59,640 research outputs found

    Dimensions of Neural-symbolic Integration - A Structured Survey

    Full text link
    Research on integrated neural-symbolic systems has made significant progress in the recent past. In particular the understanding of ways to deal with symbolic knowledge within connectionist systems (also called artificial neural networks) has reached a critical mass which enables the community to strive for applicable implementations and use cases. Recent work has covered a great variety of logics used in artificial intelligence and provides a multitude of techniques for dealing with them within the context of artificial neural networks. We present a comprehensive survey of the field of neural-symbolic integration, including a new classification of system according to their architectures and abilities.Comment: 28 page

    Extracting finite structure from infinite language

    Get PDF
    This paper presents a novel connectionist memory-rule based model capable of learning the finite-state properties of an input language from a set of positive examples. The model is based upon an unsupervised recurrent self-organizing map [T. McQueen, A. Hopgood, J. Tepper, T. Allen, A recurrent self-organizing map for temporal sequence processing, in: Proceedings of Fourth International Conference in Recent Advances in Soft Computing (RASC2002), Nottingham, 2002] with laterally interconnected neurons. A derivation of functionalequivalence theory [J. Hopcroft, J. Ullman, Introduction to Automata Theory, Languages and Computation, vol. 1, Addison-Wesley, Reading, MA, 1979] is used that allows the model to exploit similarities between the future context of previously memorized sequences and the future context of the current input sequence. This bottom-up learning algorithm binds functionally related neurons together to form states. Results show that the model is able to learn the Reber grammar [A. Cleeremans, D. Schreiber, J. McClelland, Finite state automata and simple recurrent networks, Neural Computation, 1 (1989) 372–381] perfectly from a randomly generated training set and to generalize to sequences beyond the length of those found in the training set

    Self-organization of action hierarchy and compositionality by reinforcement learning with recurrent neural networks

    Get PDF
    Recurrent neural networks (RNNs) for reinforcement learning (RL) have shown distinct advantages, e.g., solving memory-dependent tasks and meta-learning. However, little effort has been spent on improving RNN architectures and on understanding the underlying neural mechanisms for performance gain. In this paper, we propose a novel, multiple-timescale, stochastic RNN for RL. Empirical results show that the network can autonomously learn to abstract sub-goals and can self-develop an action hierarchy using internal dynamics in a challenging continuous control task. Furthermore, we show that the self-developed compositionality of the network enhances faster re-learning when adapting to a new task that is a re-composition of previously learned sub-goals, than when starting from scratch. We also found that improved performance can be achieved when neural activities are subject to stochastic rather than deterministic dynamics

    Adaptive Learning Method of Recurrent Temporal Deep Belief Network to Analyze Time Series Data

    Full text link
    Deep Learning has the hierarchical network architecture to represent the complicated features of input patterns. Such architecture is well known to represent higher learning capability compared with some conventional models if the best set of parameters in the optimal network structure is found. We have been developing the adaptive learning method that can discover the optimal network structure in Deep Belief Network (DBN). The learning method can construct the network structure with the optimal number of hidden neurons in each Restricted Boltzmann Machine and with the optimal number of layers in the DBN during learning phase. The network structure of the learning method can be self-organized according to given input patterns of big data set. In this paper, we embed the adaptive learning method into the recurrent temporal RBM and the self-generated layer into DBN. In order to verify the effectiveness of our proposed method, the experimental results are higher classification capability than the conventional methods in this paper.Comment: 8 pages, 9 figures. arXiv admin note: text overlap with arXiv:1807.03487, arXiv:1807.0348

    Diffusion of Context and Credit Information in Markovian Models

    Full text link
    This paper studies the problem of ergodicity of transition probability matrices in Markovian models, such as hidden Markov models (HMMs), and how it makes very difficult the task of learning to represent long-term context for sequential data. This phenomenon hurts the forward propagation of long-term context information, as well as learning a hidden state representation to represent long-term context, which depends on propagating credit information backwards in time. Using results from Markov chain theory, we show that this problem of diffusion of context and credit is reduced when the transition probabilities approach 0 or 1, i.e., the transition probability matrices are sparse and the model essentially deterministic. The results found in this paper apply to learning approaches based on continuous optimization, such as gradient descent and the Baum-Welch algorithm.Comment: See http://www.jair.org/ for any accompanying file
    • …
    corecore