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Abstract—The effective integration of knowledge representa-
tion, reasoning and learning in a robust computational model
is one of the key challenges of Computer Science and Artificial
Intelligence. In particular, temporal knowledge and models have
been fundamental in describing the behaviour of Computational
Systems. However, knowledge acquisition of correct descriptions
of a system’s desired behaviour is a complex task. In this
paper, we present a novel neural-computation model capable
of representing and learning temporal knowledge in recurrent
networks. The model works in integrated fashion. It enables the
effective representation of temporal knowledge, the adaptation
of temporal models given a set of desirable system properties
and effective learning from examples, which in turn can lead to
temporal knowledge extraction from the corresponding trained
networks. The model is sound, from a theoretical standpoint,
but it has also been tested on a case study in the area of model
verification and adaptation. The results contained in this paper
indicate that model verification and learning can be integrated
within the neural computation paradigm, contributing to the
development of predictive temporal knowledge-based systems,
and offering interpretable results that allow system researchers
and engineers to improve their models and specifications. The
model has been implemented and is available as part of a neural-
symbolic computational toolkit.

Index Terms—Neural-symbolic computation, Integrating do-
main knowledge into non-linear models, Temporal knowledge
learning, Recurrent neural networks, Model verification, Knowl-
edge extraction, Temporal logic reasoning.

I. I

ALTHOUGH non-linear methods such as neural networks

and support vector machines will often provide the

most accurate predictions, they are generally unsuitable in

domains where validation is required because of their black-

box nature. This also complicates maintenance and model

integration with existing legacy systems. As a result, the use

of neural networks has remained restricted in a number of

important application areas. White-box models seek to solve

this problem in different ways; neural-symbolic computation

[1] offers one way of implementing white-box non-linear

prediction. In particular, neural-symbolic systems seek to open

the black-box by integrating non-linear modelling with domain

knowledge and rule extraction, thus providing insight into the

reasoning made by the non-linear prediction. The construction

of such principled, integrated models can provide an enriched

understanding of the techniques and tools used in Neural

Computation, Cognitive Science and Artificial Intelligence

(AI). Specifically, temporal models have been fundamental in

these areas. In addition, the problem of knowledge acquisition

of sound descriptions of a system’s desired behaviour is a

complex and important task in Computer Science [2], [3].

In this paper, we present a neural-computation model ca-

pable of (i) representing temporal knowledge operators in

recurrent neural networks, (ii) adapting temporal knowledge

models given a set of desirable system properties, (iii) training

the networks from examples of system behaviours and (iv)

extracting a revised temporal knowledge from the trained

networks. In the proposed model, symbolic background knowl-

edge described by a temporal logic formalism is translated

into a recurrent neural network. Modified gradient-descent

methods are proposed for learning both from examples and

system properties, and the trained network can be translated

back into a temporal symbolic representation incorporating the

initial knowledge revised by the examples and properties. This

process is known as the neural-symbolic cycle [1], [4], [5].

We have implemented the proposed model as part of a

neural-symbolic toolkit and performed experiments on bench-

mark case studies in the area of model verification and adapta-

tion. The results illustrate how model verification and learning

can be integrated within a neural computation paradigm, and

indicate that the integration of methodologies from symbolic

AI and connectionism is relevant for building robust and sound

intelligent systems [1], [3], [6].

Temporal logic has found a large number of applications

in Computer Science [7], [8], [9]. The importance of adding

learning mechanisms to temporal models has been high-

lighted in several applications, including model discovery and

requirements acquisition in software engineering [7], [10],

[11]. In what follows, we formally define a correspondence

between recurrent networks and temporal logic. We consider

the Nonlinear Auto-Regressive Exogenous NARX model [12],

[13] and define a one-to-one correspondence between NARX

and a fragment of temporal logic. We also propose a simple

method for the extraction of temporal knowledge from trained

NARX networks. As a case study, we consider the problem

of software model verification and adaptation, a successful

application area of symbolic temporal logic. We have applied

our model to the problem of verifying and evolving a spec-

ification of a water pump system [11]. The results indicate

that neural-symbolic NARX networks can be used for both

verification and learning, reducing the efforts involved in the

modelling process and helping produce verifiable and sound

system specifications.
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More specifically, we present a translation algorithm that

takes temporal knowledge as input (in the form of temporal

logic rules) to produce a NARX network. The fragment of

temporal logic used is an extension of the logic used in

[14] with a richer language containing both future and past

operators. Following the neural-symbolic methodology [1],

[15], [16], [17], [18], [19], we then prove that this translation

is correct with respect to well-established temporal logic-

programming semantics. We then apply a simple pedagogical

method [20] for temporal knowledge extraction from trained

NARX networks to validate the application. The extraction

method is also sufficient for the extraction of trained partial

models. This closes the neural-symbolic cycle allowing the

encoding of temporal background knowledge into networks,

learning from examples and sequence learning by the net-

works, and the decoding of the learned models into a re-

vised temporal knowledge for understanding and validation

of system properties. The application of the neural-symbolic

model to the problems of software model verification and

adaptation allows the integration of different dimensions of

temporal knowledge, including temporal learning and rea-

soning about time. The networks are capable of evolving

incomplete software specifications from observed examples

of system behaviour. Furthermore, information about certain

desired properties of the system can be verified against the

networks by combining the abstract syntax and the verification

capacities of a model checking tool with our learning model.

The remainder of the paper is organised as follows. Section

II introduces the basics of temporal reasoning, recurrent net-

works and neural-symbolic computation. Section III presents a

language for temporal knowledge representation by recurrent

networks, and show correspondence between the symbolic

language and the NARX recurrent networks. Section IV shows

how the approach is used for learning from sequences of

examples and temporal domain knowledge. In Section V, we

apply the approach to a relevant case study showing how

the approach can be used for software model verification and

adaptation. Finally, we discuss the results, conclude and point

out directions for further research.

II. B  RW

A. Temporal Reasoning

Temporal logics have been highly successful for represent-

ing temporal knowledge about computing systems [8]. For

example, Linear Temporal Logics (LTL) and Computation

Tree Logics (CTL) are broadly used in Computer Science to

analyse models and properties of a system [7], [8]. While LTL

uses a linear deterministic approach to the flow of time, CTL

allows for the representation of different possible successors

for each time point. For simplicity, in this work we focus

on the linear approach; more specifically we use a specific

logic programming language, taking as reference several works

that use temporal logics [8], [21]. We shall consider several

past and future temporal operators. The past operators include

the representation of the previous time point (denoted by �),

always in the past (�), sometime in the past (�), and the

weak and strong variations (Z and S, respectively) of since.

Their complementary future operators are, respectively, the

next time point operator (denoted by �), always in the future

(�), sometime in the future (♦), unless (W) and until (U),

formally defined in the next section.

Model Checking is one of the most successful applications

of temporal logic. It offers a set of automated tools to perform

the formal verification of a system’s properties. The system is

described as a temporal model so that the satisfiability of a

property can be verified automatically. While model checking

presents all the advantages of a formal static verification (when

compared to the dynamic process of testing), it reduces the

need for human intervention [7]. Our experiments include a

model checking application as detailed in the sequel. Adding

a temporal dimension to the knowledge model imposes some

challenges to the task of learning. Symbolic learning systems

such as Inductive Logic Programming (ILP) [22] can in

principle be adapted for application in temporal domains,

but will typically require the use of a correct background

knowledge (which may not be possible when dealing, for

example, with evolving system specifications). ILP may also

turn out to be too brittle for modelling dynamic systems and

the task of temporal learning, where a large number of very

small adjustments may be required to guarantee robustness,

rather than concept-level learning [23].

B. Recurrent Networks

Recurrent networks extend the simple feedforward models

by allowing activation propagation to neurons in previous

layers, thus adding a loop to the network. As a result, such

activation values are considered in future computations of

the network. A typical recurrent network used for temporal

learning is the Elman network [24] which adds neurons in the

input layer called context units to recurrently receive the output

values of hidden neurons. Another way of propagating values

through time in neural networks is through delay units. Such

units output the result of a function applied to the last values

received by the input. The most elementary delay unit outputs

the value applied to the input at the previous time point. The

Nonlinear Auto-Regressive eXogenous model (NARX) has a

feedforward core with delay units before the input layer, and

delayed recurrent links from the output to the input layer. They

have been proven equivalent to Turing machines [12].

Definition 1 Let xi(t) denote the value of the i-th input neuron

at time t. Let y j(t) denote the value of the j-th output neuron

at time t. NARX allows the use of xi(t) and y j(t) as input at the

next time points t + 1, t + 2, etc. If xi is connected to a delay

unit z−1, it will be available at t+1. A chain of such units can

get the value shifted through time and available at t + 2, etc.

It is this variable-size chain that makes NARX convenient for

temporal reasoning.

We will use the NARX architecture for both reasoning and

gradient-descent learning. Figure 1 illustrates the model. In

the figure, MLP denotes the feedforward multilayer-perceptron

core. In order to train these networks, we use a variation

of backpropagation [25] whereby the error is propagated

back also through the recurrent connections. In other words,
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Fig. 1. The NARX architecture

the error component at the input is propagated through the

recurrent links to the output neurons in order to be processed

by the next backpropagation and weight change step.

C. Neural-Symbolic Computation

Recent studies in artificial intelligence and evolutionary

psychology have produced a number of cognitive models

of reasoning, learning and language that are underpinned

by neural computation [26], [27], [28]. In addition, recent

efforts in computer science have led to the development of

computational models, called neural-symbolic systems, inte-

grating learning, reasoning and action [4], [1], [29], [30],

including first-order logic systems [31], [32]. Such systems

have shown promise in a range of applications, including

computational biology, fault diagnosis, fraud prevention [16]

and other applications such as, more recently, assessment

and training in simulators [33]. The connectionist inductive

learning and logic programming (CILP) system [16] is a

neural-symbolic system showing a one-to-one correspondence

between logic programming and neural networks that are

trainable by backpropagation [25].

Definition 2 A logic program is a set of rules of the form

A ← L1, L2, ..., Ln, where A is known as an atom and Li(1 ≤

i ≤ n) are called literals. A literal is either an atom (A) or its

negation (∼ A). A rule like A ← L1, L2, ..., Ln states that A is

true if L1 and L2 and, ..., and Ln are true. When n = 0 we have

simply A←, and A is said to be a fact1

The CILP translation from logic programs to neural networks

produces single-hidden layer feedforward networks that map

each of L1, L2, ..., Ln to input neurons and A to an output

neuron. The networks use a bipolar activation function so that

an interval (−1,−Amin] represents truth-value false, interval

[Amin, 1) represents truth-value true, and (−Amin, Amin) denotes

unknown. Positive weights are used to represent positive liter-

als, while negative weights represent negative literals. Hidden

neurons implement a logical and of the input, and output

neurons implement a logical or of the hidden neurons. The

CILP translation algorithm (described in Fig. 2) sets weights

and biases in the network so that the network can be proved

equivalent to the original logic program [16]. In other words,

the network becomes a computational model for symbolic

logic programming. In the algorithm, we have the following

parameters:

1As is usual, we consider the ground instances of a (first-order) logic
program and assume it is finite.

k(l) denotes the number of literals in the body of a clause Cl;

µ(l) is the number of clauses with the same head as Cl.

Maxkµ is the maximum among the values of k(l) and µ(l), and

among every clause Cl ∈ P.

Amin is defined in such a way that
1−Maxkµ

1+Maxkµ
< Amin < 1.

φ(x) is the bipolar sigmoid function 2
1+e−βx − 1, where β is the

parameter that defines the slope of the function; ψ(x) is a linear

function (identity).

W is the weight of the positive connections, −W is the weight

of negative connections. W is defined as a value greater than
ln(1+Amin)−ln(1−Amin)

Maxkµ(Amin−1)+Amin+1
· 2
β

to guarantee equivalence (see [16] for the

proofs). Figure 3 shows a CILP network that represents the

CILP Translation(P)
foreach Cl ∈ Clauses(P) do

InsertHiddenNeuron(N , hl);
foreach A ∈ Body(Cl) do

if inA < Neurons(N) then
InsertInputNeuron(N , inA);
Activation(inA)← ψ(x);

Connect(N , inA, hl,W);
end
foreach ∼ A ∈ Body(Cl) do

if inA < Neurons(N) then
InsertInputNeuron(N , inA);
Activation(inA)← ψ(x);

Connect(N , inA, hl,−W);
end

if outHead(Cl) < Neurons(N) then
InsertOutputNeuron(N , outHead(Cl));

Connect(N , hl, outHead(Cl),W);

Bias(hl)← −
(1+Amin)(k(l)−1)

2
W;

Bias(outHead(Cl))← −
(1+Amin)(1−µl)

2
W;

Activation(hl)← φ(x);
Activation(outHead(Cl))← φ(x);

end

foreach A ∈ Atoms(P) do
if (inA ∈ Neurons(N)) ∧ (outA ∈ Atoms(N)) then

Connect(N , outA, inA, 1)
end

return N ;
end

Fig. 2. CILP translation algorithm

logic program A ← B,C; B ← D,∼ E; C ← F; C ← G.

The CILP system uses the translation to add background

knowledge (provided in the form of the logic-program rules) to

the neural network. This network can be trained by examples

in the usual way. The training examples can change or extend

the background knowledge. An extraction algorithm then

closes the learning cycle, deriving a revised logic program

from the trained network. This process of knowledge revision

using neural networks and background knowledge is the main

C : A B, C1 

C : B D, ~E2 

C : C F3 

C : C G4 

C1
C2 C3

C4

A B C

B C D E F G

W W W W

WW-WWWW

Fig. 3. A CILP Network
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application of the CILP system.

III. T K  R N

A. The Sequential Connectionist Temporal Logic (SCTL)

To allow the representation of temporal knowledge in an

integrated reasoning and learning system, we consider the

use of a language both simple, to allow the integration with

a neural-symbolic engine, and powerful enough to describe

sequences of events and the temporal behaviour of systems.

Thus, we extend the usual logic programming syntax with the

modal operators of linear temporal logic (LTL), as follows.

Definition 3 An expression α is defined as a temporal formula

if and only if one of the following holds:

(i) α = A, where A is a propositional variable;

(ii) α = �β, α = �β, α = �β, α = βSγ or α = βZγ (to represent

the past), where β and γ are also temporal formulas;

(iii) α = �β, α = �β, α = ♦β, α = βUγ or α = βWγ (to

represent the future), where β and γ are temporal formulas.

The operators considered above represent the traditional set of

LTL operators, where �α (known as the yesterday operator)

means that α is true at the previous time point, �α (known

as the tomorrow operator) means that α is true at the next

time point, �α means that α is always true in the past and ♦α

means that α will eventually be true in some future point. The

Z andW binary operators are the weak version of the S and U

operators, i.e. while αSβ represents that α has been true since

the last occurrence of β, αZβ will also be true if α has always

been true, even if β never occurred. U (until) and W (unless)

are the future operators corresponding to S and Z.

Definition 4 A temporal clause is an expression αi ←

λ1, λ2, ..., λn, where α is a temporal formula, and λi(1 ≤ i ≤ n)

are literals. A literal λ can be either a temporal formula (α)

or the negation of a formula (∼ α). A temporal logic program

P is a set of temporal clauses.

We will consider that temporal knowledge is defined by a

temporal logic program P. In order to define the semantics

of the program, we define the operator TP and use the usual

fixed-point approach [34]. The semantics of P is given by an

interpretation F t
P

, which assigns a truth-value to each temporal

formula α at each individual time point t. We consider a

sequential approach whereby information about the past F t−1
P

is defined before the current values of F t
P

are calculated. By

definition, F t
P

is a least fixed-point of the meaning operator

TP (known as the immediate consequence operator).

B. Formalizing the Temporal Language and Semantics

The iTP operator below defines a consequence relation

between the body and the head of the clauses, and the

semantics of the � (previous time) and � (next time) operators.

Definition 5 The immediate consequence operator iTP of a

temporal program P is a mapping from interpretations to

interpretations of P. The application of iTP over an inter-

pretation It
P

at a time point t results in a new interpretation

at t (iTP(It
P

)) that assigns true to an atom α if any of the

conditions below hold:

(1) α is head of a clause in the form α ← λ1, λ2, ..., λn and

It
P

(λ1 ∧ λ2 ∧ ... ∧ λn) is true.

(2) α is an atom in the form �β, and β is true in F t−1
P

.

(3) �α is true in F t−1
P

.

In order to derive some properties of this consequence opera-

tor, we will need sometimes to restrict P to programs that ad-

mit a single supported model, so that the consequence operator

will provably converge to this unique model. Examples of such

programs are acyclic programs, as defined below, although the

class of such useful programs is more general. The reader is

referred to [34] for more details.

Definition 6 The consequence graph GP of a program P is a

directed graph defined by a different vertex to represent each

different temporal expression α in P. If an expression β (or

∼ β) is in the body of a clause α ← ..., β, ... then GP will

contain an edge from the vertex representing β to the vertex

representing α (the head of the clause). A program P is said

to be acyclic if GP is an acyclic graph.

If P is acyclic, the recurrent network representing P will

converge in a specific time point t to a fixed-point that contains

all of the logical consequences of P.

Theorem 7 Given any acyclic temporal program P, iTP
converges to a fixed point iT ν

P
= iT ν−1

P
with νP given by the

maximum length amongst all of the paths in the graph GP.

Proof: Let G0 denote the set of vertices in GP that are

not a target of any edge, i.e. the set of vertices representing

expressions not appearing as head of any clause in P. Every

expression represented by nodes in G0 will have a constant

value assigned throughout the executions of iTP at t. This

value is either given by an input assignment or it is false by

default. Let G1 denote the set of vertices in GP that are targets

of edges with sources exclusively in G0. For the expressions

represented by the vertices in G1, a single execution of iTP is

sufficient for convergence. This is because the interpretations

of the body of these expressions will not change after the first

execution. An inductive application of this idea to G2 (i.e.

nodes with edges departing from G1 and G0 only), G3, and so

on, is sufficient to prove that the interpretations will converge

for every expression, and that the maximum path within GP
gives the number of executions of iTP that is sufficient to

reach such a fixed point.

Recall that we use F t
P

to denote the fixed point of iTP at

each time point t. In order to calculate iTP at a time point t,

we assume that νP executions of iTP were performed at the

previous time point t − 1. We assume a time flow starting at

t = 1 and a virtual time point t = 0 where α is true in F 0
P

only if α is an expression of the form �α or αZγ. Otherwise,

α is false in F 0
P

. Let us now define the full set of temporal

operators under a consequence operator TP. We continue to

adopt the sequential approach adopted before.

Definition 8 The immediate consequence operator TP of a

temporal program P is a mapping from interpretations to

interpretations of P. The application of TP over an interpre-

tation It
P

results in a new interpretation (TP(It
P

)) that assigns
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true to any atom α when one of the following conditions hold

(the definitions below follow the intuitive definitions of the past

and future operators as discussed informally earlier, including

the variations taking into account the current time point):

1) iTP(It
P

)(α) is true;

2) α = �β and both F t−1
P

(�β) and It
P

(β) are true;

3) α = �β and either F t−1
P

(�β) or It
P

(β) are true;

4) α = βSγ and either It
P

(γ) is true or both F t−1
P

(βSγ) and

It
P

(β) are true;

5) α = βZγ and either It
P

(γ) is true or both F t−1
P

(βZγ) and

It
P

(β) are true;

6) It
P

(�α) is true;

7) α = �β and F t−1
P

(�β) is true;

8) α = ♦β, F t−1
P

(♦β) is true and F t−1
P

β is false;

9) There exists some formula β such that It
P

(βUα) is true

and It
P

(β) is false;

10) α = βUγ, F t−1
P

(βUγ) is true and It
P

(γ) is false;

11) There exists some formula β such that It
P

(αWβ) is true

and It
P

(β) is false;

12) α = βWγ, F t−1
P

(βUγ) is true and It
P

(γ) is false.

C. Representing SCTL in NARX Networks

To incorporate the above extended semantics into SCTL we

make use of a useful symbolic manipulation. More specifically,

we extend the original logic program P with clauses that can

represent the different temporal operators through the use of

the � operator. Basically, we use a recursive definition w.r.t.

the prior and present time points. In this way, a formula �α

is true at t = 1 if α is true at t = 0. �α is true at time points

t > 1 if α is true at t and �α is true at t − 1. The complete

list of definitions is given in the algorithm of Fig. 4. This will

allow the representation of any of the temporal operators in

the NARX model.

We turn now to showing that the translation obtained from

the algorithm of Fig. 4 is logically sound. This result will be

needed later to show soundness of the NARX model.

Lemma 9 Let P and P1 be temporal logic programs. Let P1

be the output of the algorithm in Fig. 4 given input P. For

every formula α in P, α is true in TP(It) if and only if α is

also true in iTP1(It).

Proof: The algorithm adds clauses to the program re-

specting the semantic definitions of the operators. We can

verify this by analysing each case. Take the case of the

S operator. The first clause inserted (βSγ ← γ) represents

exactly the first option in item 5 of Definition 8. Since �α

represents information about α at time point t − 1, the clause

βSγ ← β,�(βSγ) represents the second option in the definition

of S. The remaining of the proof is as follows: (→) Assuming

that TP(It)(α) is true, we have two possibilities: if iTP(It)(α)

is true then clearly the clauses inserted do not change α’s

truth-value and iTP1(It)(α) will be true. If not, a clause will

be inserted by the algorithm, and the interpretation of the

conjunction of the literals in the body of this clause will be

true; thus iTP1(It)(α) will be true. (←) If TP(It)(α) is false

then none of the clauses inserted by the algorithm will change

the interpretation of α, and iTP1(It)(α) will also be false.

Logic Processing(P)

foreach α ∈ atoms(P) do

if α = �β then
/* In what follows, AddClause(P, x, y, z) denotes: add

clauses x,y and z to program P*/
AddClause(P,�β← β,�β);

end

if α = �β then
AddClause(P, �β← β);
AddClause(P, �β← ��β);

end

if α = βSγ then
AddClause(P, βSγ ← γ);
AddClause(P, βSγ ← β,�(βSγ));

end

if α = βZγ then
AddClause(P, βZγ ← γ);
AddClause(P, βZγ ← β,�(βZγ));

end

if α = �β then
AddClause(P, β← � � β);

end

if α = �β then
AddClause(P, β← �β);
AddClause(P,�β← ��β);

end

if α = ♦β then
AddClause(P, β← �♦β,∼ �β);

end

if α = βUγ then
AddClause(P, βUγ ← �(βUγ),∼ �(γ));
AddClause(P, γ ← βUγ,∼ β);

end

if α = βWγ then
AddClause(P, βWγ ← �(βWγ),∼ �(γ));
AddClause(P, β← βWγ,∼ γ);

end

end
end

Fig. 4. Logic processing of different temporal operators

In what follows, we will use the CILP translation to define

the feedforward core of the NARX model. We will then make

use of the NARX recurrent connections and delay units to

implement the temporal operators on top of the feedforward

core. As mentioned above, we use a temporal representation

based on a sequential approach, where the knowledge about

the past is used in the inference of new information about

the future. Following this approach, our strategy to represent

temporal knowledge is based on the propagation of values

through a time flow, from a time point t − 1 to its subsequent

time point t. The semantics adopted for our temporal logic

programs follows strictly this idea. Our next step is to see

how to implement the delayed propagation of information in

the neural-network model.

We have chosen the NARX model because it has (i) a feed-

forward core that can be implemented by a CILP translation

and (ii) delay units in the input and recurrent connections that

can implement the delayed propagation of information needed

for temporal reasoning. At each time point t, a new input

vector is applied to the network, and all the computations

until the network finds a stable state and returns an output

are carried out (corresponding to the fixed point of the logic

program at that time point). At the next time point t + 1,

another input vector is applied until the network reaches a

stable state producing a new output, and so on. This dynamics
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of the network is a key difference between SCTL and CILP,

where there are no delays or sequence of inputs. In SCTL, the

delay units cater for the representation of value propagations

over time. For example, this allows a neuron representing a

formula �α to receive as input the value of α computed at the

previous time point by the network, and produce the correct

output. In the same way, an input neuron representing α can

receive at t the value of �α computed at t− 1. In this section,

we present an algorithm to translate SCTL into NARX and

show that the translation is correct w.r.t. the semantics of the

temporal operators.

We have considered different ways of representing SCTL

in a neural network. The first idea was to use only (delayed)

recurrent links to carry the value of an output neuron rep-

resenting a formula α into an input neuron representing �α.

When α appears in the head of a clause, the CILP translation

generates an output neuron representing α. When α does not

appear in the head of a clause, CILP will not have α in the

output, and, in the temporal case, it would not be possible to

link α to �α and respect the semantics of the � operator. One

solution to this is to add clauses of the form α ← α every

time a formula �α appears in a program P and α is not in

the head of any clause in P. In this case, the value of νP is

incremented by one due to the insertion of a new clause.

Another approach makes a better use of the available

resources of NARX and produces a smaller network. This

approach is to use the delay units before the input units to

compute the value of �α before computing the value of α in

the input. In this case, α does not appear in the output because

it is not in the head of any clause. In this way, we avoid having

to add clauses to the program and produce a smaller network

as a result. For each formula of the form �nα, we insert the

delay units as follows (below, we use the notation operatornα

to denote n applications of an operator over α, for example,

�
3α denotes � � �α):

• If a formula �iα appears as head of a clause in P where

0 ≤ i < n, create a recurrent link from the output neuron

representing �max(i)α to the input neuron representing �nα

and set n − max(i) as the number of delay units.

• If no formula �iα appears as head in P, add n delay

units before the input neuron representing �nα (so that

this neuron will receive the value of α at time point t−n).

• If a formula �nα appears as head of a clause in P

(n > 0), create a recurrent link from the output neuron

representing �nα to the input neuron representing the

formula �iα with max(i) < n and set n − i as the number

of delay units.

The algorithm of Fig. 5 takes a temporal logic program as

input and produces a NARX model. It is an adaptation of the

CILP algorithm and it produces networks with an appropriate

set-up of the delay units to implement the temporal constraints.

Theorem 10 Given a temporal logic program P, a NARX

neural network N can be built such that N computes TP.

Proof: For the first time point t = 1, given arbitrary initial

values for the •α formulas, we have that the computation of

TP is the same as in CILP networks, and it converges to a least

fixed point [16]. Inductive step: at a time point t′, either N is

�-based Translation(P)
N ← CILP Translation(P);
foreach inα ∈ Neurons(N) do

if (α = �nβ) then

if ∃i < n(out
�iβ ∈ neurons(N)) then

j← maximum(i);
AddDelayLink(N , n − j, out

� jβ, inα);

else
AddDelayInput(N , n, inα);

end

return N ;
end

Fig. 5. Translation of temporal logic programs into NARX networks

stable with α in F t′

P
(I) or the value of α is given as an input.

For any formula •nα, if the value of •iα (i < n) is represented

in the output of the network, the recurrent link with n− i delay

units will apply the correct value to the input of •nα. If •iα is

not represented in the output for any i < n, the input value of

the neuron •nα is given by the chain of n delay units in the

input. This completes the proof.

A corollary of the above theorem is that for acyclic programs,

and more generally for any program P admitting a single

supported model the corresponding recurrent NARX network

N converges to a least fixed point of TP denoting the intended

meaning of P. We say that N computes P; in other words, the

neural and symbolic representations become interchangeable.

In what follows, we exploit this result to allow learning of

symbolic temporal knowledge in NARX networks.

IV. L   T K D

Suppose that, in a given application domain, partial sym-

bolic knowledge is available in the form of temporal rules

(known as a model description). The algorithm of Fig. 5

offers a simple and efficient way of adding knowledge to a

NARX model. Suppose, further, that examples are available

for training (we call those observed examples). In this section,

we describe how the NARX model can be trained with such

examples. We also consider a third source of information:

system properties, i.e. properties to be satisfied by the model

description.

Let us consider the above three sources of information in

the context of an example. In a water pump system (this is our

case study to be discussed in more detail in the next section),

an engineer seeks to produce a model description of the system

so that it can be implemented and formally verified for errors

(since it is a safety-critical system). The engineer starts by

defining certain rules, for example, at any time, if the engine

temperature is too high, the pump should be turned off no more

than five time steps later. This is part of the partial model

description that can be directly translated into the NARX

model by the algorithm of Fig. 5. Producing a sound and

complete description is a difficult task, but our engineer might

have access to input-output examples that might help (e.g. at

time t1 the temperature was registered as too high, at time t2
the pump was turned off, at time t3, the pump was turned on

again, etc.). The sequence of examples may come from the

observation of a similar existing system or even from execution
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logs of the current partial model description itself. These

are our observed examples to be trained by backpropagation

in the NARX model after the partial description has been

translated into it. Finally, the engineer may need to verify

certain properties (e.g. it must never be the case that the water

level is high and the level of methane is high and yet the pump

is on), and indeed train the NARX model further to try and

satisfy these properties when they have not been verified.

In what follows, the temporal logic programs P will form

part of the model description. A model description consists,

in addition to the temporal program, of a number of input

variables and state variables. Input variables are those whose

values are set externally to the model, while state variables

have their values defined according to the model’s behaviour.

In the NARX networks, the state variables are represented

by the neurons that are recurrently connected. Given observed

examples and system properties, sets of input-output examples

will be produced for the training of the NARX network.

The resulting network is expected to encode a revised model

description, be capable of sequence learning and property

verification, and produce a final model description that can

satisfy the system properties. The learning process will consist

of the application of examples to the network in a supervised

way. Each training example will be defined as a vector of

input values and desired output values in the usual way. An

error between desired and obtained network outputs will be

minimised through gradient-descent in a backpropagation-like

learning process. Below, we give a general definition that

includes the case where information about an output is absent.

Definition 11 A model description is a tuple M = 〈S t, In,P〉,

where S t is a set of state variables α, In is a set of input

variables β, and P is a set of temporal clauses of the form

�α← α1, ..., αn, β1, ..., βm.

Each observed example should assign values to all the input

variables and to a subset of the state variables. In other words,

the model allows partial observation of state variables. The

examples are, thus, defined as follows.

Definition 12 An observed example E at time point t is a

tuple Et = 〈It,Dt+1〉, where the mapping It : In → {−1, 1}

assigns values to the input variables and Dt+1 : S t → {−1, 0, 1}

makes an assignment of desired values to the state variables

at the next time point, where 0 denotes that no information is

available about the corresponding variable.

As mentioned above, we use gradient-descent on the set of

tuples {Et}, 0 ≤ t ≤ n. First, background knowledge P can

be added to the network using the translation algorithm from

the previous section. Then, for observed examples, standard

backpropagation applies since each tuple relates ti with ti+1.

For each time point t, the usual two-stage computation takes

place. In the forward step, the network computes the next state

S t+1 given the values of the input vector It and the current

state S t (which may be unknown, as defined above). In the

backpropagation step, the error is calculated as the difference

between S t+1 and Dt+1, and the weights are adjusted in the

usual way [25]. In the case of system properties, the learning

above needs to be modified to account for gaps in the sequence

of examples, as detailed below. System properties express

the expected behaviour of a system after an entire sequence

of inputs and associated states are presented to the system.

Formally:

Definition 13 A system property X is defined by a tuple X =

{S 0, I,Dn}, where S 0 is a initial state, Dn is a desired final

state, and I is a sequence of input variables I0, ..., In−1 with

S k : S t → {−1, 0, 1} and Ik : In→ {−1, 0, 1}.

Definition 14 A value assignment to the state variables S t is

said to correspond to a state condition S k if for every α ∈ S t,

S t(α) = S k(α) or S k(α) = 0. The definition is analogous for

input variables.

A property, thus, defines that if the current state of the system

at time point t corresponds to S 0, the input applied to the

system corresponds to I0, and thereafter each input applied

to the system at time point t + k corresponds to Ik until k is

equal to a predefined size n, then the new state of the system

S n must correspond to the desired state Dn. When a value of

zero is assigned by a state (or input) condition to a variable

α ∈ S t (or β ∈ In) then that condition should not impose any

constraint on the value of α (or β).

Property learning requires the propagation of errors through

the recurrent connections as described in Section II-B. In the

forward step, the network computes state S 1 given the values

of the input vector I0 and the current state S 0, but also S 2

given I1 and S 1 and so on, up to S n. In the backpropagation

step, the error is calculated as the difference between S n and

Dn and propagated back through the network and its recurrent

connections n times before the weights are updated in batch

mode in the usual way.

A. System Implementation

We have implemented the above algorithms as part of

a unified neural-symbolic system. The system allows the

translation of SCTL knowledge into NARX networks, learning

from examples and properties, and knowledge extraction from

trained NARX networks (discussed in the sequel). Among

the several functionalities, it allows the creation of NARX

networks from temporal logic programs, as well as the creation

of arbitrary architectures of feedforward and NARX networks

without background knowledge. The networks can then be

subject to learning, with a functionality for evaluating training

and test-set performances using cross-validation. The system

allows the combination of different sources of information,

notably, learning from observed examples and properties. It

can also handle learning from multiple properties. Moreover, it

includes a tool for automated pedagogical extraction of revised

SCTL knowledge from trained NARX networks, rule simpli-

fication and visualization through state-transition diagrams.

When both examples and multiple properties are to be

learned simultaneously, the system keeps a record of active

properties (initially empty) and an index k for each active

property. At each time point t, if the current state corresponds

to the initial state condition S 0 of a property X then X becomes

active and k is set to 0. When an input is applied to the net-

work, the system verifies if the input corresponds to the current
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position Ink of each active property X, eliminating from the

list of active properties all the properties not satisfying this

condition. When a property becomes inactive, the assignments

to the state variables given by the final state condition S n

are used to define the desired output values then used as part

of the learning process. The above mechanism is also used

when no examples, but only properties are available. In this

case, the properties provide the desired output of the network

and the inputs to be applied at each time step. At each time-

point, a property is selected from the list of active properties

randomly. When no information is provided about the desired

value of a state variable α, the system uses the value obtained

by the network as desired value, i.e. Dt+1 = S t+1. This

implements a form of expectation maximization. In this way,

the error will be null for that neuron and it will not affect the

weight correction in the network. Finally, when there is an

inconsistency between the values of properties (or between a

property and an example), the system adds up the values into

a variable sum, and takes Dt+1 = 1 if sum > 0, Dt+1 = −1

if sum < 0 and Dt+1 = 0 otherwise. Other alternatives are

possible here, and might be considered as part of future work.

For example, one could assign priorities to properties and rank

them in order to mitigate conflicts. The system implementation

and the results from our experiments with water pump case

study (described below) are available in

http://vega.soi.city.ac.uk/˜abct616/?cont=2

B. Towards Validating the Model Using Knowledge Extraction

Several approaches to knowledge extraction have been

proposed in the literature [35], [36], [37], [5]. In our work,

extraction is used as a was of validating our model. Below, we

sketch the implementation of the extraction tool, which takes

a trained NARX network as input and produces temporal logic

programs. The implementation is based on pedagogical strate-

gies [20], whereby examples are presented to the network,

and the obtained outputs are used to define symbolic rules. In

pedagogical extraction, one needs to generate a set of examples

(input vectors) to be applied to the network. This set must be

large enough to offer a good representation of the domain,

but not so large that the extraction becomes computationally

intractable. Different approaches trying to strike this balance

can be found in the literature. In [35], for example, a partial

ordering is imposed on the set of input vectors according

to the structure of the network so that certain input vectors

become preferred over others for querying the network and

rule creation. Although not optimized for efficiency, the simple

pedagogical approach user here turned out to be sufficient for

our purposes of validating the case study, as detailed later.

Consider, first, NARX networks where input information

is applied directly to the neurons without delay units, and

the temporal recurrent links are delayed only by one time

point. With these restrictions, at each time point we can

associate the input vector I applied to the network to the

temporal formulas represented by input neurons. We then run

the network once to obtain activation values for the output

neurons and, through the recurrent connections, new values

for some of the input neurons. Such input neurons that receive

Inc

Dec

>0

>1

(>0)

(>1)

Hidden

Layer
{>0}{>1}

{>0, >1}

Inc

Dec

Inc

Dec

, Inc

, Dec

Fig. 6. Example of extraction procedure

information from the output are known as context units. It is

useful to distinguish input units (those associated with input

vector I) and context units (the values of which define a new

state given I). Our system implementation extracts symbolic

knowledge from NARX networks by creating a state transition

diagram mapping the state of the context units to a new state

given the input, according to the following definition. Notice

that the state diagram is created for visualization purposes,

each transition corresponding directly to a temporal rule that

can be extracted from the network.

Definition 15 A transition T is a tuple
{

S 0, I, S f ,w, count
}

containing a source state S 0 and a target state S f given input

I. Variables w and count are auxiliary information represent-

ing a weight and the number of occurrences, respectively.

For each time point, a new transition T is stored: I represents

the input vector applied to the network, S 0 contains the values

of the context units and S f contains the values of the output

units. We assign truth-value true (value 1) to positive values

in S f and false (value -1) otherwise, but we use the auxiliary

weight w, calculated as a function of the absolute values

obtained in the network’s output, to calculate a confidence

interval on the assignment of truth-values. After a set of inputs

is applied to the network, all the occurrences of transition T

with the same S 0, I and S f are grouped into a single transition

T ′, where wT
′

is the sum of the individual weights and countT
′

is the number of transitions grouped. This information is then

used to generate a transition diagram that will visually indicate

the behaviour of the network.

As an example, consider a simple case where an input (Inc)

is used to increment the value of a counter, an input (Dec)

is used to decrement this value, and the output identifies if

the value is greater than zero. Assume that this counter is

capable of counting from 0 to 2, and therefore a state variable

is needed to record if the value is greater than 1. Figure 6

shows a network that represents this example on the left hand

side, and a state transition diagram extracted from the network

on the right hand side. Table I shows a number of extracted

state transitions. When grouping the transitions, those in time-

points t = 3 and t = 8 will be grouped in a transition T ,

while the others remain the same (cf. Fig. 6, right hand side).

Besides generating the diagrams, our system implementation

also represents the extracted knowledge as temporal logic

programs. To do so efficiently, the most important transitions

are identified with the use of the auxiliary weight and count

variables. Transitions below a certain number of occurrences

or below a desired confidence are removed from the diagram.
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TABLE I
T E   E  F. 6

Each remaining transition T ′ is rewritten as a set of clauses -

one clause for each output variable. The body of each clause

will contain all the input and state variables either in positive

or negative form according to the assignments of values to

S 0 and I. The head of each clause will be one of the output

variables: either �α, if S f (α) = 1, or �¬α, if S T
′

f
(α) = −1. To

allow a better understanding of the rule set, rules obtained from

different transitions can also be simplified. A technique based

on Karnaugh maps is used, whereby complementary literals

can be removed from the body of rules with otherwise the

same body and the same head, e.g.: �a← b, c and �a← b,∼ c

can be simplified into a single rule �a← b.

The extraction method can be extended to deal with more

delays in the network. For delay units inserted in the input,

the rule containing that input neuron will have a � operator

for each delay unit in the network. If, for example, literal α is

associated with an input neuron with two delay units, �2α will

be used in the rule. The same process can be used for extra

delays in recurrent links: if � � α is associated with output

neuron out, and this neuron is connected through two delay

units to an input neuron in then α is added to the rule.

V. C S: I SCTL   V T

The intended application of SCTL is in model verification

and adaptation. The integration of learning and verification

has been considered an important research endeavour [10].

We combine the abstract syntax and the verification capacities

of a model checking tool [38] with SCTL/NARX as a repre-

sentation language and learning system. Model checking tools

have three main components: a description language used to

represent the model, a specification language used to represent

the properties that should be satisfied by the model and the

verification engine that will perform the actual verification. If

the model does not satisfy the given properties, the engine

will generate a set of counter-examples, i.e. sequences of

events where a violation of the property occurs. Below, we

integrate all these different sources of information into the

SCTL learning system, and show how an iterative process

of learning and verification can be used in the revision of

temporal models.

In order to illustrate the different steps of the approach, we

consider the pump system testbed used by [11]. The pump

system monitors and controls the levels of water in a mine

to avoid the risk of overflow. There are three state variables:

CrMeth indicating that the level of methane is critical,

HiWater indicating a high level of water, and PumpOn

indicating that the pump is turned on. In order to turn on and

off such indicators, six different input signals are considered:

sCMOn (switch CrMeth on), sCMO f f (switch CrMeth

off), sHiW (switch HiWater on), sLoW (switch HiWater

off), TurnPOn (switch PumpOn on) and TurnPO f f (switch

PumpOn off). Some of the rules of the system are listed

below, where e.g. if at any time the critical methane switch

is turned on then, at the next time, the level of methane

indicator will be at critical (first rule). Similarly, if the level

of methane indicator is at critical at time t and it is not

the case that the pump switch is turned off then the pump

indicator will be on at time t+1 (last rule). Below, ∼ stands

for (logic programming) negation.

�CrMeth← sCMOn

�CrMeth← CrMeth,∼ sCMO f f

�HiWat ← sHiW

�HiWat ← CrMeth,∼ sLoW

�PumpOn← TurnPOn

�PumpOn← CrMeth,∼ TurnPO f f

A. The Description Language Used for Verification

Within the logic programming representation, we will con-

sider a fragment of SCTL, allowing the representation of the

main aspects of a model checking tool [38]. This fragment

satisfies all the properties of the original SCTL language w.r.t.

its semantics and translation into NARX. In addition, all the

programs in this fragment have the property of being acyclic

with νP = 1. For simplicity, we restrict the types of variables

allowed and we assume that the pump system is deterministic

(although it should not be too difficult to handle nondetermin-

istic problems given our treatment of unobserved states). An

input or state variable can be either boolean or scalar (i.e. may

assume one value from an enumerated set). From now on, it

will be useful having a clear distinction between input and

state variables. The following slight variation of our temporal

logic programs definition captures this formally.

Definition 16 A temporal logic program description P is a

tuple P =
{

S tP, InP, InitP,CP,GrP
}

, where S tP is the set of

state variables α, InP is the set of input variables β, InitP

is the initial state, defined by a mapping from InP ∪ S tP

to {true, f alse} and CP is a set of clauses in the form

�α ← α1, ..., αn, β1, ..., βm, denoting that α is true at time t

if α1, ..., αn, β1, ..., βm is true at time t − 1. GrP is defined as a

set of elements in 2InP ∪ 2S tP .

Our neural-symbolic system implementation contains a mod-

ule that automatically translates model descriptions provided

in the language of a model checker into temporal logic

program descriptions. This allows a direct integration of a

model checker and SCTL. Given a model description (for

completeness we include a description of the pump system

in Table II), our goal is to use the model checker to verify

system properties and, if a property is violated, use SCTL to

revise the description by learning from examples (from Table

II, the translation produces temporal rules like the ones above

for the pump system).
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MODULE PumpSystem

IVAR

s : {sCMOn, sCMOff, sHiW, sLoW, , TurnPOff};

VAR

CrMeth : boolean;

HiWat : boolean;

PumpOn : boolean;

ASSIGN

init(CrMeth) := FALSE;

init(HiWat) := FALSE;

init(PumpOn):= FALSE;

next(CrMeth) :=

case

s = sCMOn : TRUE;

s = sCMOff : FALSE;

esac;

next(HiWat) :=

case

s = sHiW : TRUE;

s = sLoW : FALSE;

esac;

next(PumpOn) :=

case

s = TurnPOn : TRUE;

s = TurnPOff : FALSE;

esac;

TABLE II
M    P S

B. Learning from Counter-examples and Properties

If all the properties specified are satisfied by the model

description, the model checker returns a positive answer and

the process can stop. Otherwise, the checker returns what

is known as counter-examples. These are traces that show

why a property has been violated, as formally defined below.

In our case study, these examples will be turned into the

training examples used so far to help SCTL learn a new

model description. The expectation is that, after a number of

iterations, all the properties will eventually be satisfied.

Definition 17 A counter-example X is defined as a tuple

X =
{

S X
0
, IX, S Xn

}

, where S X
0

is the initial state condition, S Xn
is the final state condition, and IX consists of a sequence

of input conditions (IX
0
, ..., IX

n−1
). Each condition assigns a

boolean value to a subset of variables.

A specific state st is said to match a condition S X
i

if, for every

variable α with values assigned by S X
i

, S X
i

(α) = st(α). The

same idea will be used for inputs. Using this idea, counter-

examples can produce a large set of sequences to be used for

training in SCTL/NARX. Counter-example X represents that

if the current state of the system at time point t matches S X
0

,

the applied input matches IX
0

, and the following inputs at time

point t + k match IX
k

(until k is equal to n), the state of the

system must not match S Xn (notice that each counter-example

is a sequence of inputs and states that lead to a violation of

a property). In order to train the SCTL/NARX, we negate the

final state of X and use the new sequence ending in ∼ S Xn as

a training example in the usual way.

To exemplify this idea, consider the model description

of Table II and a safety property expressed in LTL as

G¬(CrMeth ∧ HiWat ∧ PumpOn), meaning that the pump

should not be on when the level of methane is critical and the

water is high. Table III shows the counter-example produced

by the checker. From the counter-example, we obtain a new

system property X′, such that:

S X
′

0
= {¬CrMeth,¬HiWat,¬PumpOn}, IX

′

0
= {sCMon}, IX

′

1
=

{sHiW}, IX
′

1
= {turnPOn} and S X

′

n = {¬PumpOn}, with n = 2.

Notice that X′ keeps all the information of the initial state and

the sequence of inputs and alters the final state in order to relax

the constraint on the variable that regulates the actual state of

the pump, in this case. Alternative, more sophisticated methods

of generating positive examples from counter-examples exist

[39], and may be considered as part of future work. The

SCTL/NARX learning process could be greatly facilitated,

if, for example, the intervention of an expert was possible

at this stage. An expert could identify undesirable states in

the middle of a counter-example sequence and propose better

positive examples than the above, or reduce the specificity of

the counter-example to the right level in one fell swoop by

identifying a number of undesired cases in one goal.

t State Input

1 ∅ sCMon

2 {CrMeth} sHiW

3 {CrMeth,HiWater} turnPon

4 {CrMeth,HiWater, PumpOn}

TABLE III
I  -     

Let us now use the pump system to illustrate the complete

iterative process of verification and learning. A sequence of

1000 input-output patterns were used in our experiments. All

the state variables were observable and the examples were

generated from the model description in Table II. A NARX

network was created without any background knowledge and

was subject to the successive presentation of these examples.

Figure 7 shows a state transition diagram representing the

knowledge extracted from the network before (Fig. 7(a))

and after (Fig. 7(b)) the network was trained. In Fig. 7, M

represents critical methane (CrMeth), W represents high water

(HiWat) and P represents that the pump is on (PumpOn).

As can be observed in Fig. 7, the NARX starts with a

M

MW MP

MWP

WP

W P

O

M

MW MP

MWP

WP

W P

O

a b

Fig. 7. Transition diagrams: the effects of learning from examples

set of random transitions with low weight, represented in

lighter shades. As learning progresses, it adapts to represent

stronger, more robust transitions. If we convert this transition

diagram into a temporal logic program representation, we

obtain a similar description as the original one provided above,

indicating that the network manages to learn the rules from

examples. Notice that, if the rules are available, they can

be translated directly into the network, without the need for

training those 1000 examples.
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O

M
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a b

Fig. 8. Transition diagrams representing effects of adapting to properties

t State Input

1 ∼ CrMeth,∼ HighWater ∼ PumpOn sCMon

2 {CrMeth,∼ HighWater,∼ PumpOn} turnPon

3 {CrMeth,∼ HighWater, PumpOn} sHiW

4 {CrMeth,HighWater, PumpOn} −

TABLE IV
N C-

Next, let us add to the training the new system property

obtained from the counter-example of Table III. In this part

of the experiment, we compare the network trained from the

examples and the new property with a network created by

translating the original rules above and then trained with the

new property. Figure 8 shows the transition diagrams extracted

in either cases. Notice that in diagram a, the only situation

where the pump switches from o f f to on is when both CrMeth

and HiWat are false. In diagram b, the only change is in

the case where both variables CrMeth and HiWat are true.

Considering case b to continue our analysis, one can represent

the trained network (with extracted rules) in the form of a

new model description. As can be seen from the figure, the

new description includes a new condition when turning the

pump on. This learned condition does not include the input

telling the pump to turn on when the water is high and the

methane is at a critical level. It is therefore general enough

to deal with different sequences than the one provided in the

counter-example. However, the system still does not deal with

the case where the pump needs to be turned off because a

new input leads to an undesired state. In other words, the new

model description still does not satisfy the safety property; this

can be verified by a second running of the model checker, as

described below.

C. Iterating Verification and Learning

Early work on the integration of verification and learning

indicates that a cycle of analysis and revision might converge

to a correct specification that satisfies system properties [40].

Our proposal in this paper follows this idea. Therefore, we

apply the model checking tool to verify the same property,

now on the revised model description. A new counter-example

is obtained (Table IV). From the new counter-example, we

define a new sequence for training: {} → sCMOn → sHiW

→ TurnPOn → {∼ PumpOn}. After this, the diagram shown

in Fig. 9(a) was extracted. One can see that the original LTL

property is still not satisfied. After verification again, this time

we obtain a final counter-example (below). After adapting

to this final counter-example, we finally obtain the diagram

shown in Fig. 9(b). When applying the model checker to this

t State Input

1 ∼ CrMeth,∼ HighWater ∼ PumpOn sHiW

2 {∼ CrMeth,HighWater,∼ PumpOn} turnPon

3 {∼ CrMeth,HighWater, PumpOn} sCrMeth

4 {CrMeth,HighWater, PumpOn} −

TABLE V
F C-

M

MW MP

MWP

WP

W P

O

M
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a b

Fig. 9. Transition diagrams representing effects of iterating properties

new description, the property is finally satisfied (as should be

already clear from the diagram).

VI. C  FW

We have presented a novel neural-computational model

capable of representing and learning temporal knowledge in

different domains. The white box methodology presented here

is based on solid ideas from AI, Cognitive Science and

Neural Computation. The use of a neural-symbolic approach

enables the integration of temporal domain knowledge into a

non-linear recurrent network model, learning from sequences,

counter-examples and system properties, and temporal logic

rule extraction from the trained models. The extracted rules

can also be visualised through the use of a state diagram

tool, and a cycle of learning and verification was implemented

through the translation of the model checker into the model.

The use of the neural-symbolic methodology enables the use

of recurrent networks in domains where traditionally only

symbolic methods were used. We seek to promote a robust

and effective learning of temporal representations through the

use of a connectionist model of computation, yet maintaining

sound temporal reasoning and transparency as required by the

application. The mains results presented in this paper are:

(1) A formal approach that allows the integration of tempo-

ral knowledge representation, learning and reasoning into a

unified model, making use of a robust connectionist approach

for learning, but also providing tools to integrate background

information and extracting the learned knowledge. Therefore

the proposed methodology overcomes some of the strongest

criticisms to neural networks found in literature.

(2) The use of rich testbeds as a clear demonstration of the

different steps involved in the proposed framework. The results

obtained with the learning (and extraction) steps are empirical

evidence of the learning capabilities of SCTL. In particular,

the results corroborate the importance of adding background

knowledge (when available) into neural networks learning.

(3) The novel application of our methodology in the verifica-

tion and revision of software models, providing an automated

tool for the different processes as highlighted by [11], [41],

[40], [42]; in addition, the integration with an existing model
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checking tool with several functionalities has led to results

clearly useful in relevant application domains [38].

Limitations of the approach include, as discussed and analysed

throughout the paper the difficulty in fully-automating the

entire process, in particular the process of converting counter-

examples into useful training sequences for learning. Extrac-

tion is generally perceived as the bottleneck of the neural-

symbolic methodology and this is no exception in this paper.

Perhaps it is even more so in the case of recurrent networks.

Nevertheless, the extraction and validation of partial models

has been possible. This opens up a number of research avenues

in the area of rule extraction from recurrent networks, which

may lead to a range of new applications, as suggested in

[39]. In summary, we believe that this paper has described

a rich methodology for temporal knowledge representation,

learning and verification, shedding new light on predictive

temporal models not only from a theoretical standpoint, but

also with respect to a potentially large number of applications

in Computational Intelligence, Software Engineering, Neural

Computation and Cognitive Science.
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