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Abstract 

Alarm floods represent a widespread issue for modern chemical plants. During these conditions, the 

number of alarms may be unmanageable, and the operator may miss safety-critical alarms. Chattering 

alarms, which repeatedly change between the active and non-active states, are responsible for most of the 

alarm records within a flood episode. Typically, chattering alarms are only addressed and removed 

retrospectively (e.g. during periodic performance assessments). This study proposes a Machine-Learning 

based approach for alarm chattering prediction. Specifically, a method for dynamic chattering 

quantification has been developed, whose results have been used to train three different Machine Learning 

models – Linear, Deep, and Wide&Deep models. The algorithms have been employed to predict future 

chattering behavior based on actual plant conditions. Performance metrics have been calculated to assess 

the correctness of predictions and to compare the performance of the three models. 
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Definitions 

Accuracy the ratio of number of correct predictions to total number of predictions. 

Alarm flood a condition during which the alarm rate is greater than the operator can 

effectively manage (e.g., more than 10 alarms per 10 minutes). 

Alarm identifier a code defining the alarm status. 

Alarm source a field device, control system, or Human Machine Interface that can trigger a 

change in the alarm status. 

Binary Database a database where unique alarms data are represented as sequences of 0’s and 

1’s at one-second sampling. 

Chattering alarm an alarm that repeatedly transitions between the active and the not active 

states in a short period (e.g., 3 or more alarm records in one minute). 

                  



Chattering Index an index to quantify the amount of chattering that a unique alarm has shown 

over a certain time period. 

Dynamic Chattering Index an index to quantify the amount of chattering that a unique alarm has shown 

up to one hour after each alarm event. 

Example the description of an alarm event in terms of features and related label. 

Feature a meaningful attribute of an alarm event. 

Label the category of an alarm event – “Y” for “Chattering within one hour”, “N” for 

“Not Chattering within one hour”. 

Machine Learning computational methods using experience to improve performance or to make 

accurate predictions. 

Nuisance alarm an alarm that annunciates excessively, unnecessarily, or does not return to 

normal after the operator action is taken. 

Precision the fraction of positively predicted labels that are, in fact, positive. 

Probability Threshold an adjustable parameter used to convert raw predicted probabilities into 

predicted labels. 

Recall the fraction of real positive labels correctly predicted. 

Run Length the time difference in seconds between two consecutive alarm events from the 

same unique alarm. 

Unique alarm the unique combination of an alarm source and an identifier. 

Unlabeled examples the description of an alarm event in terms of a list of features. 

  

                  



1. Introduction 

The digital revolution and the advent of Distributed Control Systems have undeniably improved the 

flexibility of industrial alarm systems (Shaw, 1993). Installing new alarms has become relatively simple and 

economical (Katzel, 2007), but the misconception that more alarms would improve safety and reliability 

persists in some cases. On the contrary, too many alarms can negatively affect the performance of the 

alarm system and prevent an adequate operator’s response (Kondaveeti et al., 2013; Laberge et al., 2014). 

Unsatisfactory alarm rationalization is expressed by episodes where an excessive number of alarms are 

triggered in a short period (ANSI/ISA, 2016; EEMUA, 2013; Laberge et al., 2014). A specific term is coined to 

define a period of intense alarm activity – an “alarm flood” (Beebe et al., 2012). Hundreds or even 

thousands of alarms may be triggered during a flood episode, causing a substantial distraction to the 

operators, and increasing the risk of missing critical alarms (Laberge et al., 2014).  

Several studies, accident reports, and standard manuals have cited alarm floods as a contributing factor to 

financial loss, injuries, and deaths in the chemical industry (Beebe et al., 2012; EEMUA, 2013; Stanton and 

Barber, 1995), including the investigation report on the explosion in Pembroke Refinery on the 24 July 1994 

(Health and Safety Executive, 1997). The accident was caused by a faulty control valve, which was stuck in a 

closed position. Unfortunately, the control system erroneously indicated that the valve was open, and 

operators had not been able to identify the problem. Due to the blocked valve, the liquid had accumulated 

inside a debutanizer column, causing the pressure to increase over the PSV setpoint. A liquid-vapor stream 

entered the flare pipe that eventually broke since it was not designed to handle liquids. Roughly 10 to 20 

tons of partially vaporized flammable materials were released and mixed with air, forming a flammable 

cloud that ignited and exploded 4 hours after the valve failure, and 20 seconds after the pipe rupture. As a 

consequence, 26 workers were injured, and the refinery was severely damaged: £48 million were spent on 

rebuilding the damaged plant, to which the costs of prolonged business interruption should be added. 

During the accident, alarms were notified to the operators at the rate of one every two to three seconds. 

Approximately 275 alarms were triggered in the last eleven minutes before the accident, without a 

concrete effect on the possibility of preventing the accident.  

Most of the alarm events within a flood episode are produced by alarms that oscillate between the active 

and not active state with high frequency –i.e., chattering alarms. Standard manuals have been published 

(ANSI/ISA, 2016; EEMUA, 2013), providing guidelines for proper alarm rationalization and management, 

suggesting strategies for chattering and floods reduction. Still, chattering alarms are only addressed and 

removed retrospectively. Rather than addressing the problem after chattering has happened, a method to 

predict future chattering based on actual process conditions would significantly improve the performance 

of the alarm system. Nevertheless, predictive methods based on first principles would be complicated to 

obtain because many variables influence the dynamics of the system (Ahmed et al., 2013). In this 

multivariate context, a statistical data-based approach appears to be more feasible. Chemical plants 

                  



produce a large quantity of process and alarm data on a daily basis (Reis and Kenett, 2018). Thus, the use of 

Machine Learning techniques appears to be an interesting opportunity to extract knowledge from these 

data and to build predictive models. Various researches have focused on the development of Machine 

Learning algorithms for fault detection and diagnosis (Mahadevan and Shah, 2009; Miao et al., 2013; Zhong 

et al., 2014), risk assessment (Paltrinieri et al., 2019), process simulation (Aleixandre et al., 2015; Zhang et 

al., 2010), and dimensionality reduction (Ge et al., 2017). However, to the best of our knowledge, there is 

not a direct application of these algorithms for alarm chatter prediction. 

The present study proposes a Machine Learning approach for chattering prediction. An industrial alarm 

database has been used to support the analysis. Initially, a modified version of the Chattering Index 

proposed by Kondaveeti et al. (2013) has been developed and used to classify historical alarm events as 

“Chattering within an hour” or “Not Chattering within an hour” (i.e., alarms that will/will not show 

chattering within one hour after an alarm event). The results of this method, named Dynamic Chattering 

Index, have been used to train and evaluate three different Machine Learning classification models –i.e., 

Linear, Deep, and Wide&Deep models. Each algorithm has been trained and assessed independently on the 

same dataset. Performance metrics have been calculated to assess the correctness of predictions and to 

compare the performance of the three models. 

The paper is organized in 8 Sections. Section 2 provides an overview of industrial alarms and alarm 

databases, including definitions of nuisance alarms, chattering, and alarm floods. Section 3 focuses on the 

database used in this work; a brief description of the plant section that generated the alarms is also 

provided. Section 4 describes the methodology, which includes the preprocessing of alarm data, the 

development of the Dynamic Chattering Index, the Machine Learning models, and the performance metrics 

that have been used to evaluate the models. Section 5 provides a detailed description of the Machine 

Learning simulations. The results of the simulations are presented in Section 6 and discussed in Section 7. 

Finally, conclusions are summarized in Section 8. 

2. Alarms in the chemical industry 

Disturbances of various nature cause inherent process fluctuation during daily operations. Typically, minor 

deviations are managed by the Basic Process Control System (BPCS), and process oscillations are 

maintained to an acceptable level. However, situations may arise where automatic systems fail to restore 

normal operations, and human intervention is needed. In these circumstances, alarms inform the operator 

that process conditions are significantly deviating from their normal operating state (ANSI/ISA, 2016). Each 

alarm should support a timely and effective response by providing guidance to a set of corrective actions. 

                  



2.1. Nuisance, chattering and alarm floods 

If an alarm does not convey any new information, or if no corrective action is possible, the alarm is 

ineffective. These types of alarms are called “nuisance” and are often caused by poorly managed alarm 

systems (ANSI/ISA, 2016; Kondaveeti et al., 2010). Different types of nuisance alarms can be identified (e.g., 

Chattering, Fleeting, Stale alarms)(ANSI/ISA, 2016), but in this study the attention has been directed to 

chattering alarms – i.e., alarms that “repeatedly transitions between the active state and the not active 

state in a short period of time” (ANSI/ISA, 2016). A rule of thumb to determine chattering behavior is three 

or more alarm records (from the same alarm source) in one minute (Kondaveeti et al., 2010). 

Besides, alarm floods –i.e., periods when the alarm rate exceeds 10 alarms/operator per ten minutes time 

interval– are another common issue in modern alarm systems (ANSI/ISA, 2016; Laberge et al., 2014). Due to 

the intense alarm activity, hundreds of alarm records may be produced in a short time. The workload 

caused by flood episodes is often overwhelming: the operator cannot provide an appropriate response, and 

crucial alarms are likely to be missed (Ahmed et al., 2013). Usually, most of the alarms inside a flood 

episode come from a limited number of alarm sources (ANSI/ISA, 2016). Furthermore, alarm floods are 

strongly related to chattering alarms due to their potential to cause a large number of alarm events in a 

short time span. For this reason, identifying and removing chattering alarms is a crucial step to improve the 

performance of the alarm system and to avoid flood episodes. 

2.2. Alarm attributes 

Alarm events are described through a list of attributes. Each attribute defines a characteristic of an event 

such as the time of the alarm occurrence (i.e., the Timestamp), the Source that triggered the alarm, the 

alarm status, and more. Table 1 describes a list of attributes that are most frequently presented to the 

operator. It is worth mentioning that different companies use different messages and different sets of 

alarm attributes. The table is thus a selection of the most common and significant alarm attributes. 

Attribute Description  

Timestamp Date and time (GMT) of the alarm event.  

Source The source that triggered the alarm. It might be a measuring instrument or a PLC 
function. 

Jxxx The safety interlock logic associated with the alarm, where “xxx” is a three digits 
code. 

Alarm Identifier A code that defines the alarm status (e.g. “HHH”, “HTRP”, “LLL”, “IOP”, “HHH 
Recover”, “ACK”). 

Data Value The value of the process variable. 

Eng. Unit The units of measure of the process variable (e.g. “ % ”, “ °C ”, “ KPa ”). 

Table 1 - Selection of the most common and significant alarm attributes presented to the operator. 

                  



 

When an alarm is triggered, a message appears on the operator console. An example is: 

“LI01 LEVEL D01 J434 PV = 98,0 % HHH” 

The alarm message reports the source of the alarm (the level indicator 01), a brief explanation of the 

measured variable (the level in drum 01), the associated safety function (J434), the value of the process 

value (98 %) and finally, the alarm status (High Level –i.e., “HHH”).  

For a more comprehensive understanding of the following analyses, the alarm identifier must be described 

more in detail. The identifiers “HHH” and “HTRP” inform that the measured variable has exceeded the 

“high” and “very high” threshold respectively, “LLL” and “LTRP” refer to the “low” and “very low” threshold, 

“IOP” informs about an instrumental failure or out-of-range measure, “ACK” indicates that the operator has 

acknowledged the alarm. The alarm identifier may include the word “Recover” (e.g. “HHH Recover”, “LTRP 

Recover”), that indicates that the original alarm has been recovered (i.e., the alarm is not active anymore). 

In addition, two more attributes must be described, the Active Time Delta and the Condition Name, which 

have been used in the analyses but are not listed in Table 1. The Active Time Delta (ATD) is the number of 

seconds between an alarm and its recovery. The Condition Name (CN) is the alarm identifier of the initial 

alarm event (e.g., if the alarm is an “LLL Recover”, CN will be “LLL”).  

In spite of the variety of different attributes, an alarm event is uniquely identified by three attributes only 

(Kondaveeti et al., 2010): 

1. Time Stamp; 

2. Source; 

3. Alarm Identifier. 

Also, the combination of an alarm source and an identifier (e.g., “LI01 HHH”, “PI103 LTRP”) is called a 

unique alarm (Kondaveeti et al., 2010). 

2.3. Alarm databases 

Chemical plants produce a massive amount of data on a daily basis (Kordic et al., 2010). Alarm events are 

continuously recorded and stored in alarm databases, which are characterized by a large search-space and 

may contain years of alarm data (Kordic et al., 2010). Typically, alarm events are collected as 

chronologically ordered time sequences (Weiss, 2010). Each row of the database represents an event, and 

each column represents an attribute of the alarm event. Obviously, there is not a single database format: 

different companies use different Distributed Control Systems (DCS). The format, the codes and the set of 

displayed features may vary accordingly. Typically, an alarm database contains more features than those 

presented in Table 1, but most of these additional features are either redundant or not useful for the 

analyses. 

                  



The analysis of the alarm history is a crucial step in monitoring the alarm system performance (ANSI/ISA, 

2016). Periodic study of the alarm database allows the production of performance metrics and the 

detection of nuisance alarms. An example of a performance metric suggested by ANSI/ISA (2016) is the 

“Percentage of time the alarm system is in a flood condition”, which must be lower than 1 % to grant stable 

operations. Furthermore, the standard states that chattering alarms must not be tolerated, and actions 

must be taken to resolve any chattering that occurs. Nevertheless, due to the complexity and quantity of 

data in alarm databases, the extraction of relevant information is not trivial and usually requires time and 

resources (Kordic et al., 2010). 

3. Case-study: ammonia production plant layout and alarms 

The industrial alarm database used in this study is provided by an international chemical company and 

consists of alarm data that were collected in a plant section for ammonia synthesis. The process involves 

the manipulation of a significant amount of dangerous substances (e.g., methane, hydrogen, ammonia), 

and severe operating conditions are often required (e.g., high temperature, high pressure, corrosive fluids). 

According to the European Parliament and Council Directive 2012/18/EU (European Union, 2012), the plant 

has been classified as an upper-tier establishment due to its potential to cause major accidents. 

The ammonia production plant comprises four sections: 

1. Desulfurization and Reforming; 

2. Water-Gas Shift, CO2 Removal, and Methanation; 

3. Ammonia synthesis and Cooling circuit; 

4. Anhydrous ammonia storage, Pipeline, and Loading/unloading tankers. 

Figure 1 shows a schematic representation of the plant layout for ammonia production, excluding storage, 

loading, and unloading (section 4). 

                  



 

Figure 1 – Simplified process scheme of the ammonia production plant considered. 

Natural Gas, Air, and Steam are used as raw materials for ammonia synthesis, according to the following 

exothermic reaction: 

                        
 [        ]          

  

   
  ( )  

The reaction is carried out in two catalytic reactors arranged in series. The required nitrogen comes from 

process air, which enters the secondary reforming reactor. The hydrogen is produced through natural gas 

steam reforming in two distinct reforming stages. The first stage (primary reformer) is a vertical, side fired, 

proprietary reactor. The second stage (secondary reformer) is an autothermal adiabatic reactor. Typical 

temperature and pressure of the gas stream leaving the reforming section are 1000 °C and 25 - 40 bar, 

respectively (Jennings, 1991). The catalysts used in the reforming reactors and in the downstream sections 

are sensitive to sulfur compounds (Aika et al., 1995). To avoid catalyst deactivation and poisoning, sulfur 

compounds are removed from natural gas in two reactors arranged in series. Similarly, carbon oxides must 

be removed because they are poisonous to the catalyst (Aika et al., 1995). For this reason, carbon 

monoxide is converted into carbon dioxide in two Water-Gas Shift reactors. Carbon dioxide is then 

removed in an absorption column where a Vetrocoke solution is used as a solvent (Giammarco and 

Giammarco, 1973). Finally, the residual amount of carbon oxides is removed in a Methanation reactor. The 

process stream leaving the methanator, which has the required purity for ammonia production, is 

compressed and sent to the ammonia synthesis loop, where ammonia is synthesized and liquefied through 
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subsequent cooling and expansion units. Due to thermodynamic and kinetic constraints, the ammonia 

synthesis has low single-pass conversion (Jennings, 1991). Therefore, part of the gases released during the 

liquefaction process, which consists mainly of unreacted compounds, are recycled back to the reactors. 

3.1. The alarm database 

The alarm database of the ammonia plant contains alarm events collected between July 2017 and 

November 2017. In total, 26 473 alarm events (rows of the database) occurred during the observation 

period. Each event is described by a set of 39 attributes (columns of the database). 

Alarms are not evenly spread over the observation period. The alarm daily annunciation rate is shown in 

Figure 2. 

 

Figure 2 – Alarms’ daily annunciation rate. Each circle represents the number of alarms that occurred during one day. 

Over 96 % of the alarm events included in the database occurred between September and October 2017. 

The unusually high alarm rate was caused by a total power outage, which led to an unintended plant shut 

down. The plant instability and the abnormal alarm annunciation rate persisted over one month after the 

blackout, due to the emergency shutdown and the subsequent startup procedure. During the event, a 

significant number of alarm floods occurred. Therefore, the analyses described in this work have focused 

on that specific time-lapse (September 9th to October 9th). 

Over the period of concern, 189 alarm sources produced a total of 25572 alarms. More than 72 % of them 

were triggered by ten alarm sources only, as shown in Figure 3. 

                  



 

Figure 3 – The ten alarm sources with the larger alarm count over the observation period (September – October 2017). 

4. Methodology 

The approach follows the steps depicted in Figure 4. 

 

                  



Figure 4 – Workflow of the analysis carried out. Colors represent three main stages. Stage 1 (orange): Data preprocess, Stage 2 
(blue): Dynamic Chattering Indices calculation, Stage 3 (green): Machine Learning simulations. Each stage is divided into several 
steps, which are arranged chronologically and identified by two numbers (e.g., 1.1, 2.2, 3.5).  

4.1. Data preprocessing 

Raw alarm data must be prepared for the analysis. 

4.1.1. Attribute selection and data cleaning 

The columns of the database that are either empty or not useful for the analysis have been removed (step 

1.1 in Figure 4). For example, the column “PlantHierarchy” contains standardized codes that refer to a 

specific plant inside the production site. The column has been removed because every alarm considered in 

this study comes from the ammonia production plant. 

Machine Learning algorithms cannot process null (missing) values. For this reason, columns including null 

values were further analyzed, and, when relevant, null values were substituted by specific input values. 

Several techniques exist to impute missing values (Hastie et al., 2009). If the value is relevant for the 

analysis, one may decide to replace it with the mean or median of the non-missing values (Brink et al., 

2016). If the missing value is not relevant, or if there is no way to guess the value through statistical 

calculations, it might be replaced with a user-defined global constant (Han et al., 2012). For example, the 

column “Eng. Unit” (see Table 1) contains a considerable amount of missing value due to alarms that are 

not associated with a measuring instrument (e.g. alarm generated by ad-hoc logics). Therefore, it has been 

decided to replace the missing values in the column with the symbol “– ” (step 1.2 in Figure 4). 

As a result, a “clean” database is obtained (step 1.3 in Figure 4), which contains only meaningful attributes 

and no missing values. 

4.1.2. Binary Database creation 

Unique alarms (i.e. the unique combination of an alarm source and an identifier) have been represented as 

binary sequences (step 1.4 in Figure 4). According to Kondaveeti et al. (2010), the binary representation of 

a unique alarm is an array whose elements represent one-second-spaced time bins. For a one-month-long 

observation period, the array has 2592000 elements (i.e., seconds in one month). The value of an element 

of the array can be either “1” or “0”. A “1” in the sequence indicates that the unique alarm occurred at that 

very moment. On the contrary, a “0” means that the unique alarm did not happen. In this way, alarm 

occurrences are represented as 1’s in the array. Finally, binary sequences are grouped in a matrix (step 1.5 

in Figure 4). Rows containing zeroes only can be safely removed by the Binary Database (Kondaveeti et al., 

2010).  

Although it is not compulsory, representing alarm data as binary sequences will greatly simplify the 

calculation of the Dynamic Chattering Index. 

                  



4.2. The Dynamic Chattering Index 

The mathematical formulation of the Dynamic Chattering is based on the method described by Kondaveeti 

et al. (2013) for the calculation of the Chattering Index. Both indices rely on the run-lengths distribution to 

quantify alarm chatter. A run-length is the “time difference in seconds between two consecutive alarms on 

the same tag” (Kondaveeti et al., 2013). As an example, the run-lengths related to a fictitious unique alarm 

are shown in Figure 5. 

 

Figure 5 – Schematic representation of a unique alarm. Red sticks represent alarm events. Seconds between two subsequent sticks 
represent a run-length. 

In the figure, the red marks represent an alarm event (i.e., a “1” in the binary sequence), the number of 

seconds between two consecutive marks (i.e., the time between two subsequent “1’s” in the binary 

sequence) represent a run-length. Intuitively, considering the whole observation period, if a unique alarm 

has a high number of short run-lengths, it is highly probable that the alarm has shown chattering. The alarm 

sequence described in Figure 5 indicates Chattering because the alarm has occurred six times in less than 

30 seconds. The Chattering Index in Kondaveeti et al. (2013) is 

   ∑   
     

 

 
   ( )  

Where  

 r is a natural number that represents a run-length [s] (e.g. r = 5, 7, 10, 13 for alarm data in Figure 5); 

    represents the probability that a run length is equal to r seconds, i.e., 

    
  

∑        
  ( )  

Where 

    is the number of run lengths equal to r seconds (e.g.       and                   for alarm data 

in Figure 5); 

 ∑         represents the total number of run-lengths, which is one less than the unique alarm’s 

occurrences over the observation period (e.g., the alarm in Figure 5 occurred 6 times, the 

summation is equal to 5). 

The Chattering Index indicates the mean frequency of annunciation of a unique alarm 

(units of   are 
alarms

s
), and it assumes a value between 0 and 1. A threshold value is needed to assess 

whether a unique alarm has shown chattering during the observation period. Kondaveeti et al. (2013) 

propose a threshold value equal to 0.05 (i.e.,        indicates alarm chatter). For instance, considering 
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the example presented in Figure 5, the probabilities (eq.3) are      
 
 ⁄  and             

 
 ⁄  . The 

Chattering Index (eq.2) is: 
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which confirms that the alarm has shown Chattering behavior.  

In fact, once the observation period is defined, a single   is obtained for each unique alarm. Although 

meaningful, the index is relatively static: observing the Chattering Index, one can determine whether the 

unique alarm has shown Chattering, but no further conclusion can be drawn (e.g., when exactly the alarm 

has shown Chattering). To overcome this limitation, the Chattering Index approach has been modified, and 

the Dynamic Chattering Index has been developed. The core idea is to calculate a regular Chattering Index 

every time a unique alarm occurs (i.e., every time a “1” is found in the binary representation of the alarm). 

Another key feature is that the calculations of the Dynamic Chattering Index involve only alarm events that 

occurred up to one hour after the alarm event of concern. If a unique alarm has n values equal to 1 in the 

binary sequence, n-1 Dynamic Chattering Indices are calculated (the last event is excluded from the 

calculation). By this procedure, each “1” in the binary sequence is associated with a Dynamic Chattering 

Index, which quantifies the amount of chatter that the alarm has shown during the following hour. 

Considering a generic alarm event with index i, the calculation of the Dynamic Chattering Index involves 

four steps (step 2.1 in Figure 4). 

1. The largest index k that meets the condition (           –            )      is selected, and 

the binary sequence is reduced in such a way that only alarm events having index   [   ] are 

taken.  

2. The run-lengths (r) and the number of run-lengths (nr) of the reduced binary sequence are 

calculated. It is worth noting that as long as the reduced binary sequence does not include the last 

alarm event (i.e., if k < n), one run-length can be obtained for each of the alarms in the reduced 

sequence (i.e., the last element of the sequence is also included in the run-lengths calculations). 

3. Probabilities are calculated according to equation (3). 

4. The Dynamic Chattering Index of the alarm event is calculated according to equation (2). 

The steps presented above are repeated     [      ] to obtain the n - 1 Dynamic Chattering Indices of 

the unique alarm of concern. Finally, the procedure is repeated for each of the unique alarms in the Binary 

Database. 

The same threshold value discussed above has been used for alarm classification. If an alarm event has 

       , the unique alarm will show chattering within one hour. 

Eventually, a Dynamic Chattering Index has been calculated for each alarm event (step 2.2 in Figure 4). The 

use of a threshold allows classifying alarms into two categories, “Chattering within one hour” and “Not 

                  



Chattering within one hour”. This result has been used to train and evaluate the Machine Learning 

algorithms that will be described in the following section. 

4.3. Machine Learning 

Machine Learning (ML) can be defined as “computational methods using experience to improve 

performance or to make accurate predictions” (Mohri et al., 2012). Due to the ever-increasing computation 

capabilities of modern calculators and to the development of computer technologies, the number of ML 

algorithms and their applications have witnessed extraordinary growth during the last few years (Liu et al., 

2018). Despite the immense number of different algorithms, there are only three categories of ML 

methods, which are: Supervised Learning, Unsupervised Learning, and Reinforcement Learning. Within the 

present work, Binary Classification algorithms have been used, which fall into the Supervised Learning 

category.  

A Classification algorithm takes as an input a list of features (i.e., meaningful attributes) of the object that 

must be classified and returns a label (i.e., the class of the object). For instance, these algorithms are 

employed to classify emails into “Spam” and “Not Spam” while, in the present study, the algorithm aims to 

classify alarm events into “Chattering within one hour” or “No Chattering within one hour”. If the objects 

are classified into two classes only, the problem is called Binary Classification. 

The selection of the most relevant features is a crucial step, and it may significantly affect the performance 

of the algorithm. The selection of the set of features that best represent the problem under assessment is 

mostly guided by experience, and a trial and error approach is often required (Brink et al., 2016)(step 3.5 in  

Figure 4). 

The Machine Learning Classification workflow is presented in Figure 6. Two distinct stages are necessary to 

build and test the algorithm: Training and Evaluation.  

                  



 

Figure 6 - Binary Classification Workflow. 1 - the database is divided into Training and Evaluation Databases. 2 - Training Database 
is fed to the ML model; a trained model is obtained. 3 - Evaluation Database is fed to the trained model, which predicts the labels. 4 
- performance metrics are calculated. 

During the training stage (step 2 in Figure 6), the algorithm receives a set of examples. An example is a list 

of features (e.g., the attributes of an alarm event) and the related label. From the examples, the algorithm 

“learns” the relation between features (Y) and labels (X) by optimizing the weights of an internal function 

(f).  

    ( ) ( )  

The weights are adjusted by an optimization algorithm, which aims to minimize the “distance” between 

  (X) and Y   Different types of functions exist, as well as different optimization methods. 

Later, during the evaluation phase (step 3 in Figure 6), a new series of unlabeled examples (i.e., only 

features) are fed to the trained algorithm, which predicts the labels. Finally, the performance of the 

algorithm is quantified by comparing predicted labels with true labels (step 4 in Figure 6). 

It is worth mentioning that the raw output of a Classification algorithm is not a label, but the label’s 

probability (Brink et al., 2016). For example, the algorithm used in this work returns the likelihood of a 

unique alarm being “Chattering within one hour” or “Not chattering within one hour”. A threshold is 

needed to convert probabilities into the final label, which is 0.5 by default (i.e., if the “Chattering within one 

hour” label’s probability is   0.5, the model will label the alarm as “Chattering within one hour”). The 

probability threshold is an adjustable parameter, and it can significantly affect the model’s performance 

(Google, 2020a). 
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4.3.1.  Models 

A model can be defined as “a function with learnable parameters that maps an input to an output. The 

optimal parameters are obtained by training the model on data. A well-trained model will provide an 

accurate mapping from the input to the desired output” (TensorFlow.org, 2020a). Basically, the model 

defines the mathematical structure of the function f in equation (5). Three different models have been used 

in this study: a Linear model, a Deep Neural Network, and a Wide&Deep model. 

4.3.1.1. Linear Model  

Linear models represent the labels as a linear combination of the features (Hastie et al., 2009).  

       ∑  

 

   

    ( )  

where: 

 Y   labels; 

 X   [X1, X ,   , Xp]   the features vector; 

 X    a feature  

  0   intercept (or bias)  

      coefficient (or weight). 

In this representation, each feature has its own weight. Therefore, the model can assess how much a 

feature weights on the calculation of the label, but it cannot quantify the influence of combinations of 

features. This limitation is partially solved by crossing two or more features to create a new, more 

meaningful, synthetic feature (Google, 2020b). Despite that, the linear model lacks in generalization, and it 

cannot interpret the combination of features that never occurred during the training phase (Cheng et al., 

2016). 

Although simple, the model is widely used (James et al., 2013) because it is robust, fast, and performs well 

on large datasets. Furthermore, the weights’ values are easily accessible, allowing the user to evaluate 

which features are more meaningful for the problem under assessment (Brink et al., 2016).  

The model employed in this work uses FTRL algorithm as an optimizer (TensorFlow.org, 2020b). 

4.3.1.2. Deep Neural Network 

Deep Neural Networks consist of interconnected layers. The first layer of the network is the vector of the 

features (X), and the last layer is the vector of the labels (Y). Between the first and the last layer there are 

the so-called hidden layers (H). Each hidden layer is made of a certain number of hidden units (Z). The 

number of hidden layers and hidden units is a design parameter that can greatly affect the performance of 

the algorithm. Generally speaking, it is better to use a large number of hidden layers and units. As a 

drawback, bigger networks require more computational effort than networks with few layers. The model 

                  



used in this work has three hidden layers, with 1024, 512 and 256 hidden units, respectively. A schematic 

representation of a Neural Network is shown in Figure 7. 

 

Figure 7 – Deep Neural Network with P features (orange circles), and three hidden layers (H1, H2, H3), which contain M, N, and S 
hidden units, respectively. The output layer (green circles) contains two labels (Y1 and Y2). 

The connections (i.e., solid lines) in Figure 7 represent non-linear transformations. For example, the hidden 

units of the first and second hidden layers can be calculated as follows 
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Where: 

  0i   0    bias    

  i   i   vector  of model coefficients; 

  i
k   the i-th hidden unit of the k-th hidden layer  

  1    1
1,   

1,  3
1,   ,  M

1    

     activation function. 

Biases and coefficients are optimized during the training of the algorithm. The model employed in this work 

uses Adagrad algorithm as an optimizer (TensorFlow.org, 2020c), and the activation function is the linear 

rectifier (TensorFlow.org, 2020d). 

 ( )     (   )  ( )  

According to equations (7) and (8), the activation function converts the linearly combined units of a layer 

into the hidden units of the following layer; this allows the model to capture non-linear inter-features 

relationships and strengthen its generalization capabilities. 
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Deep Neural Networks represent state-of-the-art algorithms for audio-video processing (i.e., speech and 

image recognition) (Brink et al., 2016; Hastie et al., 2009) and their applications are rapidly spreading 

among different sectors. Although flexible, these models may over-generalize and detect non-existent 

relationships between features. Furthermore, they are harder to optimize compared with simpler models 

(e.g., the linear model). 

4.3.1.3. Wide and Deep model 

In an attempt to overcome the limitations of the models discussed above, Cheng et al. (2016) proposed a 

hybrid model, which is composed of a Wide part (i.e., linear) and a Deep part (i.e., Deep Neural Network), 

as shown in Figure 8. 

  

Figure 8 - Wide&Deep model, made of a linear (left) and a Deep (right) parts. The linear part takes K features (red circles). The Deep 
part is made of 3 hidden layers (blue circles) with M, N, and S hidden units, and takes P features (orange circles). The output layer 
(green circles) contains two labels (Y1 and Y2). 

During the training phase, the parameters of the linear and deep parts are optimized simultaneously using 

FTRL and Adagrad algorithms. The linear part of the model could comprise both raw features and crossed-

features; in this work, only crossed-features are used. The hybrid model has proven to combine the 

advantages of the linear model (e.g., robustness, memorization capability) and the Deep model (e.g., 

generalization, flexibility) minimizing their drawbacks (Cheng et al., 2016).  

4.3.2. Performance indicators 

The performance of a classification algorithm can be assessed by comparing predicted labels and true 

labels. For concision purposes, the label “No Chattering within one hour” will be referred to as the label 

“N”, while “Chattering within one hour” will be referred to as the label “Y”. Three metrics have been used 

to assess the performance 
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Where 

 TP = True Positive –i.e. predicted label = Y, true label = Y;  

 TN = True Negative –i.e. predicted label = N, true label = N;  

 FP = False Positive –i.e. predicted label = Y, true label = N;  

 FN = False Negative –i.e. predicted label = N, true label = Y. 

The summation of TP and TN represents the number of correct predictions and the summation of FN and 

FP is the number of wrong predictions. The Accuracy is the number of correct predictions divided by the 

total number of predictions, the Precision is the fraction of correct positive predictions, and the Recall is the 

fraction of real positive correctly predicted; the metrics assume values between 0 and 1; the larger the 

value, the better the metric. 

As it has already been discussed, Machine Learning algorithms use a probability threshold to determine the 

predicted label. Therefore, changing the probability threshold can greatly affect the algorithm’s 

performance as it modifies the values of TP, TN, FP, and FN. Unfortunately, Precision and Recall are often in 

tension (Google, 2020a), changes in the threshold that aim to increase the Precision may cause the Recall 

to decrease, and vice versa. 

It is worth noting that all the metrics discussed above must be considered to evaluate the performance of a 

Machine Learning algorithm (Google, 2020c). A high Accuracy alone is meaningless and does not necessarily 

indicate good performances. In this work, “legitimate” alarms (i.e., that are not going to show chattering) 

must not be labeled as chattering ones. Therefore, the Precision is the metric that must be optimized. 

5. Simulations 

Three simulations have been performed, one for each model described in section 4.3.1. The Machine 

Learning algorithms have been built using TensorFlow r1.15 (TensorFlow.org, 2020e) running on Python 

3.7.4 (Python.org, 2019). The first step to build the Machine Learning algorithms is the feature selection 

(step 3.1 in Figure 4). A preliminary screening has already been performed during “Attribute selection and 

data cleaning” (section 11) when the not useful columns have been removed from the raw alarm database. 

                  



Still, there is no guarantee that the algorithms will perform better if all columns of the “clean” database are 

used as features. As previously argued, feature selection often requires a trial and error approach. Different 

features have been tested. The best set (i.e., the one that has generated the best performance) is 

presented in Table 2, which contains the name and description of each feature. 

 

 

 

 

 

Feature Description Format 

  Linear Deep 

Y Year of the alarm event Num. Num. 

M Minute of the alarm event Num. Num. 

D Day of the alarm event Num. Num. 

H Hour of the alarm event Num. Num. 

m Minute of the alarm event Num. Num. 

S Seconds of the alarm event  Num. Num. 

SO Source (see Table 1) Categ Dense 

ID Identifier (see Table 1) Categ. Dense 

CN Condition Name (see section 2.2) Categ Dense 

JX Alarm Safety function (see Table 1) Categ. Dense 

ATD Active Time Delta (see section 2.2) Num. Num. 

VAL Data Value (see Table 1) Num. Num. 

UNI Eng. Unit (see Table 1) Categ. Dense 

Table 2 – Alarm features used in the simulations. Features names have been coded for concision purposes. Codes are represented in 
the first column and described in the second column. The last two columns represent the features format used in the linear and 
Deep models. 

After features selection, the alarm database has been re-organized and converted into a new database 

(step 3.2 in Figure 4), which contains only the features listed in Table 2. Each row of the new database 

represents an alarm event, each of the first thirteen columns represents a feature, and the last column 

contains the labels. A label can be either “Y” (if      0.05 –i.e., the unique alarm will show chattering 

within one hour) or  “N” (if    < 0.05 –i.e., the unique alarm will not show chattering within one hour). 

Next, the database has been divided into two sections, to obtain the training database and the evaluation 

database (step 1 in Figure 6). The first part, which contains ¾ of the alarm data, has been used to train the 

models, and the second part (¼ of the database) to evaluate them. The last column of the evaluation 

database has been removed and stored as a separate variable. This prevents the model from gaining access 

                  



to the actual labels during the evaluation. Additionally, since chattering alarms are not spread evenly 

throughout the original database, the database has been shuffled before the division (i.e., rows have been 

randomly rearranged). 

Prior to starting the simulations, one must ensure that the features are fed to the algorithm in a proper 

format. While Machine Learning models accept numerical features as an input, strings of characters (e.g., 

the features Identifier, Source, and Eng. Unit in Table 1) cannot be fed directly into the model and must be 

converted into a categorical or dense format. Non-numerical features that are fed to the linear model have 

been converted into categorical features (TensorFlow.org, 2020f). On the contrary, Deep Neural Networks 

do not accept categorical features as an input. Therefore, non-numerical features have been mapped into 

dense features (TensorFlow.org, 2020g). The last two columns of Table 2 summarize the features’ format 

used in the linear and deep models. Furthermore, three crossed features have been used in the linear 

model and in the linear part of the Wide&Deep model, which are [SO x CN x JX], [SO x CN x ID], and [VAL x 

UNI]. This enables the linear model to assess non-linear relationships between features. In summary, the 

Linear model uses three crossed features in addition to the features in Table 2. The Deep model and the 

deep part of the Wide&Deep model use the features in Table 2, but no crossed features (because Deep 

models have intrinsic generalization capabilities). The linear portion of the Wide&Deep model uses three 

crossed features only. 

Finally, the models have been trained and evaluated, as shown in Figure 6 (step 3.3 in Figure 4). After the 

simulations, the algorithm provided raw label probabilities, which have been converted into predicted 

labels using 0.5 as a threshold (step 3.4 in Figure 4). Next, predicted labels have been compared with true 

labels (i.e., the labels that the model should have predicted), the number of TP, TN, FP, and FN has been 

calculated. Accuracy, Precision, and Recall of the model have been obtained according to equations (10), 

(11), and (12). Finally, the performance metrics have been calculated again using different probability 

thresholds in order to study the effect of this parameter on the final results. 

6. Results 

The number of TP, TN, FP, and FN are presented in Figure 9, which contains three confusion matrices, one 

for each model. The rows and columns of a confusion matrix represent the true labels and the predicted 

labels, respectively. From top left clockwise, the elements of a confusion matrix are the number of true 

negatives, false positives, true positives, and false negatives. A probability threshold equal to 0.5 has been 

used. 

                  



 

Figure 9 – Confusion matrices of the linear (a), Deep (b), and Wide&Deep (c) models. The label “N” mea s “No chattering within one 
hour”, “Y” mea s “Chattering within one hour”. TN, FP, TN, and FN are obtained using a probability threshold equal to 0.5 and 
color-coded according to the color bar on the right.  

Metrics in Figure 9 indicate that the number of correct predictions is one order of magnitude higher than 

the number of wrong predictions. Moreover, the number of False Positives is always lower than the 

number of False Negatives. The Accuracy, Precision, and Recall achieved by each algorithm are shown in 

Table 3. 

Model Accuracy Precision Recall 

Linear 0.947 0.941 0.938 

Deep 0.937 0.929 0.926 

Wide&Deep 0.919 0.919 0.892 

Table 3 –Accuracy, Precision, and Recall achieved by the Machine Learning models. Metrics are obtained using a probability 
threshold equal to 0.5. 

Values in Table 3 indicate that the linear model produces the largest metrics. Similarly, the Deep model 

achieves a better performance than the Wide&Deep model.  

Figure 10, shows the Precision-Recall (P-R) curves of the three models calculated using different probability 

thresholds. 

 

Figure 10 – Precision-Recall curves of the linear (a), Deep (b), and Wide&Deep (c) models. Probability thresholds between 0 and 1 
have been used. Points of the curves represent the couple Precision – Recall at a specific threshold. Proceeding from Recall = 0 to 

                  



Recall = 1, the threshold decreases from 1 to 0 in a non-linear fashion. Red markers indicate Precision = 0.9, which is obtained at 
Threshold = THOLD. 

As previously stated, classification algorithms provide the label probability of the events that are included 

in the evaluation database. A threshold value is needed to convert probabilities into labels. If the threshold 

is equal to 0, every alarm event in the evaluation database will be labeled as “Y”. Oppositely, if the 

threshold is equal to 1, every alarm event in the evaluation database will be labeled as “N”. Lowering the 

threshold causes the Recall to either decrease or to remain constant. Instead, Precision may increase or 

decrease when the threshold is reduced.  Each point of the blue curves in Figure 10 represents the 

Precision and Recall values obtained using a specific threshold. For a specific model (panels a, b, and c in 

Figure 10), thresholds larger than THOLD ensures a Precision larger than 0.9. 

 

 

 

7. Discussion 

The Chattering Index proposed by Kondaveeti et al. (2013) is a valuable tool for addressing Chattering 

alarms retrospectively, but it does not fulfill the need for dynamicity required to achieve the objectives of 

the study. In fact, the Chattering Index quantifies the amount of chattering that an alarm has shown over 

the entire observation period: results are static, meaning that the index can be used to measure the 

chattering severity, but it does not provide any information about when, or why, the chattering has 

happened. For these reasons, the index has been modified, and a dynamic approach has been developed. 

The Dynamic Chattering Index aims at quantifying the likelihood of alarm chatter after each alarm 

occurrence, linking past and actual process conditions to future alarm behavior. A threshold has been used 

to classify alarm events in two categories, “Chattering within one hour” and “Not chattering within one 

hour”. The Dynamic version of the Chattering Index provides a more detailed picture of the alarm system 

performance if compared to the Chattering Index: the former classifies alarm events, the latter classifies 

unique alarms. In future works, the Chattering Index may be used to strengthen the Machine Learning 

simulations since it represents a meaningful piece of information about the past behavior of a unique 

alarm. For instance, one Chattering Index may be calculated for each alarm event in the database, taking 

into account only alarms that occurred before each event. This index may be used as a new feature in the 

Machine Learning simulations, allowing the model to learn the relation between past and future chattering. 

The approach has not been pursued in this study because the authors decided to exclude synthetic features 

(i.e., that requires calculation) and focus the attention on ready-to-use features (i.e., directly provided by 

the alarm system). 

                  



The Dynamic Chattering Index method requires to select a threshold (for alarm classification) and the 

length of the time interval (to obtain the reduced binary sequence, according to step 1 of the procedure 

described in section 4.2). In this work, a time interval equal to 1 h has been used because it appears to be a 

good balance between dynamicity (that cannot be achieved using large time intervals) and statistical 

relevance (that cannot be achieved using short time intervals). However, the choice has been arbitrary and 

guided by general considerations. For example, longer time intervals (e.g., 2 hours or more) may cause the 

index to detect Chattering even if it only appears in the last minutes of the time sequence. As a result, the 

index would indicate chattering for two or more hours while the alarm would not exhibit chattering for 

most of the time. Oppositely, shorter time intervals (e.g., 30 minutes or less) may cause the index to 

overestimate short run lengths and to detect chattering were no – or low – chattering exists; this issue 

partially affects also the index used in this study. In fact, the Dynamic Chattering Index relies strongly on 

statistical methods, which perform better when a large amount of data is analyzed. Unlike the Chattering 

Index, which considers the entire observation period, the Dynamic Chattering Index calculations involve a 

relatively short time interval. It may happen that the unique alarm under assessment occurred a few times 

during the hour, and this could lead to unexpected results. For instance, few alarm events in the reduced 

binary sequence will produce relatively large probabilities, since the denominator in equation (3) will be 

small. Besides, if some of the few run-lengths involved in the calculation are short (e.g., 1 – 10 s), the 

combination of short run-lengths and large probabilities will cause equation (2) to produce a large Dynamic 

Chattering Index, most likely higher than 0.05. As an example, consider alarm data represented in Table 4.  

 

Index Timestamp Run-length [s]    

i 09/09/2017   16:07:24 3 0.069 

i + 1 09/09/2017   16:07:27 234 \ 

i + 2 09/09/2017   16:11:21 133 \ 

i + 3 09/09/2017   16:13:34 1559 \ 

i + 4 09/09/2017   16:39:33 2160 \ 

i + 5 09/09/2017   17:15:33 \ \ 

Table 4 – Fictitious alarm sequence. Each row represents an alarm event. The last column contains the Dynamic Chattering Index of 
the event i (first row the table). The symbol “ \ ” i dicates a value that is eithe   ot calculated o   ot  eleva t  o  the a alysis. 

The calculation of the Dynamic Chattering Index of the event i includes all the alarms in Table 4 except the 

last one (because it happened later than one hour after the event i). Observing the run-lengths, one may 

conclude that the alarm did not show chattering since they appear to be long enough, and the 3 seconds 

long run-length alone does not seem sufficient to suggest chattering. Despite that, the calculation of the 

                  



Dynamic Chattering Index leads to an unexpected result. In particular, the run-length count and the 

probabilities are nr = 1 and      
 
 ⁄    r. Therefore, the Dynamic Chattering Index is 

    
 

 
 (
 

 
 

 

   
     

 

    
)                                            (  )  

which is greater than 0.05, and suggests chattering within one hour. Focusing on how each run-length 

impacts the index calculation, one can observe that a run-length equal to 3 s alone produces a contribution 

of 0.067, which is greater than 0.05. This behavior is due both to an extremely short run length and to large 

probabilities (caused by few alarms being triggered during the observation period). Usually, if many alarms 

occurred within the observation period, the effect of a few short run-lengths is mitigated by a small 

probability value. Instead, if few alarms were triggered, the probability increases, the mitigation effect 

stops, and an unreliably high    is produced. The issue might be avoided by excluding extremely short run-

lengths or extending the time interval. The first solution has the disadvantage of ignoring extreme 

chattering behavior, and the second may cause loss of dynamicity. For the reasons mentioned above, 

future research should be devoted to the improvement of the Dynamic Chattering Index calculation in 

order to achieve higher reliability. For example, alarm sequences affected by the issues described above 

might be isolated, and different indices with different time intervals (e.g., 30 minutes, 1 hour, and 2 hours) 

might be tested on these sequences to assess which one performs better (i.e., which one does not 

overestimate the effect of few, extremely short, run lengths). Also, the Dynamic Chattering Index described 

in this study might be modified to take into account the number of alarm events considered in the 

calculation –e.g., a weighting function might be created to dampen the effects of the combination of few 

alarms and short run lengths. In addition,  

indices calculated with different time intervals may be aggregated and used together to obtain a single, 

more comprehensive, and informative index. 

The results of the Dynamic Chattering Index approach have been used to train three Machine Learning 

models for Chattering prediction. The models have shown good performances in predicting alarm chatter: 

results in Table 3 indicate that a high Accuracy can be achieved while maintaining high Precision. These 

flexible and dynamic tools may significantly improve the operators’ response in different situations. During 

alarm floods, early warning of chattering may be delivered to the operator, who may decide to silence the 

alarm before it becomes a nuisance. In addition, the models could warn that the chattering is going to end 

(i.e., the model predicts an “N” after a sequence of “Y”), and the operator may decide to restore the alarm 

without the burden of checking it periodically. During normal operations, early warnings of chattering may 

allow the operator to investigate the issue in advance, and the ability to detect the end of a chattering 

sequence would prevent the alarm from being forgotten in a silenced status. In general, the models could 

help to increase risk awareness by providing quick and ready-to-use information and by reducing the need 

for manual intervention. 

                  



When the standard probability threshold is used (i.e., 0.5), the linear model qualifies as the best model 

since it produces the largest metrics (Table 3). Deep and Wide&Deep models show slightly smaller metrics 

and may need more optimization to improve their performance. On the contrary, the simpler but more 

robust linear model has performed better without the need of a specific optimization. The reasons why this 

has happened are diverse. For instance, DNN and Wide&Deep models are prone to overgeneralization and 

may detect inter-feature relationships where no relationship exists. The problem described in this study 

may need a model that is better at memorizing (e.g., Linear) rather than generalizing (e.g., DNN, 

Wide&Deep). Future research should investigate whether different optimization strategies (e.g., different 

hyperparameters, learning decay, activation functions) could improve the performance of advanced but 

sensitive models such as the Deep and Wide&Deep. 

P-R curves in Figure 10 suggest that precisions larger than 0.9 can always be achieved while maintaining the 

Recall close to 0.9 by varying the probability threshold. If the threshold is further reduced (i.e., below 0.05 

for the linear model, 0.29 for the Deep, and 0.41 for the Wide&Deep), the Precision drops significantly. The 

selection of the best threshold (i.e., threshold tuning) strongly depends on the specific problem under 

assessment (e.g., unbalanced/balanced dataset, cost-sensitive/insensitive classification)(Brink et al., 2016; 

Google, 2020d; Ling and Sheng, 2008). Misclassifying legitimate alarms (FP) is more critical than 

misclassifying chattering alarms (FN) as a False Positive may cause the operator to silence a legitimate 

alarm. Therefore, False Positives must be avoided, and Precision must be increased. Unfortunately, 

increasing the Precision often causes the Recall to decrease (Brink et al., 2016). The best threshold must 

ensure a high Precision while maintaining the Recall to an adequate level. Acceptable thresholds may be 

identified by selecting minimum values of Precision and Recalls, but selecting the best threshold requires 

more considerations. Often when classification errors have different criticality, a process similar to cost-

benefit analysis is needed to identify the best threshold value (Ling and Sheng, 2008; Sheng and Ling, 2006). 

Other approaches involve the optimization of the weighted harmonic mean between Precision and Recall 

(F  - measure)(Chai, 2005). 

As a final note on thresholds and P-R curves, it is worth noting that the linear model provides Precisions 

greater than 0.90 when thresholds between 1 and 0.05 are used. This means that whenever the model 

predicts the label “1” (i.e., “Chattering within one hour”), it produces a large probability value, which is 

often larger than 0.95 (i.e., 1 - 0.05). In other words, the linear model is extremely “confident” when 

predicting chattering alarms.  

Focusing on the Linear model, the nature of wrong predictions (i.e., FN and FP) has been studied more in 

detail. Three leading causes of error have been identified: 

1. The model could not identify the beginning of a chattering series. 

2. The model could not identify the end of a chattering series. 

3. The model labels all the events of the unique alarm of concern as “Y” or “N”. 

                  



Cause 1 occurs when the model fails to identify the first element of a Chattering sequence or, in other 

words, it fails to detect the first unique alarm event labeled as “Y” after one or more events labeled as “N”. 

Figure 11 clarifies this insight.  

 

Figure 11 – Detail of a Chattering sequence produced by the unique alarm FI234 LTRP. Colored dots represent alarm events (alarm 
state = “ON”). True label is “Y” for all the events in the figure. Blue dots refer to alarm events included in the Training database, 
other colors refer to events included in the Evaluation database. Red dots indicate a wrong prediction (a False Negative), green dots 
indicate a correct prediction (a True Positive). 

As one might notice, the first event of the chattering sequence (the red dot in Figure 11) has been 

incorrectly labeled (true label is Y, predicted label is N), and a False Negative has been produced as a 

consequence. Later in time, the model has correctly identified chattering (green dots). Also, the model has 

correctly predicted the end of the chattering sequence, which occurred at 13:56:00 (not displayed in Figure 

11). 

Cause 2 occurs when the model fails to identify the last element of a Chattering sequence. Figure 12 

provides an example of this.  

                  



 

Figure 12 – Detail of a Chattering sequence produced by the unique alarm FI234 LTRP. Colored dots represent alarm events (alarm 
state = “ON”). T ue labels o  the last th ee eleme ts a e “N”, othe  eve ts have “Y” as T ue labels. Blue dots  e e  to ala m eve ts 
included in the Training database, other colors refer to events included in the Evaluation database. Red dots indicate a wrong 
prediction (a False Positive), green dots indicate a correct prediction (a True Positive). 

In Figure 12, the last two unique alarm events of the series (red dots) have been incorrectly labeled (the 

true label is N, while the predicted label is Y), and two False Positive have been produced as a consequence. 

Regarding cause 3, it may happen that if the true labels related to a unique alarm are strongly unbalanced 

(i.e., mostly “Y” or “N”), the model will deduce that all the events produced by that particular unique alarm 

must be labeled as “Y” or “N”, depending on which is the most frequent. For instance, this behavior has 

been observed for both the unique alarms “LI315 IOP” and “TI54  IOP”: the first produced a total of 18 

alarm events and only 5 of them were “Not Chattering within one hour”, the latter produced only 4 

“Chattering within one hour” events out of 38 in total. As a consequence, the algorithm has predicted that 

all the events produced by “LI315 IOP” must be labeled as “Y”, and events produced by “TI54  IOP” must 

be labeled as “N”. 

Poor data distribution, as well as the use of too small datasets, may play a crucial role in causing the issues 

described above. For this reason, it might be worthwhile to consider a more extensive database for further 

analyses. Besides, different sets of features should be tested to resolve the misidentification of chattering 

sequences boundaries. 

 

8. Conclusions 

A Machine Learning method for chattering prediction was developed. Analyses have involved the 

formulation of the Dynamic Chattering Index to perform a preliminary classification of historical alarm data. 

                  



This new index overcomes the limitations of the Chattering Index, providing more flexible and dynamic 

results, which can be used to link actual process conditions to future alarm behavior. 

Three different Machine Learning models –Linear, Deep, and Wide&Deep– have been trained and 

evaluated. The models have been tested on the ability to predict future chattering behavior based on 

actual process conditions. The performance metrics and the P-R curves indicate robustness and good 

prediction capability of the models. The method may be used to build an online tool for chattering 

prediction and decision-making support. For instance, the algorithm could provide early warnings of 

possible chattering, and actions might be taken by the operator to avoid this event. Consequently, the 

workload would be reduced, and the risk of alarm floods would be minimized. In general, the approach 

demonstrates that advanced analysis techniques can be used to extract knowledge from historical data and 

perform accurate predictions. A data-driven approach for process monitoring and control appears to be a 

valuable and interesting opportunity to exploit process data and increase process safety and stability. 
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