuries by up to 40%.  

Abdelwahab et al. (2001) focused on two-vehicle accidents that occurred at signalized 

intersections. The accident data from the Central Florida area was used where the injury severity 

was divided into three classes: no injury, possible injury, and disabling injury. The performance 

of the multilayer perceptron (MLP) and fuzzy adaptive resonance theory (ART) neural networks 

was analyzed. MLP neural network gave better generalization performance than fuzzy 

ARTMAP and O-ARTMAP, where these two are types of ART. Fuzzy ARTMAP is a 

clustering algorithm that maps the set of input vectors to a set of clusters and O-ARTMAP is an 

ordered fuzzy ARTMAP algorithm. The authors also tested the result of the MPL model against 

the ordered logit model. The MPL model provided the best training and testing performance as 

opposed to the other two models.  

Chong et al. (2005) used the National Automotive Sampling System (NASS) General 

Estimates System (GES) automobile accident data from 1995 to 2000 and investigated the 

performance of four machine learning paradigms to model the severity of injury that occurred 

during traffic accidents: 1.) neural networks trained using hybrid learning approaches, 2.) 

support vector machines, 3.) decision trees and 4.) a concurrent hybrid model involving decision 

trees and neural networks. Their research revealed that, the concurrent hybrid model involving 

decision trees and neural networks outperformed the other three approaches. 

Moghaddam et al. (2011) used the artificial neural network (ANN) approach for crash 

severity prediction in urban highways and identification of significant crash-related factors.  The 

model resulted in 25 independent variables as significant, having the highest value of crash 

severity as measured by fatality-injury crash percent. The model reflected the relationship 
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between crash severity on urban highways and the traffic variables including traffic volume, flow 

speed, human factors, road, vehicle and weather conditions. The finding of the study showed that 

the feed forward back propagation (FFBP) networks such as the MLP models yielded the best 

results.  

Krishnaveni and Hemalatha (2011) investigated several classification techniques such as 

naive bayes, J48, adaboostm1, partial decision tree classifier, and random forest classifiers for 

predicting the severity of an injury that occurred during accidents. Data used in the analysis was 

traffic accident records of the year 2008 produced by the Transport Department of the 

Government of Hong Kong. The analysis revealed that random forest, instead of selecting all the 

attributes for classification, outperforms other classification algorithms. Genetic algorithm was 

used for feature selection to reduce the dimensionality of the data set. 

Beshah et al. (2011) employed the classification and adaptive regression trees (CART) 

and random forest approaches in an effort to reduce road safety problems. The data was collected 

from three regional administrations in Ethiopia. The result showed that random forest modeling 

technique performs better by exhibiting lower error rate, higher ROC score and greater 

prediction accuracy than CART. The model performed well in determining non-injury risk of an 

accident based on the percentage of correct predictions of the non-injury case.  

Guelman (2012) used the gradient boosting machine (GBM) method and tested against a 

conventional generalized linear model using an imbalanced data set for predicting an auto 

insurance loss cost modeling. The undersampling technique was used to initially balance the 

data. The results suggested that GBM presented a very good prediction compared to the 

generalized linear model. The author also discussed about the interpretability of the GBM model 
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using relative influence of the input variables and partial dependence plot that helps to 

understand the GBM output better, as opposed to other machine learning techniques. 

Zhang & Haghani (2015) tested GBM against autoregressive integrated moving average 

(ARIMA) model and random forest for predicting the freeway travel time using the data 

provided by INRIX, a private sector company, where GBM was found to outperform the other 

methods. The data consists of two freeway sections in Maryland. GBM model captured the sharp 

discontinuities in traffic conditions (when traffic changes from uncongested to congested and 

vice versa) and handles the tree complexity (variable interaction).  

Overall, most of the research that has been discussed in this section consists of only 10-

15 independent variables in their models and have limitations on the reliability of the data. This 

research investigates generalized linear models (logistic regression and penalized logistic 

regression), deep learning networks, gradient boosting machine, and random forest to build 

models of high accuracy in predicting drivers at risk. Since the data is very specific to one 

company, the randomness involved in data is low and controllable. This research aims to reduce 

accidents of every individual trucking company, which will ultimately reduce the overall truck 

accident percentage in the country.  

 

3. INTRODUCTION TO DATA 

The data set used for this research is from a private transportation organization in the 

United States. The data set contains approximately 1.7 million records with 50 variables on 

drivers’ weekly data starting from November 2012 until January 2015. Table 1 below lists all the 

predictor variables used for the analysis. Descriptive statistics of the data is not presented for 

confidentiality issues.   
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Table 1: List of Predictor Variables, their Category, Variable Type and Description 

No. Independent Variable Category Variable Type Variable description 

1 Gender Demographic Categorical 

The gender of the driver 

categorized as male, female or 

undefined 

2 Tenure Demographic Continuous 
Tenure of the driver with the 

company 

3 
Previous Experience in 

the Same Company  
Demographic Categorical 

Previous employment with the 

same company (in years) 

4 
Number of jobs 

previously held 
Demographic Continuous 

Number of previous jobs held 

with different companies 

5 ClassA Experience Demographic Continuous 
Previous experience of driving 

ClassA trucks 

6 ClassB Experience Demographic Continuous 
Previous experience of driving 

ClassB trucks 

7 Age Demographic Continuous Age of the driver 

8 Ethnicity Demographic Categorical 

American Indian, Asian, Black, 

Hawaii/PAC, Hispanic, 

multiple, white, Not Specific 

9 
Number of Driver 

Inquiries 
Demographic Continuous 

Number of inquiries on drivers 

updated on a weekly basis 

10 
Percentage Quit of 

Previous Jobs 
Demographic Continuous 

Of the previous jobs held what 

is the percentage of quit 

11 Weekly Pay Financial Continuous 
Average weekly pay for the 

driver 

12 
Number of Cash 

Advances 
Financial Continuous 

Number of cash advances 

received 

13 Cash Advance Amount Financial Continuous 
Amount given as cash advance 

for the driver 

14 401k Participation Financial Categorical 
Participation in the 401k 

Election (Y/N) 

15 
Million Miles Award 

Recipient 
Financial Categorical Million miles award (Y/N) 

16 401k Max Match Financial Categorical 401k match (Y/N) 

17 Job Family Operations Categorical 
Division of the trucking 

families - OTR, REG, LOC 

18 Business Unit Operations Categorical 
Business units within the 

organization (3 units) 

19 
Number of Miles 

driven 
Operations Continuous 

Number of miles driven for the 

week 
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Table 1 (Cont.): List of Predictor Variables, their Category, Variable Type and Description 

No. Independent Variable Category Variable Type Variable description 

20 
Number of Drivers on 

Board 
Operations Continuous Number of drivers on board 

21 Board Driver Turnover Operations Continuous Board driver turnover rate 

22 Number of Loads Operations Continuous Number of loads per week 

23 
Number of Hazardous 

Loads 
Operations Continuous 

Number of load requiring 

concerns per week 

25 
Number of Driver 

Failures 
Operations Continuous 

Driver failure in the past 4 

weeks 

26 
Number of Fuel 

Runouts 
Operations Continuous Fuel runout in the past 4 weeks 

27 
Number of Hours-of-

Violation 
Operations Continuous 

Hours of service violation in the 

past 4 weeks 

28 
Number of 

Consecutive Days Off 
Operations Continuous 

Number of consecutive days off 

of the driver per week 

29 Truck Manufacturer Operations Categorical 
Manufacturer of the truck – 5 

different manufacturers 

30 Tractor Manufacturer Operations Categorical 
Manufacturer of the tractor – 11 

different manufacturers 

31 Number of Accident Safety Continuous 
Number of accidents in the past 

12 months 

32 Number of Complaint Safety Continuous 
Number of complaints in the 

past 12 months 

33 Number of Incident Safety Continuous 
Number of incidents in the past 

12 months 

34 
Number of 

Observation 
Safety Continuous 

Number of observations in the 

past 12 months 

35 Number of Inspections Safety Continuous 
Number of inspections in the 

past 12 months 

36 Number of Citations Safety Continuous 
Number of citations in the past 

12 months 

37 
Number of Hard 

Breaking Events 
Safety Continuous 

Number of hard breaking events 

captured by the device on truck 

in the past 12 months 

38 
Number of Roll 

Stability Events 
Safety Continuous 

Number of roll stability events 

captured by the device on the 

truck in the past 12 months 
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Some predictor variables were interdependent. For example, three variables: citations in 

the past 3 months, in the past 6 months and in the past 12 months can be represented by one 

variable, the number of previous citations of the driver in the previous 12 months. After 

combining these predictor variables, the final data set has 38 predictor variables and 1 response 

variable. The binomial response variable is the accident flag (Yes/No). The predictor variables 

contain 28 continuous variables and 10 categorical variables.  

The data set up is made to assure the predictions are monthly based and also provides the 

necessary time to act on the predictions. For example, data is set up in such a way that when 

considering a particular business date (usually Monday), if an accident had occurred on that 

business date or within 4 weeks following that date, then the driver is flagged as Y (having an 

accident). 

 

3.1. Data Processing 

Several preprocessing steps were undertaken to make sure that the data is ready to use for 

predictive modeling. Mismatch was noted between the historical data stored and the weekly new 

data that was collected. The other data issues include difference in the data type, extra space 

counted as characters, missing values, and different column names. Data preprocessing was done 

to combine all the collected data in one useable format.   

Rather than using the entire data set for modeling, the original data set was divided into 

three categories namely the training set, validation set, and test set. The training set is the one on 

which the algorithms are trained and the models are built. Once training is complete, in order to 

estimate how well the model has been trained and to estimate the prediction error for model 

selection, the validation set is used (Friedman et al. 2001). Model assessment is done using the 
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test set only for the final chosen model to assess the generalization error (Friedman et al. 2001). 

Typically, the training set contains majority of the data in order to accommodate all possible 

information about the data set to provide a completely trained model. Remaining data is equally 

split between the validation and test set.  This study follows the data split as 60% (training set), 

20% (validation set), and 20% (test set).  

3.2. Handling the Imbalanced Data 

With the advancement of efficient classification algorithms, high computational 

capabilities, and vast amount of data, data exploration has grown immensely with the goal to use 

the data productively. A data set is considered to be imbalanced when one class outperforms the 

other class severely. Extreme imbalance can be in the order of 100:1, 1000:1, or 10000:1 (He & 

Garcia 2009). The fundamental and standard algorithms currently in use were developed with the 

assumption of a balanced class distribution. As a consequence, imbalanced data leads to the 

questionability of the prediction results because the model may not obtain the necessary 

information from the minority class. There could be bias in the result leading to high 

misclassification cost. Moreover, the focus is usually on the minority class so attention should be 

given in evaluating the models with appropriate performance metrics. The data set that is 

considered for this research also suffers from imbalance issue having a ratio of 97.5%: 2.5% 

representing non-accidents to accidents, respectively. There are a lot of proposed methods in the 

literature to handle imbalanced data (He & Garcia 2009, Chawla 2005). For the purpose of this 

study, 5 different common methods, undersampling, oversampling, combination of 

undesampling and oversampling, Randomly Oversampling Examples (ROSE), and Synthetic 

Minority Oversampling Technique (SMOTE) are considered. The original data with no sampling 

method is also tested. In reality the imbalanced data can produce a good prediction if there is a 
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chance that the very small minority class had acquired all the information that would make the 

model to perform good classification. It is always good to test the model results of the original 

imbalanced data set against the results of the models built using some of the data balancing 

techniques (He & Garcia 2009). In this study, undersampling and oversampling are tested using 

the caret package (short for Classification And Regression Training) in R. Undersampling 

generally produces a random subset from the majority class to match the number of samples in 

the minority class. Oversampling on the other hand creates random duplicates of the minority 

class to match the number of samples in the majority class. The ROSE package (short for 

Random Oversampling Examples) in R provides a combination of undersampling and 

oversampling where the resulting data set is balanced by using both the techniques 

simultaneously. The same package also provides a fancier and more reliable technique (i.e., 

ROSE) which uses smoothed bootstrap technique (Lunardon et al. (2013 & 2014), Menardi & 

Torelli 2014) for balancing the data set. ROSE generated balanced data set contains new samples 

based on the distance of the neighborhood data point instead of just duplicating the original 

minority class. Similar to ROSE, another most popular method, SMOTE, is based on synthetic 

data generation and can be implement using the DMwR package in R. SMOTE utilizes 

bootstrapping and the k-nearest neighbor algorithm to produce artificial data points using an 

interpolation strategy (Chawla et al. 2002, Branco et al. 2015). Each of these methods has its 

own advantages and disadvantages, and so the fit of these methods for a data set can be found by 

trial and error. While the traditional methods (i.e., undersampling and oversampling) produce 

good results, the synthetic methods are gaining more focus due to the informed way of sampling 

other than mere randomness, and are considered to produce better classification results. 
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4. METHODOLOGY  

In this section, we describe the predictive modeling techniques and algorithms used in 

this study. Our goal is to build a highly accurate model that can incorporate reliability and 

interpretability of the models to the possible extent. Two open source software namely, R and 

H2O was used to build the models. R is an extensively popular and adaptive software having 

thousands of built-in packages that makes it interesting for various applications. H2O is an in-

memory prediction engine for big data analysis. It has a distributed, fast and scalable machine 

learning and predictive analytics platform. H2O is built with machine learning algorithms that 

can produce models at a much faster rate with additional easy-to-use features. The H2O R 

package contains the functions required to connect R into H2O environment and built models. 

More information on how to use H2O and its functionality can be found at H2O.ai with detailed 

documentations. While using H2O functions for model building, the actual models are built in 

the H2O environment and only the results are displayed on the R console. 

4.1. Generalized Linear Models 

Generalized linear models (GLM) are an extension of traditional regression models. They 

are similar to linear regression models that do not enforce the assumptions of linearity and 

constant variance structures in the data (Friedman et al. 2001). As opposed to the general linear 

relationship between the predictor variables and the response variable put forth by a linear 

model, GLM combines the linear predictors which are related to the mean of the response 

variable using a link function. GLM response variables can take any distribution among the 

exponential family (Guisan et al. 2002). Generalized linear model was formulated in 1972 by 

John Nelder and Robert Wedderburn in an effort to unify the typical regression models like 

linear regression, logistic regression, Poisson regression, etc. More specific information and 
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mathematical proof of GLM can be found in Nelder & Wedderburn (1972), McCullagh & Nelder 

(1989) and Friedman et al. (2001). 

Regularization can be thought as a numerical re-formulating process by introducing 

additional terms in the loss function to solve modeling problems. GLM can utilize regularization 

for better prediction results. Regularization parameters (α and λ) can be introduced into models 

to serve any of the following purposes: large number of predictor variables, to reduce variance of 

the prediction error, to avoid overfitting, and collinearity (Nykodym et al. 2016). The models 

utilizing regularization methods are called penalized models where lasso, ridge, and elastic net 

are different regularization methods that can be used. Ridge regression is also considered to be a 

promising alternative to stepwise approaches using the shrinkage rule of L2 norm (Tibshirani 

1996, Friedman et al. 2001, Harrell 2001, Guisan et al. 2002). The collinearity problem can be 

handled better using model selection and regularization in GLM as opposed to stepwise model 

approaches (Guisan et al. 2002). The regularization parameter α (ranges from 0 to 1) controls the 

influence of error relative to penalty distribution between L1 norm and L2 norm, while λ 

(ranges from 0 to infinity) controls the penalty strength (Nykodym et al. 2016).  

L1 norm is the lasso penalty, which does both parameter shrinkage and variable selection 

by shrinking the sums of squares of the coefficients. L2 penalty is the ridge penalty that shrinks 

the sum of absolute values of the coefficients towards zero. Elastic net has          where it is 

the same as lasso when α = 1 and it becomes ridge when α = 0. The GLM binomial 

optimization function (Nykodym et al. 2016) for an elastic net regularization can be represented 

as, 

   
    

∑              
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where       accounts for lasso regularization and          
   accounts for ridge regularization. 

The term    is the prediction value (accident/non-accident);    is the intercept;   corresponds to 

the coefficients of the predictor variables (e.g., age, tenure, etc.); and N is the number of samples 

(weekly data of the drivers) in the training data.  

We implemented GLM model with a logit link function and binomial distribution 

function. Initially the model was built with all the predictor variables where significance of the 

variables was tested using the p-values. Following the backward elimination procedure, the 

insignificant variables were removed and then the model fit was tested. The process of 

backward stepwise elimination was repeated until the model is left only with the significant 

variables. The predictor variables were tested for collinearity by checking the variance inflation 

factor (VIF) values. The VIF values was in the range of (1.007, 1.5) indicating no confounding 

effect, except for gender with 4.01 as VIF. The high value (still acceptable) of gender may be 

due to its categorical nature and also gender was removed from the model being an insignificant 

variable. Since the GLM model built was not satisfactory in terms of prediction, an attempt was 

made to divide the data by job family and to run individual models for each of them. The data 

set consists of three types of drivers: over-the road drivers (who drive on long-distance loads, 

typically around 12 days), regional drivers (who drive on relatively long-loads, typically more 

than 2 days) and local drivers (who drive radially less than 150 miles and get to go home daily 

or every other day). The reason to build individual models is due to the curiosity to learn if they 

are any interesting findings or major improvements between the drivers belonging to different 

job families.  

In order to further study the relationship between the predictor variables and the effect 

based on their combination in logistic regression, models with two level interaction terms were 



20 

 

tested. Due to the large number of predictor variables, building interaction terms directly in R 

was very cumbersome as it requires high memory capacity machine to run the model. In order to 

simply this requirement, H2O has a function for interaction that can deal with huge number of 

predictor variables. H2O interaction function has a requirement that all of the predictor variables 

should be categorical to run the model with interaction terms. So all the continuous variables 

were converted to categorical variables. It was challenging to decide on the number of levels that 

the categorical variables should take during conversion. Probably a histogram of each of the 

continuous variables could have helped in deciding the levels which was not possible due to the 

skewed distribution of the variables. So based on the knowledge of the data at hand, levels were 

assigned. The result of the model with interaction terms actually performed lower to models 

without interaction. The reason for poor performance may be attributed to the fact that adding 

extraneous interaction terms would result in loss of statistical power (Williams 2015). Detecting 

only the useful interaction terms between large number of predictor variable is crucial which can 

be a separate topic of concern and so not included in this research.  

As mentioned earlier, since the data set under consideration has a large number of 

variables, introducing the regularization parameters would further improve the model. So 

penalized logistic regression models using the three regularization methods, i.e., the ridge, lasso 

and elastic net, were tested and compared. To aid in this process, grid search was very useful, 

which is a technique to build set of models that have different results based on the combination 

of parameter values used for each model.  The grid search has hyper parameters that are 

complex to learn directly through normal training processes. Hyper parameters are defined 

when a grid search is initiated. There are two hyper parameters for penalized regression:   and 

 , where   determines the type of regularization that should be used and   adjusts the penalty 
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strength. For the purpose of this study, only the hyper parameter   is defined in the grid search, 

and the H2O software automatically selects the appropriate value of   for each of the models in 

the grid search. Automatic selection of   is considered to be more appropriate than manual entry 

(Nykodym et al. 2016). A grid search with   values ranging from 0 to 1 in 0.01 increments was 

carried on. As a result, this grid search output has 101 models with different values of   and    

4.2. Random Forest 

Random forest is considered to be the user friendly and handy machine learning 

technique irrespective of the type of the data set and prior level of knowledge in predictive 

mechanism (Zhou and Hooker 2016, Biau and Scornet 2016). Random forest builds multitude of 

decision trees using the bagging strategy and then classify a sample by the mode or majority 

prediction of all the trees (Random Forest 2016). Bagging, also known as bootstrap aggregation, 

is a model averaging method by reducing the variance while retaining the bias (Friedman et al. 

2001). In a nutshell, random forest is a fancier version of bagging where it averages 

approximately unbiased models with de-correlated trees to reduce variance. The idea of random 

decision tree was first proposed by Tin Ho in 1995 to overcome the problem of growing trees 

with traditional method. The goal was to increase the accuracy on both the training data and 

new/unseen data. The limitation on training the complex data is compensated by growing 

multiple trees, each having randomly selected feature space (Ho 1995). Later in 2001, Breiman 

developed random forest by combining two important aspects of machine learning such as 

bagging and feature selection (Breiman, 2001). 

 In bagging, each of the models developed pulls off a random training set that is 

bootstrapped from the training data. In contrast to the boosting method, where shallow trees are 

used to solve for the classification errors by learning from the previous trees, bagging mainly 
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concentrates on the diverse subset of the training data to grow relatively deep trees. Trees can 

capture the complex interaction structure (Friedman et al. 2001) in the data and can reduce bias if 

grown deeper. The sampling of the training data with replacement has an equal chance for all the 

samples to have multiple occurrence or no occurrence at all. The idea of perturbing the training 

data to achieve diverse model is very important in bagging. Since the data sets using in machine 

learning are usually large and multiple re-sampling is done, the bias is lower in a tree 

construction. The variance in the model is reduced by averaging the predictions of the number of 

trees built. There are three main factors to reduce variance as noted by Zhang & Haghani (2015): 

decrease correlation between any pair of trees, strengthening the individual performance of the 

tree and increasing the total number of trees in the forest.  

Due to the fact that each tree is grown from the samples with replacement, the learning 

process tends to be on the same track introducing some bias. This problem is overcome by using 

the random feature selection process as introduced by Ho (1998, 1995) and Amit & German 

(1997). In feature selection, only subsets of the features are selected at each splitting node of the 

tree. Instead of the very few variables that dominate during the splitting process, feature selection 

allows most of the variables to take the role of the splitting node. 

Introduction and mathematical details of the random forest algorithm for classification 

problems can be found in Friedman et al. (2001) and Zhang et al. (2015). We briefly summarize 

the algorithm below. Assume the training data set consists of a total number of r samples and 

total number of p predictor variables. Before starting the algorithm, the number of trees to be 

grown, M, and the number of selected predictor variables q is initialized. The number of selected 

predictor variables stays constant for all the trees that are grown and q < p. For classification, the 
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default value of q is √  and the minimum node size is 1. Let  ̂     be the prediction of the m
th

 

tree in the random forest, then for all the trees in the random forest the result is expressed as 

 ̂ 
                     ̂      

   

Majority voting is nothing but selecting the mode or majority decision of all the trees built in 

the random forest as the final prediction result. In order to build the best random forest model, 

various parameters values were tested based on trial and error with proper understanding of how 

each parameter would help in building a better model. The following are the parameter values 

used to tune the best model (for example, when growing more trees or less trees than the one 

mentioned below either did not improve the model or performed poorly), 

1.) Number of tress (M), ntrees = 101  

2.) Maximum depth of the tress, max_depth = 50 

3.) Number of variables at each node (q), mtries = 15 

4.) Number of rows to be selected at each tree (p), sample_rate = 0.75 

4.3. Gradient Boosting Machine 

Gradient Boosting Machine (GBM), one of the popular machine learning techniques in 

the current era of predictive analytics, is based on the concept of strategically combining the 

weak learning results to form a model of high accurate prediction rule (Gradient Boosting 2016). 

While GBM has the same advantages as other popular machine learning models (e.g., robustness 

to less clean data, less data preprocessing, handling missing values, feature selection and 

accounting for complex model interactions), it also has an added advantage of better model 

interpretability with less parameter tuning compared to other methods of machine learning 

(Guelman 2012, Zhang & Haghani 2015). The disadvantage of GBM is that it is a greedy 

algorithm that can overfit the training data easily and has scalability issues (Scikit Learn 2016).  
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The concept of combining the weak classifiers through a system of boosting was put forth 

by Schapire and he proved the equivalence of the weak and strong learnability. The accuracy of a 

strong classifier using a probably approximately correct (PAC) learning is similar to the weak 

learning method, which is better than a random selection executed through a boosting 

mechanism (Schapire 1990). Practically, it is also computationally easy to develop a shallow tree 

like a stump that has a single split and two leaves, which forms a weak learner. Intuitively, the 

idea of boosting works better because there is a higher probability for a hard sample (i.e., with 

classification error) to occur multiple times in the model (Zhang & Haghani 2015). These 

misclassified samples reoccur multiple times gaining higher weights. Boosted trees are not 

identically distributed due to the adaptive nature and hence reduce bias greatly (Friedman et al. 

2001). GBM is based on the constructive strategy that each consecutive tree built is fitted solving 

for the net error of the prior trees. This can be explained in simple steps such as choosing the loss 

function based on the output (regression or classification), creating a base model for learning 

(like a stump model which is a tree with a single split), and using an additive model that can add 

the trees at each successive steps using procedures like the gradient descent to reduce the loss 

function. The statistical formulation of GBM and the algorithm used to reduce the loss function 

is explained in detail by Friedman (2001) and Friedman et al. (2001). A simple overview of the 

steps in GBM is explained below. 

Consider the data set in the form          
  where                 and the binomial 

output   which is to be used for supervised learning. Here   refers to the set of inputs or the 

explanatory variables (e.g., age, gender, tenure),   refers to the corresponding output or the 

response variable representing an accident or non-accident and N is the number of samples in the 

data set. Functional dependence is mapped from   to   to obtain an approximation such that the 
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objective is to minimize the loss function over the joint distribution of all values of        Being 

a binomial function the response variable is coded as         where the classifier can take only 

one of these two values.  

From a boosting tree perspective, the predictor variables partition the total space into 

disjoint regions              representing the terminal nodes. Friedman et al. (2001) assigns a 

constant    to each such region based on the joint values of the predictor variables such that, 

                  . So the predictive rule is between the joint values of the predictor 

variables and the resulting prediction of the response variable (Friedman et al. 2001). The 

formulation of a tree can be expressed as        where the parameter           
 
 . 

Optimization of the parameters can be divided into two parts as    and    (Friedman et al. 

2001). Generally,    is the mean of all    falling in the corresponding region    and also, finding 

   entails   . The additive or the sum of the boosted tree is represented as       

 ∑     
 
      . The procedure is followed in steps in a forward stagewise manner solving for 

all the iteration m, of the set           having the current model as         and    is the actual 

classification label (Friedman et al. 2001). 

 ̂        
  

∑    

 

   

                     

As a sum of all the tree at each step, the estimate    is given as      ∑   
 
    where 

    is the initial guess which boosts up to M (Friedman et al. 2001). Steepest gradient descent is 

based on consecutive improvements to reduce the loss function such that            , where 

the parameter    is a scalar representing the step length and    is the gradient of the loss 

function      at         and also       (Friedman et al. 2001). Conceptually, gradient 

boosting tree is dependent on the previous trees. One of the main differences is that each 
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consecutive tree is fitted solving for the net error of the prior trees. The tree function is 

      ) with m iteration, where the predictions close to the negative gradient, and it follows 

the least squares minimization,   ̃         ∑                 
     

In this study, the main parameters used to build the best GBM models and its 

corresponding values are as follows: 

1.) Number of trees, ntrees  = 1001 

2.) Maximum depth of the tree, max_depth = 50 

3.) Learning rate used, learn_rate = 0.2 

4.) Row sample rate, sample_rate = 0.75 

5.) Column sample rate, col_sample_rate = 0.75. 

4.4. Deep Learning  

Deep learning is an improved version of neural network with multiple hidden layers 

consisting of both linear and non-linear transformations to solve complex problems for which 

high-level data abstraction is required. Deep learning application can be found in areas like 

image recognition, automatic speech recognition, robotics, etc. Shallow networks are more 

expensive compared to deep networks because the neuron function computation in deep 

networks follows a subroutine concept (Le 2015), which can be re-used multiple times.  

The birth of neural nets dates back to 1943 based on computational models (Pitts & 

McCulloch 1943) and later it was developed based on an algorithm having a threshold logic 

(Piccinini 2004) where each neuron has an excitatory or an inhibitory level which determines 

whether they are active or not.  Various improvements and findings to this initial neural net 

(Anderson & Rosenfeld 1988, Hebb 1949, Johnson & Brown 1988) were explored which led to 

the flourishing growth of neural nets in various application areas. The two main drawbacks of 
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neural net that led to the diminishing use of the initial neural nets are the lack of machines with 

high processing capability and the inability of processing an exclusive-OR circuit with single 

layer perceptron (Monsky & Papert 1969). Two key algorithms called the perceptron (Rosenblatt 

1958) and backpropagation (Werbos 1975) played the key role in advancing the neural net to the 

next level.  

Basically a neural network consists of an input layer, hidden layer and output layer where 

all layers are fully connected. Each layer has neurons or cells. The neurons of the hidden layer 

consist of an activation unit which is a function of the input neurons. The connection between 

layers are given by weights. Each node within hidden layer has a sigmoidal activation function 

which is bounded between 0 and 1. The weights are determined by assigning various learning 

rates. Since the weights can be adjusted until the learning is complete, neural net is also termed 

as adaptive system. Deep learning is applicable to two types of learning, the supervised and 

unsupervised learning. This research is concentrated on the supervised learning approach where 

a set of data is given to the algorithm, based on which the learning happens in sequential steps. In 

this study, the input layer consists of neurons that represent the predictor variables (i.e., age, 

gender, incidents, complaints, tenure, etc.) and the output neuron is either 0 (non-accident) or 1 

(accident). Each row from the training set passes through this network in-order to be classified. 

Considering one row of the data (weekly record of the driver) at a time, the decision 

function      , which can be considered as a weighted linear combination of the predictors (Le 

2015), can be represented as 

                                   

where   ,     …,     are the weights associated with the 38 corresponding predictor variables as 

listed in Table 1, and   is the bias. The goal is to reduce the classification error in each step by 
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finding the values of two parameters,   and   such that these parameters minimizes the 

following objective function, 

        ∑       

 

   

                

where      corresponds to weekly record of the driver and      is the accident label for that 

driver. In order to minimize the objective function, the parameters (  and  ) are iteratively 

updated using a non-negative scalar quantity   in the direction of global minima such that  

          and          .  This process is called stochastic gradient descent (SGD), and 

  is known as the learning rate and satisfies the following relationship,  

   ∑    

 

   

 

SGD initializes the parameters and assigns it to each pair (            where it follows 

chain rule and partial derivatives to update the decision function          (Le 2015). In order to 

reach the global minimum with least error, the backpropagation algorithm is used so that each 

step is directed to the steepest value of the vector surface. This nonlinear multi-layer feedforward 

backpropagation network is referred to as the deep learning architecture. More detailed 

formulation and mathematical proofs can be found in Friedman et al. (2001) and Le (2015). 

While modeling with the deep learning algorithm, two important parameters need to be chosen 

are: 1) the number of hidden layers along with number of neurons in each layer, and 2) the 

learning rate. In neural nets, although having many hidden layers leads to additional cost, it is 

commonly recommended as it better captures the nonlinearities (Le 2015), and additionally, not 

having enough hidden layers may result in incomplete learning. A common practice to find the 

optimal hidden layer and the number of neurons in each layer is by trial and error method and 
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then estimating the model. Similarly, having a large learning rate may miss an actual global 

minimum while having a small learning rate can be too conservative leading to very slow tuning.  

To select a good learning rate, the key is to monitor the training where   of 0.01 is a good start 

(Le 2015).  

Instead of using the sigmoidal activation function, another improvement can be made by 

using a rectified linear activation function (Nair & Hinton 2010), which will lead to a better 

approximation than the sigmoidal function. The rectified linear activation function is given by 

              and sigmoidal function is given by       
 

         where   is an input to the 

neuron. Considering the sigmoidal function, the range of f(x) is between [0,1] so the gradient of 

this function vanishes as the value of   increases or decreases, whereas the rectilinear activation 

function has a range between [0, ] leading to a gradient function that vanishes only if   

decreases. Due to this property the rectified linear function increases sparsity and dispersion of 

the hidden layer that helps to improve the performance with better approximation quality (He et 

al. 2015, Mass et al. 2013, Le 2015). Generally deep learning works very well for really huge 

data set. Although the data set used in this research is big, it is not considered huge compared to 

the capability of deep learning algorithms. Since the data has non-linear distributions and a non-

linear output function (binomial), deep learning provides a different perspective from random 

forest and gradient boosting algorithms which are tree based.  

In this study, the main tuning parameters used in building the best deep learning model 

are, 

1.) The number and size of each hidden layer, or the hidden_layer_size is set at (2048, 

2048) after trial and error representing two hidden layers with 2048 units each. 

2.) Activation function used is the rectifier activation function 
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3.) Number of iterations (i.e., epochs) are set to be 100 

Some of the additional tuning parameters used in both GBM and deep learning in order 

to save time and to obtain better flexibility are stopping rounds, stopping metrics and stopping 

tolerance.  The stopping metric can be logloss, MSE, AUC, etc. where stopping round handles 

the early stopping concept based on stopping metric. Early stopping is a form of regularization 

technique to avoid overfitting. Metric-based stopping criterion is defined by a relative tolerance 

criterion called the stopping tolerance. The model stops if the relative improvement is not equal 

to the defined criterion. More information on these parameters can be found in Click et al. (2016) 

and Candel et al. (2015). 

4.5. Model Validation 

Once building the model after training, appropriate model evaluation is necessary. For 

model evaluation, performance metrics of the resulting model should be studied. Although 

models built from imbalanced data can produce high overall accuracy, the sensitivity may be low 

due to the low presence of accidents compared to non-accidents in the data.  Especially while 

evaluating a model using the validation set, per-class-accuracy may be more informative 

compared to the overall accuracy. For GLM, some of the metrics that can be used are deviance, 

Akaike Information Criterion (AIC), Hosmer–Lemeshow test, etc.  Deviance is the difference 

between the maximized log-likelihoods of the fitted model and the saturated model, where too 

large value explains that model is not a good fit (Nykodym et al. 2016). The AIC score depends 

on the number of parameters in the model and so it is not a good indication of model fitness but 

helps in model comparison (Nykodym et al. 2016). Hosmer–Lemeshow test is a goodness-of-fit 

test for logistic regression models. The Hosmer–Lemeshow output has a p-value between 0 and 1 

with higher values indicating a better fit (Allison 2014).  
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Classification based machine learning model evaluation techniques such as the ROC 

chart and area under the curve (AUC), confusion matrix, and F1 score are widely used (Chawla 

2005). AUC is computed using all possible values of the classification threshold (i.e., the cut-off 

value to decide whether the sample should be classified as an accident or non-accident). AUC 

produces a summarized curve showing the worst and the best classification of a binomial class as 

opposed to other metrics which use a particular threshold. So AUC is a reliable measure for 

choosing the best model. The best possible classification is obtained based on the optimal cutoff 

point which is the value that corresponds to the minimum distance to the upper left corner (0,1) 

on the ROC chart (Hajian-Tilaki 2013). The minimum distance is calculated as 

Minimum distance to       √   sensitivity      specificity    

The confusion matrix represents the false positive, true positive, false negative and true 

negative values directly. Although sensitivity (recall or true positive rate) and specificity (true 

negative rate) can be directly read from the confusion matrix table, indirect measure that can be 

calculated using the confusion matrix like precision, F1 score, dominance, etc. can be more 

useful (Braince et al. 2015). Mean squared error (MSE) is also a very good measure which shows 

the difference between the mean squared error of the predicted value and the actual value.  

Given different models and different performance metrics, the ultimate goal is to select 

an appropriate model to place in production. Focusing on the data at hand and the presence of 

imbalance data predicting accidents is more important than non-accidents. Potentially the 

accuracy of the model may be still high with low sensitivity due to the proportion of the actual 

accidents compared to non-accidents. It is also important to remember that only the training data 

is balanced and not the entire data set. Multiple models are built using the grid function available 

in H2O and R to reduce manual efforts. All the models are estimated using the validation set and 
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the one that has the best performance indicated by a good AUC value, balanced sensitivity and 

specificity along with high accuracy is selected. As preventing as many accidents as possible is 

the primary purpose, it is worth sacrificing the overall accuracy to improve sensitivity. To be 

more specific, in order to capture more accidents that would cause huge cost and risk of a life, 

lowering the specificity is acceptable as training more drivers is less costly compared to dealing 

with one accident.  

 

5. RESULTS 

The results from all the models developed using the algorithms and the various data 

balancing techniques discussed above are presented in this section. Overall, the oversampling 

method for balancing the data worked the best for this data set. 

5.1. Results of Generalized Linear Models  

Using the traditional logistic regression, 16 predictor variables was found insignificant (at 

significance level of 0.05) and removed. The AUC value of the validation set was less than 0.66. 

The p-value from the Hosmer–Lemeshow goodness-of-fit test was close to zero (< 2e-16) 

indicating a bad fit. Similar results were observed when separate regression models were run for 

each job family. Table 2 summarizes the coefficient estimates, standard errors, and the 

corresponding p-values for the significant variables from the final logistic regression model built 

using stepwise backward elimination process. It can be seen that ethnicity has a surprisingly 

huge impact on prediction as show by the coefficient estimates. Other important variables in 

terms of their estimates are board turnover, number of accidents, and number of failures all with 

a positive sign.  
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Table 2: Results for the Logistic Regression Model 

Variable Estimate Standard Error p-value 

(Intercept)                  -3.7700 0.0788 < 0.0001 

Age 0.0110 0.0007 < 0.0001 

Tenure -0.1100 0.0023 < 0.0001 

factor(Ethnicity) Asian 0.3200 0.0847 0.00016 

factor(Ethnicity) Black 0.3460 0.0681 < 0.0001 

factor(Ethnicity) Multiple 0.4210 0.1210 0.0004 

factor(Ethnicity) Not Specific 0.3970 0.0701 < 0.0001 

factor (Ethnicity) White 0.2270 0.0677 0.0008 

factor (401K max match)Y 0.0487 0.0142 0.0005 

ClassA Experience -0.0002 0.0000 < 0.0001 

ClassB Experience -0.0001 0.0000 < 0.0001 

factor (Job Family) OTR -0.2330 0.0443 < 0.0001 

Number of Accidents 0.0705 0.0045 < 0.0001 

Number of Complaints 0.0464 0.0080 < 0.0001 

Number of Incidents 0.0186 0.0025 < 0.0001 

Number of Observe -0.0146 0.0031 < 0.0001 

Number of Inspections -0.0488 0.0051 < 0.0001 

Number of Roll Stability event 0.0263 0.0056 < 0.0001 

Number of Fuel runouts 0.2630 0.0702 0.0001 

Number of Failure 0.0602 0.0058 < 0.0001 

Weekly pay -0.0002 0.0000 < 0.0001 

factor(Business_unit) JBI -0.0676 0.0191 0.0004 

factor(Business_unit) VAN 0.1080 0.0243 < 0.0001 

Number of drivers per board 0.0037 0.0004 < 0.0001 

Board turnover 0.0823 0.0049 < 0.0001 

Number of Miles per stop -0.0003 0.0000 < 0.0001 

Number of miles driven 0.0003 0.0000 < 0.0001 

Number of Loads -0.0133 0.0018 < 0.0001 

 

These estimates are reasonable because a driver having many failures shows his/her lack 

of responsibility; having many past accidents indicates the requirement of training on precautions 

and defensive driving; and a driver in a board with high turnover rate (each broad represents a 

group of drivers, typically 12 drivers or more, where turnover rate is the percentage of drivers 
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leaving the company during a time period and low turnover rates are expected to maintain 

consistency of drivers) might relate to the lack of responsibility of the fleet manager or any 

related complaints not being addressed leading to dissatisfied drivers. But, the remedy to 

decrease accidents cannot be relied solely on the variables that have the higher absolute values of 

the coefficient estimates. 

Penalized logistic regression was carried out for the entire training set and by job family. 

Unfortunately, the performance metrics for none of these models indicated a good fit. Tables 3 

and 4 show the AUC and MSE values of the validation set respectively produced by the 

penalized regression models for the entire training set. We keep more decimal places in the table 

to capture the precise performance between the models. Table 4 indicates that ridge 

regularization with oversampling is the best model having an AUC of 0.65 although all models 

have poor performance.  

Table 3: AUC Values of the Validation Set for Penalized Regression Models 

Validation Set - AUC Lasso Ridge Elastic Net 

Oversampling 0.6521903 0.6522428 0.6521956 

Undersampling 0.6518728 0.6518055 0.6518885 

Both Sampling 0.6445556 0.647471 0.64466 

ROSE 0.6385426 0.6376074 0.6377037 

SMOTE 0.628624 0.6288381 0.628627 

No Sampling 0.6385426 0.6376074 0.6377037 

 

Table 4: MSE Values of the Validation Set for Penalized Regression Models 

Validation Set - MSE Lasso Ridge Elastic Net 

Oversampling 0.2342191 0.2342158 0.234219 

Undersampling 0.2342928 0.2342906 0.2342927 

Both Sampling 0.2402303 0.226971 0.240164 

ROSE 0.2339009 0.2249245 0.2362407 

SMOTE 0.1903037 0.1902917 0.1903319 

No Sampling 0.2339009 0.2249245 0.2362407 
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The models were also validated based on MSE values as shown in Table 4. Although 

MSE for the models using the SMOTE sampling method had the lowest errors, their 

corresponding AUC values were the lowest, around 0.62.  

Figure 1 shows the standardized coefficients for the best penalized logistic regression 

model, which is the ridge regularization using the oversampling data set. The blue bars 

correspond to the positive coefficients and the red bars correspond to the negative coefficients. 

Standard coefficients are useful in comparing the relative importance of each predictor in the 

model. It can be seen from the graph that variables like tenure, classA experience, number of 

miles per stop, etc. has negative coefficients similar to the logistic regression model indicating 

less chance for an accident. As the drivers’ tenure with the company increases and their 

experience of driving a classA truck increases, the driver would be less prone to an accident as a 

result of good training programs. On the other hand, it is intuitive that drivers who have been 

involved in accidents should participate in more trainings. It also suggests that the aging drivers 

may lack physical strength and concentration, which may lead to a higher probability of an 

accident.  
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Figure 1: Standardized Coefficients of Penalized Logistic Regression (Ridge 

Regularization) 
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Figure 2: ROC Curve for Penalized Logistic Regression (Ridge Regularization) 

 

Table 5: Confusion Matrix for Penalized Logistic Regression (Ridge Regularization) 

 Predicted  

N Y 

A
ct

u
a
l N 201482 141331 Specificity= 58.77% 

Y 
3232 5847 

Sensitivity= 64.40% 

 NPV
a
 = 98.42% PPV

b
 = 3.97% Accuracy= 58.92% 

* NPV = negative predictive value; b PPV = positive predictive value. Same abbreviations are used for future tables.  

 

Note that this can be misleading that young drivers are not prone to accidents, which is 

not true according to the statistics (NHTSA 2008, Curry et al. 2014). Therefore, finding a direct 

relationship with the signs of the regression is not very useful and might be confusing. In the 

future research, results can be compared between age groups (i.e., young drivers versus old 

drivers), but since the performance of the best model among (ridge regularization with 
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oversampling) penalized regularization was not satisfactory on the test set (as indicated by the 

ROC curve in Figure 2 with AUC = 0.65, we did not perform additional analysis using 

regression. Additionally, as shown in the confusion matrix (Table 5), the model has low 

sensitivity (64.40%) and overall accuracy (58.92%). The negative predictive value (NPV) and 

positive predictive value (PPV) are usually highly affected by the imbalanced data (Vihinen 

2012, Gagliano et al. 2015). PPV or precision is very low (3.97%) as opposed to very high NPV 

(98.42%) as the result of a very small size of the minority class (positive / accident class) as 

compared to the majority class (negative / non-accident class).  

5.2. Results of Machine Learning Methods 

Each of the machine learning algorithms used in this study were tested independently 

using the different data balancing techniques discussed in Section 3.2. Table 6 represents the 

results of different models in terms of AUC and MSE values for the validation set. Similar to 

performance of the generalized linear models, the oversampling method had the best result with 

AUC at 0.95 for random forest, 0.94 for gradient boosting machine and 0.89 for deep learning. 

The MSE for these respective models were also the lowest as desired. 

Table 6: AUC and MSE Values of the Validation Set for Machine Learning Methods 

Using Data Balancing Techniques 

 

Validation test - 

AUC 

No 

Sampling 

Under-

sampling 

Over-

sampling 

Both SMOTE ROSE 

Random Forest 0.9548 0.9058 0.9568 0.7626 0.9239 0.6233 

GBM 0.9402 0.9133 0.95.43 0.7239 0.9120 0.6456 

Deep Learning 0.5988 0.8209 0.9004 0.6883 0.8525 0.6544 

       
Validation test - 

MSE 

No 

Sampling 

Under-

sampling 

Over-

sampling 

Both SMOTE ROSE 

Random Forest 0.01593 0.16457 0.01563 0.02318 0.090070 0.066380 

GBM 0.01888 0.17497 0.01648 0.02294 0.067114 0.042200 

Deep Learning 0.02713 0.22866 0.03341 0.05870 0.162490 0.056360 
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Random forest among all machine learning algorithms has many advantages such as 

efficient runs on large databases, high predictive power, fast speed, and the ability to produce 

good results without data preprocessing (Krishnaveni & Hemalatha 2011, Li et al. 2008, Xie et 

al. 2007). This is reflected in the results as random forest performed better compared to gradient 

boosting and deep learning. Figure 3 shows the ROC curve of the random forest test set with an 

AUC of 0.95.  

 

 

Figure 3: ROC of the Test Set Using Random Forest 

The overall accuracy of the model where it correctly predicts both the accidents and non-

accident events is 91.12%. The model specificity is 90.16% and the sensitivity is 89.78% as 

shown in Table 7. The same discussion on NPV and PPV as for the penalized logistic regression 

holds for all the machine learning methods due to the data imbalance issue.  
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Table 7: Confusion Matrix for Random Forest 

 Predicted  

N Y 

A
ct

u
a
l N 312503 30310 Specificity= 90.16% 

Y 928 8151 Sensitivity= 89.78% 

 NPV = 99.70% PPV = 21.19% Accuracy= 91.12% 

 

 

 

Figure 4: Variable Importance of the Test Set Using Random Forest 
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The Figure 4 shows the top 25 scaled variable importance of the predictor variables 

produced by random forest where the top 5 variables are classA experience, age, tenure, drivers 

per board and average miles driven per week. This aligns well with the results of the penalized 

regression standard coefficients (Figure 1). Although the absolute values are different from the 

regression coefficients, the most important variables seem to be the same, just in a slightly 

different order.  Inference from random forest variable importance can be summarized as to 

enhance the experience of classA truck drivers, focusing on age groups of drivers, improving 

drivers’ tenure with the company, having a balanced number of drivers per board as per the 

demand, etc. This proves why machine learning techniques are called black box because more 

detailed information is difficult to capture as the signs and the magnitude are not defined. 

Gradient boosting machine has similar results as random forest. As discussion on GBM 

and its advantage has been provided in Section 4.3, the results of the model are shown below. 

The overall accuracy of the GBM model on test set is 91.56%. As shown in the confusion matrix 

(Table 8), the specificity is 91.64% and the sensitivity is 88.48%. The ROC curve is shown in 

Figure 5 having an AUC of 0.95.  

 

Table 8: Confusion Matrix for GBM 

 Predicted  

N Y 

A
ct

u
a
l N 314170 28643 Specificity= 91.64% 

Y 1046 8033 Sensitivity= 88.48% 

 NPV = 99.67% PPV = 21.90% Accuracy= 91.56% 



42 

 

 

Figure 5: ROC of the Test Set Using GBM 

Similar to random forest, variable importance for GBM is shown in Figure 6. It is interesting that 

random forest and GBM has exactly the same top 6 variables with a little difference in ranking. 

The interpretation of variable importance is also similar to random forest. Since the relative 

variable importance for the regression and machine learning methods are mostly similar, it is an 

evidence that statistical methods and machine learning methods lead to similar findings. In 

reality, the goal is to take necessary actions based on predictions, and thus, the order of variable 

importance is less critical. Accurate flagging of drivers who are at more risk of an accident is the 

ultimate purpose of running these models. As most transportation companies have safety reports 

for drivers, training and safety programs do not just focus on one important factor identified from 

the models. 
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Figure 6: Variable Importance Chart of the Test Set Using GBM 

 

 

Next, the results for the deep learning method are presented similar to the other methods. 

Deep learning method does not generate variable importance like the tree based models due to 

the inherent nature of the algorithm. The interpretability is still more confined in deep learning as 

these models concentrate more on accurate classification rather than finding the relationships.  

The AUC was found to be 0.90 as depicted in Figure 7 with overall accuracy of 85.28% 

assuring to be the best model. The sensitivity and specificity of the model were found to be 

81.91% and 85.37%, respectively as shown in Table 9.  
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Figure 7: ROC of the Test Set using Deep Learning 

 

Table 9: Confusion Matrix for Deep Learning Model 

 Predicted  

N Y 

A
ct

u
a
l N 292658 50155 Specificity= 85.37% 

Y 1642 7437 Sensitivity= 81.91% 

 NPV = 99.44% PPV = 12.91% Accuracy= 85.28% 

 

Based on the results shown above, random forest had the highest sensitivity and accuracy 

as desired. Random forest and GBM are tree-based models which produces similar predictions 

compared to deep learning. Considering accidents predicted by random forest, 65.5% of the time 

GBM also agrees, while deep learning only predicts 54.7% of these. Random forest covers 

70.1% of GBM predicted accidents, while deep learning agrees only 58.3%. Random forest and 

GBM do not agree with deep learning’s accident classification 62.9% and 63.6% of the time, 
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respectively. Thus, the predictions produced from the three methods vary significantly, but they 

all predict significantly more accidents than actuals as depicted by the low PPV values. Among 

these methods random forest can be implemented since it has the best sensitivity. However, in 

order to gain higher accuracy and take advantage of other algorithms, these individual models 

can be combined to obtain better predictions. Using an ensemble combination rule based on 

confidence estimation (Polikar 2009), if majority of classifiers agree with a decision (Y/N), such 

an outcome can be interpreted as high confident ensemble. On the other hand, if half of the 

classifier predicts Y and other half of the classifier predicts N, it is termed as low confident 

ensemble. According to Polikar (2009), when the independent classifiers outputs are combined 

for majority voting, the result of majority ensemble always lead to performance improvement. 

As an example, Table 11 shows the confusion matrix of majority voting ensemble combining the 

result of random forest, GBM and deep learning. It proves that sensitivity, specificity, and 

accuracy are better than any of the individual models. However, the improvement is less than 1% 

using ensemble compared to the best individual model, it can be interpreted that since ensemble 

uses combination of different algorithms the output can be relied better than the output from one 

individual model. Using a different cutoff for the individual models the majority ensemble voting 

can be improvement . 

 

Table 11: Confusion Matrix for Majority Voting Ensemble 

 Predicted  

N Y 

A
ct

u
a
l N 314115 28698 Specificity= 91.63% 

Y 918 8161 Sensitivity= 89.89% 

 NPV = 99.80% PPV = 10.55% Accuracy= 91.58% 
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The above metrics in the confusion matrix are obtained based on the cutoff value that 

produces the minimum distance to the (0,1) point in the ROC chart. This may be due to the 

assumption of equal cost assigned to accidents and non-accidents. However, in reality the cost of 

false negative or type II error (i.e., not predicting an actual accident) should be significantly 

higher to the cost of false positive or type I error (i.e., wrongly predicting a non-accident as 

accident). This is due to the huge difference between the cost of training a driver and the cost of 

bearing an accident. A small modification that can be applied to have higher sensitivity (i.e., to 

correctly predict the true positives) is by sacrificing the specificity and overall accuracy. We 

select the cutoff point that attains high sensitivity level, which corresponds to a false negative 

rate between 5% and 7% for all the 3 models. . The result of this assumption is shown in Table 

12.a to Table 12.c which represents the confusion matrix for all the three individual models. It 

can be seen from Table 12.a, 12.b and 12.c that sensitivity of random forest, GBM and deep 

learning are 95.08%, 94.49%, and 93.09% respectively with a corresponding drop in specificity 

and accuracy. So depending on the desired level of sensitivity the cutoff point could be changed. 

The management team can determine the level of sensitivity they would like to achieve, and find 

the best model for prediction; or set the specificity at a pre-defined level considering training 

capacity, and then identify the best prediction model with highest sensitivity.  

Table 12.a: Confusion Matrix for Random Forest with Higher Sensitivity 

 Predicted  

N Y 

A
ct

u
a
l N 257622 85191 Specificity= 75.15% 

Y 447 8632 Sensitivity= 95.08% 

 NPV = 99.83% PPV = 9.20% Accuracy= 75.66% 
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Table 12.b: Confusion Matrix for GBM with Higher Sensitivity 

 Predicted  

N Y 

A
ct

u
a
l N 261622 81191 Specificity= 76.32% 

Y 500 8579 Sensitivity= 94.49% 

 NPV = 99.81% PPV = 9.56% Accuracy= 76.79% 

 

Table 12.c: Confusion Matrix for Deep Learning with Higher Sensitivity 

 Predicted  

N Y 

A
ct

u
a
l N 200214 142599 Specificity= 58.40% 

Y 627 8452 Sensitivity= 93.09% 

 NPV = 99.69% PPV = 5.60% Accuracy= 59.30% 

 

 

6. SUMMARY AND DISCUSSION 

This study provides a framework for a transportation company to build their own 

predictive models to save the life and the cost involved, by avoiding an accident. Regression can 

be helpful to interpret but unfortunately achieving high accuracy is difficult. Similarly, machine 

learning methods have proved their purpose by producing better accuracy with high specificity 

and sensitivity. This result also suggests that that instead of completely relying on one model or a 

specific algorithm, ensemble techniques like voting, weighted average, etc. might produce better 

results. This study may not be an example just for accident prediction but also applicable for 

driver turnover, fuel consumption, tractor and trailer maintenance, etc. with their own related 

data. According to the data from Department of Transportation (USDOT), the National Center 

for Statistics and Analysis (NCSA), and the National Highway Traffic Safety Administration 
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(NHTSA) cited by TruckDrivingJobs.com, the average cost of a truck accident with no fatality is 

$62,000 and the average cost of truck accidents with fatality is $3 million. Some of the major 

causes for these costly and deadly accidents include the longer stopping distance required by a 

truck (typically nearly thrice the distance required by other vehicles), requirement of more space 

to make wide turns, the height and weight of the truck contributing to easy rollover events, blind 

spots while making a turn, passing and lane changing, etc. Based on the prediction results, it can 

be argued that training the drivers in the false positive cell of the confusion matrix is an extra 

cost but those are nothing but investments to avoid unexpected accidents that are beyond 

predictions. Training the drivers based on prediction would cost only a few thousands of dollars 

while bearing an accident might cost in millions along with the risk of a life. So the possibility of 

training the entire driver work force can be questioned which will turn to be a very boring 

practice and the drivers would not take it seriously. For this study, the predictions are done for 

every month, each driver flagged by the model are taken very seriously and made sure all the 

concerns are addressed with rigorous training. Once the driver is trained, she/he is not trained 

again for a defined period of time (e.g., 5 months) even if the model again flags the same driver. 

By this way, the effect of training can also be analyzed and the comfort zone of the drivers is 

also not disturbed, as very frequent and repetitive training can be annoying.  Awareness 

programs, interactive sections, counseling groups, regular feedbacks are some of the steps that 

can be taken to act towards the prediction aiming at reducing accidents. Following these 

procedures and emphasizing the importance of drivers, safety can easily become a habit.  
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