67,062 research outputs found

    Probabilistic Graphical Models and Algorithms for

    Get PDF
    In this thesis I present research in two fields: machine learning and computational biology. First, I develop new machine learning methods for graphical models that can be applied to protein problems. Then I apply graphical model algorithms to protein problems, obtaining improvements in protein structure prediction and protein structure alignment. First,in the machine learning work, I focus on a special kind of graphical model---conditional random fields (CRFs). Here, I present a new semi-supervised training procedure for CRFs that can be used to train sequence segmentors and labellers from a combination of labeled and unlabeled training data. Such learning algorithms can be applied to protein and gene name entity recognition problems. This work provides one of the first semi-supervised discriminative training methods for structured classification. Second, in my computational biology work, I focus mainly on protein problems. In particular, I first propose a tree decomposition method for solving the protein structure prediction and protein structure alignment problems. In so doing, I reveal why tree decomposition is a good method for many protein problems. Then, I propose a computational framework for detection of similar structures of a target protein with sparse NMR data, which can help to predict protein structure using experimental data. Finally, I propose a new machine learning approach---LS_Boost---to solve the protein fold recognition problem, which is one of the key steps in protein structure prediction. After a thorough comparison, the algorithm is proved to be both more accurate and more efficient than traditional z-Score method and other machine learning methods

    Improving protein structure prediction by deep learning and computational optimization

    Get PDF
    Includes vitaProtein structure prediction is one of the most important scientific problems in the field of bioinformatics and computational biology. The availability of protein three-dimensional (3D) structure is crucial for studying biological and cellular functions of proteins. The importance of four major sub-problems in protein structure prediction have been clearly recognized. Those include, first, protein secondary structure prediction, second, protein fold recognition, third, protein quality assessment, and fourth, multi-domain assembly. In recent years, deep learning techniques have proved to be a highly effective machine learning method, which has brought revolutionary advances in computer vision, speech recognition and bioinformatics. In this dissertation, five contributions are described. First, DNSS2, a method for protein secondary structure prediction using one-dimensional deep convolution network. Second, DeepSF, a method of applying deep convolutional network to classify protein sequence into one of thousands known folds. Third, CNNQA & DeepRank, two deep neural network approaches to systematically evaluate the quality of predicted protein structures and select the most accurate model as the final protein structure prediction. Fourth, MULTICOM, a protein structure prediction system empowered by deep learning and protein contact prediction. Finally, SAXSDOM, a data-assisted method for protein domain assembly using small-angle X-ray scattering data. All the methods are available as software tools or web servers which are freely available to the scientific community.Includes bibliographical reference

    DEEP LEARNING METHODS FOR PREDICTION OF AND ESCAPE FROM PROTEIN RECOGNITION

    Get PDF
    Protein interactions drive diverse processes essential to living organisms, and thus numerous biomedical applications center on understanding, predicting, and designing how proteins recognize their partners. While unfortunately the number of interactions of interest still vastly exceeds the capabilities of experimental determination methods, computational methods promise to fill the gap. My thesis pursues the development and application of computational methods for several protein interaction prediction and design tasks. First, to improve protein-glycan interaction specificity prediction, I developed GlyBERT, which learns biologically relevant glycan representations encapsulating the components most important for glycan recognition within their structures. GlyBERT encodes glycans with a branched biochemical language and employs an attention-based deep language model to embed the correlation between local and global structural contexts. This approach enables the development of predictive models from limited data, supporting applications such as lectin binding prediction. Second, to improve protein-protein interaction prediction, I developed a unified geometric deep neural network, ‘PInet’ (Protein Interface Network), which leverages the best properties of both data- and physics-driven methods, learning and utilizing models capturing both geometrical and physicochemical molecular surface complementarity. In addition to obtaining state-of-the-art performance in predicting protein-protein interactions, PInet can serve as the backbone for other protein-protein interaction modeling tasks such as binding affinity prediction. Finally, I turned from ii prediction to design, addressing two important tasks in the context of antibodyantigen recognition. The first problem is to redesign a given antigen to evade antibody recognition, e.g., to help biotherapeutics avoid pre-existing immunity or to focus vaccine responses on key portions of an antigen. The second problem is to design a panel of variants of a given antigen to use as “bait” in experimental identification of antibodies that recognize different parts of the antigen, e.g., to support classification of immune responses or to help select among different antibody candidates. I developed a geometry-based algorithm to generate variants to address these design problems, seeking to maximize utility subject to experimental constraints. During the design process, the algorithm accounts for and balances the effects of candidate mutations on antibody recognition and on antigen stability. In retrospective case studies, the algorithm demonstrated promising precision, recall, and robustness of finding good designs. This work represents the first algorithm to systematically design antigen variants for characterization and evasion of polyclonal antibody responses

    Empirical study of deep neural network architectures for protein secondary structure prediction

    Get PDF
    Protein secondary structure prediction is a sub-problem of protein structure prediction. Instead of fully recovering the whole three dimensional structure from amino acid sequence, protein secondary structure prediction only aimed at predicting the local structures such as alpha helices, beta strands and turns for each small segment of a protein. Predicted protein secondary structure can be used for improving fold recognition, ab initial protein prediction, protein motifs prediction and sequence alignment. Protein secondary structure prediction has been extensively studied with machine learning approaches. And in recent years, multiple deep neural network methods have pushed the state-of-art performance of 8-categories accuracy to around 69 percent. Deep neural networks are good at capturing the global information in the whole protein, which are widely believed to be crucial for the prediction. And due to the development of high level neural network libraries, implementing and training neural networks are becoming more and more convenient and efficient. This project focuses on empirical performance comparison of various deep neural network architectures and the effects of hyper-parameters for protein secondary structure prediction. Multiple deep neural network architectures representing the state-of-the-art for secondary structure prediction are implemented using TensorFlow, the leading deep learning platform. In addition, a software environment for performing efficient empirical studies are implemented, which includes network input and parameter control, and training, validation, and test performance monitoring. An extensive amount of experiments have been conducted using popular datasets and benchmarks and generated some useful results. For example, the experimental results show that recurrent layers are useful in improving prediction accuracy, achieving up to 5 percent improvement on 8-category accuracy. This work also shows the trade off between running speed and building speed of the model, and the trade off between running speed and accuracy. As a result, a relatively small size recurrent network have been build and achieved 69.5 percent 8-category accuracy on dataset CB513

    DeepSF: deep convolutional neural network for mapping protein sequences to folds

    Get PDF
    Motivation Protein fold recognition is an important problem in structural bioinformatics. Almost all traditional fold recognition methods use sequence (homology) comparison to indirectly predict the fold of a tar get protein based on the fold of a template protein with known structure, which cannot explain the relationship between sequence and fold. Only a few methods had been developed to classify protein sequences into a small number of folds due to methodological limitations, which are not generally useful in practice. Results We develop a deep 1D-convolution neural network (DeepSF) to directly classify any protein se quence into one of 1195 known folds, which is useful for both fold recognition and the study of se quence-structure relationship. Different from traditional sequence alignment (comparison) based methods, our method automatically extracts fold-related features from a protein sequence of any length and map it to the fold space. We train and test our method on the datasets curated from SCOP1.75, yielding a classification accuracy of 80.4%. On the independent testing dataset curated from SCOP2.06, the classification accuracy is 77.0%. We compare our method with a top profile profile alignment method - HHSearch on hard template-based and template-free modeling targets of CASP9-12 in terms of fold recognition accuracy. The accuracy of our method is 14.5%-29.1% higher than HHSearch on template-free modeling targets and 4.5%-16.7% higher on hard template-based modeling targets for top 1, 5, and 10 predicted folds. The hidden features extracted from sequence by our method is robust against sequence mutation, insertion, deletion and truncation, and can be used for other protein pattern recognition problems such as protein clustering, comparison and ranking.Comment: 28 pages, 13 figure

    Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model

    Full text link
    Recently exciting progress has been made on protein contact prediction, but the predicted contacts for proteins without many sequence homologs is still of low quality and not very useful for de novo structure prediction. This paper presents a new deep learning method that predicts contacts by integrating both evolutionary coupling (EC) and sequence conservation information through an ultra-deep neural network formed by two deep residual networks. This deep neural network allows us to model very complex sequence-contact relationship as well as long-range inter-contact correlation. Our method greatly outperforms existing contact prediction methods and leads to much more accurate contact-assisted protein folding. Tested on three datasets of 579 proteins, the average top L long-range prediction accuracy obtained our method, the representative EC method CCMpred and the CASP11 winner MetaPSICOV is 0.47, 0.21 and 0.30, respectively; the average top L/10 long-range accuracy of our method, CCMpred and MetaPSICOV is 0.77, 0.47 and 0.59, respectively. Ab initio folding using our predicted contacts as restraints can yield correct folds (i.e., TMscore>0.6) for 203 test proteins, while that using MetaPSICOV- and CCMpred-predicted contacts can do so for only 79 and 62 proteins, respectively. Further, our contact-assisted models have much better quality than template-based models. Using our predicted contacts as restraints, we can (ab initio) fold 208 of the 398 membrane proteins with TMscore>0.5. By contrast, when the training proteins of our method are used as templates, homology modeling can only do so for 10 of them. One interesting finding is that even if we do not train our prediction models with any membrane proteins, our method works very well on membrane protein prediction. Finally, in recent blind CAMEO benchmark our method successfully folded 5 test proteins with a novel fold

    From Nonspecific DNA–Protein Encounter Complexes to the Prediction of DNA–Protein Interactions

    Get PDF
    ©2009 Gao, Skolnick. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.doi:10.1371/journal.pcbi.1000341DNA–protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA–protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA–protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA–protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA–protein interaction modes exhibit some similarity to specific DNA–protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Ca deviation from native is up to 5 Å from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA–protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein
    corecore