2,055 research outputs found

    Detection of Power Line Supporting Towers via Interpretable Semantic Segmentation of 3D Point Clouds

    Get PDF
    The inspection and maintenance of energy transmission networks are demanding and crucial tasks for any transmission system operator. They rely on a combination of on-theground staff and costly low-flying helicopters to visually inspect the power grid structure. Recently, LiDAR-based inspections have shown the potential to accelerate and increase inspection precision. These high-resolution sensors allow one to scan an environment and store it in a 3D point cloud format for further processing and analysis by maintenance specialists to prevent fires and damage to the electrical system. However, this task is especially demanding to handle on time when we consider the extensive area that the transmission network covers. Nonetheless, the transition to point cloud data allows us to take advantage of Deep Learning to automate these inspections, by detecting collisions between the grid and the revolving scene. Deep Learning is a recent and powerful tool that has been successfully applied to a myriad of real-life problems, such as image recognition and speech generation. With the introduction of affordable LiDAR sensors, the application of Deep Learning on 3D data emerged, with numerous methods being proposed every day to address difficult problems, from 3D object detection to 3D point cloud segmentation. Alas, state-of-the-art methods are remarkably complex, composed of millions of trainable parameters, and take several weeks, if not months, to train on specific hardware, which makes it difficult for traditional companies, like utilities, to employ them. Therefore, we explore a novel mathematical framework that allows us to define tailored operators that incorporate prior knowledge regarding our problem. These operators are then integrated into a learning agent, called SCENE-Net, that detects power line supporting towers in 3D point clouds. SCENE-Net allows for the interpretability of its results, which is not possible in conventional models, it shows an efficient training and inference time of 85 mn and 20 ms on a regular laptop. Our model is composed of 11 trainable geometrical parameters, like the height of a cylinder, and has a Precision gain of 24% against a comparable CNN with 2190 parameters.A inspeção e manutenção de redes de transmissão de energia são tarefas cruciais para operadores de rede. Recentemente, foram adotadas inspeções utilizando sensores LiDAR de forma a acelerar este processo e aumentar a sua precisão. Estes sensores são objetos de alta precisão que conseguem inspecionar ambientes e guarda-los no formato de nuvens de pontos 3D, para serem posteriormente analisadas por specialistas que procuram prevenir fogos florestais e danos à estruta eléctrica. No entanto, esta tarefa torna-se bastante difícil de concluir em tempo útil pois a rede de transmissão é bastasnte vasta. Por isso, podemos tirar partido da transição para dados LiDAR e utilizar aprendizagem profunda para automatizar as inspeções à rede. Aprendizagem profunda é um campo recente e em grande desenvolvimento, sendo aplicado a vários problemas do nosso quotidiano e facilmente atinge um desempenho superior ao do ser humano, como em reconhecimento de imagens, geração de voz, entre outros. Com o desenvolvimento de sensores LiDAR acessíveis, o uso de aprendizagem profunda em dados 3D rapidamente se desenvolveu, apresentando várias metodologias novas todos os dias que respondem a problemas complexos, como deteção de objetos 3D. No entanto, modelos do estado da arte são incrivelmente complexos e compostos por milhões de parâmetros e demoram várias semanas, senão meses, a treinar em GPU potentes, o que dificulta a sua utilização em empresas tradicionais, como a EDP. Portanto, nós exploramos uma nova teoria matemática que nos permite definir operadores específicos que incorporaram conhecimento sobre o nosso problema. Estes operadores são integrados num modelo de aprendizagem prounda, designado SCENE-Net, que deteta torres de suporte de linhas de transmissão em nuvens de pontos. SCENE-Net permite a interpretação dos seus resultados, aspeto que não é possível com modelos convencionais, demonstra um treino eficiente de 85 minutos e tempo de inferência de 20 milissegundos num computador tradicional. O nosso modelo contém apenas 11 parâmetros geométricos, como a altura de um cilindro, e demonstra um ganho de Precisão de 24% quando comparado com uma CNN com 2190 parâmetros

    Predicting chattering alarms: A machine Learning approach

    Get PDF
    Abstract Alarm floods represent a widespread issue for modern chemical plants. During these conditions, the number of alarms may be unmanageable, and the operator may miss safety-critical alarms. Chattering alarms, which repeatedly change between the active and non-active states, are responsible for most of the alarm records within a flood episode. Typically, chattering alarms are only addressed and removed retrospectively (e.g. during periodic performance assessments). This study proposes a Machine-Learning based approach for alarm chattering prediction. Specifically, a method for dynamic chattering quantification has been developed, whose results have been used to train three different Machine Learning models – Linear, Deep, and Wide&Deep models. The algorithms have been employed to predict future chattering behavior based on actual plant conditions. Performance metrics have been calculated to assess the correctness of predictions and to compare the performance of the three models

    Prognostic Model Development with Missing Labels - A Condition-Based Maintenance Approach Using Machine Learning

    Get PDF
    Condition-based maintenance (CBM) has emerged as a proactive strategy for determining the best time for maintenance activities. In this paper, a case of a milling process with imperfect maintenance at a German automotive manufacturer is considered. Its major challenge is that only data with missing labels are available, which does not provide a sufficient basis for classical prognostic maintenance models. To overcome this shortcoming, a data science study is carried out that combines several analytical methods, especially from the field of machine learning (ML). These include time-domain and time–frequency domain techniques for feature extraction, agglomerative hierarchical clustering and time series clustering for unsupervised pattern detection, as well as a recurrent neural network for prognostic model training. With the approach developed, it is possible to replace decisions that were made based on subjective criteria with data-driven decisions to increase the tool life of the milling machines. The solution can be employed beyond the presented case to similar maintenance scenarios as the basis for decision support and prognostic model development. Moreover, it helps to further close the gap between ML research and the practical implementation of CBM

    See Eye to Eye: A Lidar-Agnostic 3D Detection Framework for Unsupervised Multi-Target Domain Adaptation

    Full text link
    Sampling discrepancies between different manufacturers and models of lidar sensors result in inconsistent representations of objects. This leads to performance degradation when 3D detectors trained for one lidar are tested on other types of lidars. Remarkable progress in lidar manufacturing has brought about advances in mechanical, solid-state, and recently, adjustable scan pattern lidars. For the latter, existing works often require fine-tuning the model each time scan patterns are adjusted, which is infeasible. We explicitly deal with the sampling discrepancy by proposing a novel unsupervised multi-target domain adaptation framework, SEE, for transferring the performance of state-of-the-art 3D detectors across both fixed and flexible scan pattern lidars without requiring fine-tuning of models by end-users. Our approach interpolates the underlying geometry and normalizes the scan pattern of objects from different lidars before passing them to the detection network. We demonstrate the effectiveness of SEE on public datasets, achieving state-of-the-art results, and additionally provide quantitative results on a novel high-resolution lidar to prove the industry applications of our framework. This dataset and our code will be made publicly available

    SIEMS: A Secure Intelligent Energy Management System for Industrial IoT Applications

    Get PDF
    © IEEE. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1109/TII.2022.3165890In this work, we deploy a one-day-ahead prediction algorithm using a deep neural network for a fast-response BESS in an intelligent energy management system (I-EMS) that is called SIEMS. The main role of the SIEMS is to maintain the state of charge at high rates based on the one-day-ahead information about solar power, which depends on meteorological conditions. The remaining power is supplied by the main grid for sustained power streaming between BESS and end-users. Considering the usage of information and communication technology components in the microgrids, the main objective of this paper is focused on the hybrid microgrid performance under cyber-physical security adversarial attacks. Fast gradient sign, basic iterative, and DeepFool methods, which are investigated for the first time in power systems e.g. smart grid and microgrids, in order to produce perturbation for training data.Peer reviewe

    INFLECT-DGNN: Influencer Prediction with Dynamic Graph Neural Networks

    Full text link
    Leveraging network information for predictive modeling has become widespread in many domains. Within the realm of referral and targeted marketing, influencer detection stands out as an area that could greatly benefit from the incorporation of dynamic network representation due to the ongoing development of customer-brand relationships. To elaborate this idea, we introduce INFLECT-DGNN, a new framework for INFLuencer prEdiCTion with Dynamic Graph Neural Networks that combines Graph Neural Networks (GNN) and Recurrent Neural Networks (RNN) with weighted loss functions, the Synthetic Minority Oversampling TEchnique (SMOTE) adapted for graph data, and a carefully crafted rolling-window strategy. To evaluate predictive performance, we utilize a unique corporate data set with networks of three cities and derive a profit-driven evaluation methodology for influencer prediction. Our results show how using RNN to encode temporal attributes alongside GNNs significantly improves predictive performance. We compare the results of various models to demonstrate the importance of capturing graph representation, temporal dependencies, and using a profit-driven methodology for evaluation.Comment: 26 pages, 10 figure
    • …
    corecore