
Borges, Rafael (2012). A neural-symbolic system for temporal reasoning with application to model

verification and learning. (Unpublished Doctoral thesis, City University London)

City Research Online

Original citation: Borges, Rafael (2012). A neural-symbolic system for temporal reasoning with

application to model verification and learning. (Unpublished Doctoral thesis, City University London)

Permanent City Research Online URL: http://openaccess.city.ac.uk/1303/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. Users may download and/ or print

one copy of any article(s) in City Research Online to facilitate their private study or for non-

commercial research. Users may not engage in further distribution of the material or use it for any

profit-making activities or any commercial gain. All material in City Research Online is checked for

eligibility for copyright before being made available in the live archive. URLs from City Research

Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised to

check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk
http://www.city.ac.uk/

A Neural-Symbolic System for
Temporal Reasoning with

Application to Model Verification
and Learning

Rafael Vergara Borges

Dr. Artur d’Avila Garcez (supervisor)

Dr. Luis C. Lamb (co-supervisor)

A thesis submitted for the degree of

Doctor of Philosophy (PhD) in Computer Science

of the City University London

CITY UNIVERSITY LONDON

SCHOOL OF INFORMATICS

DEPARTMENT OF COMPUTING

January, 2012

Contents

Abstract 21

1 Introduction 23

1.1 Objectives . 26

1.2 Contributions . 27

1.3 Related Work . 29

1.4 Published Results . 32

1.5 Organization . 33

2 Background 35

2.1 Challenges in Artificial Intelligence 35

2.2 Symbolic AI . 39

2.3 Nonclassical logics . 42

2.3.1 Temporal Logics . 43

2.4 Logic Programming . 48

2.5 Neural Networks . 52

3

2.5.1 Recurrent Networks and Temporal Processing 56

2.5.2 Learning in neural networks 58

2.6 Neural-Symbolic Systems . 61

3 A Neural-Symbolic Model for Temporal Reasoning and Learning 67

3.1 On Logic and Neural Networks . 67

3.1.1 Knowledge Representation in CILP 74

3.1.2 Connectionist Modal Logics: CML and CTLK 79

3.2 The sequential logic . 81

3.2.1 Semantics . 82

3.3 SCTL - Sequential Connectionist Temporal Logic 86

3.3.1 Translating the immediate operators 86

3.3.2 Differences between recurrent connections 90

3.3.3 Full SCTL translation . 92

3.3.4 Comparing the different modal approaches 94

4 Learning in SCTL 97

4.1 Temporal extensions of backpropagation 98

4.1.1 The SCTL learning algorithm 99

4.2 Integrating different information sources 103

4.2.1 Constraining the learning process 105

4.2.2 Integrating and treating conflicts 109

4.3 Extracting temporal knowledge . 110

4.3.1 A simple pedagogical approach - State diagrams 115

4.3.2 Extracting logic programs 117

4.4 Discussion . 118

5 Experimental Validation 121

5.1 The temporal XOR . 123

5.2 The Muddy Children Puzzle . 127

5.3 The Dining Philosophers . 133

5.3.1 Offline Learning . 136

5.3.2 Online Learning . 137

5.3.3 Constrained learning . 139

5.3.4 Extracting learned knowledge 141

5.4 Discussion . 143

6 The Verification and Adaptation Framework 145

6.1 Formal methods and model checking 145

6.1.1 Integrating machine learning and verification 147

6.1.2 Our integrated verification/adaptation framework 149

6.2 Representing temporal models . 150

6.2.1 Extending SCTL . 152

6.2.2 Translating between representations 154

6.3 Extracting NuSMV specifications 157

7 Evaluation of the Framework 161

7.1 Black Box Checking . 161

7.1.1 Handling noise . 162

7.1.2 Analysis on non-deterministic scenarios 164

7.2 Verification and learning of properties 166

8 Conclusion and Future Work 173

List of Tables

2.1 Different meaning for modal operators [56] 43

3.1 Example of execution . 75

4.1 Example of a temporal model . 104

4.2 Input and output observations from an agent 105

4.3 Definition of target outputs according to constraints 108

4.4 Example of the different treatments for missing information 110

4.5 Transitions extracted from the example 117

5.1 Temporal XOR sequence . 124

5.2 Logic program describing the reasoning of each agent 129

5.3 Confusion matrix of the Muddy Children example 132

5.4 An agent’s temporal knowledge representation 135

5.5 Offline Learning Results . 136

5.6 Constraints used in the learning experiments 139

5.7 Set of clauses extracted to infer pickL variable 142

7

6.1 The simplified NuSMV language 151

6.2 NuSMV description of the Pump System example 152

7.1 Extracted transitions in the case of scalar state 165

7.2 Illustration of counter-examples and the sequences to adaptation . . 167

7.3 Counter-example obtained . 167

7.4 NuSMV description adapted according to the counter-example . . . 169

7.5 NuSMV description obtained in the end of the process 171

List of Figures

2.1 Relations between intervals [1] . 46

2.2 Illustration of an acyclic logic program 50

2.3 Image illustrating the computation steps in a perceptron 54

2.4 Example of a feed forward network with one hidden neuron 55

2.5 Example of an Elman Network . 57

2.6 Example of a NARX network . 58

2.7 Illustration of the Backpropagation algorithm 60

2.8 Taxonomy of Neural-Symbolic Systems 63

2.9 Example of a KBANN network . 65

3.1 Information flow in a neural-symbolic system 68

3.2 CILP translation algorithm . 71

3.3 Analysis of TP of an accepable program 76

3.4 Illustration of CILP extension for propagation of input values to output 78

3.5 CILP algorithm extension for propagation of input values to output . 79

3.6 An example of CML program and equivalent neural networks 80

9

3.7 An example of CTLK program and equivalent neural networks . . . 81

3.8 Translation of �-based programs 89

3.9 Example of the different kinds of recurrent links in the SCTL model 92

3.10 Logic treatment of different temporal operators 93

4.1 Illustration of an unfolded NARX network 100

4.2 Propagation of values in a SCTL network during a timepoint 102

4.3 Algorithm for learning from multiple sources of information 111

4.4 Incompleteness and unsoundness of decompositional methods . . . 113

4.5 Example of extraction procedure 117

5.1 SCTL Networks used for the temporal XOR case 125

5.2 Error of the networks for the experiments without noise 126

5.3 Error of the networks for the experiments with noise 126

5.4 Architectures used on the Muddy Children example 130

5.5 Evaluation of RMSE in learners on Muddy Children Puzzle 131

5.6 Network architectures used to perform the Dining Philosophers . . . 135

5.7 Offline Learning Error in Time . 137

5.8 Online Error in Time . 138

5.9 Resource allocation in time . 138

5.10 Performance of the different approaches/possibilities 141

5.11 Extracted transitions from the network 142

6.1 Diagram of the framework for verification and adaptation 150

6.2 Algorithm that reads the variables declarations from NuSMV 159

6.3 Translation from NuSMV into SCTL clauses 160

7.1 Confidence of the learning according to the amount of noise 163

7.2 Transition diagrams representing effects of adapting to properties . . 168

7.3 Transition diagrams representing effects of adapting to properties . . 170

Acknowledgements

Whenever talking about this thesis, the words I use most are probably integration and

learning. Those are words that define not only the subject of my work, but also the

period of time deployed to achieve this goal. This PhD was marked by the integration

between the dream of traveling the world, living in a world capital as London, and

the strong connection with my home country and the people left there.

Living in London was an wonderful experience not only about the city, but es-

pecially for the amazing people I have met, people from all around the world from

whom I have learned so much, and who also gave me the chance so share a little

about my culture, my way of life. Thanks Ricardo, for being such a close friend,

sharing so many moments of both happiness and frustration (which was inevitably

overcome by the pints of Guinness). Thanks Tshiamo for trusting me to share so

many things at both work and home. Thanks Rafael, Davide, Marco, Vanessa, Mark,

Aravin, Olga and all the guys from City University, who made the working place

much more pleasant. Thanks Giulia, Horacio, David, Tomoko, who were amazing

people to share not only a home, but also part of the life. Thanks Michael, Carina,

Ibz, Chris, Kieran, Hollie, Dani, Andy, and so many other friends, for being such a

nice company, sharing relaxing moments of fun. You all have made my experience

in London unforgettable.

I would also like to thank Evandro, Micheli, Leticia, Ana, Guilherme, Nanda,

13

Emanuela, Cristiano, Carlos, Americo, Edivania and all the other Brazilian people

I have met on London, and who made me feel like having a small portion of home

when traveling overseas. For bringing the same feeling, I also would like to thank

the friends who visited me, or those who traveled with me during these years, like

Moser, Débora, Carla, Lorenzo, Lucı́ola, Germán, Márcio, Adriel, Thaı́sa, Thomás,

Fabiana, Fabrı́cio, Milene e Clarissa - all of them being amazing company to brake

the daily routine, which sometimes was almost unbearable because of the loneliness.

On the other hand, I thank a lot all the people who were in Brazil giving me

full support even when I was so far. Let me thank my parents, that helped me so

much even though being away from me was so painful for them. Also, thank my

sister Raquel for the encouraging words and moments of laugh. Thanks also to all

the other people from my family, especially the cousin Lucas and the aunt Maristela,

and all the friends who kept contact and endorsed me in different manners: Mário,

Luciane, Fátima, Marı́lia. For the recent support and friendship, I would like to

thank the people from my recent job, especially Tadeu, Lutz, Leite, Dalmir, Marcelo,

Fernanda and Daniel.

And for all the lessons learned, and the support given, and all the trust invested

on me, I am strongly thankful to my supervisors Luı́s Lamb and Artur Garcez. Also

for the lessons, of joy from simple things in life, of inspiration and hope in a better

future, I thank all the kids whom I hold so dear in my life: Bolı́var, Mathias, Daniel

and Pietro. In the end, all my love and gratitude to her, who has been the main source

of dream and inspiration in the last years of my life: Flávia, this work would not be

possible at all, without such an amazing woman like you by my side.

.

Declaration on consultation and copying

The following statement is included in accordance with
the Regulations governing the ‘Physical format, binding

and retention of theses’ of the City University London

I grant powers of discretion to the University Librarian
to allow this thesis to be copied in whole or in part without
further reference to me. This permission covers only single

copies made for study purposes, subject to normal conditions
of acknowledgement.

Rafael V. Borges

List of Abbreviations

ADALINE ADAptive LInear NEuron

AI Artificial Intelligence

ANN Artificial Neural Networks

BDD Binary Decision Diagram

BG Background

BPTT Backpropagation Through Time

CEGAR Counter Example Guided Abstraction Refinement

CILP Connectionist Inductive Learning and Logic Programming

CML Connectionist Modal Logics

CTL Computational Tree Logic

CTLK Connectionist Temporal Logic of Knowledge

DNF Discjunctive Normal Form

FK Fully Knowledgeable

FOIL First Order Inductive Learning

17

FOL First Order Logic

ILP Inductive Logic Programming

KBANN Knowledge Based Artificial Neural Network

LTL Linear Temporal Logic

MLP Multi-Layer Perceptron

NARX Nonlinear AutoRegressive with eXogenous inputs

NK No prior Knowledge

NP Nondeterministic Polinomial time

NuSMV New Symbolic Model Verification

PK Partially Knowledgeable

PROLOG PROgramming in LOGic

PSSH Physical Symbols System Hypothesis

RMSE Root Mean Squared Error

RTRL Real Time Recurrent Learning

SAT SATisfiability of logic formula

SCTL Sequential Connectionist Temporal Logics

SE Software Engineering

SLD Selective Linear Definite clause resolution

SMV Symbolic Model Verification

SOM Self-Organizing Maps

TDNN Time-Delayed Neural Networks

XHAIL eXtended Hybrid Abductive Inductive Learning

XOR eXclusive Or

Abstract
The effective integration of knowledge representation, reasoning and

learning into a robust computational model is one of the key challenges
in Computer Science and Artificial Intelligence. In particular, tempo-
ral models have been fundamental in describing the behaviour of Com-
putational and Neural-Symbolic Systems. Furthermore, knowledge ac-
quisition of correct descriptions of the desired system’s behaviour is a
complex task in several domains. Several efforts have been directed to-
wards the development of tools that are capable of learning, describing
and evolving software models.

This thesis contributes to two major areas of Computer Science,
namely Artificial Intelligence (AI) and Software Engineering. Under
an AI perspective, we present a novel neural-symbolic computational
model capable of representing and learning temporal knowledge in re-
current networks. The model works in integrated fashion. It enables the
effective representation of temporal knowledge, the adaptation of tempo-
ral models to a set of desirable system properties and effective learning
from examples, which in turn can lead to symbolic temporal knowledge
extraction from the corresponding trained neural networks. The model
is sound, from a theoretical standpoint, but is also tested in a number of
case studies.

An extension to the framework is shown to tackle aspects of verifi-
cation and adaptation under the SE perspective. As regards verification,
we make use of established techniques for model checking, which allow
the verification of properties described as temporal models and return
counter-examples whenever the properties are not satisfied. Our neural-
symbolic framework is then extended to deal with different sources of
information. This includes the translation of model descriptions into the
neural structure, the evolution of such descriptions by the application of
learning of counter examples, and also the learning of new models from
simple observation of their behaviour.

In summary, we believe the thesis describes a principled method-
ology for temporal knowledge representation, learning and extraction,
shedding new light on predictive temporal models, not only from a the-
oretical standpoint, but also with respect to a potentially large number
of applications in AI, Neural Computation and Software Engineering,
where temporal knowledge plays a fundamental role.

21

Chapter 1

Introduction

This thesis contributes to two major areas of Computer Science, namely Artificial In-

telligence (AI) and Software Engineering (SE). The work focuses on the development

of methodologies and techniques of AI in the representation, learning and reasoning

about temporal models. These methodologies are then applied to the verification and

adaptation of models used for requirements and behaviour specifications in software

engineering.

Artificial Intelligence has been developed by gathering contributions from dif-

ferent areas such of the natural sciences and engineering. Drawing inspiration from

natural sciences and philosophy, AI can be defined as the search for artificial mod-

els of different human cognitive abilities such as reasoning, learning and adaptation

[92]. Researchers in biology, neuroscience, psychology and philosophy have given

important contributions to the field, improving the general understanding of differ-

ent approaches to knowledge manipulation, as well as the actual cognitive aspects

[51]. On the other hand, incorporating such aspects into computer tools can impact

on a range of applications, especially in tasks where expert knowledge is considered

essential to a system’s performance [92].

23

1. INTRODUCTION

More specifically, the integration of knowledge representation, reasoning and

learning into a robust and effective computational model is one of the key challenges

in Computer Science [43, 106]. Computational models of single cognitive tasks have

been applied to several situations in different knowledge areas, but a general method-

ology for the integration several cognitive abilities remains an open problem [106].

One of the main issues to be tackled to achieve such integration is the specificity of

many existing techniques. Systems based on logics, for instance, are very suitable

and broadly used in representation and reasoning tasks, but are considered by several

authors as too brittle to learning in certain domains [74].

A fruitful approach to the unification of cognitive abilities consists in integrat-

ing the representation structures and reasoning capacities from symbolic logics with

numeric (quantitative) systems. Such systems are capable of numeric representation

and manipulation, which will give the necessary flexibility that enables more plas-

ticity to the learning task [74]. Examples of this integration can be found in fuzzy

systems [114] and probabilistic logics [112]. Other approaches using numeric repre-

sentation for such integration consist of probabilistic techniques which are based on

graph structures such as Markov models and Bayesian networks [57].

Artificial Neural Networks (ANNs), also known as connectionist intelligent sys-

tems, are a good example of a graph structure for numeric data manipulation. They

are biologically inspired in the functioning of the human brain. They have been used

to model systems capable of flexible, robust learning in several domains. ANNs have

been applied to domains where the available information is incomplete, noisy or in-

correct [51]. They are broadly used in several domains for numeric learning and

pattern recognition [59]. However, ANNs have as main disadvantage their limited

knowledge representation capability. All the information learned by the networks is

usually stored in the structure as numeric weights, and therefore may not be clear to

the understanding of experts or to communication with other intelligent systems [53].

24

These limitations of ANNs have led to an intense research programme which

aims at an effective integration of ANNs with symbolic reasoning and knowledge

representation systems [19, 29, 53]. Besides unifying the plasticity and robustness

of connectionist systems and the representation and reasoning performance of sym-

bolic models into a single tool, integrated neural-symbolic systems also provide new

insights into the capacity of connectionist structures to perform symbolic inference,

bringing useful inspiration to research in neurosciences and reaffirming the impor-

tance of connectionism as a useful approach to Artificial Intelligence [19].

While these integrated neural-symbolic systems have shown considerable perfor-

mance and applicability in propositional domains [53], the extension of these systems

to deal with other knowledge domains remains an open problem. In the specific case

of temporal domains, several techniques were proposed to extend existing neural

network architectures to consider time as a dimension of knowledge to be learned

[41, 95]. Also, logic systems which are capable to represent time have found a large

number of applications in Computer Science since the pioneering works several au-

thors, such as Pnueli [22, 44, 85]. The construction of neural-symbolic systems which

are capable of dealing with temporal knowledge is therefore a natural step forward in

AI research: the learning performance of (temporal) neural networks and the broad

applicability of temporal logics make this integration a strong candidate to respond

to the challenge of building robust intelligent tools which are applicable to a broad

range of domains.

In Software Engineering, formal methods include a range of activities, including

system specification, analysis and proof, transformational development and program

verification [101]. The use of formal, logical systems in specifications allows for

the application and use of representation and reasoning tools towards a more reliable

process of software development, especially in the case of safety-critical systems

[101, 56].

25

1. INTRODUCTION

A successful example of the use of logic-based techniques in SE is model check-

ing [22]. Model checking consists of the use of formal strategies to the verification of

properties in models described through a formal language [56]. The formal verifica-

tion of specifications not only brings more reliability to the developed products, but

also allows the use of inference techniques to the identification of scenarios in which

the system is subject to errors, and therefore speeding up the development process

and reducing costs [101].

While formal specification and inference techniques are broadly applied in soft-

ware engineering, a considerable research effort has recently targeted the application

of machine learning techniques in SE. In particular, machine learning has been used

to estimate external and internal aspects in a software project, as well as the analysis

of features of a product [115]. More specifically, the proper integration of learning

techniques and formal specification tools have been considered by several authors

[83, 35, 23, 3] as a means to provide automated verification, refinement and adap-

tation of software models. This makes software specification a potential case study

for the applicability of robust intelligent techniques, capable of integrating represen-

tation, reasoning and learning of temporal knowledge models.

1.1 Objectives

The main goal of our work is to construct a general framework for representing,

learning and reasoning about temporal knowledge models. The framework consists

of an integrated neural-symbolic system. Our work not only describes all the steps

necessary to effect this integration, but also illustrates how the general framework can

be adapted to applications in the verification and learning of software models. This

can be broken in a number of sub-goals, as follows:

26

1.2. CONTRIBUTIONS

• Investigating and describing different languages for representing temporal knowl-

edge.

• Analysing and extending existing techniques used in the literature for the in-

tegration between symbolic temporal languages with connectionist learning

engines.

• Analysing learning strategies for neural networks, focusing on temporal knowl-

edge learning.

• Specifying how to integrate the proposed neural-symbolic framework with

techniques for the verification of properties in temporal models (more specifi-

cally, with model checking techniques)

• Evaluating the developed framework through the analysis of each individual

framework step, as well as the framework as a whole.

1.2 Contributions

Due to its multidisciplinary nature, our work contributes to multiple fields. The main

contribution of this thesis consists of a general, unified framework for representation,

learning and reasoning about temporal models. This framework is capable of acquir-

ing knowledge from different sources (such as the abstract description of a temporal

model, and examples of its behaviour), reasoning about this model, learning and

evolution according to newly acquired information, and representation in different

languages for integration with other techniques. This allows the proper integration

with tools for property verification in temporal models, therefore bringing new con-

tributions to the area of software engineering. More specifically, we contribute to

the integrated verification, adaptation an evolution of software models. These con-

27

1. INTRODUCTION

tributions which are associated to the aforementioned objectives of our work, are as

follows:

• We present different languages for symbolic representation of temporal knowl-

edge, discuss different aspects regarding their syntax, semantics, applicability

in different domains and interchangeability of knowledge among them. The

considered representations include temporal logics, state diagrams and descrip-

tion languages for software specification.

• We investigate the integration between temporal symbolic knowledge and ar-

tificial neural networks, presenting and analysing different strategies to both

translating a symbolic specification of a temporal model into a neural network

architecture, and extracting the learned information from the corresponding

neural networks.

• We investigate temporal learning strategies for neural networks, focusing on

domains where the the learning stage is integrated to the representation of sym-

bolic knowledge; we also investigate the possibility of using temporal dimen-

sions to the represent of other forms of structured knowledge. This investiga-

tion led to the choice of the techniques and algorithms to be used for knowledge

acquisition throughout the work.

• We show how to integrate the representation and learning framework with ex-

isting techniques of model checking, rendering an iterative process of verifica-

tion and evolution of temporal models which is capable of integrating different

sources of knowledge in order to generate an improved model description.

• We perform a comparative, theoretical and experimental evaluation of the pro-

posed framework, through the analysis of each individual step in an isolated

manner, as well as the analysis of the framework as a whole. The experimental

28

1.3. RELATED WORK

evaluation considers a broad range of domains, including traditional testbeds

of temporal synchronization and software specification, as well as variations

where the available knowledge is incomplete or incorrect, showing good re-

sults in aspects as learning performance, robustness and noise tolerance.

1.3 Related Work

Throughout this work, we start from the definitions of integrated methodologies for

temporal reasoning and learning and validate the ideas by applying them into the cy-

cle of verification and adaptation of software specifications. Integrating connectionist

and symbolic methodologies for modeling intelligent behaviour has been, in the last

decades, a widely investigated approach. However, this work is the first that applies

the methodology to a significant number of testbeds in software engineering.

The gap between the knowledge representation of the symbolic and connectionist

paradigms has been bridged through a broad range of works in the last decades. For

instance, Smolensky [100], Towell and Shavlik [103], Holldobler and Kalinke [54]

and d’Avila Garcez and Zaverucha [36] proposed different ways to represent sym-

bolic knowledge in neural networks. Andrew at al [4], Craven and Shavlik [28] and

d’Avila Garcez et al [37] investigated how to make the information learned by ANNs

available in a symbolic manner. Browne and Sun [18, 19] survey these techniques,

categorizing them into different aspects such as knowledge locality (also reviewed by

Page [82]) and variable binding.

In our work, we give special attention to the temporal dimension under a discrete,

linear point of view. The importance of temporal reasoning and learning systems has

been highlighted by several works like those of Fisher et al [44] and Gabbay et al

GaHoRe94 as an important objective to be pursued, helping to improve the applica-

bility of these systems into real-life applications. The main influences of our work in

29

1. INTRODUCTION

this regard come from temporal modal logics, especially imperative approaches that

consider the future as a consequence of the past, as seen in the work of Barringer et al

[6, 7]. Also, connectionist extensions that propagate information and allow learning

through time can be found at the works of Elman [41], Lin et al [66] Siegelmann et

al [95].

All these ideas collected from different areas of AI and integrated into a unique

framework can then be applied to the representation, adaptation and evolution of

temporal models. In the work of d’Avila Garcez et al [34, 35] we can find a general

methodology where the use of verification and learning steps lead to improved tem-

poral models. In this case, as in many others, the main focus is on automating the

verification and refinement of software.

Temporal logic-based tools have been consistently used in the formalization of

software models, and therefore in the automation of the verification process. Model

checking [21, 22, 113] has been an important breakthrough in Software Engineering,

providing formal languages for describing temporal models and also for the specifi-

cation of properties over these models, as well as reasoning procedures to allow the

verification of these given properties.

One of the issues to be tackled by model checking is the state explosion problem,

that can occur in particular when the system performs parallel transitions. Although

symbolic representation structures such as BDDs (Binary Decision Diagrams) have

been used and improved to tackle such issues [71, 113], it still remains a considerable

hurdle when applying model checking to large domains. An interesting approach to

deal with the state explosion problem is to focus on an assumption of reachable states,

instead of the overly pessimistic view of considering the whole state space, as pro-

posed by [47]. This assume-guarantee approach is followed also by [78, 79], which

integrate learning techniques to model checking in order to improve the definition of

30

1.3. RELATED WORK

such assumptions.

Abstraction techniques, which are based on removing or simplifying details which

are not relevant to the property being verified, are considered general and flexible to

handle the state explosion problem [10]. One of the approaches used to automate the

process of abstraction is CEGAR - Counter example based abstraction refinement

[23]. The idea of CEGAR consists in acquiring an initial abstraction of the model

from its original description and then deploying an iterative process of verification

and adaptation. Such process considers the use of lateral information from counter

examples for the refinement of the abstraction.

Other approach that makes use of iterative cycles of verification and adaptation

can be found in [2, 3]. In these works, the authors propose the use of inductive

and abductive reasoning for the refinement of temporal models representing software

requirements. The process also considers the use of a model checking tool for the

verification of properties of the temporal models, and subsequent use of symbolic

learning for the adaptation purposes.

Under the same perspective, the works of [104, 61] illustrate a rich application of

verification and adaptation in the area of controller synthesis. Although there are dif-

ferences between the areas, especially in the sense that synthesis is mainly concerned

with complete models, similarities can be found in the objectives and algorithms used

for synthesis and learning. These similarities are clear when considering the adapta-

tion of existing models seeking to satisfy a given property or goal.

Two important, common features of these methodologies can be pointed out as

limitations for certain domains. At first, they require an initial, abstract description

of the temporal model to be considered, which may not be available in some cases.

[49, 83] considered this as a major hurdle for the application of model checking

techniques in already implemented system. To tackle this issue, the authors have

31

1. INTRODUCTION

proposed the use of black box checking, which consists on the use of empirical learn-

ing techniques in order to acquire an original description of a temporal model from

examples of its behaviour.

The second important feature to be highlighted is the exclusive use of adaptation

for the refinement of models. This highlights one of the more significant differences

of our framework when compared with the other methodologies for iterative verifi-

cation and adaptation. Neural networks, by their distributed representation of knowl-

edge, will naturally perform revision instead of refinement of the knowledge base,

and therefore will be capable of performing changes on incorrect models, as well as

filtering the effects of incorrect examples in noisy data used for empirical learning.

This constitutes an important reason for our choice of connectionist structures for

performing learning and adaptation.

1.4 Published Results

The work described in this thesis has been the subject of a number of publications

in the recent years. In 2007, the theoretical foundations of our work have been pub-

lished in conference proceedings such as IJCNN-07 [16] and AAAI-07 LaBodAg07.

These works focus on the semantic definitions of the proposed temporal logics, their

translation into neural networks and the experimental analysis of the learning perfor-

mance.

The integration of learning abstract properties was the theme of a paper published

in the ICANN’10 conference proceedings [15]. In that paper, we presented the first

insights for using the co-called SCTL framework in more general applications for

learning and adaptation of temporal models, allowing for the possibility of applica-

tions in Software Engineering.

32

1.5. ORGANIZATION

This possibility was further investigated in the papers published at ASE 2010

[12] and at the NIER (New Ideas and Emerging Results) track at ICSE 2011 [14].

These papers present our neural-symbolic approach to learning and evolving software

descriptions, and the integration of these techniques with model checking tools, in the

development of the general framework of iterative verification and adaptation cycle.

Also, a general description of the developed work is accepted to appear in the

journal IEEE Transactions on Neural Networks (special issue on white box non-linear

prediction models) [13] in 2012. In that paper, several aspects from our framework

is described, including the temporal logic representation, learning in the recurrent

neural networks, extraction of knowledge and integration with other representation

systems.

1.5 Organization

The remainder of the thesis divided into eight chapters.

In Chapter 2, we present a comprehensive description of background and related

work which is relevant to the understanding of our work. The chapter starts with a

general description of current challenges in AI which are relevant to our research; we

then discuss some important techniques on both symbolic and connectionist AI ap-

proaches. In the end, we give a general idea of the features and advantages of existing

approaches to the integration between the symbolic and connectionist approaches to

AI.

In Chapter 3, we explain our proposal to integrate temporal knowledge with re-

current neural networks. At first, we present the temporal syntax we use for knowl-

edge representation. We also explain a translation algorithm for propositional logic

programs [36] that is used as foundation for our work, and after that, we propose the

33

1. INTRODUCTION

temporal extension used by SCTL, discussing and comparing it with other existing

techniques.

In Chapter 4, we focus on temporal learning in neural networks, focusing mainly

on the case of SCTL, NARX-based networks. The chapter starts with an overview of

temporal learning in neural networks, followed by the presentation of the algorithms

and learning techniques proposed and used in the thesis. Moreover, we present and

discuss elements related to the extraction of learned knowledge from neural networks,

and other aspects related to learning.

In Chapter 5 we bring several experiments used in the analysis of the function-

alities of our framework. We start by simple experiments illustrating the learning

performance and how it is affected by the insertion of symbolic knowledge. Several

experiments will allow an extended analysis, as well as an understanding of the ex-

traction techniques. We also compare the results with other temporal neural-symbolic

techniques.

In Chapters 6 and 7, we focus on applications to Software Engineering, illustrat-

ing all the steps necessary to the unification of a model checking tool with learning

techniques. Chapter 6 will illustrate the languages used for representing software

models properties and counter-examples, and how to allow the communication with

SCTL. Chapter 7 will illustrate the iterative process of verification and adaptation,

with the use of examples and experimental results to better explain the proposed

techniques. In the end, Chapter 8 will enumerate the conclusions and possible paths

for the continuation of this work.

34

Chapter 2

Background

2.1 Challenges in Artificial Intelligence

Since the conception of the term Artificial Intelligence, in the 1950s, the area has

grown considerably, incorporating several techniques and approaches to tackle the

ultimate problem of reproducing intelligence in computer systems. Nowadays, re-

search in Artificial Intelligence is related not only to Computer Science, but also

Biology, Neurosciences, Psychology, Philosophy and Social Sciences, among others

[92]. Given this great variety of perspectives, the foundations of the area are defined

differently, depending on the approach to be considered. In this section, we propose

some basic definitions that will be used to guide the remaining of the work.

To guide our definitions, consider a basic agent as a entity capable to perceive

information from an environment and take decisions based on the perceived informa-

tion, acting back to the environment. Under this perspective, we can qualify intelli-

gence as a property of an agent’s decision-making process. Taking as reference the

original description of Russell and Norvig [92], there are two main concepts that can

be associated with intelligence. Rationality, which in a strict sense, is the process of

35

2. BACKGROUND

taking the logically correct decision. This concept can be softened and interpreted as

the process of taking decisions that increase the chances of getting the best possible

result. The second concept usually associated with intelligence is cognition, which

we define here as the information processing faculties associated to an human agent.

Intelligent behaviour can also be analysed in terms of the inference capacities

of an agent. Inference can be described as the process of using logical or proba-

bilistic reasoning to derive consequences from existing information in a domain [92].

Usually, the term inference is associated with deductive inference, which consists

in deriving a conclusion from a set of premises through the application of existing

inference rules.

Computational implementations of deductive inference have been subject to re-

search and implementation under many approaches. More specifically, the capacity to

perform reasoning in a general case, independently of specific knowledge, is central

to expert or knowledge based systems [98]. In these systems, while the actual im-

plementation of inference techniques is fundamental, other aspects play an important

role, such as the choice of a suitable language to represent the existing knowledge,

the availability of this knowledge and the integration between the representation and

reasoning.

Although the process of deductive reasoning is central to the establishment of

intelligent behaviour, other forms of inference are also important to be considered.

Inductive reasoning, the search from general rules from the presentation of its associ-

ated elements, is essential in many aspects when modeling intelligent and adaptable

behaviour.

For the development of knowledge-based systems, one of the main challenges

consists in obtaining and coding the necessary knowledge base for the implementa-

tion of intelligent systems [43]. In seeking solutions to this “Knowledge acquisition

36

2.1. CHALLENGES IN ARTIFICIAL INTELLIGENCE

bottleneck”, intense research has been undertaken towards the automated acquisition

of knowledge, also known as Machine Learning [72]

Learning is an essential component of intelligent behaviour [106], and can be

defined as the capacity of an agent to adapt to stimuli from or changes in the environ-

ment, seeking for improvements on her performance regarding some objective [92].

The capacity of performing inferential reasoning is central to the process of learn-

ing: the generalization of rules from the observation of examples allows an agent

to build or adapt a knowledge base according to the information perceived from the

environment.

In the same way deduction can be described as inferring the conclusions (effects)

from premises (causes) and inference rules, induction can be defined as inferring

rules from a series of associated causes and effects. Under this analysis, a third kind

of inference can be foreseen: given a set of rules, and the effects of the application

of such rules, a set of possible causes can be inferred. This abductive reasoning has

been considered in the AI community as a non-monotonic reasoning paradigm to

address some of the limitations of deductive reasoning [38]. Developments in the

area include the implementation of abductive reasoning in logic programming and its

integration with inductive logic programming, providing tools with a broader range

of alternatives to perform synthetic reasoning and learning [89].

This focus on the reasoning processes and the drive to develop rational tools pro-

duced a broad range of results in logic, statistics and correlated areas. The approach

was dominant from the birth of AI, with important definitions from McCarthy [70],

who gave important insights regarding the relation between philosophical and com-

putational concepts, and Newell and Simon [80], which established the importance

of the symbolic treatment of the information process.

In the work of Newell and Simon[80], they define the Physical Symbol System

37

2. BACKGROUND

Hypothesis (PSSH), which states that “A physical symbol system has the necessary

and sufficient means for general intelligent action”. A physical symbol system may

be defined as a set of entities (symbols) which follow the basic rules of physics and

are realizable by engineered systems. This means that, upon due analysis, any intel-

ligent action can be rewritten under a symbolic structure, and performed by artificial

means.

On the other hand, the inspiration drawn from the human cognitive capacities is

also relevant to a great number of AI scientists. The complex nature of animal brains,

and their capacity to perform several complex tasks at the same time fascinates and

inspires new solutions to the development of artificial information-processing tools.

The observation of human behaviour, and capacities such as analogy and language,

were taken as reference for many works. A historical example of such inspiration

is the Turing Test, devised by Alan Turing as the ultimate challenge to an artificial

system that reproduces intelligence [105]. Turing suggests we should ask if the ma-

chine can win a game, called the “Imitation Game”, where three participants are set

in isolated rooms: a computer (which is being tested), a human subject, and a (hu-

man) judge. The human judge can converse with both the human and the computer,

while both try to convince the judge that they are human. If the judge cannot consis-

tently tell them apart, then the computer is considered to be able to “think”, i.e., to

demonstrate an actual intelligent behaviour.

The search for developing artificial systems to perform cognitive tasks also led to

more literal interpretations, with different scientists seeking in the complex structure

and massive connectivity of animal brains the best approach to perform tasks such

as learning and adaptation. Smolensky [99], for instance, proposed the subsymbolic

hypothesis as a response to the conceptual, symbolic approach to AI. This hypothesis

states that “The intuitive processor is a subconceptual connectionist dynamic system

that does not admit a precise formal conceptual level description”, which he considers

38

2.2. SYMBOLIC AI

as the cornerstone of the subsymbolic (connectionist) paradigm to AI.

Even though some challenges are common to the different approaches of AI, the

complementary nature of the symbolic and subsymbolic paradigms makes their inte-

gration an interesting alternative to unify their individual advantages to tackle difficult

problems [18]. More specifically, incorporating connectionist learning into the repre-

sentation and reasoning structures from symbolic systems have been considered as an

important approach to tackle the issue of robustness in the development of Intelligent

Systems [107].

Throughout the remaining of this chapter, we will present a review of some ideas

developed throughout the last decades in both paradigms of AI, as well as the integra-

tion between these areas. We will focus on those which are central in the definition of

our work, as well as those necessary to the understanding of the new ideas presented

in the remaining chapters.

2.2 Symbolic AI

In several areas of Computer Science and more specifically in the symbolic modeling

of intelligent behaviour, logics play a fundamental role, which is comparable to the

role played by calculus in physical sciences and traditional disciplines of Engineer-

ing. In the same way that differential equations can be used to model the behaviour

of continuous systems, mathematical logic can be used as a non-ambiguous language

to specify the structure and behaviour on discrete domains [50, 5]. Huth and Ryan

[56] consider, as the main goal of logics in Computer Science, the development of

languages to model the different situations, in such a way that formal reasoning can

be applied to them.

As an example of logic language broadly used across several fields like Philos-

39

2. BACKGROUND

ophy, Mathematics and Computer Science, consider first-order logic (FOL). These

systems are very expressive, allowing for functions and relations over elements in

the domain to be represented. They also allow for quantification over these elements,

but are different from higher-order logics for not allowing quantification over the

used predicates [56]. Although first-order logic is undecidable, several fragments are

broadly used for automated reasoning in Computer Science [50].

As a specific case of computational implementation of inference in first-order

logics, we may consider logic programming. Although the term has been used in a

broader sense to designate different symbolic systems with a strong logic component

[67], a logic program is nowadays considered in a more strict sense, usually referring

to sets of Horn clauses. A Horn clause is defined as a logic disjunction, with at most

one positive literal. For instance, a definite Horn clause can be written in the form

α∨¬β1∨¬β2∨...∨βn, and also can be rewritten as a logic implication β1∧β2∧...∧βn →

α

In the next chapter, we give more details about logic programming systems lim-

ited to the propositional case, which will be used in this work. For inference in first-

order representation, there are several implementations of Prolog (PROgramming in

LOGic), which incorporate mechanisms such as SLD-resolution to solve queries ex-

pressed as a simple positive literal. Resolution consists in an iterative process of

application of a resolution rule as a theorem proving technique based on refutation

[67]. SLD-resolution (Selective Linear Definite clause resolution) is a refinement of

the resolution procedure, which is sound and complete for refutation in Horn clauses.

While resolution and its refinements are used for deductive inference in logic

domains, several techniques have been proposed also to incorporate inductive and

abductive reasoning into logic programming systems. Inductive Logic Programming

(ILP) involves a broad range of techniques to implement inductive learning into logic

40

2.2. SYMBOLIC AI

programming, i.e., building new theories from background knowledge and positive

and negative examples, using logic programs to represent all the knowledge involved

in the process [77]. Existing ILP implementations include Progol, Golem and FOIL

(First-Order Inductive Logic) [76, 87], which are used for applications such as pattern

recognition and data mining [17]. Besides, extensions based on the SLD-resolution

and integration of constraint specifications have also been proposed to perform ab-

duction in logic programs [60]. Integration between both forms of reasoning have

also been proposed under a logic programming structure, as in the eXtended Hybrid

Abductive Inductive Learning (XHAIL) system [89].

One of the main reason sto restrict first-order logics to the case of conjunctions of

Horn clauses is the undecidability of first-order logics [56]. This mean that, in order

to allow a computational implementation of sound and complete inference systems,

one needs to restrict the representation power of the used background logic. Other

important approach to the case of deductive inference in logics consists in converting

the domain problem into a propositional representation, and then using inference

techniques for propositional logic.

The most common example of propositional inference regards satisfiability veri-

fication (SAT), in which a propositional formula is examined to determine whether if

there exists at least one assignment of values to the variables that makes the formula

true. Although SAT is a NP-complete problem [26], this problem is widely studied,

and there are many techniques developed to reduce complexity in the average case

[69].

Regarding logic domains, graph-based structures are also widely used for repre-

sentation and inference purposes. Graphs allow for the representation of relational

structures, while several techniques to transformation or simplification of such struc-

tures become an interesting alternative to perform inference tasks. One important

41

2. BACKGROUND

example is the use of decision diagrams or trees.

A decision tree is an acyclic, directed graph, in which each node represents a

variable from the domain. The set of edges from a node represent a decision regarding

the variables, i.e., the possible values of the variable. Each path on the graph, from

the root to one of the leaves, will then represent an assignment of values to all the

variables. For the representation of propositional logic formulae, decision trees might

be compressed in such a way that the terminal nodes can be grouped to two nodes,

representing whether the assignment to the variables makes the formula true or false.

This compressed representation, called BDD (Binary Decision Diagram), allows for

operations without the need of decompressing the whole tree, and are used for formal

verification and logic synthesis of circuits [113].

Decision trees are also broadly used for applications such as data mining, which

require empirical learning. In traditional algorithms such as ID3 [86, 88], examples

from the domain are used to define, for each variable, its information gain: a metric

which represents the influence of such variables to the definition of the output classes

of the domain. This information is then used to define the structure of the decision

trees, seeking for a small representation of the domain and therefore allowing the

extraction of a simple explanation for the desired classification.

2.3 Nonclassical logics

Three main components can define the structure of a logic: the associated proof the-

ory, its syntax and semantics. The syntax regards which expressions are well formed,

whereas the proof theory provides syntactic proof rules (and axioms) to identify

which formulae are theorems of the logical system. Semantics, on the other hand,

refers to the meaning of the terms and the symbols composing them, as well as the

interpretations, models and the validity of formulae [56].

42

2.3. NONCLASSICAL LOGICS

Modal logics are among the most important examples of logic systems used in

Computer Science, due to their simplicity and expressiveness, giving an internal, lo-

cal perspective to the representation of relational structures [9]. Modal logics extend

conventional logical systems by adding operators to express one or more truth modes

[56]. In modal logics operators like � and ♦ are usually defined to represent necessity

and possibility, respectively. The semantics of these operators will vary according to

the logic in which they are used, as shown in Figure 2.3.

Logic �ϕ ♦ϕ

Temporal ϕ is always true ϕ is sometimes true
Epistemic The agent knows ϕ The agent believes ϕ as possible

Alethic ϕ is necessarily true ϕ is possibly true
Deontic ϕ is mandatory ϕ is allowed

Table 2.1: Different meaning for modal operators [56]

One of the most traditional approaches to analyse the semantics of nonclassical

logics consists in the possible world semantics. The approach was originally pro-

posed by Saul Kripke in the 1950s, and considers a relational structure of possible

worlds. Each propositional variable can have a different value assigned in each of

the possible worlds, and the modal operators can be defined regarding the existing

relation among such worlds. Usually, an expression �A is considered as true in a

world wi if, and only if, A is true in every world w j such that R(wi,w j) is true, where

R is the relation between worlds that is defined in the used relational structure [56].

2.3.1 Temporal Logics

Representation of time can be considered as a fundamental issue the development of

knowledge-based systems [85, 1]. Representing and manipulating time can be seen

as essential to several areas in Computer Science, such as Databases, Artificial Intel-

ligence, Software Specification, Hardware Development, Real Time and Distributed

43

2. BACKGROUND

Systems, among others [45]. Several different approaches have been proposed to rep-

resent time into a logical framework, although the term temporal logic usually refers

to the modal treatment proposed originally by Arthur Prior under the name of Tense

Logic [46].

As an alternative approach, first-order logics can be used in the representation

and manipulation of time-related knowledge, through the use of parameters that as-

sociates a temporal reference to the predicates of the domain. In this case, an explicit

set of predicates and axioms are necessary to represent the time flow and its proper-

ties. This constitutes the main difference when compared with the modal approach,

which has the time flow intrinsically represented into the structure.

Another important difference between the approaches is the perspective under

which the time is considered. Modal systems provide a local perspective to the time

flow, characterizing it in concepts such as present, past and future. On the other hand,

the representation based on predicates consider an external perspective, considering

only the relations (earlier or later) between the time points without taking any of them

as a reference to the present [46].

Other aspects are also very important when defining a logical system applied to

temporal domains. The relation between time flow and changes in the environment,

for instance, is very important to define the primitive concepts of the representation

language [45]. One of the possible approaches consists in defining the events and of

the system as the primary concepts, with the time flow being considered as an effect

of these events. Representing, for instance, moments in time as equivalence classes

of states, would indicate that the position in the time flow is kept the same until some

change happens in the environment.

One example of the first-order representation that takes the events and states as

reference is the event calculus. The event calculus is a first-order language based on

44

2.3. NONCLASSICAL LOGICS

a set of predefined predicates which define relations between events, fluents and time

points [63]. For instance, a predicate Happens(e, t) would indicate that an event e

happens in a time point t, and Initiates(e, f , t) represents that an event e, initiates the

fluent f (makes it start happening), at the time point t. The event calculus is broadly

used under a first-order logic programming syntax, allowing for traditional inference

mechanisms to be applied in the temporal case [75, 3]

On the other hand, if the time flow is taken as primitive, two different primitives

can be considered to represent time units: points or intervals. The use of intervals

will consider that actions and events do not occur in specific instants, but actually are

associated to a certain duration in time. Still, an interval can then be defined by its

initial and final points, or by the set of instants (time points) that happen between the

beginning and the end.

However, some other aspects need to be taken into consideration when intervals

are used as primitives of representation. While comparing points requires only three

relations (earlier, later, and at the same time), comparing intervals requires at least

13 different relations [1]: the seven shown in Figure 2.1 and the converse of the first

six relations in the figure. Also, when working with intervals, the idea of homo-

geneity needs to be taken in consideration: an event e is considered homogeneous if,

whenever it is true during an interval i, it is also true for any subinterval of i.

For the sake of simplicity and for a broader applicability of our system, we will

consider a representation that takes the time flow as reference, using time points

as primitives and under a modal perspective. Two important temporal logic frame-

works with these features are LTL (linear temporal logic) and CTL (computational

tree logic) [45]. While LTL considers a linear, deterministic approach to the time

flow, CTL allows for the representation of different possible successors for each time

point. This idea of branching time requires the use of quantifiers for temporal expres-

45

2. BACKGROUND

Figure 2.1: Relations between intervals [1]

sions, to represent if the expression is valid for at least one the possible ramifications

of time (existential), or if it needs to be considered at every branch (universal) [65, 8].

In this work, we focus on the linear approach to temporal representation. More

specifically we propose a logic programming language to the representation of linear,

sequential aspects of time. In our proposed framework, the assignment of values

to variables in the present can only be computed after the semantics of every time

point in the past was already computed. More specifically, when assigning values to

variables in a time point t, we consider that the information in the previous time point

t−1 is already known an can be used for the computation. Besides the simplicity and

the suitability to the representation of a broad range of domains, including models of

reactive systems [7, 44], the choice for such language also takes into consideration

its adequacy to the connectionist representation, as we will see in the next chapter.

For this language, which will be called SCTL (Sequential Connectionist Tem-

46

2.3. NONCLASSICAL LOGICS

poral Logics), we consider a broad set of past and future temporal logic operators.

The past operators includes the representation of the previous time point �, always in

past �, sometimes in past �, and the weak and strong variations of the operator since,

Z and S respectively. The complementary operators in the future are, respectively,

next time point �, always in the future �, sometimes in the future ♦, unless W and

until U. Therefore the syntax of a logic program can be kept as described before, but

replacing the role of atom by the concept of temporal formulas:

Definition 1 An expression α is defined as a temporal formula if, and only if, one of

the following is true:

• α = A, where A is a propositional variable;

• α = �β, α = �β, α = �β, α = βSγ or α = βZγ; where β and γ are also

temporal formulas;

• α = �β, α = �β, α = ♦β, α = βUγ or α = βWγ; where β and γ are also

temporal formulas;

In our work, we consider a non-strict concept of past and future, i.e, they both

include the present. In such a way, our operators are defined as follows:

• �α is true at t iff α is true at t − 1

• �α is true at t iff α is true at every time point t′ ≤ t

• �α is true at t iff α is true at some time point t′ ≤ t

• αSβ is true at t iff β is true at some time point t′ ≤ t, and α is true at every time

point u such that t′ < u ≤ t

• αZβ is true at t iff αSβ or �α are true

47

2. BACKGROUND

• �α is true at t iff α is true at t + 1

• �α is true at t iff α is true at every time point t′ ≥ t

• ♦α is true at t iff α is true at some time point t′ ≥ t

• αUβ is true at t iff β is true at some time point t′ ≥ t, and α is true at every time

point u such that t ≤ u < t′

• αWβ is true at t iff αUβ or �α are true

2.4 Logic Programming

The use of a symbolic representation of knowledge and the manipulation of such

symbolic structures provides a powerful tool to perform reasoning. Logics provide

a clear and non ambiguous language to represent knowledge, as well as the proof

mechanisms to perform inference [56]. In a general sense, logic programming can be

considered as any strategy that uses logic-based languages to represent the behaviour

to be performed by a computer program. For instance, in one of the early influential

works in AI, McCarthy [70] proposes such a logic-based language as adequate to the

representation of complex computational tasks. In our work, however, we consider a

more strict definition of logic programming, as follows:

Definition 2 An atom A is a elementary formula, that cannot be broken into subfor-

mulae. A literal is an atom (A) or the negation of an atom (∼ A).

In our work, we will consider specifically the propositional case, where an atom

is defined as a propositional variable. In first-order logics, an atom may also be a

predicate (followed by the proper arguments) or a equality between terms.

48

2.4. LOGIC PROGRAMMING

Definition 3 A logic program P is a set of Horn clauses. Each Horn clause is an

expression in the form A ← L1, L2, ..., Ln, where A is an atom and Li, for 1 ≤ i ≤ n,

are literals.

Each clause might be considered as a logic implication, i.e., if the conjunction

of the expressions in the right hand side of← is true, so the left hand side must also

be true. For evaluating logic queries, expressed in the form of clauses without head,

logic programming systems such as Prolog make use of inference systems based on

resolution [68]. However, we are interested in evaluating the semantics of a program,

as described below:

Definition 4 An interpretation IP of a program P is a mapping from the atoms of the

program to truth values. A model is an interpretation IP such that every clause in the

program is satisfied, i.e, if when the conjunction of literals in the body of the clause

is true, the atom in the head is also true.

An interpretation IP may also be represented through the set of atoms A such that

IP(A) is true. The semantics of logic programs may be defined, denotationally, w.r.t.

the models of the program. More specifically, one may consider the denotational

semantics of a program P as the minimum Herbrand model of P.

Definition 5 The minimum Herbrand model of a program P is a model IP such that,

for each other model I′
P

of P, IP has, at most, the same number of elements of I′
P

(|IP| ≤ |I′P|).

Before further definitions of the semantics of logic programs, we will describe

different classes of programs that will be used throughout the work:

Definition 6 A level mapping | | of a logic program P is any mapping from the

literals in P to natural numbers, such that |A| = | ∼ A|. A program is called ac-

ceptable w.r.t. a model IP and a level mapping | | if, and only if, for each clause

49

2. BACKGROUND

A ← L1, L2, ..., Ln in P, the following is valid for 1 ≤ i ≤ n: if M �
∧i−1

j=1 L j then

|A| ≥ |Li|. A program P is called acyclic w.r.t. a level mapping | | if, for every clause

A← L1, L2, ..., Ln, |A| ≥ |Li|, for 1 ≤ i ≤ n.

The class of acceptable programs consists in every program P that is acceptable

with relation to, at least, one level mapping and one model. Also, a program is called

acyclic if it is acyclic w.r.t., at least, one level mapping. One can easily verify that

every acyclic program is also acceptable. For both classes of programs, a method for

calculating the minimal Herbrand model is through the fixed point of a Immediate

Consequence Operator TP.

Definition 7 The Immediate Consequence Operator TP is a mapping from an inter-

pretation IP of P to another, such that TP(IP)(A) is true if, and only if, there is a

clause A← L1, L2, ..., Ln such that
∧n

i=1(IP(Li)) is true.

For acceptable programs, we may find in [29] a proof that successive applications

ofTP converge to a fixed point, for acceptable programsP. Also, such fixed point is a

minimal Herbrand model ofP. Therefore, in order to perform a sound computation of

the semantics of a program, one can develop a system that is capable of computingTP

several times until the convergence. To define the number of TP executions necessary

to reach the convergence, we will focus on the case of acyclic programs.

Figure 2.2: Illustration of an acyclic logic program

50

2.4. LOGIC PROGRAMMING

Any acyclic program can be represented in the form of a directed acyclic graph,

where each vertex represents an atom and a directed arc from A to B represents that

there is a clause with B as head and in which body A appears, either in positive or

negated form. For the sake of clarity, we will refer to this relation by A “is body” of

B. In Figure 2.2 we illustrate this relation between program and graph, as well as the

assignment of a value ν to the variables according to the following definition.

Definition 8 For each atom A in a logic program P, we define a constant νA in such

a way that νA = 0 if A does not appear as head of any clause in P. Otherwise,

νA = max(νB) + 1, where max(νB) is the maximum value of νB among all atoms B

that appear (in either positive or negative form) in the body of a clause where A is

the head.

One can notice that the assignment of a ν value to each variable of the program

serves as a level mapping sufficient to meet the condition of the definition of acyclic

program. Also, the graph representation helps to notice that, if a program P has a

finite number of atoms A, it will also have a finite maximum value of νA, which is

more specifically the size of the greater path between two vertices in the directed

graph. This value we call νP, and it is important in the definition of the number of

executions of the TP operator for reaching the convergence to the fixed point.

Lemma 9 For any initial interpretation IP of an acyclic program P, a number νP

of successive executions of TP over IP is sufficient to compute the fixed point of TP,

where νP is defined as the greatest value of νA among all atoms in P.

Proof: We prove this lemma inductively. For each atom A such that νA = 1, the

first execution of TP over IP will lead to a new interpretation that assigns A to false,

because A is not head of any clause. Any new execution of TP will lead to the same

interpretation. This means that νA = 1 applications of TP guarantees a convergence

point regarding A.

51

2. BACKGROUND

Now, when A appears as head of a clause, if we consider that a convergence point

was reached regarding every atom B in the body of every clause which A is head,

then one more execution of TP will lead to the convergence point regarding A, since

it will assign values that will not change (according to the definition of TP). In other

words, if max(νB) executions of TP ensures a convergence point regarding all atoms

B that are body of a clause with A as head, then νA = max(νB) executions of TP will

guarantee such convergence regarding A. Since we have that νA is a finite number for

every atom A in an acyclic program P, therefore νP executions of TP will be enough

to the computation of its fixed point. �

2.5 Neural Networks

The human brain processes information in a completely different manner than con-

ventional digital computers. The connectionist approach to Artificial Intelligence

takes the massively connected and parallel structure of the brain as inspiration to

model intelligent behaviour [59].

ANNs are massively distributed parallel processors, built upon sim-

ple processing units (artificial neurons), and having the natural propen-

sity to store experimental knowledge and make it available to use. These

networks are similar to the human brain in two aspects: the first regards

the process of knowledge acquisition, which is performed from the envi-

ronment through a learning process. The second aspect is related to the

storage of the acquired knowledge, which happens through the connec-

tion strength between neurons, also called synaptic weights.

In the same work, we can find the description of several useful properties and

capacities of the neural networks, among which one may cite:

52

2.5. NEURAL NETWORKS

• Capacity of non-linear computation

• Parallel processing to perform input-output mapping

• Adaptability, capacity of generalizing from the presented examples

• Contextualized information storage

• Tolerance to noisy or incomplete data

• Uniformity of analysis and project for similar networks.

The basic unit for the operation of neural networks is the artificial neuron as

illustrated in Figure 2.3. As shown in the figure, its behaviour can be analysed in

three different steps:

1. Each synapse (connection) represents the input of a neuron, being defined by a

real-valued weight, in such a way that a value applied to the input is pondered

(multiplied) by this weight. Besides these values received from external con-

nections, the neuron also receives another constant value, called bias, which is

also pondered by a variable weight;

2. A junction of the pondered inputs and the bias is performed, usually through

the sum of these values, obtaining a new value v;

3. An activation function ϕ is applied to the value v obtained before, defining the

output (activation) value of the neuron

Despite being based on a very simple processing unit, a neural network is capa-

ble of complex non-linear mapping from input to output, due to the use of non-linear

activation functions, to the number of neurons and the connectivity structure among

these neurons. These connectivity structures are called network architectures, which

53

2. BACKGROUND

Figure 2.3: Image illustrating the computation steps in a perceptron

can be of three different kinds [51]: single-layered feedforward, multi-layered feed-

forward, and recurrent networks.

The simplest model of artificial neural network to be used to the task of pattern

recognition is called perceptron, which was proposed in [90], and consists in a single

neuron, with adaptable weights and bias and a threshold activation function (usually,

the sign function). With this configuration, the perceptron will be activated if (and

only if) the sum of the weighted values of input is greater than the negative value

of the bias 1. Other traditional model of single-layered network is the ADALINE

(ADAptive LINEar neuron) [51], whose main difference with the perceptron consists

in the activation function, which is an linear function in the ADALINE case.

The feedforward networks are those with acyclic architecture, usually organized

in layers. The output value of the feedforward neurons of a layer is input to the input

layer of the neurons in the following layer. In a feedforward network, connections

between neurons in the same layer are not allowed, neither are connections from

a neuron in a layer to a neuron in a previous layer. In the single-layered neural

networks, there is only one neuron which makes the mapping from input to output.
1Several authors [51] analyse a neuron based on this negative bias, which is called the threshold.

54

2.5. NEURAL NETWORKS

Figure 2.4: Example of a feed forward network with one hidden neuron

On the other hand, in multi-layered feedforward networks, some layers of neurons

(called hidden layers) are inserted before the output layer, allowing the computation

of more complex functions.

In general, the input layer of multi-layered networks is considered as a group of

units that merely propagate the value received in the input into the hidden neurons,

which will actually perform the operations detailed in Figure 2.3. Throughout the

work, however, we change this pattern in some examples, seeking to improve the

learning performance of the networks. Figure 2.4 shows an example of a multi-

layered feedforward neural network, with one hidden layer.

Minsky and Papert [73], in their seminal paper, have proved that the simple per-

ceptron is not capable of classifying patterns when they are not linearly separable.

This had a strong impact in the research in connectionist AI during the 1970s. In the

1980s, several researchers resumed the work on ANNs, making use of multi-layered

architectures - more specifically Multi-Layered Perceptrons (MLP). Hornik et al [55]

55

2. BACKGROUND

have then proved that feed-forward MLP networks, with a single hidden layer and

a non-linear activation function for the neurons, are capable of approximating any

Borel-measurable function (a class that includes all the continuous functions) to any

desired degree of approximation, given enough neurons in the hidden layer.

2.5.1 Recurrent Networks and Temporal Processing

Haykin [51] considers that time is an essential component to the neural learning pro-

cess, an ordered entity that is basic to several aspects when modeling intelligent be-

haviour, independently of having an implicit or explicit representation in the struc-

ture. In neural networks, two main resources are considered when extending tradi-

tional models to deal with temporal domains: delay units and recurrent links between

neurons.

Delay units basically encapsulate short-term memory, returning as output the re-

sult of a function applied to the last values received as input. The simplest model

of delay unit presents, as output, its input value which was presented in the previous

time point. Several system were proposed taking as foundation the use of delay units

to allow learning in temporal domains [108, 25].

The use of recurrent networks is based on a implicit representation of temporal

aspects. In this case, the activation value in a neuron U will be applied to the input

of a neuron in the same or in a previous layer. In such a way, this activation value of

M will be used as information in a future computation of M or in another neuron in

the same layer, influencing the behaviour of the network through time.

Among the traditional recurrent network models, an important example are the

Elman networks, a recurrent MLP model which presents two different kinds of neu-

rons in the first layer: the actual input layer, which receives values external to the

network, and the context neurons, which receive the activation value from the hidden

56

2.5. NEURAL NETWORKS

neurons through recurrent links. For each neuron H in the single hidden layer, there

is a context neuron C that will receive, through one of these links, the activation value

of H. The remaining of the network is defined in the same way as a fully connected

feedforward network, i.e. each neuron of the first layer is connected to all the neurons

in the hidden layer, and each hidden neuron is connected to every neuron in the out-

put layer. Figure 2.5 illustrates a simple Elman network, with one input, one output

and two hidden and context neurons.

I

C

x 1

1

C2

H2

H1

O1 y

Figure 2.5: Example of an Elman Network

In our work, we will consider the NARX (Nonlinear AutoRegressive with eXoge-

nous inputs) model [95]. This model makes use of simple delay units and recurrent

links to allow the computation in a temporal dimension. In this architecture, each

input neuron may receive as input a present value (applied directly) or a past value,

applied to a chain of one or more delay units placed on the input of the network.

Also, an input neuron can receive the activation value of an output unit, propagated

through recurrent links with one or more delay units. The remaining architecture is

similar to the MLP feedforward networks. Figure 2.6 shows an example of a NARX

network, with the boxes marked with z−1 representing the delay units.

Siegelmann et al [95] have proved that NARX networks are able to emulate any

other model of recurrent neural network, even considering the restrictions to the ar-

57

2. BACKGROUND

MLP
(core)

z

z

z

z

z

z

Output

Input
-1

-1

-1

-1

-1

-1

Figure 2.6: Example of a NARX network

chitecture imposed in the NARX model. On the other hand, the computational power

of recurrent networks is equivalent to universal Turing Machines, as shown in differ-

ent works. Siegelmann and Sontag [96], for instance, have proved that any Turing

Machine can be simulated through the use of fully connected recurrent neural net-

works, with traditional neurons with sigmoid activation functions.

2.5.2 Learning in neural networks

Among the main features of the artificial neural networks, it is important to remark

the natural propensity to adapt the structure according to the presentation of exam-

ples (empirical learning), through the use of learning algorithms. This learning task

happens, usually, through the adaptation of the synaptic weights and bias values in

the neurons according to the output error. Different network architectures allow for

an empirical learning process according to different approaches: supervised, unsu-

pervised, and reinforcement learning.

58

2.5. NEURAL NETWORKS

The main difference between supervised and unsupervised learning regards the

existence of information about the output to be learned. While the task of supervised

learning is based on the presentation of examples containing information regarding

the relation between input and output, the unsupervised learning consists in finding

structure patterns in the set of data, without specifying exactly which output should

be assigned to each example [59]. A traditional case of connectionist system used

to the unsupervised learning task is the Self Organizing Maps (SOM) [62], which

produce a low-dimensional representation of an input space.

Reinforcement learning, on the other hand, consists in the process of learning

through acting and observing the effects of those actions on the environment. The

main goal in a reinforcement learning task consists in increasing the reward after

an action or a sequence of actions, through a trial-and-error approach. Such a task

can then be decomposed in several modules, in order to allow a proper balance be-

tween exploration and exploitation [102]. Neural networks are often applied in re-

inforcement learning, most commonly in the estimation or prediction of the reward

associated with each action taken by an agent [27].

Considering again the case of supervised learning, the most popular algorithm for

MLP networks is Backpropagation, proposed by Rumelhart et al [91]. This algorithm

is based on the gradient descent approach to perform the correction of the synaptic

weights on the input of a neuron according to the error obtained on its output. In

the case of the hidden neurons, where no information about the output error is given

explicitly, the algorithm is based on an error estimation backpropagated from the

output layer.

The Backpropagation algorithm is described in the following steps, as depicted

by Figure 2.7:

1. For each neuron k at the output layer, the value of δ is defined by product of the

59

2. BACKGROUND

derivative of the activation function ϕ′(vk) and the error in the output. The error

for output neurons k is given by the difference between the activation value yk

and the expected value on the output zk.

2. The weight wk j for the connection between a hidden neuron j and an output

neuron k is then corrected according to the value of δk. The old value of wk j is

incremented by the product η × y j × δk, where η is the learning rate.

3. In the hidden neurons j, the value of error is not available, therefore an estima-

tion is used to calculate δ j. This estimation is given by the sum
∑

k δk × wk j,

for every neuron k connected to the output of j. The definition of δ j is then the

product between ϕ′(v j) and the error estimation.

4. The weight correction for the connections to hidden neurons follows the same

rule, by incrementing the current value by η × xi × δk. Considering that the

input nodes have as output the same value as given by the input, the value of xi

is used directly.

Figure 2.7: Illustration of the Backpropagation algorithm

The learning rate parameter η is a real positive number that defines how strong the

60

2.6. NEURAL-SYMBOLIC SYSTEMS

corrections to the weights will be. It is usually defined as a small number (below 0.1),

and may be reduced through the training process, in order to allow the weights to be

fine-tuned in the end of the process. Other constant that can be used in the training

process is the momentum rate m. When momentum is considered, the weight’s cor-

rection dw ji in a time point t is given by dw ji(t) = (a×dw ji(t−1))+((1−a)×η×yi×δ j),

where a is the momentum rate. This momentum rate is usually a value near 0, and

it is used to avoid higher variation in the alteration of weights, making the learning

process smoother. [51]

In order to perform temporal learning, the error information in the current time-

point is not sufficient to ensure that the network will be capable to adapt to the pre-

sented series. Also, the error information calculated in the past or the future are

required for such task. We return to the subject of learning in Chapter 5, where we

analyse some traditional temporal learning algorithms and present some simplifica-

tions and enhancements that will be used throughout our work. Also, we illustrate the

suitability of NARX models to temporal learning and knowledge integration through

several experiments throughout the other chapters.

2.6 Neural-Symbolic Systems

Symbolic systems are very powerful for representing knowledge in a clear, non-

ambiguous way, and also for reasoning over such representations [56]. On the other

hand, in cases where there is no clear representation of the knowledge, analogy or

generalization over a history of cases becomes a powerful tool. Neural (connec-

tionist) systems are tailored for such cases, presenting the capacity to learn from

examples, even in noisy or incomplete data sets, as their main advantage [51].

Several symbolic systems also are suitable to learning, however, the adaptation

is too brittle, and usually the systems are not able to deal with the subtleties of the

61

2. BACKGROUND

learning task [52]. In the connectionist case, the distributed nature of the stored

information, and the use of subtle adaptations of the numeric weights during the

learning allows a balance between flexibility and noise tolerance [51].

The integration of connectionist and symbolic paradigms is therefore seen, by

several authors [110, 53] as an important alternative to the development of intelli-

gent systems. Their integration caters for the union of representation, reasoning and

learning in a unique, robust framework. Also, they provide new insights to allow the

understanding and the modeling of the human cognitive capacities[19].

It is possible to find in the literature different classifications for the neural-symbolic

techniques. Hilario [52] considers two main classes of techniques: the unified ap-

proach, in which the symbolic reasoning and representation are incorporated into an

connectionist architecture, and the hybrid approach, where the symbolic and neural

tasks are performed by independent, communicating modules. Also, the unified ap-

proach might be divided in the connectionist symbolic processing, which uses the

traditional neural networks on AI, and the neuronal symbolic processing, that uses

architectures more inspired in the human brain model. Figure 2.8 illustrates this tax-

onomy in higher detail.

Wermter and Sun [110] consider a simpler taxonomy, following a similar strategy,

in which three different classes are considered: The unified neural architectures, in

which the neural networks are used for the whole task of representation and inference;

the transformation architectures, which perform knowledge translation in both ways

(symbolic↔ connectionist), and hybrid modular architectures. In our work, we will

start focusing on transformation architectures, with the symbolic knowledge being

translated into a neural network, where the learning process will occur. Later, for

the studied application, we will consider a hybrid modular approach, where symbolic

modules are integrated to perform model verification.

62

2.6. NEURAL-SYMBOLIC SYSTEMS

Figure 2.8: Taxonomy of Neural-Symbolic Systems

When analysing the representation of symbolic knowledge in neural networks,

it is important to consider the association between the elements of the two repre-

sentations. Two main strategies can be identified in this regard: the localist and the

distributed representations [19]. A localist approach associates a single neuron (or

group of neurons) to a symbol in the logic description, and therefore the activation of

these individual units can be directly evaluated in a symbolic level, without necessity

of knowledge regarding the remaining network [82].

On the other hand, several authors propose using a distributed representation of

knowledge in neural networks. This representation can be defined through two prop-

erties: extension and superposition. While extension means that more than one unit

(neuron) is used to represent a certain symbolic concept, superposition means that a

unit is involved in the representation of more than one concept.

The main advantages of a localist approach are associated with the close relation-

ship between the symbolic level and the connectionist architecture, when represent-

ing and manipulating knowledge. Such models are capable of realizing rule-based

symbolic reasoning and replace hybrid systems with symbolic processing compo-

63

2. BACKGROUND

nents. This close relationship also allows an easier translation of knowledge between

representations, and allows the manipulation and binding of variables. [18]

The idea of using a distributed representation seeks to overcome some issues that

are pointed out as important flaws in the localist representation. Among then, the

main issues are related to the brittleness and lack of generalization, due to the direct

relation between symbols and neurons. Also, one may cite the difficulty to apply

traditional connectionist learning algorithms, the high computational complexity due

to the necessity of representation of all the used concepts and the lack of robustness

to deal with noise.

However, the work of Page [82] argues that most of these pointed disadvantages

are not actually true, due to the fact that localist representations may have a dis-

tributed component - since it is extended with units for the local representation of

concepts. More specifically, if a symbol is represented locally in layer of a neural

network, it is probably represented in a distributed fashion in a previous layer. Al-

though this argument does not tackle the issue of computational complexity, several

localist systems can be found to deal with plasticity and noise tolerance issues.

A good example of the localist approach is the KBANN (Knowledge-Based Ar-

tificial Neural Network) model [103], that consists of a MLP network generated

through the application of a translation algorithm over a propositional logic program.

Such an algorithm consists in generating, at least, one neuron for each atom that oc-

curs in the program. In the case that this atom occurs as head of a single clause, the

generated neuron will compute the conjunction of literals at the body of the clause.

In the case that an atom occurs as head of multiple clauses, an extra atom is inserted

as head of each clause, and the original atom will be represented, in the network,

as a neuron computing the disjunction of such extra atoms. An example of such

translation is shown in Figure 2.9.

64

2.6. NEURAL-SYMBOLIC SYSTEMS

C : A B, C1

C : B D, ~E2

C : C F3

C : C G4

F

D

G

E C’’C’

CB

A

W -W W W

WW

WW

bias = 1.5 · W

bias = 1.5 · W bias = 0.5 · W

Figure 2.9: Example of a KBANN network

A different approach, considering a more formal definition under the logic per-

spective, is described by [54], that propose the use of three-layered MLP networks,

extended with recurrent links, for representing the fixed point semantics of proposi-

tional logic programs, defined as function of the Immediate Consequence Operator

TP. The networks proposed by [54] use threshold activation functions for the neu-

rons, in such a way that the hidden neurons can compute a conjunction of inputs and

the output neurons compute a disjunction. In Chapter 4 we give further insights about

this usage. Also, in Chapter 5 we provide more information about learning and repre-

sentation of knowledge in neural-symbolic frameworks, focusing on our own system

for temporal representation and learning.

65

2. BACKGROUND

66

Chapter 3

A Neural-Symbolic Model for

Temporal Reasoning and Learning

3.1 On Logic and Neural Networks

As expressed in Chapter 2, a traditional approach to build unified reasoning and learn-

ing systems in an integrated neuro-symbolic fashion is by translating knowledge from

one representation into another. For instance, initial knowledge represented by a sym-

bolic language can be translated into a neural network that is semantically equivalent

to the description. This target network can then be subject to learning with the presen-

tation of examples. In turn, one can then explain the learned knowledge by extracting

knowledge from the network thus explaining the system’s behaviour [4]. In Figure

3.1, we illustrate how this process of knowledge integration takes place.

In Chapter 2, we also presented some approaches to translate propositional logic

programs into feedforward neural networks capable of representing the same seman-

tics. However, the mentioned systems present some structural flaws. KBANN uses

unipolar activation functions for the neurons, and consequently unipolar representa-

67

3. TEMPORAL NEURAL-SYMBOLIC MODEL

Figure 3.1: Information flow in a neural-symbolic system based on knowledge trans-
lation

tion of truth values (i.e. values near to 0 for false and values near to 1 for true). This

may become a problem when a neuron has many inputs. In such cases, the sum of

several values representing a false assignment (positive values close to 0) can lead to

a high value, that can be interpreted as true. Also, this translation algorithm allows

an unbounded growth of the number of layers of the network, depending on the orig-

inal program. On the other hand, the work of [54] consider an activation function for

the neurons that does not allow the application of a learning algorithm such as Back-

propagation. The Connectionist Inductive Learning and Logic Programming (CILP)

system, uses a translation algorithm proposed by d’Avila Garcez and Zaverucha [36],

which addresses these issues and will be used as a foundation of our work.

CILP considers the same approach to represent basic logic operators as done by

[54]. The great achievement of CILP consists in the use of a semilinear (sigmoid)

activation function for the neurons, allowing the application of traditional learning

algorithms that require the use of differentiable activation functions (such as Back-

propagation [91]). Also, the activation function used is bipolar, ranging from −1 to

1, and therefore solving the problem of potential false positives in KBANN. CILP

considers a bipolar representation of truth values, where the interval [−1,−Amin] rep-

resents false and the interval [Amin, 1] represents true. The value of Amin, as well

68

3.1. ON LOGIC AND NEURAL NETWORKS

as the value the constant W, that defines the weights of connections, are defined in

function of some features of the logic program:

• k(l) and µ(l) are the number of literals in the body of a clause Cl and the number

of clauses with the same head as Cl, respectively.

• Maxkµ is the maximum among the values of k(l) and µ(l), and among every

clause Cl ∈ P.

• Amin is a positive constant, smaller than 1, arbitrarily defined in such a way that
1−Maxkµ
1+Maxkµ

< Amin < 1;

• φ(x) is the bipolar sigmoid function 2
1+e−βx − 1, where β is the parameter that

defines the slope of the function. ψ(x) is a linear function (identity);

• W is the weight of the positive connections, −W is the weight of negative

connections. W is defined by a value greater than ln(1+Amin)−ln(1−Amin)
Maxkµ(Amin−1)+Amin+1 ·

2
β

As defined in the model of [54] the algorithm generates input and output neu-

rons for representing each atom α. Afterwards, a hidden neuron is generated for each

clause c, with connections from input neurons representing the body of c and connec-

tions to the output neuron representing the head of c. The values of biases are set in

order to allow the hidden neurons to simulate a logic conjunction and the output neu-

rons to compute a disjunction, and therefore to compute the TP operator. The values

of W and Amin are defined to allow the proper computation of the desired semantics.

The bias of the neurons are defined according to the number of inputs, in such a way

that the hidden neurons represent properly a conjunction, and the output neurons rep-

resent a disjunction. These values are defined as (1+Amin)(k(l)−1)
2 W and (1+Amin)(1−µ(l))

2 W,

respectively. These values are considered in order to allow the proper computation

of conjunction and disjunction by the neurons, as describer in deeper mathematical

69

3. TEMPORAL NEURAL-SYMBOLIC MODEL

details in the works of d’Avila Garcez et al [36, 29]. Given such definitions, and the

following notation, we present in the algorithm in Figure 3.2 the CILP algorithm for

translating logic programs into neural networks.

• Clauses(P): Set of clauses in a logic program P;

• Atoms(P): Set of atoms in the program P;

• Body(Cl): Set of literals in the body of a clause Cl;

• Head(Cl): Atom in the head of a clause Cl;

• Neurons(N): Set of neurons in a neural network N ;

• InsertInputNeuron(N ,M) (respectively, InsertHiddenNeuron and

InsertOutputNeuron): Procedure to insert an input (respectively, hidden and

output) neuron M in a network N ;

• Activation(M): Activation Function of a neuron M;

• Bias(M): Bias of a neuron M;

• Connect(N ,M,M′,W): Connects the neurons M and M′ of network N with a

weight W.

It is important to note that we consider a localist representation, where each neu-

ron of the network n is associated to a logic formula α, in such a way that the ac-

tivation value of n is between Amin and 1 if α is true, and between −1 and −Amin if

α is false. Considering the definition of activation function φ used in our work, we

have that the value of vn (the weighed sum of inputs and bias) needs to be higher than

ln(1+Amin
1−Amin)/β to have a ϕ(vn) between Amin and 1 (the negative case is the same).

For the hidden neurons we have that, if all the positive literals in the body of a

clause Cl are true, and all the negative literals are false, we have that the pondered

70

3.1. ON LOGIC AND NEURAL NETWORKS

Figure 3.2: CILP translation algorithm

sum of the k inputs is greater than k × Amin × w. Otherwise, the higher value for the

weighed sum will be (k−1)×1×w - 1×Amin×w (remember that the higher value for

a true input is 1, and the lower value is Amin). Therefore, analysing a hidden neuron

hl representing Cl = α← λ1, λ2, ..., λk, we have that, if
∧k

i=1(λi) is true:

vl > (k(l) × Amin × w) −
(1 + Amin)(k(l) − 1)

2
w

71

3. TEMPORAL NEURAL-SYMBOLIC MODEL

vl >
2k(l)Amin − ((1 + Amin)(k(l) − 1))

2
w

Considering that w > ln(1+Amin)−ln(1−Amin)
Maxkµ(Amin−1)+Amin+1 ×

2
β we have:

vl >
2k(l)Amin − (k(l)Amin + k(l) − Amin − 1)

β
×

ln(1 + Amin) − ln(1 − Amin)
Maxkµ(Amin − 1) + Amin + 1

vl >
k(l)(Amin − 1) + Amin + 1

Maxkµ(Amin − 1) + Amin + 1
×

ln(1 + Amin) − ln(1 − Amin)
β

By the definition of Amin, and knowing that Maxkµ ≥ k(l) we can deduce that

k(l)(Amin−1) ≥ Maxkµ(Amin−1). Therefore, vl >
ln(1+Amin)−ln(1−Amin)

β and φ(vl) > Amin.

On the other hand, if
∧k

i=1(λi) is false:

vl <
2((k(l) − 1) − Amin) − (1 + Amin)(k(l) − 1)

2
w

vl <
(2k(l) − 2Amin − 2) − (Amink(l) + k(l) − Amin − 1)

β
×

ln(1 + Amin) − ln(1 − Amin)
Maxkµ(Amin − 1) + Amin + 1

vl <
−Amink(l) + k(l) − Amin − 1
Maxkµ(Amin − 1) + Amin + 1

×
ln(1 + Amin) − ln(1 − Amin)

β

vl < −
Amin(k(l) − 1) + Amin + 1

Maxkµ(Amin − 1) + Amin + 1
×

ln(1 + Amin) − ln(1 − Amin)
β

72

3.1. ON LOGIC AND NEURAL NETWORKS

vl < −
ln(1 + Amin) − ln(1 − Amin)

β

The same reasoning can be applied to the outputs, to show that the activation

of an output neuron will be greater than Amin if the activation of at least one of the

connected hidden neurons is greater than Amin, and will be less than −Amin if the value

from all the hidden neurons are less than −Amin. More details about the definition of

the constants and analysis of the behaviour of CILP translation can be found in [36].

After verifying these numeric properties of the neurons, we can state the following:

Lemma 10 Each hidden neuron hl of the network N generated through the appli-

cation of CILP translation over P (CILP translation(P)) computes the conjunction

of the body literals in the body of the clause Cll of P. Also, each output neuron

representing an atom α computes a disjunction of the conjunctions related to the the

clauses in which α is the head.

Theorem 11 Given an acyclic propositional temporal logic programP, a neural net-

work N generated by applying the CILP translation over P (CILP translation(P))

will compute the immediate consequence operator TP of P.

Proof: According to the definition, TP(IP(A)) will be true if, and only if, A is head

of a clause A← L1, ..., Ln such that
∧

i Li(1 ≤ i ≤ n) is true. Given the lemma above,

we have that each of the hidden neurons will only return a positive value if all the

connected inputs are also positive (or negative weighed by a negative weight). Given

that the input of these neurons represent the literals in the body of the clause repre-

sented by the neuron, and the weights represent if the literal is an atom or its negation,

we have that the output of a hidden neuron will be higher then Amin if the conjunction

of literals in the body of the represented clause is also true (the output will be below

73

3. TEMPORAL NEURAL-SYMBOLIC MODEL

−Amin otherwise). The translation algorithm also ensures that a neuron outA will only

receive connections from clauses where A appears as head, and therefore properly

computing the disjunction and representing the semantic definition of TP. �

3.1.1 Knowledge Representation in CILP

When representing logic programs as neural networks, one important question re-

garding the treatment of external inputs arises from the differences between both

structures. When analyzing the structure of a logic program, all the information is

expressed in the set of clauses. In this perspective, the information given as input to

the network does not present a direct correspondence regarding the logic program.

Two different approaches appear to be more adequate to deal with this information

when calculating the fixed point of TP: treating these external inputs as an initial

interpretation of the atoms, or as a set of assumptions to be considered during all the

steps necessary until reaching the convergence.

In the first approach, we consider the network as being semantically equivalent

to the logic program, i.e. computing the fixed point of TP operator. In this case, the

input vector will have a direct effect on the output of the first feedforward execution

of the network. When considering several executions to reach the fixed point, the

convergence property of the acyclic programs implies that the output of a network

will always reach the same values, independently of the initial interpretation (initial

input). On the other hand, keeping the information of the input vector as an assump-

tion through all the steps of the fixed point calculation, the values at output will not

be a function exclusively of the architecture, but will also regard the value applied on

the input.

To illustrate the issues described above, consider the case of a simple program

composed by the clauses {B← A; C ← B}, where both atoms A an B can receive

74

3.1. ON LOGIC AND NEURAL NETWORKS

an external assignment to their interpretation (as if a vector with two values was

applied into the neurons representing A and B in the CILP-generated network). In

the table below, we see the assignment of values to the atoms, when considering

different inputs and the different treatments of this information. Notice, in the left

columns, that if we consider the input as an initial interpretation, the program will

converge to its fixed point (assigning false to every atom) independently of the input.

On the other hand, the right columns shows how the program works when the initial

assumptions are kept: if an atom is initially assigned to true by the assumption then

its interpretation will remain positive, or else it will become positive if an execution

of TP leads to it.

Input as: initial interpretation assumption
Initial Input ∅ {A} {B} {A, B} ∅ {A} {B} {A, B}

First TP ∅ {B} {C} {B,C} ∅ {A, B} {B,C} {A, B,C}
Second TP ∅ {C} ∅ {C} ∅ {A, B,C} {B,C} {A, B,C}

Following TP ∅ ∅ ∅ ∅ ∅ {A, B,C} {B,C} {A, B,C}

Table 3.1: Example of execution

Given the intention of a system capable of delivering an output according to the

presented input, especially considering the extension to represent the temporal se-

mantics of SCTL (which uses the fixed point calculated in the past timepoints to de-

fine the present semantics), we will consider the treatment of inputs as assumptions

for both the theoretical results and the applications shown as an example. In such a

case, some important issues must be considered in the translation of the program into

the network.

At this point, it is interesting to return to our discussion about the choice be-

tween acyclic and acceptable programs. In the last chapter, we restricted our frame-

work to the case of acyclic programs, without clearly stating the reasons behind this

choice. Now, when considering the CILP translation and the treatment of inputs as

75

3. TEMPORAL NEURAL-SYMBOLIC MODEL

assumptions, we can explain in further detail such options. Let us take as an ex-

ample the following program P defined by the following clauses: C ← B,∼ A and

A ← C,∼ A. Considering a model ∅ (A, B and C assigned to false), and the level

mapping {|B| = 1, |C| = 2, |A| = 3}, we can see that P is acceptable according to the

definition 6 in chapter 2, and that TP will converge to a fixed point which is the same

∅ assignment.

However, if we consider as assumption that B is true, the program P will not

converge to a fixed point. For a better understanding, notice that taking B as an

assumption to P would be semantically equivalent to a have program P′ given by the

set of clauses in P incremented by a fact B ← (i.e. TP = TP′). This program P′,

however, would not be acceptable anymore, and TP′ would not converge, as we can

see in Figure 3.3.

On the other hand, it is straightforward to verify that an acyclic program will not

lose its acyclic nature by inserting more assumptions or facts. For this very reason, in

order to treat input values to the network as assumptions during the computation of

the fixed point semantics, we have limited our scope to the case of acyclic programs.

Figure 3.3: Analysis of the immediate consequence operator of an acceptable pro-
gram

The first issue is about how to treat conflicting information on the input, in the

case that the resulting interpretation of an atom, in the a previous execution of TP

76

3.1. ON LOGIC AND NEURAL NETWORKS

differs from the considered value applied in the input. In our approach, we keep

the definition of default negation, i.e., a formula is false if there is no expressions

assigning it to true. In this case, whenever one of two possible informations is true,

the atom will be interpreted as true for the next execution of TP. Otherwise the atom

will be considered as false.

Other issue regards the possibility of information being lost in the propagation of

values from input to output. Considering, for instance, the same example of Table

3.1.1, the application of the original CILP algorithm to the program would generate

a network where the value applied in the input neuron A would not have any effect in

the activation value of the output neuron representing A - i.e. there is no link between

input and output neurons representing the same atom. If the value of A is necessary

in the output of the system (as in the case of the temporal extension shown in the next

section), this obtained value may be different from the applied input value.

To solve these issues, it is necessary to define clearly which atoms represent the

input (i.e., which ones receive an external value as input), and which atoms repre-

sent the output of the program/network. Based on this information, we propose a

treatment to the problem before the translation into a neural network. Such treatment

consists in inserting a new atom A′ for each atom A in which the conflict might occur.

Such atom A′ is then used to receive the external input information of the generated

network, and a new clause A ← A′ is created so the information from the input can

reach the output representing A. In Figure 3.4 we illustrate how this correction takes

place in the logic program, and also how the translation into a neural network is

effected.

More specifically, every time an atom A is specified as an input of the system,

and it is either head of a clause or an output to the system, another variable A′ will

be created in such a way that a corresponding neuron inA′ will exist in the network in

77

3. TEMPORAL NEURAL-SYMBOLIC MODEL

Figure 3.4: Illustration of the extension of CILP translation to allow the proper prop-
agation of input values to output

order to receive the external input value. Also, a clause A ← A′, will be created in

order to allow the value applied in inA′ to be propagated to outA, and therefore allow

the proper value of A to appear in the output of the network. Moreover, in order to

avoid unnecessary increments to the complexity of the network (more specifically to

the value of ν of the program), we propose that if an atom A was not head of any

clause in the original program, it should be replaced by B′ in the body of every clause

it appears. This happens, in this case, when the value of A and A′ will always be the

same during the process, but given that νA = nuA′ + 1, the atom A′ is preferable to

be used in terms of numbers of TP executions needed to compute their convergence

value. This situation is illustrated in Figure 3.4 by the atom C. In Figure 3.5 we

describe properly the new algorithm to translate a propositional acyclic logic program

into an equivalent neural network.

Theorem 12 Considering an acyclic logic program P, a neural network N gener-

ated through the application of the algorithm in Figure 3.5 over P computes in νP

feedforward executions the fixed point semantics of P.

Proof: According to Theorem 11, the networkN generated by CILP translation(P)

is capable of computing the TP operator of the program P. Given that one feed-

forward step of the network N computes TP, the recurrent links feed the input to a

78

3.1. ON LOGIC AND NEURAL NETWORKS

Figure 3.5: Extension of CILP translation algorithm to allow the proper propagation
of input values to output

new computation of TP over the last output, the network will converge to the fixed

point after νP executions, as shown in Lemma 9. �

3.1.2 Connectionist Modal Logics: CML and CTLK

In order to overcome the propositional limitations of CILP, extended neural-symbolic

systems based on CILP were proposed. These systems are based on labeled modal

logics, which extend the representation power of propositional systems, but avoid

the complexity of (full) first-order logics. In [30], we find the Connectionist Modal

Logics (CML), a system that uses a ensemble of CILP networks for representation

of the semantics of labeled modal logic programs. Each clause of such programs is

associated with a possible world, identified by a label. When translating the program,

the set of clauses associated with each individual world is translated into a different

CILP network.

As shown in section 2.3, modal operators can be defined in terms of possible

worlds and the relation between them. For instance, an operation �A is true in a

world w1 iff A is true in every possible world wi such that R(w1,wi). According to

such definition, hidden and output neurons are inserted at each individual network,

and connections among them are defined, whenever necessary, in order to represent

the modal operators that appear in the logic program to be translated. In Figure 3.6

79

3. TEMPORAL NEURAL-SYMBOLIC MODEL

we show an example of a CML translation.

w ¨ ¬ à: A B, C;1

w àB ¬ : D;1

w C ¬ ̈: D;1

w ¬ : D B;2

w C ¬ : E;2

w : D ;3 ¬ A

R(w1 ,w)2

R(w 1 ,w)3

w1

w2w3

B àC D ¨D

¨A àB C

A

D

E

C

B

D

àC ¨D

AB A

Figure 3.6: An example of CML program and equivalent neural networks

For the case of temporal reasoning, [33] proposed the Connectionist Temporal

Logic of Knowledge (CTLK), an extension of CILP that deals with time and knowl-

edge through modal operators K and �. The same idea used on CML of having a

different network to represent each possible world is also used on CTLK. The system

assumes a discrete, linear temporal representation, and therefore the time sequence

needs to be taken in consideration. In this case, each possible world is associated to

a time point ti, and a sequence t1, t2, ..., tn is defined, in such a way that t2 is the time

point immediately after t1, t3 after t2 and so on. The temporal representation in this

model is limited to the operator of next time �.

The approach considered for translation is similar to the one used by CML. Each

clause is labeled according to the time point to which it is associated, and a different

network is generated for representing each individual time point. For representing

formulas in the form �α, hidden neurons are generated, and connected with the net-

works representing other time points. Figure 3.7 depicts an example of CTLK trans-

lation, analysing only the temporal modal representation of the language: CTLK also

80

3.2. THE SEQUENTIAL LOGIC

presents modalities to the representation of epistemic logic, which relates not only

about truth and falsity of statements, but also to the knowledge of these statements by

an agent. In the example shown in the figure, we will consider one of the increments

to CILP described in previous section, by inserting a hidden neuron (dotted neuron

in t2 network) to allow the propagation of the input value of A to the output. This is a

specific case where the missing link between input and output would affect the result

of the whole ensemble.

Figure 3.7: An example of CTLK program and equivalent neural networks

3.2 The sequential logic

In order to have an integrated framework for the manipulation and acquisition of

temporal knowledge, our work requires the choice of a symbolic language capable of

representing the desired models. To achieve such a goal, we consider a propositional

logic programming syntax, extended with modal operators to represent temporal rela-

tions. Throughout the work, we call this language Sequential Connectionist Temporal

Logic, or SCTL logic in reference to the proposed framework. The syntax of this lan-

guage extends the concepts of clause and program in order to consider the definition

81

3. TEMPORAL NEURAL-SYMBOLIC MODEL

of temporal expressions.

Definition 13 A logic formula α is called an temporal expression if, and only if, one

of the following conditions is true:

• α is a propositional variable;

• α is of the form �β, �β, �β, �β, ♦β or �β, and β is also an temporal expression;

• α is of the form βUγ, βSγ, βWγ or βZγ, and both β and γ are temporal expres-

sions.

Definition 14 A temporal clause is an expression of the form α ← λ1, ..., λn, where

α is a temporal expression and λi for 1 ≤ i ≤ n are temporal literals, i.e., temporal

expressions αi or their negated form ∼ αi.

We also extend the definition of temporal program to include the declaration of

propositional variables involved in the program, specifying which of them are tagged

as input and output. The importance of defining the sets of input and output vari-

ables become clear in the next chapter, when the translation into neural networks is

presented.

Definition 15 A SCTL logic programP is given by a tupleP = {ClP,VarP, InP,OutP},

where ClP is a set of temporal clauses, VarP is the set of propositional variables used

in the clauses of P, and InP ⊆ VarP and OutP ⊆ VarP are, respectively, the set of

input and output variables of P.

3.2.1 Semantics

We consider a fixed point approach to define the semantics of the SCTL language,

based on a sequential treatment of the time flow. We consider that some inference

82

3.2. THE SEQUENTIAL LOGIC

over the present is only performed after the establishment of the past knowledge.

In other words, the interpretation of a formula α at a point t on the time flow is

processed by the system after the definition of the interpretation of every formula in

the program at time points t′ < t. This convention is based on the work of [7], where

temporal logics are used in the imperative definition of a system, based on the use of

consequence relations with premises about the present to infer something about the

future. The main argument for the use of this approach is the direct relation with the

execution flow of a system, presenting great representation power (as in the case of

modeling reactive systems, for instance).

To define the semantics of the SCTL programs we will consider, at first, a simpli-

fied fixed point semantics, that attributes some meaning only to the � operator. We

then define an immediate consequence operator �TP, that will be used as an auxil-

iary structure in the system (as we will describe afterwards). The definition of this

operator in a time point t (�TP) is given as a function of the fixed point calculated

for the prior time point t − 1 (F t−1
P

). In a time flow beginning in a point t = 1, we

consider a virtual point t = 0, such that F 0
P

is defined as true for every formula in the

forms �α and αZβ, and defined as false for every other formulas.

Definition 16 The immediate consequence operator �TP of a temporal program P

is a transformation over interpretations of P. The application of �TP over an in-

terpretation It
P

at a time point t results in a new interpretation at t (�TP(It
P

)) that

assigns true to every temporal atom α such that:

a. α is head of a clause of the form α ← λ1, λ2, ..., λn and It
P

(λ1 ∧ λ2 ∧ ... ∧ λn) is

true.

b. α is an atom of the form �β, and F t−1
P

(β) is true.

Lemma 17 For every acyclic temporal program P, successive applications of the

83

3. TEMPORAL NEURAL-SYMBOLIC MODEL

immediate consequence operator �TP at a time point t converge to a unique fixed

point F t
P

.

Proof: The convergence of �TP in the case of acyclic programs can be verified in the

same way as the convergence of the traditional TP for classic logic acyclic programs.

One can easily verify that the rule “a.” of the �TP definition is similar to the definition

of TP. On the other hand, the associations made by rule “b” are directly defined

before the first execution of �TP, and is kept constant during all the other executions

(by our sequential definition of time), and therefore do not affect the convergence. �

To define the semantics regarding the other past operators, considering the se-

quential approach, we will use a recursive definition of such operators w.r.t. the prior

and present time points. For instance, in the case of the � operator, we consider that

a formula �α is true at t = 1 if α is true at t, and �α will be true at the time points

t > 1 if α is true in t and �α was true in t − 1. In such a way, when we define the

arbitrary interpretation for the atoms at virtual time point t = 0, we can define an

immediate consequence operator that is based on the present and prior time points,

as in the items “b.” to “f.” of definition 18.

Following the same sequential approach, the idea of imperative semantics for

the future operators is related to the commitment of an agent, and the actions taken

to fulfill such commitment, as in [7]. In our work, we also consider such idea of

commitments, but in a declarative approach. In such approach, the future operator

declares the information that should be true at the next time points, without defining

the necessary steps to define such goal.

In a similar way as before, we can define the future operators recursively, but at

this time, regarding the next time point. For instance if �α is true at t, we have that α

should be true at t (due to the non-strict definition of future), that �α should be true

84

3.2. THE SEQUENTIAL LOGIC

at t + 1, and that these statements represent the complete definition of �. The other

future operators can be defined as follows, taking as reference the � operator:

• ♦α ≡ α ∨ �♦α

• αUβ ≡ β ∨ (α ∧ �(αUβ)) ≡ (β ∨ α) ∧ (β ∨ �(αUβ))

• αWβ ≡ β ∨ (α ∧ �(αWβ)) ≡ (β ∨ α) ∧ (β ∨ �(αWβ))

In the case of �, our definition is based on a conjunction, i.e, when �α is true,

both α and �α are true. On the other hand, the other operators are defined using

disjunctions, so a detailed analysis is necessary to define a consequence relation to

represent them. Our option is to rewrite such disjunctions, avoiding the case where

both are false (using the equivalences (α∨β)↔ (¬α→ β) and (α∨β)↔ (¬β→ α)).

Again, we will consider our sequential approach (past→ future) to define ♦α, that

will assume the form: ¬α→ �♦α. For the other operators, the only disjunction in the

definition is α∨β, that allows two representations. We will use each representation to

characterize a different operator, in such a way that αUβ is defined through ¬α → β

and, conversely, αWβ uses ¬β → α. This choice is because theW operator accepts,

by definition, infinite sequences of α, i.e., unless β becomes; true, α will always be

true.

Considering these observations, and the direct association between � and � (� �

α ≡ α), we will define the immediate consequence operator, for the future temporal

operators, also w.r.t. the present and the prior time points. These are described in the

items “g.” to “n” definition 18.

Definition 18 The application of the immediate consequence operator TP of a tem-

poral program P over an interpretation It
P

at a time point t results in a new interpre-

tation at t (TP(It
P

)) that assigns true to every temporal atom α such that one of the

following conditions is true:

85

3. TEMPORAL NEURAL-SYMBOLIC MODEL

a. α is head of a clause of the form α ← λ1, λ2, ..., λn and It
P

(λ1 ∧ λ2 ∧ ... ∧ λn) is

true;

b. α = �β, and F t−1
P

(β) is true;

c. α = �β and both F t−1
P

(�β) and It
P

(β) are true;

d. α = �β and either F t−1
P

(�β) or It
P

(β) are true;

e. α = βSγ and either It
P

(γ) is true or both F t−1
P

(βSγ) and It
P

(β) are true;

f. α = βZγ and either It
P

(γ) is true or both F t−1
P

(βZγ) and It
P

(β) are true;

g. F t−1
P

(�α) is true;

h. It
P

(�α) is true;

i. α = �β and F t−1
P

(�β) is true;

j. α = ♦β, F t−1
P

(♦β) is true and F t−1
P

β is false;

k. There exists some formula β such that It
P

(βUα) is true and It
P

(β) is false;

l. α = βUγ, F t−1
P

(βUγ) is true and It
P

(γ) is false;

m. There exists some formula β such that It
P

(αWβ) is true and It
P

(β) is false;

n. α = βWγ, F t−1
P

(βWγ) is true and It
P

(γ) is false;

3.3 SCTL - Sequential Connectionist Temporal Logic

3.3.1 Translating the immediate operators

As we stated in Chapter 2, we use a temporal representation based on a sequential

approach, where the knowledge about the past is used to infer new information about

86

3.3. SCTL - SEQUENTIAL CONNECTIONIST TEMPORAL LOGIC

the future. Following this approach, our strategy to represent temporal knowledge is

based on the propagation of values through the time flow, from a time point t−1 to its

subsequent one t. Since the adopted semantics for our logic programs follows strictly

this idea, we will consider how to represent this delayed propagation of information

in the neural networks.

We have chosen the NARX models to extend the MLP networks with temporal

processing. As described in Chapter 2, NARX networks use recurrent links and delay

units to allow the propagation of information through time. In our concept chosen

connectionist architecture, each time point is defined as the application of a different

input vector to the network, and all the computation runs until the output values

are returned at the output. The use of delay units (also incorporated in the NARX

recurrent links) caters for the proper representation of the propagation from a value at

time t−1 to the next time t. Therefore, this allows that a neuron representing a formula

�α receives the value of α in the previous time, and therefore provides a correct

representation of the � operator. The representation of the complementary operator

�, the situation is similar: the delay units allow the value associated to �α in t − 1 to

be propagated to a neuron to represent α at t also providing the semantically correct

value. Throughout this section, we illustrate and analyse the case of propagation from

α to �α, omitting the complementary �α→ α case for the sake of clarity.

We considered different ways to perform this representation. The first idea con-

sists of using only (delayed) recurrent links, carrying the value of an output neuron

representing a formula α into the input neuron representing �α. When α appears

as head of a clause in the translated program P, the CILP translation algorithm will

generate the output neuron to represent it. Otherwise, the network will not have the

correct information about α in the output, and therefore the value of �α will also not

be properly assigned (as explained earlier in this chapter). Our proposed solution ex-

tends the insertion of clauses shown in the algorithm of Figure 3.10 to propagate the

87

3. TEMPORAL NEURAL-SYMBOLIC MODEL

values from input to output, by also inserting a clause α ← α′ every time a formula

�α appears in a program P where α is not head of any clause. In this case, the value

of νP might be incremented, due to the insertion of a new clause.

Our second idea is similar to the first one, except that for each inserted clause α←

α′ (for a formula α that does not appear as head of P), we replace all the occurrences

of α in the body of other clauses by α′. In such a way, even inserting clauses, the

head of these inserted clauses will not appear as body of any other clause, so the value

of νP will not be incremented. On the other hand, since α′ and α are semantically

equivalent, the translation keeps the correct value associated to the variable.

The third idea makes a better use of the available resources of NARX architec-

tures in order to reduce the size of the network. This approach considers the insertion

of delay units before the input units, to apply the value of �α every time that α does

not appear as head in the program. In such a way, we avoid the clauses inserted on

the other approaches, whose only purpose was the temporal propagation. For each

formula of the form �nα, we insert the delay units as follows:

• If a formula �iα appears as head of a clause in P, where 0 ≤ i < n, we create a

recurrent link from the output neuron representing �max(i)α to the input neuron

representing �nα, such that this link will have n − max(i) delay units.

• If no formula �iα appears as head in P, add n delay units before the input

neuron representing �nα, so this neuron will receive the value of α applied at

time point t − n.

In Figure 3.8 we present the translation algorithm that performs the translation

from temporal logic programs into recurrent neural networks, according to the third

approach. Below, we also give more details about the correctness of our approach,

88

3.3. SCTL - SEQUENTIAL CONNECTIONIST TEMPORAL LOGIC

Figure 3.8: Translation of �-based programs

in terms of the semantic equivalence between the original program and the generated

network.

Lemma 19 A neural networkN generated through the application of the translation

algorithm �-based Translation over an acyclic temporal program P computes the

immediate consequence operator �TP of P.

Proof: We will use an inductive proof. For the first time point (t = 1) given the initial

values for the �α formulas (the values defined for t = 0), we have that the compu-

tation of the operator �TP is similar to the TP operator of the classic propositional

case, and also converges to the proper fixed point. For the inductive step, we may

consider that, for every time points t′ such that t′ < t, either the network N presents

an output neuron outα properly representing F t′
P

(α) or the value of α is given as input.

Therefore, for each formula �nα in t, if the value of �iα(i < n) is at the output of the

89

3. TEMPORAL NEURAL-SYMBOLIC MODEL

network, the recurrent link with n − i delay units will apply the correct value to the

value in�nα. On the other hand, if �iα is not represented as output for any i < n,

the input value of the neuron in�nα is correctly given by the chain of n delay units,

that receive the value of α as input. Given the convergence of �TP, we have that the

network reaches the desired fixed point, and so the procedure can be repeated for all

the other time points. �

3.3.2 Differences between recurrent connections

In Section 3.1, we showed that in order to compute the fixed point semantics of a

propositional logic program, CILP makes use of recurrent connections. Each con-

nection is used to propagate the result of a TP execution, related to an atom A (rep-

resented in a neuron outA) to the input of the network (in a neuron inA), in such a

way that a new computation of TP is performed over this assignment to A. The pro-

cess is repeated until the fixed point F
P

of the program P is reached (i.e. after νP

computations).

When considering SCTL, the translation performed by CILP remains the same,

except by the insertion of delay units and (delayed) recurrent connections for the

computation of the temporal operators. Differently from the recurrent connections

described above, these SCTL recurrent connections will be used to propagate the

value of outα at a time point t− 1 (which represents F t−1
P

(α) into a neuron inα at time

t 1, allowing for the correct computation of the semantics at a new time point.

For a proper understanding of the connectionist representation, it is important to

make clear the distinction between these different kinds of recurrent connections, and

also how does the system behaves regarding the multiple feedforward executions and

the propagation of information, in order to perform a correct computation of the logic
1The connections are also used for the propagation of values from a neuron out�α at t − 1 into a

neuron inα at t.

90

3.3. SCTL - SEQUENTIAL CONNECTIONIST TEMPORAL LOGIC

program given as background knowledge. In the next chapter, when we explain the

backpropagation of values for learning purposes, this difference becomes even more

important to allow the proper integration of reasoning and learning.

To explain this process, it is important to emphasize that each input neuron of the

network receives one unique value as input. Moreover, in SCTL, each input neuron

can receive a value from any of three different sources:

a External inputs of the system

b SCTL recurrent links

c CILP recurrent links

The computation of each time point t in SCTL comprehends the whole process

to reach F t
P

, i.e., νP computations of the TP operator, which is represented by one

feedforward execution of the network. In order to calculate F t
P

, the system must be

presented with the assumptions in t represented by the external inputs and the result

of the computation of F t−1
P

. Therefore, for the first feedforward execution at each

time point, these values will be applied at the input of the neurons in groups a and

b. For the neurons in group c, which represent the intermediate assignments to atoms

during fixed point calculation, the convergence theorem 17 states that their initial

value does not affect F t
P

, and therefore any value can be assigned (in our case, we

arbitrarily assign false, represented in the network by −1).

For the following feedforward steps until the F t
P

is reached, the applied values

for the neurons in group c are exactly the values received by the CILP recurrent

connection, i.e. a neuron inα will receive in t the obtained value of an output neuron

outα in t − 1. For the other groups a and b, we define the representation of the inputs

by considering them as assumptions regarding the whole time point, as described in

the previous section. Therefore, the values in the input of these neurons will be kept

91

3. TEMPORAL NEURAL-SYMBOLIC MODEL

the same during all the ν feedforward executions performed until the fixed point is

achieved. Then, for the next time point, new values will be presented. Figure 3.3.2

illustrates this process in a simple example.

Figure 3.9: Example of the different kinds of recurrent links in the SCTL model

3.3.3 Full SCTL translation

After defining the strategy to compute the �TP using a recurrent neural network, we

will now extend this system to allow the representation of the semantics regarding the

other temporal operators. Our strategy is based on inserting clauses in the original

program, in such a way that every formula containing temporal operators has its se-

mantics defined through these clauses, that will consider only the present or formulas

in the form �α or �α. The insertion of clauses is described in Algorithm 3.10.

Lemma 20 Consider P1 as a temporal logic program, generated through the trans-

lation of clauses for each temporal operator over an original program P, according

to the Algorithm in Figure 3.10. For each formula α in P, TP(It
P

)(α) is true if, and

only if �TP1(It
P

)(α) is also true.

Proof: The algorithm inserts clauses representing exactly the semantic definitions of

the operators. We can verify this by analyzing individually all the inserted clauses.

Take, for instance, the case of the S operator. The first inserted clause (βSγ ← γ)

represents exactly the first definition of the item e. in definition 18. Also, �α correctly

92

3.3. SCTL - SEQUENTIAL CONNECTIONIST TEMPORAL LOGIC

Figure 3.10: Logic treatment of different temporal operators

93

3. TEMPORAL NEURAL-SYMBOLIC MODEL

represents the information about the formula α at time point t − 1, so the clause

βSγ ← β,�(βSγ) represents properly the second option of the formal definition of S.

The remaining of the proof is as follows:

(→) Assuming that TP(It
P

)(α) is true, we have two possibilities. If �TP(It
P

)(α)

is true, then the inserted clauses do not change it, so �TP1(It
P

)(α) will also be true.

Otherwise, the positive interpretation of α is given by the semantic rule of a tem-

poral operator, and then a clause representing this operator will be inserted by the

algorithm, and the interpretation of the conjunction of the literals in the body of this

clause will be true, therefore �TP1(It
P

)(α) will also be true.

(←) If TP(It
P

)(α) is false, then α is not positively interpreted due to the semantics

of any temporal operator. Therefore, none of the clauses inserted by the algorithm

will change the interpretation of α, and �TP1(It
P

)(α) will also be false. �

Theorem 21 Considering a temporal program P, and a temporal program P1 gen-

erated through the application of the algorithm in Figure 3.10 over P, we have that

the following statement is true: If P1 is acyclic, then the recurrent neural networkN

= �-based Translation(P1) computes, in νP1 − 1 executions, the fixed point of TP of

P for each time point t.

Proof: The proof follows from lemmas 9, 17, 19 and 20. �

3.3.4 Comparing the different modal approaches

Both SCTL and CTLK consider the modal approach to temporal representation, but

there are important differences between the systems. First, CTLK and SCTL present

major differences regarding the range of temporal operators that can be represented.

However, some aspects are important to be considered regarding such representation.

At first, CTLK is based on the representation of the � operator, and SCTL also de-

fines the representation of the � operator. Since such operators are complementary,

94

3.3. SCTL - SEQUENTIAL CONNECTIONIST TEMPORAL LOGIC

adapting CTLK to a direct representation of both operators would be straightfor-

ward. In our SCTL translation of the example in the next Chapters, we can see how

straightforward this kind of adaptation is, by using only the previous time operator:

we consider that the information of output neurons representing �Q2 and �Q3 are

recurrently propagated to the atoms Q2 and Q3, keeping the same semantics as if the

network had been translated through the original definition. Also, the full SCTL al-

gorithm performs the translation of the remaining operators through the insertion of

clauses in the logic program. Since this operation is done only in the level of the logic

program, it could also be applied to CTLK. Therefore, through simple adaptations,

both systems would be able to operate with the same range of temporal operators.

However, a significant, relevant difference between the approaches is actually the

structure used to represent each time point and the temporal relations among then.

CTLK considers a distributed representation of time, i.e. the computation of different

time points is represented by different neural networks, that may run in parallel. The

clear advantage of this approach is the possibility to represent information (clauses)

that are specific to a time point. In our example, again, we clearly see an example

of this situation, with every clause used in only one network. A solution to represent

this kind of information in SCTL is through the use of an atom to represent each

time point. In the specific case of our example, the information about the minimum

number of agents known as muddy (Qi) is directly related with the current round of

the game (time point), and therefore it was used in this sense. This will be made more

clear in the next chapters.

On the other hand, SCTL is based on a serial approach, with a unique network

operating during all the time points, and following the time flow for the computation

at each time point. This allows a reduction of the size (number of neurons) of the net-

work, due to the use of the same neurons to represent a clause (or set of clauses) that

refers to different time points. For a learning perspective, this use of the same neurons

95

3. TEMPORAL NEURAL-SYMBOLIC MODEL

presents also the advantage of learning some information that is independent of the

considered time point, leading to improved conditions regarding generalization. In

Chapter 5 we present an extensive case study, where we adapt the example in [33] to

compare CTLK and SCTL regarding both representation and learning perspectives.

In this chapter, we have discussed the CILP strategy to represent propositional

logic programs into neural networks. We have also presented an extended translation

which allows temporal resources of connectionist networks (delay units and recurrent

connections) to represent the modal operators used in a linear time temporal logic.

We also have compared our approach with other existing works that aim at perform-

ing the same tasks, but that clearly use a different structure for knowledge represen-

tation. In the next chapter, we will explain how temporal learning can be performed

in the proposed neural-symbolic networks, and we will also discuss extensions and

constraints to the learning performance in order to allow the incorporation of new

sources of information.

96

Chapter 4

Learning in SCTL

So far, we have been focused on the representation of temporal knowledge, as well

as the reasoning associated with the language and its semantic aspects. However, as

important as the representation of knowledge is the acquisition of such knowledge.

This capacity of acquiring as well as adapting knowledge is a crucial aspect in the

development of robust intelligent systems.

The work of Michalsky [72] defines machine learning as the process of auto-

matically acquiring or adapting a knowledge base, considering information that can

come from different sources, such as: direct implementation, instruction, deduction,

analogy, examples and discovery. While the use of examples in learning is strongly

investigated by connectionist systems [51], the integration of different sources of in-

formation is a much broader domain.

In this chapter, we will explain the numerical processes involved in the learning

and generalization from examples in temporal networks. Moreover, we consider how

the system can acquire information from different sources, in such a way that ab-

stract descriptions of constraints in the problem domain can be incorporated during

learning. This composite process of knowledge acquisition is not only innovative

97

4. LEARNING IN SCTL

within neural-network learning, but allows a better applicability of our framework in

symbolic domains, as detailed in what follows.

4.1 Temporal extensions of backpropagation

When modeling cognitive behaviour, time is a fundamental aspect to be considered

in the task of learning. Under the biological reference of the animal brain, learn-

ing is a gradual process of consolidating a knowledge base, and therefore time is

a crucial aspect that pervades all the process [59]. However, the task of learning

a knowledgebase of temporal sequences and delayed influences between events is

much more specific. Several tools, which are capable of learning static knowledge,

have been adapted to the case of temporal domains, as in the case of adaptations of

ILP focusing on learning event calculus programs [75].

For connectionist systems, we have seen in Chapter 2 that there are several mod-

els capable of dealing with temporal knowledge. These systems often require specific

resources for modeling, explicitly or implicitly, memory of recent sequences of infor-

mation, in order to capture the temporal aspects of the knowledge to be learned. The

learning algorithms in these cases, then, need to be able to deal with such resources

[51].

In the specific case of extending feedforward networks, adaptations have been

proposed to the traditional backpropagation algorithm in order to deal with temporal

aspects. In the work of Waibel [108], an algorithm called Temporal Backpropagation

is used to learn TDNNs - Time Delayed Neural Networks. These networks contain

delay units distributed through the network, and the learning algorithm makes use of

an array to keep a history of the previous values of δ for each neuron, in order to

combine the input and the error estimation when calculating the weight correction.

98

4.1. TEMPORAL EXTENSIONS OF BACKPROPAGATION

When delay units are only applied before the input of the network, there is no delay

applied to the error information, and this treatment is not necessary.

For recurrent neural networks, two algorithms deserve attention: the Backpropa-

gation Through Time (BPTT) [109] and the Real Time Recurrent Learning (RTRL)

[111]. The BPTT is based on the idea of unfolding the recurrent network into a

feedforward one, in such a way that the traditional backpropagation algorithm can

be applied. Since the connections of the original network are duplicated in the un-

folded network, all the error information applied to the different copies of the same

connection is considered after a backpropagation step.

In figure 4.1 we illustrate the process of unfolding a NARX network. The upper

part of the figure (a) shows an original NARX network, and the part below shows

how the unfolded network would be, if two time points (t and t − 1) were considered.

Notice that, for the sake of simplicity, we did not illustrate the duplication of the

source (input) nodes. The number of time points to consider depends on the duration

of the time sequences to be learned, and the desired accuracy.

While the BPTT algorithm usually requires an entire sequence to be presented to

the network before the correction of weights can take place, the RTRL proposes an

alternative whereby this correction happens through the execution of the network. In

the RTRL algorithm, a unique layer of computational nodes is used, with a subset of

the nodes in this layer considered as the output. The error correction is defined by

making use of a full matrix representing the different configurations of the weights,

outputs and error estimates through time, as detailed in [111].

4.1.1 The SCTL learning algorithm

Taking as reference the different algorithms used for temporal learning in neural net-

works, here we propose a new algorithm for learning in the specific networks used

99

4. LEARNING IN SCTL

Figure 4.1: Illustration of an unfolded NARX network

by CILP and SCTL. Our proposed algorithm seeks to satisfy a number of require-

ments for symbolic computation (our target application), given the structure of the

networks.

• Localized processing: one of the main features of the CILP translation is the

localized nature of the representation: each neuron is responsible for represent-

ing a logical operation on the original knowledge description. In the learning

algorithm, keeping the error estimation and weight correction associated with

the individual neurons allows isolating certain parts of the network for fine-

tuning the learning process.

• Handling different kinds of recurrent links: recall that SCTL networks contain

two different kinds of recurrent links. When defining the learning algorithm,

this needs to be taken into consideration so that a proper supervised learning

from examples can take place as expected.

100

4.1. TEMPORAL EXTENSIONS OF BACKPROPAGATION

• Adequacy to the representation of symbolic knowledge: For numerical learn-

ing tasks, usually associated with neural networks, neurons operating in the

middle region of the activation function, with higher derivatives, might be pre-

ferred in order to achieve a quicker convergence. However, the CILP algorithm

sets the weights of the neurons to operate away from this middle region, which

might cause problems when the network is trying to explore new solutions

when learning from examples. The learning algorithm must then cope with

this issue, allowing values to be in the middle region for hidden neurons, but

enforcing the input and output values to be near the ends.

• Real time learning: Some of the applications we will describe in this work

assume that the observed knowledge needs to be incorporated into the network

on-the-fly, in such a way that the changes to the network need to be promptly

realized and made available.

• Balance between efficiency and learning capacity: As we mentioned for BPTT,

the unfolding of the network is directly associated with the accuracy of the

learning algorithm. On the other hand, increasing the size of the unfolded

network will also increase the computational complexity of the system. In our

applications, efficiency is crucial, particularly in the case of real-time learning

when the network is required to be integrated with other tools as part of an

iterative process.

In the algorithm of Figure 4.2, we depict the entire proposed learning process

for an SCTL network, from when a new vector is provided as input (at a time point

t), through to the process of error backpropagation including the recurrent links, and

subsequent adjustment of weights.

101

4. LEARNING IN SCTL

Figure 4.2: Illustration of the propagation of values in a SCTL network during a
timepoint

102

4.2. INTEGRATING DIFFERENT INFORMATION SOURCES

4.2 Integrating different information sources

So far, we have seen how to integrate two sources of information: an initial symbolic

description, given as a temporal logic program, and a set of examples, given as a

temporal sequence. This allows our system to generalize a knowledge base and,

hopefully, learn about the influence of time in a given problem domain.

Regarding the initial symbolic knowledge, the correctness of SCTL translation

algorithm ensures a semantic equivalence between the logic program and the trans-

lated neural network. Given this equivalence, we can refer to both representations

interchangeably as a temporal model. Moreover, for the purposes of learning tem-

poral models, we will consider that two kinds of variables can be defined: input

variables, whose values are informed to the model by an external entity, and state

variables, which can have their values modified by the model through the computa-

tion of logical consequences given the input values and previous information about

other states.

Definition 22 A temporal model, when given by a logic program P, is defined by the

tuple P =
{
S tP, InP,CP

}
, where S tP is the set of state variables α, InP is the set of

input variables β, and CP is a set of clauses in the form �α← α1, ..., αn, β1, ..., βm.

In the above temporal model, a training example can be defined as a sequence

of input values and desired output values. The desired outputs are a subset of the

state variables. Each observed example has values assigned to all the input variables

and to a subset of the state variables. Thus, let us redefine training examples more

specifically in terms of input and state variables.

Definition 23 An observed example E at timepoint t is a tuple Et = 〈It,Dt+1〉, where

the mapping It : In → {−1, 1} makes an assignment of values to the input variables

and Dt+1 : S t → {−1, 0, 1} makes an assignment of the desired values for the state

103

4. LEARNING IN SCTL

variables at the next timepoint, where 0 denotes that no information is available

about the corresponding variable.

Notice that the network is not supposed to have its weights changed in the ab-

sence of information, such as in the case of non-observable state variables. Hence,

the error on the output neurons representing those non-observable variables is defined

as null. In terms of learning in neural networks, this can be implemented as follows:

for each output neuron where no information is given as the desired output for back-

propagation, consider the desired value to be equal to the actual activation value for

the neuron obtained in the feedforward step.

In order to illustrate the representation of temporal models and training exam-

ples, consider a monitor of a resource that is supposed to allocate such resource to

different processes. Each process communicates with this monitor through a signal

to request the resource (Req) and a signal to release it (Rel). These signals are input

variables to the monitor, which also has a state variable for each process, to denote

that the resource is allocated to the process. Consider now a simple temporal model,

describing how such monitor should work for one process A:

InP = {ReqA,RelA}

S tP = {A}
ClP = {A← ReqA

A← �A,∼ RelA

Table 4.1: Example of a temporal model

Let us now extend this example to deal with two processes. However, instead of

having rules stating how an agent should deal with a second process, let us use our

system to learn from observing how an existing monitor handles this. In this case, we

extend our model P to include the variables that are necessary to handle the second

process B, i.e., InP = {ReqA,RelA,ReqB,RelB} and S tP = {A, B}. We assume that the

only observable output of the existing monitor is the variable B, which indicates that

104

4.2. INTEGRATING DIFFERENT INFORMATION SOURCES

the resource is allocated to the second process - notice that the columns regarding the

variable A are filled with zeros below. The idea is that the examples derived from

observation of an existing system can be used to train a network, extending it to deal

with two or more processes. In this case, the network would become a partial model

of the existing system.

Timepoint ReqA RelA ReqB RelB A B
1 1 -1 -1 -1 0 -1
2 -1 1 -1 -1 0 -1
3 -1 -1 1 -1 0 1
4 1 -1 -1 -1 0 1
4 -1 -1 -1 1 0 -1

Table 4.2: Input and output observations from an agent

4.2.1 Constraining the learning process

One of the main issues of the integration between an initial knowledge and some extra

data regards the relative influence of the two knowledge sources on the result. In ILP,

for instance, the set of examples is usually used to add to the existing knowledge, i.e.

the initial knowledge, in the form of clauses, remains the same while new clauses are

inserted to explain the examples [76].

When negation is allowed in logic programs, we have a situation of non-monotonic

reasoning. Without negation, monotonicity holds, i.e. if from a set of clauses S one

can infer variable A (S |= A), the insertion of extra clauses will not affect the eval-

uation of A (S ∪ S ′ |= A). However, the same is not true for clauses with negation

by failure. If S contains negation, it is possible that S ...A and yet we cannot ensure

S ∪S ′ |= A. When refining a knowledge base expressed as logic programs with nega-

tion, the above needs to be taken into consideration. We will handle this by assuming

that if an example contradicts the inference of a positive variable, the example will

not affect the result of the learning process.

105

4. LEARNING IN SCTL

Differently from ILP, in systems like CILP and SCTL, the original rules are trans-

lated into a numerical representation, which is subject to the weights’ adaptation

using backpropagation. In the case of SCTL, the network is normally assumed de-

terministic. The examples that are used to adapt the existing knowledge provide new

state transitions to this deterministic network, and can cause considerable changes to

the overall network behaviour. Therefore, we say that the learning process in SCTL

is more of a revision process, rather than refinement, where the information provided

by the examples can change the existing knowledge and has priority over it, creating

a new set of rules.

The above aspect of SCTL, whilst very important when the original knowledge is

incorrect, may cause undesirable changes to the original knowledge when it is largely

correct. To prevent this situation, we propose to add certain constraints into the learn-

ing process, in order to weaken the effect of certain examples when they may cause

undesirable changes. These constraints are not encoded directly into the weights of

the network, but are part of the examples in the learning process, as follows.

Definition 24 A constraint X is defined by a tuple X = {S 0, I, S n}, where S 0 is the

initial state condition, S n is the final state condition, and I is a sequence of input

conditions I0, ..., In−1 with S k : S t → {−1, 0, 1} and Ik : In→ {−1, 0, 1}.

Definition 25 A value assignment to state variables S t is said to correspond to a

state condition S k if for every α ∈ S t, S t(α) = S k(α) or S k(α) = 0. The definition is

analogous for input conditions.

The constraint X states that if the current state of the system at timepoint t corre-

sponds to S 0, the input applied to the system corresponds to I0, and thereafter each

input applied to the system at timepoint t + k corresponds to Ik until k is equal to

a predefined size n, then the new state of the system must correspond to S n. When

106

4.2. INTEGRATING DIFFERENT INFORMATION SOURCES

a value of zero is assigned by a state (or input) condition to a variable α ∈ S t (or

β ∈ In), then no constraint is imposed on the value of α (or β).

This definition of constraints is not only applicable for weakening the effect that

individual examples have in the learned model, but also allows the reinforcement of

the initial knowledge that happens to satisfy the constraints. This is very useful as

a flexible way of incorporating knowledge during learning: while examples simply

define the inputs and outputs for each time point during an observed interval, con-

straints allow us to represent more general knowledge, including long term relations

involving assignments to input and state variables.

Let us see in more detail how the use of the above constraints is implemented in

our system. Consider the case where examples and constraints are given simultane-

ously. We keep a record of active constraints (initially empty) as well as an index

k for each active constraint. At each timepoint t, if the current state corresponds to

the initial state condition S 0 of a constraint X then X becomes active and k is set to

0. When an input is applied to the network, the system verifies if the input corre-

sponds to the current position Ink of each active constraint X, eliminating those not

satisfying this condition. When a constraint reaches the end of the input sequence,

the assignments to the state variables given by the final state condition S n are used

to define the desired output values as part of the learning process. The full algorithm

for this kind of learning is shown at the end of this section.

Let us illustrate, with an example, how constraints are used. Suppose we want to

add some constraints to the monitor example used before. In that example, we have

not given to the network any information about how to avoid two processes accessing

the resource at the same time. In Table 4.3, we illustrate two simple constraints

dealing with the case where this conflict between processes appears. The table also

shows how the active constraints are stored and used to define the desired output

107

4. LEARNING IN SCTL

values used for training.

Table 4.3: Definition of target output values (right) according to specified constrains
(left)

The system also deals with the case where examples are not available. In this

case, just the constraints must be used. As before, they are used to define the desired

output values of the network, but now also to select the inputs to be applied at each

time step. In this case, for each timepoint, a random constraint in the active list is

selected, and the current input condition associated with such constraint is used to

define the input to be applied - i.e. if a selected random constraint X has the current

input condition assigning a specific value to a variable β (e.g. InXk (β) = 1), the input

value of β to be applied to the network should be the same (in the example, inβ should

receive value 1 as input at that time point). Whenever no value is assigned to an input

at that time point (i.e. InXk (β) = 0), either 1 or −1 can be applied to the neuron, and

this choice is made randomly.

Finally, in order to allow some exploration, the system also allows the selection of

a random input value independently of the constraints. This is defined through the use

of a parameter p, which indicates the probability of the system choosing a different

input than that prescribed by the set of active constraints. When this happens, the

input values for all the variables are defined randomly within the set containing 1 and

−1. Figure 4.3, at the end of this section, gives the algorithm for the entire process.

108

4.2. INTEGRATING DIFFERENT INFORMATION SOURCES

4.2.2 Integrating and treating conflicts

When the system sets desired output values as done above, two special cases deserve

closer attention. The first is when no information is given about the desired value of

a state variable α. In this case, our first option is to assume that the value obtained by

the network is the desired value, i.e. Dt+1 = S t+1. In this way, the error will be null

for that neuron and it will not affect the weight correction in the network (since there

is no information on the associated state variable).

Treating the lack of information in the output as a null error seeks to keep, rather

than change, the existing knowledge in the network. Over time, however, this ap-

proach may lead to output values near zero within the -1,1 spectrum. This reduces

the confidence in the system (a measure of confidence will be defined in the next

chapter) and is undesirable from the point of view of the underlying logic in the net-

work, where 1 represents true and -1 false. The system caters, therefore, for other

ways of setting the desired output values in the network when information is not

provided, as follows:

• Reinforce current output: under this approach, we also attempt to preserve the

existing knowledge of the network, but we assume that positive values denote

true and negative values false. Thus, we make the desired value of an outputs

+1 if the obtained value is greater than 0, and -1 if it is less than 0.

• Reinforce previous state: this approach assumes that the system should be

taught to keep its current state unless stated otherwise. Hence, the desired

value for an output neuron representing a state variable α is set as the same

value given to α at the previous timepoint.

• Fixed default value: the easiest way of defining the desired output value; if no

information is given about the desired value of an output, it should be false by

109

4. LEARNING IN SCTL

default. Thus, the desired output is set to -1. This approach follows the concept

of default negation that something is false if it cannot be proven true.

Previous State 1 −1 1 −1 1
Network output 0.1 0.8 −0.4 0.3 1
Desired output −1 0 0 0 1

1 Null Error −1 0.8 −0.4 0.3 1
2 Reinforced Output −1 1 −1 1 −1
3 Previous State −1 −1 1 −1 1
4 False as default −1 −1 −1 −1 1

Table 4.4: Example of the different treatments for missing information

The other important situation that deserves further attention is when there is a

conflict between constraints (or between a constraint and an example). In this case,

we do not assign any priorities; instead we add all the value assignments given by the

constraints and by the examples into a variable sum, and take Dt+1 = 1 if sum > 0,

Dt+1 = −1 if sum < 0 and Dt+1 = 0 otherwise. Figure 4.3 contains the entire

algorithm for performing learning with missing information and multiple sources of

information in our system.

4.3 Extracting temporal knowledge

Extraction of knowledge from neural networks may be defined as the task of repre-

senting, in a symbolic, intelligible form, the knowledge learned by a network, which

is coded in the form of the weights and the architecture of connections and neurons.

This was considered an important challenge, mainly in the beginning of the 2000s, as

the main way of allowing the application of connectionist systems in traditional sym-

bolic domains, which required an explanation for the reasoning made by the intelli-

gent system. Even though several interesting approaches were proposed [37, 94, 93],

striking a perfect balance between accuracy and computational complexity is still an

open issue, very dependent on the application domain.

110

4.3. EXTRACTING TEMPORAL KNOWLEDGE

Figure 4.3: Algorithm depicting the full process of learning from multiple sources of
information

111

4. LEARNING IN SCTL

In an important survey of the area, Andrew et al [4] have considered different

dimensions to classify the existing approaches to knowledge extraction. They in-

clude: (a) the expressive power of the extracted rules, (b) the translucency of the

rule extraction technique w.r.t. the neural network, whether black-box or white-box,

(c) the extent to which the underlying network uses specialized training regimes, (d)

the quality of the extracted rules as measured in terms of rule readability, accuracy

and fidelity to the network, and (e) the algorithmic complexity of the rule extraction

technique.

Features (a) and (d) regard the set of extracted rules: while the expressive power

of the extracted rules is related to the question of the languages that represent neural

networks, the quality of the extracted rules is associated with the specific parameters

of the knowledge extraction process and its soundness. Features (c) and (e) regard the

algorithm used for extraction, respectively, to do with the range of neural architec-

tures and training processes to which the algorithm is applicable, and the complexity

of performing the extraction. The remaining feature (b) regards how much internal

information from the network’s structure is used by the extraction algorithm to build

the symbolic representation of the knowledge. Two main categories of algorithms

can be considered here: pedagogical approaches, where internal information about

the network is not available, i.e. the algorithm must extract information given input

and output patterns obtained from querying the network, and decompositional ap-

proaches, which can make use of all the values of synaptic weights and connection

structures inside the network to accomplish their purpose.

Pedagogical approaches face two major (and related) challenges: The choice of a

set of examples to be used, and the combinatorial explosion of the number of input-

output patterns necessary to have a good sample of the domain. One of the proposed

solutions consists in using the same examples as used for training (when available).

Some argue, however, that if the same data is used for training and extraction, an-

112

4.3. EXTRACTING TEMPORAL KNOWLEDGE

other method like, for example, a decision tree could be used directly on the original

data, making the neural network dispensable. It is the generalization obtained by the

network training that the extraction algorithms should try to explain.

Decompositional techniques also have considerable challenges. One of them re-

gards the complex nature of a connectionist architecture: the behaviour of the whole

system cannot be described as the sum of its parts. Therefore, the extracted knowl-

edge can be incomplete, or even incorrect, as illustrated by an example in [37], which

we adapt below for the case of bipolar networks. In Figure 4.4, we show a simple

feedforward network with two inputs a and b, two hidden neurons n1 and n2 and an

output neuron x, where the activation function of the hidden and output neurons is

the same as in the CILP networks (φ = 2
1+e−βx − 1, β = 0), and the bias is zero for all

the neurons.

Figure 4.4: Example of incompleteness and unsoundness of decompositional meth-
ods

For analysing the example, let’s consider a simple, decomposition analysis of

the network, by analysing the behaviour of each neuron individually. This analysis

consists in applying either -1 or 1 to the inputs of the network, and verifying the value

obtained on the output. If this value is positive, the output should be interpreted as

true, otherwise as false.

113

4. LEARNING IN SCTL

For the case 1, we can see an example of incomplete extraction of knowledge. As-

signing positive values to the input of the network will result in a false interpretation

for hidden neurons n1 and n2. However, when analysing individually the neuron x, if

negative input −1 is applied to both its inputs, it will also not be positively activated

(y(x) = −0.55). Therefore, the composition of these results would not be capable of

inferring the actual mapping performed by the network, which is ab→ x.

We can even get an unsound result from a similar decompositional extraction.

Notice that, in case 2, the combination of positive inputs would activate both n1 and

n2, and that an analysis of x with both n1 and n2 being positive (assigned to 1) would

lead to the activation of x (with an output of 0.83). Therefore, the decompositional

extraction would conclude the undesired rule ab→ x.

Another criticism of decompositional approaches consists in the lack of general-

ity: a technique built for extracting knowledge from a specific type of neural network

will probably not be applicable to other networks (e.g. a system that is capable of

extracting knowledge from a multilayer perceptron will probably not be applicable to

radial-basis function networks).

Below, we propose a simple pedagogical extraction method for SCTL networks.

We focus our discussion on extending existing pedagogical techniques to allow their

application in the temporal case, and on the use of the background knowledge to

propose heuristics to improve the extraction process, in particular the selection of

examples for pedagogical extraction. Because of the generality issues and the above

serious criticisms regarding soundness, we do not consider decompositional methods

further.

114

4.3. EXTRACTING TEMPORAL KNOWLEDGE

4.3.1 A simple pedagogical approach - State diagrams

We will consider a pedagogical approach to represent the temporal knowledge learned

by SCTL networks in a symbolic temporal language. For pedagogical extraction, one

needs to generate a set of examples (input vectors) to be applied to the network. This

set must be large enough to be a good representative of the domain, but not so large

that the extraction process become computationally intractable. Different approaches

trying to strike this balance can be found in the literature. In [37], for example, a par-

tial ordering is imposed on the set of input vectors according to the structure of the

network so that certain input vectors become preferred over certain others for query-

ing the network and rule generation. Outside the area of symbolic extraction, other

approaches to the automatic generation of examples can be found, like in the case

of the generation of negative examples in order to complement positive examples as

part of a learning process [48].

We use a simple pedagogical approach that turns out to be sufficient for our pur-

poses. We consider (i) performing a random and exhaustive assignment of the pos-

sible input vectors, when possible, and (ii) splitting the dataset into two groups, one

for learning and validation and one for extraction, otherwise.

First, we will focus on networks where input information is applied directly to

the neurons (without delay units on the input) and the temporal recurrent links are

delayed only by one time point. With these restrictions, at each time point we can as-

sociate the input vector I applied to the network to the temporal formulas represented

by such input neurons. We then run the network once to obtain activation values for

the output neurons and, through the recurrent connections, new values for some of

the input neurons. Such input neurons that receive information from the output are

known as context units. It is useful to distinguish input units (those associated with

input vector I) and context units (the values of which define a new state given I).

115

4. LEARNING IN SCTL

Below, we extract symbolic knowledge from a recurrent network by creating a

state transition diagram mapping the state of the context units to a new state given the

input, according to the following definition.

Definition 26 A transitionT is a tuple
{
S 0, I, S f ,w, count

}
containing a source state

S 0 and a target state S f given input I. w and count are auxiliary information repre-

senting a weight and the number of occurrences, respectively.

For each time point, a new transition T is stored: I represents the input vector

applied to the network, S 0 contains the values of the context units and S f contains

the values of the output units. We assign truth-value true (value 1) to positive values

in S f and false (value -1) otherwise, but we use the auxiliary weight w, calculated

as a function of the absolute values obtained in the network’s output, to calculate a

confidence interval on the assignment of truth-values.

After we apply a set of examples, all the occurrences of transition T with the

same S 0, I and S f are grouped into a single transition T ′, where wT
′

is the sum

of the individual weights and countT
′

is the number of transitions grouped. This

information is then used to generate a transition diagram that will visually indicate

the behaviour of the network.

As an example, consider a simple case where an input (Inc) is used to increment

the value of a counter, an input (Dec) is used to decrement this value, and the output

of the system identifies if the value is greater than zero. Assume that this counter is

capable of counting from 0 to 2, and therefore a state variable is needed to record if

the value is greater than 1. Figure 4.5 shows a network that represents this example

and a set of executions used for the extraction of knowledge with their associated

transitions.

In the left hand side of Figure 4.5, we illustrate the configuration of input and

output neurons in a network representing this example. In order to perform the ex-

116

4.3. EXTRACTING TEMPORAL KNOWLEDGE

Inputs State Outputs
t Inc Dec > 0 > 1 �(> 0) �(> 0) T

1 -1 1 -1 -1 -1 -1 S 0 = ∅, I = {Inc}, S f = ∅

2 1 -1 -1 -1 1 -1 S 0 = ∅, I = {Inc}, S f = {�(> 0)}
3 -1 -1 1 -1 1 -1 S 0 = {> 0}, I = {Inc}, S f = {�(> 0)}
4 1 -1 1 -1 1 1 S 0 = {> 0}, I = {Inc}, S f = {�(> 0),�(> 1)}
5 -1 -1 1 1 1 1 S 0 = {> 0, > 1}, I = {Inc}, S f = {�(> 0),�(> 1)}
6 1 -1 1 1 1 1 S 0 = {> 0, > 1}, I = {Inc}, S f = {�(> 0),�(> 1)}
7 -1 1 1 1 1 -1 S 0 = {> 0, > 1}, I = {Inc}, S f = {�(> 0)}
8 -1 -1 1 -1 1 -1 S 0 = {> 0}, I = {Inc}, S f = {�(> 0)}
9 -1 1 1 -1 -1 -1 S 0 = {> 0}, I = {Inc}, S f = ∅

10 -1 -1 -1 -1 -1 -1 S 0 = ∅, I = {Inc}, S f = ∅

Table 4.5: Transitions extracted from the example

traction, a set of executions is used as shown in Table 4.5. The table also shows each

of the transitions T obtained. When grouping the transitions, those in time points

t = 3 and t = 8 will be grouped into a transition T , while the others remain the same

- these transitions are illustrated in the diagram on the right side of Figure 4.5.

Inc

Dec

>0

>1

(>0)

(>1)

Hidden
Layer

{>0}{>1}

{>0, >1}

Inc
Dec

Inc
Dec

, Inc

, Dec

Figure 4.5: Example of extraction procedure

4.3.2 Extracting logic programs

Besides generating the above diagrams, we can also represent the extracted knowl-

edge as a temporal logic program. In order to do so, SCTL tries to identify the most

important group of transitions. The auxiliary weight and count parameters are used

for this. Transitions below a certain threshold of occurrences or a desired confidence

can be removed from the diagram. Each remaining transition T ′ is then rewritten as

117

4. LEARNING IN SCTL

a set of clauses - one clause for each output variable. The body of each clause will

contain all the input and state variables either in positive or negative form according

to the assignments of values to S 0 and I. The head of each clause will be one of the

output variables: either �α, if S f (α) = 1, or �¬α, if S T
′

f (α) = −1. To allow a better

understanding of the rule set, the rules obtained from different transitions can also be

simplified. We use Karnaugh maps [58] to do so, in such a way that complementary

literals can be removed from the body of rules with otherwise the same body and the

same head, e.g.: a← b, c and a← b,∼ c can be simplified into a single rule a← b.

The above extraction process can be extended to the case with larger delays in

the network. For delay units inserted in the input of the network, the expression

associated with that input neuron will contain a � temporal operator for each delay

unit in the network. Thus, if information about an expression α is associated with an

input neuron through two delay units, the expression �2α will be used when defining

the input I for each transition T . The same process can be used for extra delays in

a recurrent link, with a slight difference when the expression is of the form �α. In

this case, each delay unit will be associated with one � operator, i.e. if an expression

� � α is represented by an output neuron out, and this neuron is connected through

two delay units to an input neuron in, the expression α should be added to S 0 when

extracting a transition T for neuron in.

4.4 Discussion

In this chapter, we have introduced a series of structures and procedures allowing

the learning, evolution or adaptation of temporal models under a neural-symbolic

perspective. We have shown how the natural propensity of neural networks for em-

pirical learning can be applied to temporal logic domains. Following this, we have

extended the model to incorporate, in the learning stage, abstract information in the

118

4.4. DISCUSSION

form of temporal constraints, extending the possibilities of application of the system.

We have also presented a simple pedagogical extraction method that allows us to ex-

tract state transition diagrams and associated temporal logic programs from trained

recurrent networks.

In the next chapter, we will present a series of experiments, analyse the perfor-

mance of our proposed learning strategies, as well as how they interact with other

modules as part of a complete neural-symbolic framework for representation, learn-

ing and reasoning of temporal models. The results will provide important insights

into the applicability of this framework to different temporal scenarios. Much work in

the literature point out that learning and adaptation play a crucial role in the creation

of robust intelligence. Either as a strategy to overcome the knowledge-acquisition

bottleneck, or to make agent-based systems deal better with unforeseen scenarios, a

capacity for building new knowledge bases (or adapting existing ones) from experi-

ence and observation is crucial for the execution of complex, intelligent tasks.

119

4. LEARNING IN SCTL

120

Chapter 5

Experimental Validation

In this chapter, we apply a number of testbeds to evaluate the techniques proposed so

far. We focus on the performance of the techniques regarding representation and

learning of temporal knowledge. Among the possible ways of analysing the be-

haviour of our neural-symbolic system, we will mainly make use of learning curves,

cross-validation and behavioural analysis.

Learning curves are used to illustrate the convergence of neural networks. They

show the evolution of the output error calculated in the network during the training

phase. For this purpose, a 2-dimensional chart is used, where the X axis represents

the number of training epochs and the Y axis represents the error measurement. An

epoch is defined as the presentation of a number of examples to the network. In

general, we will use the normalized RMSE (root mean squared error) as an error

measurement. For each output A, we have the output oA obtained after the execution

of the network, and a desired value dA, which defines the target value that should be

learned by the network for that output. In order to calculate the normalized RMSE,

we first normalize the output domain for both oA and dA to the interval between 0 and

1. After that, we calculate (dA − oA)2 for every output A, and the error will be the

121

5. EXPERIMENTAL VALIDATION

square root of the sum of these values, i.e. RMS E =
√∑

A(dA − oA)2

The validation of a learning system is usually done in two phases. During the

training phase, a set of examples is presented and the learning system is allowed to

adapt to these examples as the above error is monitored. Then, in a test phase, another

set of examples is presented to the system to provide an estimate of the behaviour of

the learner on new examples, i.e. no adaptation of weights is performed during test-

ing. In order to obtain a more robust measure of how the network generalizes to new

examples, especially in the case when a small number of examples is available, one

may use the cross-validation process. In order to perform an n-fold cross-validation,

we split an original set of examples into n groups, and then perform n different val-

idations with a set of n − 1 groups used for training purposes and the remaining

group used for testing. The chosen test group is different for each of the n valida-

tions. An average test-set error is then taken. A specific case of cross-validation is

called “leave-one-out”, used mainly for small datasets, and which consists of a n-fold

cross-validation for a data set with n examples.

In order to evaluate SCTL when a predefined set of examples is not available for

the execution of cross-validation, we also perform some analyses of the network be-

haviour. This analysis can be performed by comparing the behaviour of the network

with some existing temporal system, or by extracting a symbolic representation from

the trained network.

The remainder of this chapter contains the results and analysis of a range of ex-

periments, which illustrate the different aspects of the system. The experiments per-

formed can be summarized as follows:

• Temporal XOR: Simple experiment used to illustrate the representation of the

� operator in the SCTL network, and also showing that the learning perfor-

mance of SCTL is comparable to that of other architectures used for the same

122

5.1. THE TEMPORAL XOR

temporal learning purposes (in this case, the Elman network [41]).

• The Muddy Children Puzzle: Testbed used by other authors to explain the

use of the Connectionist Modal and Temporal Logic architecture [32, 33], is

used here to compare SCTL with that other architecture on both representation

and learning of temporal knowledge.

• The Dining Philosophers: Testbed used to illustrate the representation of dif-

ferent temporal operators, and to evaluate the learning performance in situa-

tions where an agent has to learn while embedded in an environment (online

learning). This testbed is also used to exemplify the task of constrained learn-

ing.

5.1 The temporal XOR

To provide a better illustration of our approach to representation, we consider a sim-

ple example: the temporal XOR, proposed by Elman [41], a temporal version of a

problem traditionally used in the learning and validation of non-linearly separable

classes. We also present some preliminary learning results, seeking to provide em-

pirical justification for the use of NARX networks.

The temporal XOR problem consists of a system that receives one bit as input,

according to a predefined sequence, and should return as output a prediction of the

next bit in the given sequence. The sequence of bits is defined by the XOR operation

as follows: after the presentation of a sequence of two bits A and B as input, the next

bit will be positive if A and B are different, and negative if they are the same. In Table

5.1, we illustrate a possible sequence of bits for the temporal XOR experiment (upper

line), and the expected output for the desired predictive behaviour. The highlighted

values are the actual result of an

123

5. EXPERIMENTAL VALIDATION

t 1 2 3 4 5 6 7 8 9 10 11 12
in(α) 0 0 0 1 0 1 1 1 0 0 1 1
out(β) 0 0 1 0 1 1 1 0 0 1 1 ?

Table 5.1: Temporal XOR sequence

It is important to notice that the system needs to be able to predict correctly the

third bits of the sequence (i.e. produce the correct value in the output of the network

at the second time point). Therefore, the evaluation of success of our experiment

will consider these third bits in the sequence. For the purpose of supervised learning,

we will consider two different scenarios: in the first scenario, the network will only

perform a backpropagation step for the prediction of the third bit, not performing any

change of weight in the other time steps. In a second scenario, we use all the outputs

for learning with the random bits considered as noise in the task of learning the XOR

operation.

In addition to the learning of the XOR above, we also evaluate the effect of trans-

lating background knowledge into the network’s initial structure. To perform this

evaluation, we compare different networks with the same architecture, but with dif-

ferent initial values for their weights. As usual, the weights of a network created by

the SCTL translation are given by its translation algorithm. The weights of a network

without background knowledge (BK) are initialized with small random values.

The program that represents the XOR sequence has two clauses: β ← α,∼ �α

and β ←∼ α,�α, where α is the atom representing the input and β represents the

output. To represent atom �α, we use a delay unit directly in the input, as shown in

Fig. 5.1(Net1). Also, if we consider that α is required as output, we create a delayed

recurrent link from an output neuron representing α to the input neuron representing

�α. This also requires the insertion of a clause α ← α′ for propagating the informa-

tion from input to output, as discussed in section 3.1. This architecture is shown in

124

5.1. THE TEMPORAL XOR

Fig. 5.1(Net2). Notice that the insertion of this new clause increases the value of νP

to 2. Connections with weight 0 were inserted in order to achieve a fully-connected

network. Results are depicted in Figs. 5.3 and 5.2.

z

W

-WW

W W

-W W
-WW -W W

WW

W

inI*inI in I

out I

inI in I

outO outO

-1

z-1

W

-WW -W W

WW

W

inI* in I

out I outO

z-1

Net1 Net2 Net3

Figure 5.1: SCTL Networks used for the temporal XOR case

The results compare the networks without BK, one of the above clauses as BK

and both clauses as BK. In the case of networks representing partial knowledge (one

clause in this example), we translate that partial knowledge and insert as many extra

hidden neurons as necessary to have the same network architecture for comparison.

These neurons receive connections from every input neuron and are connected to ev-

ery output neuron, with the same random initialization of weights as for the network

without BK. This procedure will be used for all the experiments in this thesis.

In Figs. 5.3 and 5.2, the difference between Net2A and Net2B is that, in Net2A

the weights for the neurons corresponding to α ← α∗ were randomly initialized.

Network Net3 presents a model similar to Net2, but using inα∗ to compute the XOR

operator, and not inα. Both architectures correctly compute the program.

For each architecture, three combinations of clauses were used to define the ini-

tial weights of the connections. In Fig. 5.3, the left column shows the result for a

network generated without knowledge, i.e. with all weights randomly initialized. The

middle bar chart represents a network that uses a neuron to represent β ←∼ α,�α

and one with random weights. The right column represents the experiments with full

125

5. EXPERIMENTAL VALIDATION

knowledge. We have run the same learning process for all the networks.

Figure 5.2: Error of the networks for the experiments without noise

Figure 5.3: Error of the networks for the experiments with noise

Instead of a single presentation of data as done in [41], we performed a 10-fold

cross-validation. This consists of splitting the dataset into 10 groups, performing

10 learning experiments, using 9 of the groups for training and a different group

for testing the network. The learning process used backpropagation applied for 500

epochs with a learning rate of 0.3. All networks were submitted twice to the process

of 10-fold cross-validation on a dataset containing 3000 patterns, i.e. each network

was trained 20 times with 2700 patterns, and each trained network was tested on a

set of 300 patterns. To calculate the error we used the RMSE (root mean square

126

5.2. THE MUDDY CHILDREN PUZZLE

error) averaged over 20 validations. We also repeated the learning process for Elman

networks as described in [41], and the error for such experiment is depicted as the

horizontal lines in the charts. The upper region of each column, represented in light

gray, shows the error on the training set after 500 epochs, whilst the dark region

shows the smallest error obtained during the 500 epochs.

It can be observed in the charts that the insertion of background knowledge had

an effect on learning performance. It can be noted that the way in which the value of

α at time point t − 1 is propagated to the neuron representing in � I at time point t

is very important. An adequate representation causes a considerable reduction of the

error in the recognition of the temporal sequences, improving convergence and noise

tolerance. Also, in certain cases, the insertion of clauses helped the performance of

the network, especially in the case of the Net1 architecture.

5.2 The Muddy Children Puzzle

Next we consider the Muddy Children Puzzle. This example has been used by several

authors as a testbed to illustrate the representation of knowledge evolution in time.

In particular, it has been used in [31] to illustrate a neural-symbolic system based on

modal and temporal logics, called CTLK (Connectionist Temporal Logic of Knowl-

edge). In this section, we analyse the differences between SCTL and CTLK, two

approaches for the representation and learning of temporal knowledge. The Muddy

Children Puzzle can be defined as follows:

A number n of (truthful and intelligent) children are playing in a garden. A

certain number of children k(k ≤ n) have mud on their faces. Each child can see if the

others are muddy but not himself or herself. Now, consider the following situation:

a caretaker announces that at least one child is muddy (k ≥ 1) and asks “Does any

of you know if you have mud on your own face?”. To help understand the puzzle,

127

5. EXPERIMENTAL VALIDATION

let us consider the cases in which k = 1, k = 2, and k = 3. If k = 1 (only one

child is muddy), the muddy child answers yes at the first instance since she cannot

see any other muddy child. All the other children answer no at the first instance. If

k = 2, suppose children 1 and 2 are muddy. In the first instance, all children can only

answer no. This allows 1 to reason as follows: if 2 had said yes the first time, she

would have been the only muddy child. Since 2 said no, she must be seeing someone

else muddy; and since I cannot see anyone else muddy apart from 2, I myself must

be muddy! Child 2 can reason analogously and also answers yes the second time. If

k = 3, suppose children 1, 2, and 3 are muddy. Every children can only answer no

the first two times. Again, this allows child 1 to reason as follows: if 2 or 3 had said

yes the second time, they would have been the only two muddy children. Thus, there

must be a third person with mud. Since I can see only 2 and 3 with mud, this third

person must be me! Children 2 and 3 can reason analogously to conclude as well that

yes, they are muddy.

In our work, the decision making process of each “intelligent and truthful” child

is described in the form of temporal logic programs, as expressed in Table 5.2. The

program on the left hand side of the table is written for CTLK, while the one on the

right is written for SCTL. In both representations, Qi as an auxiliary atom, related

to the sequence of rounds, representing that the agent knows that at least i children

are muddy. Atom KiPi represents that agent i knows that agent j is muddy. In both

representations, we highlight a distinction between two groups of clauses: the top

clauses are responsible for reasoning about whether a child is muddy: if the known

number of muddy children is greater than the number of children that an agent can

see with mud on their faces, then she must conclude that she herself is muddy. The

other group of clauses, at the bottom, is responsible for the inference about how

many children are actually muddy: if the agent knew that at least n children were

muddy in the previous round, and no children discovered that they are muddy, then

128

5.2. THE MUDDY CHILDREN PUZZLE

the agent must know that there are at least n + 1 muddy children at the current round.

The architectures representing these programs, generated by the respective translation

algorithms, are shown in Figure 5.4. For practical reasons, some simplifications were

made, allowing the reduction of the number of neurons without compromising the

represented semantics. Notice that the main difference between CTLK and SCTL

is that CTLK requires an explicit labeling of time points, so that each clause holds

at a time point and each time point is represented by a separate network. SCTL, on

the other hand, uses a more standard recurrent network architecture with time points

encoded implicitly in the delay units of the network.

t1 : K1P1 ← Q1,K1NP2,K1NP3 K1P1 ← Q1,K1NP2,K1NP3
t2 : K1P1 ← Q2,K1NP2 K1P1 ← Q2,K1NP2
t2 : K1P1 ← Q2,K1NP3 K1P1 ← Q2,K1NP3

t3 : K1P1 ← Q3 K1P1 ← Q3

t1 : �Q2 ←∼ K1P1,∼ K2P2,∼ K3P3 �Q2 ←∼ K1P1,∼ K2P2,∼ K3P3,Q1
t2 : �Q3 ←∼ K1P1,∼ K2P2,∼ K3P3 �Q3 ←∼ K1P1,∼ K2P2,∼ K3P3,Q2

Table 5.2: Logic program describing the reasoning of each agent

To evaluate the learning performance of the networks on the Muddy Children

Puzzle, we used a learner agent based on a neural network [64]. Two different scenar-

ios were used: in online learning, the agent was put into an environment, interacting

with two agents which presented the “intelligent and truthful” behaviour described

above. In this case, the environment was responsible for informing the agent what

the desired output for learning was in each case. In the offline learning scenario,

three “intelligent and truthful” agents played, and the learner observed the behaviour

of one of those players, using the inputs and outputs from that agent as information

for learning.

Four levels of background knowledge were provided to the learner, based on dif-

ferent combinations of the two subsets of rules shown in Table 5.2. Network Net1

consists of the system without background knowledge, Net2 contains only the knowl-

129

5. EXPERIMENTAL VALIDATION

edge from the top of the set of rules, Net3 contains the knowledge from the bottom

part of the set of rules, and Net4 is generated by the translation of the entire logic

program (top and bottom part) in Table 5.2, one network for each set: SCTL and

CTLK).

t3

Q2

Q3

K1P1

K3P3

NP2K1 NP3K1

Q3

Q2

NP3K1

NP3K1

NP2K1

NP2K1Q3

Q3

Q3Q1

Q1

Q1 Q2

Q2

Q2K1P1

K1P1

K2P2

K2P2

K3P3

Q3Q1 Q2NP3K1NP2K1 K3P3K2P2

Q2 Q3K1P1

K1P1

K1P1

K1P1

Z
-1

Z
-1

CTLK SCTL

t2

t1

Figure 5.4: Architectures used on the Muddy Children example

Each learning process consisted of 50,000 games played by the agents. The con-

figuration of each game was defined randomly, and it was played until one agent have

answered correctly that she was muddy, in a maximum of three rounds. The network

used for the learner consisted of the architectures described above for SCTL and

CTLK, using backpropagation with a fixed learning rate of 0.3 and without momen-

tum. To measure the evolution of performance, these 50,000 games were grouped

into 250 sets of 200 consecutive games. The performances of the learner in online

and offline scenarios did not present considerable difference, and therefore we chose

to present the results of one execution in offline mode.

The first measurement taken was the evolution of error during training. This is

130

5.2. THE MUDDY CHILDREN PUZZLE

measured as the difference between the actual output of the network and the expected

value. In Figure 5.5, we show the evolution of Root Mean Square Error (RMSE) for

the different architectures. In the figure, each chart shows the average error at each

round from left to right. The charts use a logarithmic scale in the vertical axis to

improve visibility.

Figure 5.5: Evaluation of RMSE in both SCTL and CTLK learners on Muddy Chil-
dren Puzzle. Each line refers to a different level of background knowledge consid-
ered, and each column regards a different round of the games.

In order to analyze the generalization performance, we also produced a confusion

matrix for the last group of 200 games for the different networks. These matrices

shown the percentage of items in each configuration of expected output (false at top

row and true at bottom row) and obtained output (false at left column and true at the

131

5. EXPERIMENTAL VALIDATION

right column). The results are shown in Table 5.3. We considered two interpretations

for the true/false values in the network. In the first, values higher than zero were

assumed to represent true and values lower than zero as representing false. In a more

strict analysis of the obtained results, only the values in the intervals [Amin, 1] and

[−1,−Amin] were considered as representing true and false, respectively, with Amin

defined by the CILP translation algorithm, as usual.

CTLK t1 t2 t3

Ne t1:
87.5%(0%) 0%
12.5%(0%) 0%

0% 75.6%
0% 24.4%(19.3%)

0% 0%
0% 100%(0%)

Net2:
86% 0%
0% 14%

72.8% 0%
0% 27.8%

0% 0%
0% 100%

Net3:
90.5%(0%) 0%

0% 9.5(0%)%
62.8% 0%
37.2% 0%

0% 0%
100% 0%

Net4:
87.5% 0%

0% 12.5%
63.7% 0%

0% 36.3%
0% 0%
0% 100%

SCTL t1 t2 t3

Net1:
90.5% 0%

0% 9.5%
38.2%(0%) 22.1%(0%)

0% 39.7%
0% 0%

100%(0%) 0%

Net2:
93.5%(4%) 0%

0% 6.5%
63.5%(4.4%) 0%

0% 36.5%
0% 0%

100%(10.3%) 0%

Net3:
90% 0%
0% 10%

68.4% 0%
0% 1.6%

0% 0%
0% 100%

Net4:
86.5% 0%

0% 13.5%
68.5% 0%

0% 13.5%
0% 0%
0% 100%

1

Table 5.3: Confusion matrix of the Muddy Children example. The values in paren-
thesis show the classification for a stricter definition of true/false (x <= −Amin for
false and x >= Amin for true). These values are only shown when they differ from the
soft definition (x < 0 for false and x > 0 for true).

The results show how background knowledge influences the performance of the

networks. Notably, the use of the first set of rules in Net2 did not improve the per-

formance of SCTL, indicating that the specific, temporal nature of the information

provided by this rule set is difficult to generalize in these networks. CTLK presented

a better performance in this case, confirming that the organization of networks into

deep structures, depending on the domain, can improve learning results. This is in-

132

5.3. THE DINING PHILOSOPHERS

teresting in relation to the ideas of massive modularity as put forward by Pinker [84],

and should be further investigated.

On the other hand, SCTL presented a better performance than CTLK on the learn-

ing of the first set of rules in the first rounds with Net1 and all rounds with Net3. This

seems to indicate that the static nature of the first set of rules is more easily learned

by this network than the temporal recurrent values. Finally, SCTL presented a better

approximation of the desired 1,-1 values than CTLK, having less activations close to

zero.

5.3 The Dining Philosophers

In this section, we intend to analyse the system at learning the internal states nec-

essary to take decisions in a temporal domain associated with synchronization of

processes. For such task, we have chosen a well-known testbed for distributed and

communicating computing systems: the dining philosophers problem, originally de-

scribed in [40]. The scenario is as follows: n philosophers sit at a table, spending

their time thinking and eating. In the centre of the table, there is a plate of noodles,

and each philosopher around the table needs two chopsticks (forks) to eat it. The

number of forks on the table is the same as the number of philosophers. One fork

is placed between each pair of philosophers and they will only use the forks to their

immediate right and left, and never share a fork at the same time. They never talk to

each other, so they cannot negotiate a protocol of synchronization, which creates the

possibility of deadlock and starvation.

In order to create a simple, deadlock-free environment, we defined the following

policy regarding the behaviour of each philosopher (or agent): from the moment an

agent i perceives that she is hungry (hungryi), she must start to try and get the neces-

sary forks, in an arbitrary order (in our case, we stipulate it is from the left). When an

133

5. EXPERIMENTAL VALIDATION

agent has both forks, she will eat until she perceives she is sated (satedi). Each agent

i interacts directly with the environment through five different actions: eati, repre-

senting that the agent is either eating or trying to, dropLi and dropRi, indicating that

the agent is returning a fork to the table (the one on her left or right, respectively),

pickLi and pickRi, indicating that the agent is trying to obtain one of the left or right

forks, respectively. Since a fork may be unavailable, the environment responds to

any request made at time t at the next time point t + 1 through a message gotLi or

gotRi, respectively, if the allocation was successful. It is important to highlight that

an agent does not receive any external information about her state: she only receives

information about events at an individual time point, and needs to find an internal

representation of her states according to these events.

We can describe the desired behaviour of each agent as a temporal logic program,

as shown in Table 5.4. Considering that each agent behaves according to such spec-

ification, our environment is defined to menage the allocation of forks in such a way

that the execution is free of deadlocks. Given that our goal is to assess learning per-

formance (i.e. how the agents learn the above-mentioned internal representation), the

environment also acts as a supervisor of each agent’s learning, where actions should

be taken according to an expected behaviour.

Table 5.4, defining the agents’ expected behaviour, is divided into two parts: the

upper part contains the actual description of the behaviour, and the lower part con-

tains rules inserted by the SCTL translation algorithm of Figure 3.10. During the

experiments, we consider three kinds of agents, each of them having a different neu-

ral network as core decision process. A fully knowledgeable (FK) agent will have a

neural network built by the SCTL translation of the entire set of rules in Table 5.4.

A partially knowledgeable (PK) agent will have a network built from the rules in the

lower part of Figure 5.4, and an agent with no prior knowledge (NK) will have a

network with random weights. In order to provide equal conditions for the learning

134

5.3. THE DINING PHILOSOPHERS

pickL1WgotL1 ← hungry1
pickR1WgotR1 ← gotL1
eat1Wsated1 ← gotR1

dropL1 ← sated1
dropR1 ← sated1
sated1 ← sated′1
GotL1 ← GotL′1
GotR1 ← GotR′1

pickL1WgotL1 ← �(pickL1Wgot1,A),∼ �gotL1
pickL1 ← pickL1WgotL1,∼ gotL1

pickR1WgotR1 ← �(pickR1WgotR1),∼ �gotR1
pickR1 ← pickR1WgotR1,∼ gotR1

eat1Wsated1 ← �(eat1Wsated1),∼ �sated1
eat1 ← eat1Wsated1,∼ sated1

Table 5.4: An agent’s temporal knowledge representation

of the different agents, the neural networks are created with the same numbers of

neurons: the FK networks have their number of hidden neurons defined by the SCTL

algorithm, the PK networks have some neurons inserted into the hidden layer with

random weights, and the NK networks use the same architectures as FK and PK, but

with all the weights initialized randomly. The figure below shows the architectures

of the networks.

-1z

Figure 5.6: Network architectures used to perform the Dining Philosophers

135

5. EXPERIMENTAL VALIDATION

5.3.1 Offline Learning

Having defined the agents, the first scenario we consider is offline learning, where

three FK agents (networks) interact with the environment, and a fourth, learner agent

is put alongside them to observe one of the agents at a time, and learn its behaviour

according to such observations. At first, we used a NK learner agent, i.e. it needs to

learn the complete behaviour from observation. We then considered the PK and FK

learner agents for completeness.

Figure 5.7 shows the training set performance of the FK, PK and NK networks

in the offline learning setting. The figure shows the root mean squared error (RMSE)

for each network over 500 epochs, each epoch consisting of the application of 200

consecutive observations.

As expected, the FK network seems to offer a baseline for learning, with the PK

network converging faster than the NK network. Then, the NK network seems to

converge to the behaviour of the PK and FK networks, but its error shoots up again

near the end of the 500 epochs. Table 5.5 gives a more detailed view of the offline

experiments, showing results averaged over eight applications of the learning process.

The first two lines in the table show how many epochs are needed for each FK, PK

and NK network to achieve RMSE below 0.2 and 0.1, respectively. Line 3 shows the

average of the lowest RMSE obtained during training, and line 4 shows the average

of the RMSE at the end of the process. Having a difference between the two errors

illustrates the case where the network does not converge.

FK HK NK
RMSE ≤ 0.2 0 73 137.88
RMSE ≤ 0.1 0 80 155.63
Lower Error 0.0032 0.016 0.082
Last Error 0.0032 0.07 0.79

Table 5.5: Offline Learning Results

136

5.3. THE DINING PHILOSOPHERS

NK

PK

FK

RMSE x time

500450400350300250200150100500

1

0.5

0.1

0

0.05

0.01

0.005

Figure 5.7: Offline Learning Error in Time

5.3.2 Online Learning

We then carried out online learning experiments, i.e. with the agent acting in the

environment as it learns. We used an environment with three agents: agent 1 was

the learning agent using either the FK, PK or NK network; agents 2 and 3 were fully

knowledgeable and not learning. We have run these experiments for 100,000 time

points. Figure 5.8 shows the RMSE on the training set again for 500 epochs. It

illustrates well the differences in learning performance between the networks with

different levels of knowledge. The figure clearly indicates that the use of background

knowledge as encoded by SCTL can improve convergence and training performance.

In this experiment, we also analysed the behaviour of the system as a whole

by measuring the allocation of forks to agents through the relationship between the

number of agents wishing to eat and the number of agents actually eating. This

is shown in Figure 5.9, where the FK network shows, as expected, a rather stable

behaviour from the beginning, and the PK and NK networks seem to converge to

that stable behaviour after about 150 epochs. However, just after 250 epochs, the

NK network got hold of resources, preventing other agents from eating and therefore

137

5. EXPERIMENTAL VALIDATION

reducing the resource allocation rate. But soon afterwards, it was able to learn its

way out of this situation.

NK

PK

FK

RMSE x time

500450400350300250200150100500
0

1

0.5

0.1

0

0.05

0.01

0.005

Figure 5.8: Online Error in Time

NK

PK

FK

Allocation x time

450400350300250200150100500

0.5

0.4

0.3

0.2

0.1

0

Figure 5.9: Resource allocation in time

If we compare Figures 5.8 and 5.9, it becomes clear that the decrease in the error

is directly related to the agents’ synchronization and proper use of resources. The

results obtained in these experiments indicate that this line of research, combining

temporal knowledge and connectionism, is worth pursuing. It provides supporting

evidence for the integration of symbolic knowledge and neural networks in the case

138

5.3. THE DINING PHILOSOPHERS

Source St. Input Target St.
{} {Hungry} {PickL}
{} {GotL} {¬PickL, PickR}
{} {GotR} {¬PickR, Eat}
{} {S ated} {¬Eat,DropL,DropR}

{PickL} {¬GotL} {PickL}
{PickR} {¬GotR} {PickR}
{DropL} {} {¬DropL}
{DropR} {} {¬DropR}
{Eat} {¬S ated} {Eat}

Table 5.6: Constraints used in the learning experiments

of temporal knowledge.

5.3.3 Constrained learning

Next, we redefine the testbed to illustrate our idea of constrained learning to incor-

porate abstract symbolic knowledge into the neural network. In our experiments, we

consider only neural networks without background knowledge, learning from a pre-

defined set of constraints, shown in Table 5.6. The table is divided into two parts:

the top part contains the trigger constraints, which define the conditions that trigger

the state variables, and the bottom part presents the persistence constraints, which

represent when the states should be kept.

Notice that each cell in the table represents the conditions which should be ver-

ified in the initial state, input and target state for each constraint. This means, for

instance, that any state will match the first constraint. Therefore, if the current input

assigns Hungry to true, the next state should assign PickL to true. Notice that the

constraints give a considerable degree of freedom to the system, since it accepts any

value for the variables that are not defined by the constraints. In our first experi-

ment, we will verify the effects of this on the learning performance and the learned

behaviour.

139

5. EXPERIMENTAL VALIDATION

We consider offline learning, where a learner is not an actor in the environment,

but is an observer of the behaviour of an agent. However, although the input data is

given by the observed environment, the learned output will not take into account the

behaviour of the agents in the environment: learning will happen by considering only

the defined set of constraints. The training process will run for 100 epochs, where an

epoch is the entire set of observations containing 100,000 input vectors.

We have mentioned earlier that special care is needed when neither examples nor

constraints provide information about the desired value of a state variable. In this

example, we will consider 4 different default values for such variables, and explore

how they affect the learning process and the extracted knowledge. Table 4.4 contains

an example of the value assignment illustrating the different possibilities.

In all cases, the network was capable of learning the desired constraints. The

RMSE obtained for the set of inputs was always below 0.01% at the end of the train-

ing process. However, the constraints gave only general information about the de-

sired behaviour, allowing the learning process to use different solutions to adapt to

them. In the first two cases, the original knowledge of the network was kept when no

information was provided. This did not happen in the other cases, as detailed below.

In order to evaluate the behaviour of the network, we compared the behaviour of

each trained network with an optimal agent which behaves according to the expected

policy (as defined by the entire rule set). Figure 5.11 shows the percentage of right

decisions taken by the networks in comparison with the optimal agent. As shown

in the figure, keeping or reinforcing the existing knowledge of the network did not

produce a good result. This happens because the constraints do not have enough

conditions to guide the learning process to the desired behaviour, i.e. the system can

learn a different behaviour which satisfies the constraints. On the other hand, the use

of arbitrary default values seems to have created a more focused learning process,

140

5.3. THE DINING PHILOSOPHERS

Figure 5.10: Performance of the different approaches/possibilities

according to the results obtained here.

5.3.4 Extracting learned knowledge

The transition diagram in Figure 5.10 was extracted from the network trained by

following the fourth approach/possibility, using a pedagogical extraction applied to

the training data. The figure illustrates all the possible states in the system, with the

darker ones being reachable by the agent. The state variables PickL, PickR, DropL,

DropR, Eat are represented, respectively, by A, B,C,D, E. Most of the states do not

follow the “correct” or desired behaviour of the system, therefore more freedom can

cause unpredictable effects on the system. On the other hand, limiting the behaviour

through the definition of a default option whenever the constrains are not applied, has

helped the system focus on a limited set of states.

The above results indicate the need for a quantitative as well as a qualitative

analysis of our system. Take, for example, a comparison with the work of [64]. Both

systems are capable of learning abstract, temporal knowledge in neural networks.

However, SCTL was capable of learning with only 6 hidden neurons, while [64]

141

5. EXPERIMENTAL VALIDATION

Figure 5.11: Extracted transitions from the network

�pickL← Hungry
�pickL← PickL, S ated
�pickL← PickL,GotR
�pickL← PickL,∼ GotL
�pickL← PickL,DropR
�pickL← PickL,DropR

Table 5.7: Set of clauses extracted to infer pickL variable

required 11 hidden neurons to represent each of the clauses of the program and the

extra context neurons to represent internal states.

On the other hand, if we extract the learned knowledge in the form of a logic pro-

gram from the SCTL networks, we will have a considerably larger number of clauses

in the extracted knowledge than [64]. Table 5.7 shows the simplified version of the

clauses in which the atom �PickL is in the head. Although our extraction algorithm is

not optimized for readability, we can see that by incorporating the knowledge through

learning from constraints, thus allowing the network to build a distributed internal

142

5.4. DISCUSSION

representation, can create difficulties for extraction. The work of [64], however, fo-

cused on a localist representation, taking the logic program and creating, instead, an

individual unit for the representation of the symbols and clauses. We argue therefore,

that [64] seems more adequate under a symbolic perspective, while SCTL follows a

more connectionist perspective.

5.4 Discussion

An effective inductive learning technique, when applied to a specific task, must be

able to satisfy two requirements, which we will call identification and generalization.

Identification consists of building an internal representation that properly describes

the information presented through examples. Generalization regards the adequacy of

this internal representation when applied to unseen examples.

In the literature, one can find mathematical proofs of the convergence of several

training algorithms for connectionist systems [91, 95]. While these theoretical re-

sults are relevant to the task of identification, generalization performance can only be

estimated by experimental analysis. A good generalization performance depends on

the learning technique and architecture (i.e. representation), but also on whether the

examples are a good representative of the problem, and how adequate the learning

system is to the application domain.

Throughout this chapter, we analysed the application of the temporal connection-

ist learning techniques proposed earlier in the thesis in a number of domains. Al-

though the results cannot offer a definitive answer as to which representation is most

suitable, they contribute to the ongoing scientific discussion about the need for rep-

resentation in learning. The results indicate that SCTL can be suitable as a technique

for robust temporal learning using neural networks.

143

5. EXPERIMENTAL VALIDATION

Also, in the last two chapters, we have extended our system to allow the inte-

gration of more abstract information during the learning process. By working with

constraints, we allow the learning process to be driven by a desired set of conditions,

therefore expanding the applicability of the system to areas that require this abstract

notion of property learning as part of an adaptive process. In the remainder of the

thesis, we will explore this idea and use SCTL as part of a verification and adaptation

framework, integrating SCTL with a model checker and using it to adapt and evolve

software system models.

144

Chapter 6

The Verification and Adaptation

Framework

In this chapter, we integrate the SCTL system with the NuSMV model checker, offer-

ing a new, robust way of adapting and verifying software system specifications with

respect to system properties.

6.1 Formal methods and model checking

While engineering disciplines are in general based on strong mathematical formal-

ism, the concept of Software Engineering is usually considered under a less strict

perspective. Until recently, the development of computational tools was seen as be-

ing closer to an art than an actual engineering discipline. While several processes,

abstractions and tools have been incorporated into the task in the last decades, most

of the process still relies on human creativity and expertise to do most of the critical

work[101].

Take, for instance, the task of ensuring that a developed software accomplishes

145

6. THE VERIFICATION AND ADAPTATION FRAMEWORK

the tasks it was specified to do. Validation and verification are two important ar-

eas in software engineering. The former consists in analysing a developed software

to define if its project attends the requirements. Software verification, on the other

hand, is the process to verify if a developed software is working according to the

specified project, for instance, by testing the software [56]. Several businesses are

dependent on dynamic verification (testing), which consists in the verification per-

formed during the execution of the software to ensure the quality of the product, with

several processes and templates used to facilitate the task of testing. However, in the

case of complex systems, where the software is subject to a large number of different

scenarios, testing all the different possibilities consists in a difficult, expensive and

sometimes impossible task.

However, several temporal logic formalisms have been proposed for the represen-

tation of requirements, behaviour and properties of software systems, and are being

used to automate certain tasks in software engineering, reducing the dependency on

human participation and improving the reliability of the deployed processes and the

developed products [22], also reducing the time and costs of software projects.

Software verification is, therefore, a very important application of temporal logic

in software engineering. Model-based verification consists of verifying if a model

M, which describes the system, satisfies a formula φ (M � φ), where φ specifies

the desired property of the system. The term model checking is used to describe the

group of automatic formal methods for verifying properties of a system. The original

ideas date from the beginning of 1980’s with the work of [42, 24, 97]. Model check-

ing has been widely used in industry, including applications in hardware, software

and artificial intelligence systems [10, 11, 22, 39].

Model checking tools can be described as comprising three different entities: A

description language used to represent the model, a specification language to repre-

146

6.1. FORMAL METHODS AND MODEL CHECKING

sent the properties that should be satisfied by the system, and the verification engine

that will perform the actual verification. Among the several existing tools available

for Model Checking, a widely used tool is the New Symbolic Model Verification

(NuSMV) [20, 21]. NuSMV gathers several different functionalities in an unique

tool. Besides having an expressive description language, it allows the verification of

liveliness and safety properties expressed in both CTL and LTL. Also, NuSMV al-

lows the engineer to choose between two different approaches to perform the verifi-

cation. One is based on the use of binary decision diagrams (BDD) [113] to represent

and perform inference over the models, and the other considers writing the models

as propositional logic expressions, and using propositional satisfiability verification

(SAT) for verification [21]. We will use NuSMV in the rest of this thesis.

6.1.1 Integrating machine learning and verification

The application of automated verification techniques has brought more reliability to

the process of software development. However, a number of issues remain open. One

of the main issues regards the need for an abstract model of the system, described in

the specific language used by the model checker, in order to allow the verification

process to take place. Also, the size and complexity of the model to be verified is an

issue, given that computational complexity is critical to the task [101].

In the verification of abstract models, one of the main issues is how to discover the

necessary changes to be made to the model to make it comply with the given proper-

ties. While model checking tools allow the automatic verification of such properties,

they only provide hints about what is wrong with the model, in the form of counter-

examples. Recent work has proposed the use of machine learning in the refinement

or revision of models taking into consideration the information provided by counter-

examples. One interesting approach to refinement in software models consists of

147

6. THE VERIFICATION AND ADAPTATION FRAMEWORK

CEGAR - Counter-example Guided Abstraction Refinement [23]. CEGAR uses an

iterative approach to improve an existing abstract model, making use of the counter-

examples obtained from the verification process. This iterative process of refinement

limits the scope of the refinement according to the level of abstraction.

Abductive and deductive inference was used by [2] in the refinement of models

described in event calculus, according to positive or negative examples of desired

behaviour. Also, in the work of [3], the approach is extended to deal with abstract

description of properties such as goal models. It is claimed that the application of

such techniques may improve different processes in the software cycle, such as the

evolution of requirement descriptions according to examples given by stakeholders.

In more general terms, the iterative cycle of analysis and revision to evolve re-

quirements specifications was explored in [34], where not only the refinement, but

revision of an existing model was considered. In this work, the authors also highlight

the importance of allowing changes to incorrect knowledge existing in the original

model.

Anther approach to learning in the process of verification of software consists

of the Black Box checking [83], which uses learning techniques to build a model

describing the behaviour of a system, through the observation of such behaviour in

real cases. Such process, useful as a strategy of reverse engineering, caters for the

construction of a high level model of a software already implemented, allowing the

verification without a previous description of the model. This process can also be

done with the use of an incorrect model of the system [49], where the model gives

an initial approximation of the system, and the adaptation process allows not only

the verification of the system, but also the reduction of the discrepancies between the

model and the actual system.

148

6.1. FORMAL METHODS AND MODEL CHECKING

6.1.2 Our integrated verification/adaptation framework

In figure 6.1, we depict all the modules involved in our framework. The round blocks

illustrate the knowledge repositories, while the rectangles illustrate the main modules

used by the framework. These modules are four:

1. The NuSMV model checker is responsible for the verification tasks in the

system. It receives, as input, a symbolic description of the model to be verified,

as well as a set of properties (expressed in LTL or CTL). If the model satisfies

the given properties, it will inform it to the user, otherwise it will return a set of

counter-examples, i.e., specific sequences of inputs/states in which the property

is violated;

2. The SCTL translation is responsible for converting the symbolic description

of the system into a neural network architecture. If the system is described

as a logic program, it runs the SCTL translation algorithm as described in the

Chapter 4 to create the network. If the knowledge is expressed as a NuSMV

description, it will convert it into a logic program, as will be described later in

this chapter;

3. The Learning supervisor has the algorithms that allow the observed exam-

ples of an existing system and the counter-examples from the NuSMV model

checker to be integrated into the existing knowledge in the network, through

the use of backpropagation. Moreover, if a partial description of the model is

not given, the network can be trained directly from a set of examples;

4. The SCTL extraction, in the end, is capable of returning a revised model of

symbolic knowledge, by extracting the knowledge from the neural network

using a pedagogical approach. This extracted knowledge can be expressed in

149

6. THE VERIFICATION AND ADAPTATION FRAMEWORK

two different manners: as a state transition diagram, or as a logic program or

NuSMV description.

Figure 6.1: Diagram of the framework for iterative verification and adaptation of
software specifications

6.2 Representing temporal models

Throughout the work, we will focus on a fragment of the NuSMV language for the

description of models. For the sake of simplicity, we consider, at first, the represen-

tation of deterministic models. We will relax this restriction later, thus increasing the

applicability of the framework to nondeterministic scenarios.

In Table 6.1, we describe the syntax of the NuSMV fragment that will be used

throughout this work. Notice that two data types are allowed: boolean and scalar

(i.e. variables whose domain is described by a finite enumeration). In practice, the

NuSMV model checker converts any description into a propositional model before

performing the actual verification, by converting every variable into a boolean.

As a running example, let us consider the Pump System case study used by [2, 3]

150

6.2. REPRESENTING TEMPORAL MODELS

NuSMV Program ::
“MODULE” ModuleName “
“IVAR” VarDeclaration “;”
“VAR” VarDeclaration “;”
“ASSIGN”
InitBlock “;”
NextBlock “;”

VarDeclaration ::
VarId “:” VarType

— VarDeclaration “;” VarDeclaration
InitBlock ::

“init(” VarId “)=” ConstValue
— InitBlock “;” InitBlock
NextBlock

“Next(” VarId “)=” SimpleExp
— NextBlock “;” NextBlock
SimpleExpr ::

atom
— VarId
— BoolExpr
— CaseExpr
CaseExpr ::

“case” CondExpr “;” “esac”
CondExpr ::

BoolExpr “:” SimpleExpr
— CondExpr “;” CondExpr

Table 6.1: The simplified NuSMV language

to evaluate symbolic strategies to adapt software requirements according to proper-

ties. The Pump System monitors and controls the levels of water in a mine, to avoid

risk of overflow, through the use of three state variables: CrMeth indicating that the

level of methane is critical, HiWater indicating a high level of water, and PumpOn,

indicating that the pump is turned on. In order to turn on and off such indicators, six

different input signals are considered: sCMOn, sCMO f f , sHiW, sLoW, TurnPOn

and TurnPO f f . In table 6.2 we illustrate an initial description of the system in

NuSMV.

151

6. THE VERIFICATION AND ADAPTATION FRAMEWORK

MODULE PumpSystem
IVAR
s : {sCMOn, sCMOff, sHiW, sLoW, , TurnPOff};
VAR
CrMeth : boolean;
HiWat : boolean;
PumpOn : boolean;
ASSIGN
init(CrMeth) := FALSE;
init(HiWat) := FALSE;
init(PumpOn):= FALSE;
next(CrMeth) :=
case
s = sCMOn : TRUE;
s = sCMOff : FALSE;
esac;
next(HiWat) :=
case
s = sHiW : TRUE;
s = sLoW : FALSE;
esac;
next(PumpOn) :=
case
s = TurnPOn : TRUE;
s = TurnPOff : FALSE;
esac;

Table 6.2: NuSMV description of the Pump System example

6.2.1 Extending SCTL

We have adapted SCTL to work as the learning core of our framework. SCTL al-

lows the use of a symbolic logic representation to describe the models in a neural

networks, and therefore allowing the learning task to be performed in noisy or in-

complete datasets. In order to allow a better representation of the variable types of

NuSMV, we use the following definition of variable groups:

Definition 27 An state variable group gPst in a SCTL program P is given by a set

of state variables αi ∈ S tP, in such a way that, for each time point t, at least one

152

6.2. REPRESENTING TEMPORAL MODELS

variable αi ∈ gst is associated to true, and if a variable αi ∈ gst is associated to true

at t, all the other variables αi′ ∈ gst are associated to false, i.e. one and only one

variable αi ∈ gst is associated to true at each time point t. The same definition can

be extended to input variable groups gPin of input variables βi ∈ InP.

It can be noticed that this concept of variable groups is useful for the represen-

tation of NuSMV scalar variables, where each group of n propositional variables in

SCTL is capable of representing a scalar variable with n different possibilities of

value in NuSMV. When translating the SCTL program P into a neural network, and

using this network for learning, these groups need to be taken into consideration. For

input groups, for instance, the numeric vectors applied into the input of the network

need to be able to comply with the definition of the group, assigning 1 to one of the

inputs and −1 to the remaining ones.

For the output neurons and the interpretation of the state groups, we keep the

network free to adapt the weights and calculate the values according to the weights

without information about groups. However, as we explain below, the definition of

the groups is used when we extract the knowledge from the network in the form of a

NuSMV description. Having defined the variable groups, we can define a temporal

model in SCTL as follows:

Definition 28 A SCTL temporal model P is defined by the tuple P = {S tP, InP,

InitP, CP, GrP}, where S tP is the set of state variables α, InP is the set of input vari-

ables β, InitP is the initial state, defined by a mapping from InP∪S tP to {true, f alse},

CP is a set of clauses of the form �α← α1, ..., αn, β1, ..., βm and GrP is a set of input

groups gin and state groups gst.

The set of clauses will define the assignment of values to the state variables at

the next time point, in the same way as defined before for SCTL: a state variable

153

6. THE VERIFICATION AND ADAPTATION FRAMEWORK

α will be true at a time point t + 1 if, and only if, it is head of at least one clause

�α ← α1, ..., αn, β1, ..., βm where all the input variables β1, ..., βm and state variables

α1, ..., αn are true at time t.

6.2.2 Translating between representations

The algorithm in Figure 6.2 describes how the NuSMV headers can be used to gen-

erate the SCTL variables. It is important to notice that the set of variables is constant

for an application, i.e. the future learning steps are not capable of creating, change

the type or removing any variable in the system.

In order to translate NextBlock into SCTL, we need to make sure that scalar

variables defined in the NuSMV model fit the structure of SCTL networks. All the

comparisons regarding scalar variables (found in the body of the case expressions of

the NuSMV language in Table 6.1) can be directly treated as a boolean variable in

the SCTL network, by considering expressions like VarId = ConstValue as vari-

ables, and converting VarId! = ConstValue into ∼ (VarId = ConstValue). When

comparing different variables, all the possible instances of the variables need to be

considered, thus building more complex boolean expressions and networks.

However, when dealing with state variables, this instantiation is more compli-

cated, due to the assignment of values form a variable to another. In this case, to

describe an expression VarId1 := VarId2 in the network, one needs to consider a

conditional statement, with a new condition to represent each possible value. The

NuSMV model checker already performs these kinds of conversions before verifying

the model [20], and here we use the same mechanisms.

Once the above treatment of scalar comparisons is complete, the clauses for the

SCTL network can be created. Our strategy consists of grouping all the conditions

that lead to a boolean variable VarId being mapped to true in a single expression

154

6.2. REPRESENTING TEMPORAL MODELS

φ. Then, φ is rewritten as a φ′ expression in disjunctive normal form (DNF) (φ′ =

α1 ∨ α2 ∨ ...∨ αn, where each αi is an expression βi1 ∧ βi2 ∧ ...∧ βim). Then, a clause

is created for each conjunction αi in φ′: this clause will be of the form �(var =

value) ← α1, α2, ..., αn, denoting that variable var will have a certain value at time

point t + 1 if α1, α2, ..., αn all hold true at time point t.

Another important difference between NuSMV and SCTL regards the interpreta-

tion of a list of statements. In NuSMV, a conditional statement (CaseBlock) assumes

that the conditions are read in a sequence, and when a condition is satisfied, the fol-

lowing ones are not read. In a neural-symbolic framework, knowledge is processed

in parallel, meaning that two conditions (bodies of clauses) can be satisfied at the

same time. Parallelism is a main attribute of a neural network, and one of the main

reasons for its efficiency and robustness. Hence, we assume here that any such par-

allel conditions in the same CaseBlock of a NuSMV model are mutually exclusive.

An alternative to this assumption would be to include constraints explicitly as part of

the derived clauses.

Our assumption of mutual exclusion above needs to be considered further in the

case when no conditions of a CaseBlock is true. Instead of implementing an “Else”

definition, NuSMV uses a “TRUE” or “1” condition at the end of a block to indi-

cate that if all the conditions before are false, the assignment given by this condition

should be true instead. In SCTL, we do not use this interpretation, and if all the con-

ditions in a CaseBlock are false, no new value will be assigned to the related variable

(i.e. the variable will keep its previous value). We claim that this approach is more

appropriate in a temporal model of learning. SCTL works with “default negation”,

i.e. a variable is interpreted as false unless there is a clause assigning it to true. Thus,

we group all the conditions that lead a variable VarId to false in a boolean expression

ψ. To represent the NuSMV cases when a previous variable value should be kept, we

expand the φ expression defined above to φ∨(VarId∧¬ψ) before converting to DNF.

155

6. THE VERIFICATION AND ADAPTATION FRAMEWORK

This means that clauses will be inserted to deal with all conditions leading VarId to

true, and also the situation where VarId was previously true and there are no condi-

tions leading VarId to false. The algorithm accounting for the above and translating

NuSMV into SCTL is shown in Figure 6.3.

When applying the algorithms to translate the NuSMV description of the Pump

System into a logic program, we should obtain a descriptionP =
{
S tP, InP, InitP,CP

}
where the information in CP is read from the NextBlock in the description, and the

remaining information is given as follow, where ∼ stands for negation (we denote by

GrP the groups of variables used to represent the scalar input variable).

• S tP = {CrMeth,HiWat, PumpOn}

• InP = {s = sCMOn, s = sCMO f f , s = sHiW, s = sLoW, s = TurnPOn, s =

TurnPO f f }

• InitP = ∼ CrMeth,∼ HiWat,∼ PumpOn

• GrP = {{s = sCMOn, s = sCMO f f , s = sHiW, s = sLoW, s = TurnPOn, s =

TurnPO f f }}.

• CP = {

– �CrMeth← s : sCMOn

– �CrMeth← CrMeth,∼ s : sCMO f f

– �HiWat ← s : sHiW

– �HiWat ← CrMeth,∼ s : sLoW

– �PumpOn← s : TurnPOn

– �PumpOn← CrMeth,∼ s : TurnPO f f

}

156

6.3. EXTRACTING NUSMV SPECIFICATIONS

6.3 Extracting NuSMV specifications

As we have seen, we are can convert the simplified NuSMV specifications into SCTL

programs, which can then be translated into NARX neural networks and then subject

to learning and adaptation algorithms. Moreover, as described in the last chapter, the

learned knowledge can be extracted in the form of state transition diagrams. In order

to obtain a new NuSMV specification from the knowledge learned by the network

and close the verification and adaptation cycle, we now propose a simple strategy for

obtaining this specification from the defined set of transitions.

In previous chapters, we have described how we filter the extracted transitions

and then convert them into a set of logic clauses: the initial state S 0 and the input I

information from the transition are used to define the body of the clauses, while each

variable α in the target state S f is chosen as head of a different clause: if positive, the

head will be α, otherwise it will be ¬α.

The same process can be defined for extracting the NuSMV “NextBlock” for

boolean variables. For each variable α, each transition (or group of transitions) in

which the variable appear as positive in the target state, will be converted into an

expression con j : TRUE in the next block of the variable α, where con j is the con-

junction of atoms that represent the source state and input in the transition. The same

is applied to the transitions where the variable α appears as negated in the target state,

generating an expression con j : FALS E.

When considering the scalar variables, a different treatment is necessary. Given

that only one of the values can be true at the same time, simultaneous activation of

different neurons representing α = value1, α = value2, ... α = valuen for the same

variable α need not be considered.

A simple way to deal with such situations is to impose a restriction in the learn-

157

6. THE VERIFICATION AND ADAPTATION FRAMEWORK

ing process, in such a way that assigning the same values to the same scalar variable

is avoided. This kind of solution would have to change the learning algorithm con-

siderably. We prefer to leave the learning algorithm unconstrained and constrain the

extraction process instead.The extracted transition diagram will then have to consider

that the system can have both values assigned to the variable, which could be con-

sidered a non-deterministic view of the learned model. Given that each transition is

also associated to a weight information (given as a function of the output value of the

neurons), this numerical information could be used to measure the confidence of our

system to assign a variable to a specific value. These ideas will become clearer in the

next chapter as we apply the framework to an entire cycle of learning, extraction and

verification, until a property is satisfied in the pump system example.

This chapter was focused on the representation and translation of knowledge from

the different modules of our framework (namely, the NuSMV model checker and the

SCTL learning engine). The next chapter will illustrate the role played by machine

learning in the framework, illustrating how the information from observed examples

and NuSMV counter examples can be used during the process to allow the evolution

of existing models. A series of examples will then be used to illustrate all the different

cases, allowing a deeper discussion of some of the aspects introduced here.

158

6.3. EXTRACTING NUSMV SPECIFICATIONS

HeaderTranslation:
switch Declaration do

case “IVAR” VarDeclaration “;”
foreach VarId“ :′′ VarType in VarDeclaration do

if VarType = “boolean” then
InP ← InP ∪ {VarId}

else
foreach v ∈ possibleValue(VarType) do

InP ← InP ∪ {VarId = v}
end

end
case “VAR” VarDeclaration “;”

foreach VarId“ :′′ VarType in VarDeclaration do
if VarType = “boolean” then

S tP ← S tP ∪ {VarId}
else

foreach v ∈ possibleValue(VarType) do
S tP ← S tP ∪ {VarId = v}

end

end
case “init(” VarId “):=” ConstValue

if VarId is boolean then
if ConstValue = “TRUE′′ then

InitP ← InitP ∪ {VarId}
else if ConstValue = “TRUE′′ then

InitP ← InitP ∪ {∼ VarId}

else
InitP ← InitP ∪ {VarId = ConstValue};
foreach u ∈ possibleValue(x) do

if VarId , k then
InitP ← InitP ∪ {∼ (VarId = ConstValue)}

end

endsw
end

Figure 6.2: Algorithm that reads the variables declarations from NuSMV

159

6. THE VERIFICATION AND ADAPTATION FRAMEWORK

GenerateClauses:
Propositionalization;
foreach declaration VarId “ := “ exp in NextBlock do

if exp is caseExp then
foreach declaration BoolExpr : v do

if v = “TRUE” then
φ← φ ∨ BoolExpr

else if v = “FALSE” then
ψ← ψ ∨ BoolExpr

else
φ← φ ∨ (BoolExpr ∧ v)

end
else if exp is VarId then

φ← exp
φ′ ← DNF(φ ∨ (VarId∧ ∼ psi))
foreach αi = (β1 ∧ ... ∧ βm) in φ′ = (α1 ∨ ... ∨ αn) do

ClP ← ClP ∪ {�VarId ← beta1, ..., betan}

end
end

end

Figure 6.3: Translation from NuSMV into SCTL clauses

160

Chapter 7

Evaluation of the Framework

Throughout this chapter, we illustrate the verification and adaptation framework. The

framework incorporates learning, adaptation and revision of software descriptions,

integrated with a model checking tool and the description languages introduced in the

last section. More specifically, it uses the NuSMV model checker for the verification

of properties, but also allow a NuSMV description to be created or adapted according

to observed examples of system behaviour. Also, below we explain how NuSMV

counter-examples can be used in our framework in the revision of an existing model,

in such a way that the process results in an evolved model which satisfies the property

to be verifying.

7.1 Black Box Checking

In our neural-symbolic framework, the process of learning from examples of an ob-

served behaviour is straightforward. Each example of the observed system will have

a value assigned to all the input variables, and a desired value assigned to a subset of

the state variables. The feedforward process will consist of applying the input given

161

7. EVALUATION OF THE FRAMEWORK

by the example to the network, and obtaining a value for the next state. Informa-

tion about state variables will be used to define the desired state to be informed in

the backpropagation step. The flexibility of using a subset of state variables allows

the use of learning from examples when some of the state variables are not observ-

able, such as the case where this subset of states represents the actual outputs of the

observed system. In this case, the backpropagation process will consider the informa-

tion obtained in the feedforward process to play the role of the missing information

in the example, allowing the system to keep or reinforce the existing knowledge re-

garding that variable.

In our first experiments, we will focus on the generation of abstract descriptions

from existing examples. Differently from Chapter 5, where the analyses were mainly

focused on the learning performance, here we try to evaluate how this experimental

learning can be useful in the specific application of learning software specifications

for further verification. Besides, we also evaluate how a connectionist learning engine

handles certain issues like noise and non-determinism, which were not considered

before.

7.1.1 Handling noise

Our first experiments involving adaptation consider the idea of learning the descrip-

tion of the model from the observed behaviour of an existing system. Considering the

Pump System testbed, we apply our model to learn the behaviour described in Table

6.2. To accomplish such task, we considered an actual implementation of the system

according to the given behaviour, and kept record of the inputs and states for 1000

timepoints. This set of observed examples were presented then to the framework,

without any specification of the relations between inputs and states, in such a way

that a description for such behaviour is built from scratch in our system.

162

7.1. BLACK BOX CHECKING

Afterwards, we considered noisy sets of examples in the same task, i.e., we used

sets of examples that do not reflect the actual desired behaviour of the system. This

correspond to situations that can be caused by errors on the original observed system,

or by problems when recording the observations, for instance. In order to represent

that, we have changed the observed system in order to (sometimes) perform transi-

tions to a random state, instead of the desired one, according to a defined probability.

In order to evaluate the effect of the noise into the learning process, we consid-

ered two different aspects: a qualitative analysis of the extracted model, comparing

it to the expected model to be learned, and a quantitative analysis of the extracted

transitions. This quantitative analysis is given by the average of the weights of the

obtained transitions - i.e., the higher the value, the higher is the confidence of the

model regarding the extracted model.

In Figure 7.1.1, we describe the evaluation of both metrics. The line chart shows

the variation of the confidence related to the increment in the noise, considering the

noise rate from 0% (without noise) to 50% (i.e. with half of the transitions leading to

a random state). The grey region depicts the experiments where the extracted model

was according to the original description.

0% 96.99%
5% 96.34%

10% 91.18%
15% 86.16%
20% 78.23%
25% 72.67%
30% 66.28%
35% 62.57%
40% 58.24%
45% 51.43%
50% 45.91%

Noise
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

C
on

fid
en

ce
 (

%
)

95

90

85

80

75

70

65

60

55

50

Figure 7.1: Confidence of the learning according to the amount of noise

These results clearly illustrate the noise-tolerance capability of our approach,

163

7. EVALUATION OF THE FRAMEWORK

given that the system was able to correctly learn the desired knowledge until the

noise reached 30%. The degradation in the learning performance in noisy databases

can be perceived when we analyse the confidence of the system: as expected, incre-

ments in the noise led to lower confidence of the system: in this case, confidence

below 65% were assigned to the models which were not learned properly. This indi-

cates that the confidence metric might be an interesting and very relevant information

when evaluating the quality of the learned model.

7.1.2 Analysis on non-deterministic scenarios

For an analysis of the behaviour of our framework when handling non-deterministic

situations, we will consider a different experiment based on the previous discus-

sion about representation and learning of scalar variables. Consider a simple system

which can assume three different states: left, centre and right. The system also has a

“switch”: an input that, when activated, change the state to a neighbouring position,

i.e. if the system is at the left it cannot go directly to the right, and vice-versa. If

the system is at centre position, it can go both left or right - we consider p as the

probability of going left from centre.

For this experiment, we considered the observation of systems with different val-

ues of p, intending to analyse how this would affect the learning/adaptation in our

framework. In Table 7.1.2, we show the extracted transitions after the learning phase

takes place, over a model where the input variable is switch, and the state variables

are state = le f t, state = centre and state = right (represented in the table by L, C and

R, respectively). The adaptation task were performed without an initial description

of the model, only through the presentation of examples of the observed systems.

As we can see, in the deterministic cases (p = 0 and p = 100%), the system

behaves as expected, with high confidence in all of the transitions. In the case where

164

7.1. BLACK BOX CHECKING

Obtained weight in the case where p =...
Transition 0% 25% 50% 75% 100%
L→∼ switch→ L 99% 94% 99% 100%
C →∼ switch→ C 100% 100% 98% 99% 100%
R→∼ switch→ R 100% 100% 95% 99%
L→ switch→ C 100% 98% 99% 99%
R→ switch→ C 100% 100% 97% 99%
C → switch→ L 43% 79% 100%
C → switch→ R 100% 84% 43%
C → switch→ LR 44%
C → switch→ ∅ 44%

Table 7.1: Extracted transitions in the case of scalar state

p = 25% (resp. p = 75%), the system treats the variation as noise, assuming the

transition from centre to left (resp. right) but with a lower confidence around 84%

(resp. 79%).

In the table, we show four different transitions regarding the case where switch

is positive and state = centre. The target of these transitions, represented by L,

R, LR and ∅ in the table, refer to state = le f t, state = right, both variables being

positive and none of them being positive, respectively. All of these transitions showed

comparable confidence (around 44%).

The result of this simple experiment brings a new element to the discussion

started in the last section of the previous chapter. There, we considered different

options when treating a situations like this. A proposed solution regarded impos-

ing stronger restrictions to the adaptation process, in such a way that transitions like

C →∼ switch → LR and C →∼ switch → ∅ should not be allowed. As shown by

these experiments, the noise tolerance of SCTL networks was sufficient to handle the

situations where one of the options was preferable to the others (e.g. p = 25% and

p = 75%). On the other hand, in the case of maximum uncertainty, the extracted

knowledge regarding both options shows the same confidence level, and even a nu-

merical analysis of the behaviour of the network would give better information about

165

7. EVALUATION OF THE FRAMEWORK

which solution to choose.

On the other hand, our second proposed solution considered tackling this uncer-

tainty as an expression of the non-determinism associated with the learned knowledge

(in this case, about the observed system). Even though the framework was uncertain

about which variable (state = le f t or state = right) should be considered true in the

conflicting case, it was able to dismiss the case where state = centre, which is also

false in the observed system. This is evidence about the capacity of the framework in

capturing the non-deterministic nature of the observed system.

7.2 Verification and learning of properties

For the next experiment, we will illustrate the integration between verification and

adaptation. For this purpose, we will consider the same description of the Pump

System, together with a safety property expressed in LTL as G¬(CrMeth∧HiWat ∧

PumpOn) meaning that the pump should not be on when the level of methane is

critical and the water is high at the same time. In table 7.2, we show the counter-

example retrieved after the verification of the model by the NuSMV model checker.

To exemplify this idea, we have given the original pump model above to NuSMV,

together with a safety property expressed in LTL as G¬(CrMeth∧HiWat∧PumpOn)

meaning that the pump should not be on when the level of methane is critical and the

water is high at the same time. In table 7.2, we show the counter-example retrieved

in this case.

From this counter example, we can express a propertyX, such that SX0 = {¬CrMeth,¬HiWat,¬PumpOn},

IX0 = {s = sCMon}, IX1 = {s = sHiW}, IX1 = {s = turnPOn} and SXn = {¬PumpOn},

with n = 2. Notice that X keeps all the information of the initial state and the se-

quence of inputs given by the system, and alters the final state in order to reduce the

166

7.2. VERIFICATION AND LEARNING OF PROPERTIES

Counter-example obtained
t State Input
1 ∅ s = sCMon
2 {CrMeth} s = sHiW
3 {CrMeth,HiWat} s = turnPon
4 {CrMeth,HiWat, PumpOn} ∗ ∗ ∗

Table 7.2: Illustration of counter-examples and the sequences to adaptation

constraint on the variable that regulates the actual state of the pump in this case.

To exemplify the process, consider the sequence X used in last section: suppose

that in a time t, the current state assigns the three state variables to false, and therefore

according to the initial state condition SX0 . Then, a copy of X would be added to the

active sequences list, and then could be randomly selected to define the next input

according to IX0 . If the input applied to the model in t equals to {s = sCMon} (IX0),

the input in t + 1 is {s = sHiW} and in t + 2 it is {s = turnPon}, this will define the

desired value for the state in t + 3 to be according to SXn (i.e., assigning f alse to the

variable PumpOn). On the other hand, if any of the inputs is different, the sequence

is removed from the active list.

Counter-example obtained
t State Input
1 ∅ s = sCMon
2 {CrMeth} s = sHiW
3 {CrMeth,HiWat} s = turnPon
4 {CrMeth,HiWat, PumpOn} ∗ ∗ ∗

Table 7.3: Counter-example obtained

For this experiment, we relaxed the restrictions to the initial state, represented

then by the sequence: {} → s = sCMOn → s = sHiW → s = turnPon →

{¬PumpOn}. This represents that any configuration can be considered as the ini-

tial state of the sequence. Having the model description translated, and the sequences

obtained from the counter-examples, we can apply our adaptation process. It is in-

teresting to remark that this algorithm consists of a numeric manipulation of internal

167

7. EVALUATION OF THE FRAMEWORK

parameters of the engine. These alterations are independent of the original syntactic

structure of the model, therefore a complete different structure could be generated in

order to unify the original knowledge to the learned one.

In the execution of the experiment, we considered both the network obtained

by the learning from examples, and the network generated by the translation. Both

systems were submitted to different configurations of the learning process, and two

hypothesis for the new model were learned. In Figure 7.2, we show the transition

diagram extracted in both cases. Notice that in case a of the diagram, the impact of

the adaptation was stronger: the only situation where the pump switched from o f f

to on was when both CrMeth and HiWat were false. In the case b, the only change

happened to the case were both variables CrMeth and HiWat were true. In both

cases, anyway, the counter-example was learned.

M

MW MP

MWP

WP

W P

O

M

MW MP

MWP

WP

W P

O

a b

Figure 7.2: Transition diagrams representing effects of adapting to properties

Considering the case b to continue our analysis, we can represent the adapted

model in the form of a new NuSMV program. The system adapted to the counter-

example by inserting a new condition to turn the pump on. This learned condition

ignores the input telling to turn the pump on when the water is high and the methane

is in a critical level - being therefore general enough to deal with different sequences

than the one presented by the counter-example. However, the system still does not

168

7.2. VERIFICATION AND LEARNING OF PROPERTIES

next(CrMeth) :=
case
s = sCMOn : TRUE;
s = sCMOff : FALSE;
esac;
next(HiWat) :=
case
s = sHiW : TRUE;
s = sLoW : FALSE;
esac;
next(PumpOn) :=
case
!CrMeth & (s = TurnPOn) : TRUE;
!HiWat & (s = TurnPOn) : TRUE;
s = TurnPOff : FALSE;
esac;

Table 7.4: NuSMV description adapted according to the counter-example

deal with the case where the pump needs to be turned off because a new input leads

to an undesired state.

According to our proposal and the work of [34], the cycle of verification and

adaptation can be repeated until the property is satisfied. Therefore, we apply the

model checking tool to verify the same property in the model described by table 7.2,

obtaining the counter-example described below:

• time = 0: State = {∼ CrMeth,∼ HighWater ∼ PumpOn} Input = {s =

sCMOn}

• time = 1: State = {CrMeth,∼ HighWater,∼ PumpOn} Input = {s = turnPOn}

• time = 2: State = {CrMeth,∼ HighWater, PumpOn} Input = {s = sHiW}

• time = 3: State = {CrMeth,HighWater, PumpOn}

From the counter-example, we define the new sequence to be presented to the

system in order to perform the adaptation: {} → s = sCMOn → s = sHiW →

169

7. EVALUATION OF THE FRAMEWORK

s = turnPon → {∼ PumpOn}. Again, different initial configuration for the engine

can be considered in this case: The translation of the model in table 7.2 or the origi-

nal version obtained in the last adaptation process. As in the other case, we consid-

ered different configurations of the adaptation process in both cases, and the diagram

shown in Figure 7.3 (a) illustrated one of the possible models learned.

Again, one can perceive that the original LTL property is still not satisfied. After

expressing the model in the NuSMV language, and perform the verification again,

we obtain a new counter-example as described below. After adapting to this counter-

example, the obtained model is shown in 7.3(b), and expressed in the form of a model

in table 7.2. When applying the model checker into this new description, the property

is actually satisfied (as the state diagram makes clear).

• time = 0: State = {∼ CrMeth,∼ HighWater ∼ PumpOn} Input = {s = sHiW}

• time = 1: State = {∼ CrMeth,HighWater,∼ PumpOn} Input = {s = turnPOn}

• time = 2: State = {∼ CrMeth,HighWater, PumpOn} Input = {s = sCrMeth}

• time = 3: State = {CrMeth,HighWater, PumpOn}

M

MW MP

MWP

WP

W P

O

M

MW MP

MWP

WP

W P

O

a b

Figure 7.3: Transition diagrams representing effects of adapting to properties

170

7.2. VERIFICATION AND LEARNING OF PROPERTIES

next(CrMeth) :=
case
s = sCMOn : TRUE;
s = sCMOff : FALSE;
esac;
next(HiWat) :=
case
s = sHiW : TRUE;
s = sLoW : FALSE;
esac;
next(PumpOn) :=
case
!CrMeth & (s = TurnPOn) : TRUE;
!HiWat & (s = TurnPOn) : TRUE;
CrMeth & PumpOn & (s = sHiW) : FALSE;
HiWat & PumpOn & (s = sCMon) : FALSE;
s = TurnPOff : FALSE;
esac;

Table 7.5: NuSMV description obtained in the end of the process

171

7. EVALUATION OF THE FRAMEWORK

172

Chapter 8

Conclusion and Future Work

We have described a set of investigations about learning, symbolic knowledge rep-

resentation and reasoning in temporal models. Further, we have also illustrated the

application of these ideas. As described in our introduction, this our work has brought

contributions to both Artificial Intelligence and Software Engineering.

Under the perspective of Artificial Intelligence, we have described the Sequential

Connectionist Temporal Logic, a novel foundational framework, that serves as an

umbrella for a broad range of functionalities, as it includes:

• Symbolic language for temporal representation, which is based on a proposi-

tional modal approach which gives a broad syntax and well defined semantics

for the representation of (sequential) symbolic knowledge;

• Supervised learning processes, based on traditional connectionist structures

and algorithms, which brings flexibility and noise-tolerance to the task, and

therefore is applicable to a range of domains;

• Integration between different sources of information, such as temporal logic

programs, observed examples (through supervised learning) and sequences of

173

CONCLUSION AND FUTURE WORK

propositional conditions, which can be incorporated to the supervised learn-

ing process. These sequences can also be incorporated directly to an existing

knowledge base through an adaptation process also based on connectionist al-

gorithms;

• Full communication between the different representation structures, allowing

symbolic knowledge to be incorporated into the connectionist architecture, as

well as extraction of the knowledge learned by the neural network, in the form

of a new symbolic representation.

While the symbolic structures have been formalized, we also presented a broad

set of experiments to illustrate the accuracy and performance of the connectionist

learning processes. Besides, such examples provide strong evidences of the capaci-

ties of the system in more specific applications.

Following this line, we then combine the proposed neural-symbolic system with

software engineering tools, more specifically as a support tool for automatizing the

specification and refinement of requirements. Integrating the SCTL’s functionalities

with a model checking tool led to a platform capable of performing verification and

adaptation of software models, with the following features:

• A uniform cycle of verification and adaptation, where a model specified in

NuSMV is subject to the verification of the properties by the model checker;

the resulting counter-examples (when existing) are used to generate an im-

proved model. This improved model can then be represented as a NuSMV

description, and can be subject to new cycles of verification and adaptation.

• Adaptation through revision of the existing model, instead of refinement, which

allows the substitution of incorrect declarations in the model by new expres-

174

sions according to the counter-examples. This extends the applicability of the

framework to deal with incorrect knowledge models.

• Implementation of supervised learning to perform black box checking, i.e.

the verification of observed systems even without the existence of an abstract

model. This acquisition of knowledge from observed models has the proper-

ties of robustness and noise-tolerance intrinsic to the connectionist architecture

used for learning.

In summary, we believe the thesis has described a rich methodology for temporal

knowledge representation, learning and extraction, shedding new light on predictive

temporal models not only from a theoretical standpoint, but also with respect to a

potentially large number of applications in Computational Intelligence, Neural Com-

putation and Cognitive Science, where temporal knowledge plays a fundamental role.

The use of the proposed methodology should also be useful in Product-Focused Soft-

ware Process Improvement [81], as well as other approaches that contribute to the

automation of different phases of the process of software engineering.

Future Work

Throughout this work, we have explored thoroughly our proposed architecture for

integration of the neural and symbolic AI paradigms. However, several points are still

open for investigation regarding this architecture, such as the extraction of the learned

knowledge in a symbolic representation, and the scalability of the architecture; in

particular, if one considers a large number of variables.

Extraction is generally perceived as the bottleneck of the neural-symbolic method-

ologies and this is no exception in this work. Perhaps this is more evident in the case

175

CONCLUSION AND FUTURE WORK

of recurrent networks. Nevertheless, the extraction and validation of partial mod-

els has been possible, with the visualization through transition diagrams being very

helpful to the understanding of the learning knowledge. Also, a number of immediate

possible actions for improving the performance have been articulated, e.g. the use of

rule simplification. This opens up a number of research possibilities in the area of

rule extraction from recurrent networks, but also one could consider more sophisti-

cated methods for generating positive examples from counter-examples. This may

lead to a range of new applications, as suggested in [48].

Moreover, taking the SCTL structure as the foundation of our work has led us to

focus on a limited range of aspects, specially in what regards the illustrated applica-

tions. Under the perspective of Software Engineering, extensions to our work can be

drawn out from these limitations:

• The limitation on handling deterministic models was important for the use of

SCTL learning engine as-is, but may become a hurdle in some applications.

Analysing and comparing different learning algorithms under a similar struc-

ture might prove valuable to overcome this obstacle and increase the applica-

bility of the framework.

• Some aspects are still missing to fully-automate the entire process. In par-

ticular, the conversion of counter-examples into useful training sequences for

learning requires direct intervention of an expert. Information-theoretic ap-

proaches can be used to reduce this need, and therefore may lead to improve-

ments in the efficiency of the framework when applied to a software develop-

ment process.

176

Bibliography

[1] James F. Allen. Mantaining knowledge about temporal intervals. Communi-

cations of the ACM, 26(3):832–843, 1983.

[2] D. Alrajeh, J. Kramer, A. Russo, and S. Uchitel. Learning operational require-

ments from goal models. In ICSE ’09: Intl. Conf. Softw. Engineering, pages

265–275. IEEE, 2009.

[3] D. Alrajeh, O. Ray, A. Russo, and S. Uchitel. Using abduction and induction

for operational requirements elaboration. Journal of Applied Logic, 7(3):275–

288, 2009.

[4] R. Andrews, J. Diederich, and A. B. Tickle. A survey and critique of tech-

niques for extracting rules from trained artificial neural networks. Knowledge-

based Systems, 8(6):373–389, 1995.

[5] Konstantine Arkoudas. Specification, abduction, and proof. In Farn Wang,

editor, ATVA, volume 3299 of Lecture Notes in Computer Science, pages 294–

309. Springer, 2004.

[6] H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens. Metatem: a

framework for programming in temporal logic. In REX workshop: Proc. on

Stepwise refinement of distributed systems: models, formalisms, correctness,

pages 94–129. Springer, 1990.

177

BIBLIOGRAPHY

[7] Howard Barringer, Michael Fisher, Dov M. Gabbay, Graham Gough, and

Richard Owens. Metatem: An introduction. Formal Asp. Comput., 7(5):533–

549, 1995.

[8] M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal logic of branching time.

In POPL ’81: Proceedings of the 8th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, pages 164–176, New York, NY, USA,

1981. ACM Press.

[9] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cam-

bridge University Press, Cambridge, UK, 2001.

[10] M. G. Bobaru, C. S. Pasareanu, and D. Giannakopoulou. Automated assume-

guarantee reasoning by abstraction refinement. In CAV, pages 135–148, 2008.

[11] R. H. Bordini, L. A. Dennis, B. Farwer, and M. Fisher. Automated verification

of multi-agent programs. In ASE, pages 69–78, 2008.

[12] Rafael V. Borges, Artur d’Avila Garcez, and Luis C. Lamb. Integrating model

verification and self-adaptation. In Proceedings of the IEEE/ACM interna-

tional conference on Automated software engineering, ASE ’10, pages 317–

320, New York, NY, USA, 2010. ACM.

[13] Rafael V. Borges, Artur d’Avila Garcez, and Luis C. Lamb. Learning and

representing temporal knowledge in recurrent networks. IEEE Transactions

on Neural Networks, 22:2409–2421, 2011.

[14] Rafael V. Borges, Artur d’Avila Garcez, Luis C. Lamb, and Bashar Nu-

seibeh. Learning to adapt requirements specifications of evolving systems:

(nier track). In Proceeding of the 33rd international conference on Software

engineering, ICSE ’11, pages 856–859, New York, NY, USA, 2011. ACM.

178

BIBLIOGRAPHY

[15] Rafael V. Borges, Artur d’Avila Garcez, and Luis C. Lamb. Representing,

learning and extracting temporal knowledge from neural networks: a case

study. In Proceedings of the 20th international conference on Artificial neu-

ral networks: Part II, ICANN’10, pages 104–113, Berlin, Heidelberg, 2010.

Springer-Verlag.

[16] Rafael V. Borges, Luis C. Lamb, and A. S. d’Avila Garcez. Reasoning and

learning about past temporal knowledge in connectionist models. In Proc. of

Intl Joint Conference on Neural Networks (IJCNN 2007). IEEE Press, 2007.

[17] Ivan Bratko and Stephen Muggleton. Applications of inductive logic program-

ming. Commun. ACM, 38:65–70, November 1995.

[18] A. Browne and R. Sun. Connectionist variable binding. In S. Wermter and

R. Sun, editors, Hybrid Neural Systems. Springer Verlag, Heidelberg, 2000.

[19] A. Browne and R. Sun. Connectionist inference models. Neural Networks,

14(10):1331–1355, 2001.

[20] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. Nusmv: A new

symbolic model verifier. In CAV ’99: Proc. of the 11th Intl. Conf. on Computer

Aided Verification, pages 495–499, London, UK, 1999. Springer-Verlag.

[21] A. Cimatti, M. Pistore, M. Roveri, and R. Sebastiani. Improving the Encoding

of LTL Model Checking into SAT. In VMCAI’02, volume 2294 of LNCS.

Springer, 2002.

[22] E. Clarke, E. Emerson, and J. Sifakis. Model checking: algorithmic verifica-

tion and debugging. Commun. ACM, 52(11):74–84, 2009.

[23] E. Clarke, O Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided

abstraction refinement for symbolic model checking. J. ACM, 50(5):752–794,

2003.

179

BIBLIOGRAPHY

[24] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization

skeletons using branching-time temporal logic. In Logic of Programs, Work-

shop, pages 52–71, London, UK, 1982. Springer-Verlag.

[25] D. S. Clouse, C. L. Giles, B. G. Horne, and G. W. Cottrell. Time-delay neural

networks: Representation and induction of finite-state machines. IEEE Trans-

actions on Neural Networks, 8(5):1065–1070, 1997.

[26] Stephen A. Cook. The complexity of theorem-proving procedures. In Pro-

ceedings of the third annual ACM symposium on Theory of computing, STOC

’71, pages 151–158, New York, NY, USA, 1971. ACM.

[27] Rémi Coulom. Feedforward neural networks in reinforcement learning ap-

plied to high-dimensional motor control. In ALT ’02: Proceedings of the 13th

International Conference on Algorithmic Learning Theory, pages 403–414,

London, UK, 2002. Springer-Verlag.

[28] Mark W. Craven and Jude W. Shavlik. Extracting tree-structured represen-

tations of trained networks. In David S. Touretzky, Michael C. Mozer, and

Michael E. Hasselmo, editors, Advances in Neural Information Processing

Systems, volume 8, pages 24–30. The MIT Press, 1996.

[29] A. S. d’Avila Garcez, K. Broda, and D. M. Gabbay. Neural-Symbolic Learning

Systems: Foundations and Applications. Perspectives in Neural Computing.

Springer-Verlag, 2002.

[30] A. S. d’Avila Garcez, L. C. Lamb, and D. M. Gabbay. A connectionist induc-

tive learning system for modal logic programming. In Proceedings of IEEE

International Conference on Neural Information Processing ICONIP’02, Sin-

gapore, 2002.

180

BIBLIOGRAPHY

[31] A. S. d’Avila Garcez, L. C. Lamb, and D. M. Gabbay. Neural-Symbolic Cog-

nitive Reasoning. Springer, 2009.

[32] A. S. d’Avila Garcez and Luı́s C. Lamb. Neural-symbolic systems and the case

for non-classical reasoning. In Sergei N. Artëmov, Howard Barringer, Artur S.

d’Avila Garcez, Luı́s C. Lamb, and John Woods, editors, We Will Show Them!

Essays in honour of Dov Gabbay, pages 469–488. College Publications, 2005.

[33] A. S. d’Avila Garcez and Luis C. Lamb. A connectionist computational model

for epistemic and temporal reasoning. Neural Computation, 18(7):1711–1738,

2006.

[34] A. S. d’Avila Garcez, A. Russo, B. Nuseibeh, and J. Kramer. An analysis-

revision cycle to evolve requirements specifications. In ASE, pages 354–358,

2001.

[35] A. S. d’Avila Garcez, A. Russo, B. Nuseibeh, and J. Kramer. Combining ab-

ductive reasoning and inductive learning to evolve requirements specifications.

In IEE Proceedings - Software, volume 150, pages 25–38, 2003.

[36] A. S. d’Avila Garcez and G. Zaverucha. The connectionist inductive learning

and logic programming system. Applied Intelligence, 11(1):59–77, 1999.

[37] Artur S. d’Avila Garcez, Krysia Broda, and Dov M. Gabbay. Symbolic knowl-

edge extraction from trained neural networks: A sound approach. Artificial

Intelligence, 125(1-2):155–207, 2001.

[38] Marc Denecker and Antonis C. Kakas. Abduction in logic programming. In

Computational Logic: Logic Programming and Beyond, Essays in Honour

of Robert A. Kowalski, Part I, pages 402–436, London, UK, 2002. Springer-

Verlag.

181

BIBLIOGRAPHY

[39] J. Deshmukh, E. Emerson, and S. Sankaranarayanan. Symbolic deadlock anal-

ysis in concurrent libraries and their clients. In ASE, pages 480–491, 2009.

[40] Edsger W. Dijkstra. Hierarchical ordering of sequential processes. Acta Inf.,

1:115–138, 1971.

[41] Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211,

1990.

[42] E. A. Emerson and E. M. Clarke. Characterizing correctness properties of

parallel programs using fixpoints. In Proceedings of the 7th Colloquium on

Automata, Languages and Programming, pages 169–181, London, UK, 1980.

Springer-Verlag.

[43] Edward A. Feigenbaum. Some challenges and grand challenges for computa-

tional intelligence. Journal of ACM, 50(1):32–40, 2003.

[44] M. Fisher, D. Gabbay, and L. Vila, editors. Handbook of temporal reasoning

in artificial intelligence. Elsevier, 2005.

[45] Dov M. Gabbay, Ian Hodkinson, and Mark Reynolds. Temporal logic (vol.

1): mathematical foundations and computational aspects. Oxford University

Press, Inc., New York, NY, USA, 1994.

[46] Antony Galton. Temporal logic. In Edward N. Zalta, editor, The Stanford

Encyclopedia of Philosophy. Stanford University, 2003.

[47] Dimitra Giannakopoulou, Corina S. Păsăreanu, and Howard Barringer. Com-

ponent verification with automatically generated assumptions. Automated

Software Engineering, 12:297–320, July 2005.

182

BIBLIOGRAPHY

[48] Stijn Goedertier, David Martens, Jan Vanthienen, and Bart Baesens. Ro-

bust process discovery with artificial negative events. J. Mach. Learn. Res.,

10:1305–1340, 2009.

[49] A. Groce, D. Peled, and M. Yannakakis. Adaptive model checking. In TACAS

’02: 8th Intl. Conf. on Tools and Algorithms for the Construction and Analysis

of Systems, pages 357–370. Springer, 2002.

[50] J. Y. Halpern, N. Harper, P. Kolaitis, M. Y. Vardi, and Vianu. On the un-

usual effectiveness of logic in computer science. Bulletin of Symbolic Logic,

7(2):213–236, 2001.

[51] S. Haykin. Neural Networks: A Compreensive Foundation. Prentice Hall, 2nd

edition, 1999.

[52] M. Hilario. An overview of strategies for neurosymbolic integration. In Proc.

Workshop on Connectionist-Symbolic Integration: from Unified to Hybrid Ap-

proaches, IJCAI 95, 1995.

[53] P. Hitzler, S. Hölldobler, and A. K. Seda. Logic programs and connectionist

networks. J. Applied Logic, 2(3):245–272, 2004.

[54] S. Hölldobler and Y. Kalinke. Towards a new massively parallel computational

model for logic programming. In ECAI-94: Workshop on Combining Symbolic

and Connectionist Processing, volume 2, pages 68–77, Amsterdan, 1994.

[55] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks

are universal approximators. Neural Networks, 2(5):359–366, 1989.

[56] Michael R. A. Huth and Mark D. Ryan. Logic in Computer Science: modelling

and reasoning about systems. Cambridge University Press, Cambridge, UK,

2000.

183

BIBLIOGRAPHY

[57] Finn V. Jensen. Bayesian Networks and Decision Graphs. Information Science

and Statistics. Springer, July 2002.

[58] Maurice Karnaugh. The map method for synthesis of combinational logic

circuits. Transactions of American Institute of Electrical Engineers, 72:593–

599, 1953.

[59] Nikola K. Kasabov. Foundations of Neural Networks, Fuzzy Systems, and

Knowledge Engineering. MIT Press, Cambridge, MA, USA, 1996.

[60] Nikola K. Kasabov and Robert Kozma. Self-organization and adaptation in

intelligent systems. JACIII, 2(6):177, 1998.

[61] Christos Kloukinas and Sergio Yovine. A model-based approach for multi-

ple QoS in scheduling: from models to implementation. Automated Software

Engineering, 18:5–38, March 2011.

[62] T. Kohonen, M. R. Schroeder, and T. S. Huang, editors. Self-Organizing Maps.

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 3rd edition, 2001.

[63] R Kowalski and M Sergot. A logic-based calculus of events. New Gen. Com-

put., 4:67–95, January 1986.

[64] L. C. Lamb, R. V. Borges, and A. S. d’Avila Garcez. A connectionist cognitive

model for temporal synchronization and learning. In Proc. of 22nd AAAI Conf.

on Artificial Intelligence, pages 827–832, 2007.

[65] Leslie Lamport. ”sometime” is sometimes ”not never”: on the temporal logic

of programs. In POPL ’80: Proceedings of the 7th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, pages 174–185, New

York, NY, USA, 1980. ACM Press.

184

BIBLIOGRAPHY

[66] T. Lin, B.G. Horne, P. Tino, and C. L. Giles. Learning long-term dependencies

in narx recurrent neural networks. IEEE Transactions on Neural Networks,

7(6):1329–1338, 1996.

[67] John W. Lloyd. Foundations of logic programming. Springer-Verlag New

York, Inc., 1987.

[68] John W. Lloyd. Logic for learning: learning comprehensible theories from

structured data. Springer, Berlin, 2003.

[69] Yogesh S. Mahajan, Zhaohui Fu, and Sharad Malik. Zchaff2004: An efficient

sat solver. In Holger H. Hoos and David G. Mitchell, editors, SAT (Selected

Papers, volume 3542 of Lecture Notes in Computer Science, pages 360–375.

Springer, 2004.

[70] John McCarthy. Programs with common sense. In Proceedings of the Ted-

dington Conference on the Mechanization of Thought Processes, pages 75–91,

London, 1959. Her Majesty’s Stationary Office.

[71] Kenneth L. McMillan. Symbolic Model Checking: An Approach to the State

Explosion Problem. PhD thesis, School of Computer Science, Carnegie Mel-

lon, Pittsburgh, PA, US, 1992.

[72] R. S. Michalski. Learning strategies and automated knowledge acquisition: an

overview. Computational models of learning, pages 1–19, 1987.

[73] M. L. Minsky and S. A. Papert. Perceptron. MIT Press, Cambridge, MA,

1969.

[74] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

185

BIBLIOGRAPHY

[75] Stephen Moyle and Stephen Muggleton. Learning programs in the event cal-

culus. In Proceedings of the 7th International Workshop on Inductive Logic

Programming, pages 205–212, London, UK, 1997. Springer-Verlag.

[76] S. Muggleton. Inverse Entailment and Progol. New Generation Computing,

Special issue on Inductive Logic Programming, 13(3-4):245–286, 1995.

[77] Stephen Muggleton and Luc de Raedt. Inductive logic programming: Theory

and methods. J. Logic Programming, 19/20:629–679, 1994.

[78] Wonhong Nam and Rajeev Alur. Learning-based symbolic assume-guarantee

reasoning with automatic decomposition. In In ATVA, pages 170–185, 2006.

[79] Wonhong Nam, P. Madhusudan, and Rajeev Alur. Automatic symbolic com-

positional verification by learning assumptions. Form. Methods Syst. Des.,

32:207–234, June 2008.

[80] Allen Newell and Herbert A. Simon. Computer science as empirical inquiry:

symbols and search. Commun. ACM, 19(3):113–126, 1976.

[81] B. Nuseibeh. Mobile privacy requirements on demand. In Product-Focused

Software Process Improvement, 11th International Conference, PROFES

2010, page 1, 2010.

[82] M. Page. Connectionist modelling in psychology: A localist manifesto. Be-

havioural and Brain Sciences, 23:443–512, 2000.

[83] D. Peled, M. Y. Vardi, and M. Yannakakis. Black box checking. J. of Automata

Languages and Combinatorics, 7(2):225–246, 2001.

[84] S. Pinker. The stuff of thought: Language as a window into human nature.

Viking, 2007.

186

BIBLIOGRAPHY

[85] A. Pnueli. The temporal logic of programs. In FOCS ’77: Proc. 18th IEEE

Symp.on Foundations of Computer Science, pages 46–67. IEEE Computer So-

ciety, 1977.

[86] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106,

1986.

[87] J. R. Quinlan and R. M. Cameron-Jones. Induction of logic programs: Foil

and related systems. New Generation Computing, Special issue on Inductive

Logic Programming, 13:287–312, 1995.

[88] J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1993.

[89] Oliver Ray. Nonmonotonic abductive inductive learning. Journal of Applied

Logic, 2008.

[90] F. Rosemblatt. The perceptron: A probabilistic model for information storage

and organization in the brain. Psychological Review, 65:386–408, 1958.

[91] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal repre-

sentations by error propagation. Parallel distributed processing: explorations

in the microstructure of cognition, vol. 1: foundations, pages 318–362, 1986.

[92] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.

Pearson Education, 2003.

[93] R. Setiono, B. Baesens, and C. Mues. Recursive neural network rule extrac-

tion for data with mixed attributes. IEEE Transactions on Neural Networks,

19(2):299–307, 2008.

187

BIBLIOGRAPHY

[94] R. Setiono, W.K. Leow, and J.M. Zurada. Extraction of rules from artificial

neural networks for nonlinear regression. IEEE Transactions on Neural Net-

works, 13(3):564–577, 2002.

[95] Hava T. Siegelmann, Bill G. Horne, and C. Lee Giles. Computational capabil-

ities of recurrent narx neural networks. Technical report, U. Maryland College

Park, College Park, MD, USA, 1995.

[96] Hava T. Siegelmann and Eduardo D. Sontag. On the computational power

of neural nets. In COLT ’92: Proceedings of the fifth annual workshop on

Computational learning theory, pages 440–449, New York, NY, USA, 1992.

ACM Press.

[97] Joseph Sifakis. A unified approach for studying the properties of transition

systems. Theor. Comput. Sci., 18:227–258, 1982.

[98] Kendal Simon and Creen Malcolm. An Introduction to Knowledge Engineer-

ing. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[99] P. Smolensky. On the proper treatment of connectionism. Behavioral and

Brain Sciences, 11(1):1–23, 1988.

[100] P. Smolensky. Tensor product variable binding and the representation of sym-

bolic structures in connectionist systems. Artificial Intelligence, 46(1-2):159–

216, 1990.

[101] Ian Sommerville. Software Engineering (7th Edition). Pearson Addison Wes-

ley, 2004.

[102] Richard S. Sutton. Reinforcement Learning. Kluwer Academic Publishers,

Norwell, MA, USA, 1992.

188

BIBLIOGRAPHY

[103] Geoffrey G. Towell and Jude W. Shavlik. Knowledge-based artificial neural

networks. Artificial Intelligence, 70(1-2):119–165, 1994.

[104] Stavros Tripakis and Karine Altisen. On-the-fly controller synthesis for dis-

crete and dense-time systems. In In FM’99, volume 1708 of LNCS, pages

233–252. Springer Verlag, 1999.

[105] A. M. Turing. Computing machinery and intelligence. Mind, 59:433–460,

1950.

[106] L. G. Valiant. Three problems in computer science. Journal of ACM, 50(1):96–

99, 2003.

[107] L. G. Valiant. Knowledge infusion: In pursuit of robustness in artificial intel-

ligence. In FSTTCS, pages 415–422, 2008.

[108] Alexander Waibel, Toshiyuki Hanazawa, Geofrey Hinton, Kiyohiro Shikano,

and Kevin J. Lang. Phoneme recognition using time-delay neural networks.

Readings in speech recognition, pages 393–404, 1990.

[109] P.J. Werbos. Backpropagation through time: what it does and how to do it.

Proceedings of the IEEE, 78(5):1550–1560, 1990.

[110] S. Wermter and R. Sun. Hybrid Neural Systems. Springer, 2000.

[111] Ronald J. Williams and David Zipser. A learning algorithm for continually

running fully recurrent neural networks. Neural Comput., 1:270–280, June

1989.

[112] Jon Williamson. Probability logic. In Dov M. Gabbay, Ralph H. Johnson,

Hans Jürgen Ohlbach, and John Woods, editors, Handbook of the Logic of

Argument and Inference - The Turn Towards the Practical, volume 1 of Studies

in Logic and Practical Reasoning, pages 397 – 424. Elsevier, 2002.

189

BIBLIOGRAPHY

[113] B. Yang, R. E. Bryant, D. R. O’Hallaron, A. Biere, O. Coudert, G. Janssen,

R. K. Ranjan, and F. Somenzi. A performance study of bdd-based model

checking. In FMCAD ’98: Intl. Conf. Formal Methods in Computer-Aided

Design, pages 255–289, London, UK, 1998. Springer-Verlag.

[114] Lotfali Askar Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

[115] D. Zhang and J. P. Tsai. Machine Learning Applications In Software Engi-

neering. World Scientific Publishing Co., Inc., River Edge, NJ, USA, 2005.

190

