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Abstract

In this thesis I present research in two fields: machine learning and computational

biology. First, I develop new machine learning methods for graphical models that can be

applied to protein problems. Then I apply graphical model algorithms to protein problems,

obtaining improvements in protein structure prediction and protein structure alignment.

First, in the machine learning work, I focus on a special kind of graphical model—

conditional random fields (CRFs). Here, I present a new semi-supervised training proce-

dure for CRFs that can be used to train sequence segmentors and labellers from a com-

bination of labeled and unlabeled training data. Such learning algorithms can be applied

to protein and gene name entity recognition problems. This work provides one of the first

semi-supervised discriminative training methods for structured classification.

Second, in my computational biology work, I focus mainly on protein problems. In

particular, I first propose a tree decomposition method for solving the protein structure

prediction and protein structure alignment problems. In so doing, I reveal why tree decom-

position is a good method for many protein problems. Then, I propose a computational

framework for detection of similar structures of a target protein with sparse NMR data,

which can help to predict protein structure using experimental data.

Finally, I propose a new machine learning approach—LS Boost—to solve the protein

fold recognition problem, which is one of the key steps in protein structure prediction.

After a thorough comparison, the algorithm is proved to be both more accurate and more

efficient than traditional z-Score method and other machine learning methods.
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Chapter 1

Introduction

1.1 Motivation

Although machine learning is generally considered a sub-area of artificial intelligence, its

methodology has also been widely used in many other areas. Recently, there have been

a great number of developments in both the theory and application of machine learning

techniques. Graphical models, in particular, have proved to be one of the most important

machine learning approaches and have been successfully applied in many important areas

of data analysis.

Another hot area of computer science research is bioinformatics, which uses computa-

tional methods to tackle important biological problems, such as biological data analysis,

protein structure and function prediction, and rational drug design. Specific properties

of biological data require existing machine learning methods to be extended to provide

adequate capabilities for analyzing such data.

There are many unsolved problems at the core of biology, and many biological processes

remain mysterious. Since we do not yet have an exact theoretical understanding of many

important biological problems, machine learning methods are a crucial tool for advancing

the state of our understanding in the field, given that there is an abundance of data but a

lack of exact knowledge.

In fact, there have been many successful applications of machine learning methods to

bioinformatics problems in the past few years. One good example is the profile Hidden

1



2 Probabilistic Graphical Models and Algorithms for Protein Problems

Markov Model used to advance the state of the art in protein secondary structure predic-

tion.

Over the last few years, major achievements have been made in the area of genomics,

especially in the accomplishment of the Human Genome Project. In the post-genomic era,

increasing research has focused on proteins. Proteins play a central role in biology, and

the understanding of protein function has become a key step toward modeling complete

biological systems. It has been established that the functions of a protein are directly linked

to its three-dimensional structure. Proteins sharing similar structures are more likely to

have similar functions.

In this thesis I will focus on developing algorithms, especially machine learning methods

to solve protein structure problems. Also I will propose some research on some machine

learning problems, in particular the theory and application of graphical models.

1.2 Contributions

The main contributions of this thesis are list as follows:

I propose a tree decomposition framework to solve both protein structure prediction

and protein structure alignment problems. I show that the low tree width properties

of a contact graph, which is used to represent the 3-D protein structures, is especially

appropriate for the tree decomposition algorithm. Compared with other algorithm, it offer

an exact solution and is also very efficient.

I propose a computational framework for detection of similar structures of a target

protein with sparse NMR data. Experimental results demonstrate that the model and

algorithms proposed in this paper can be used for protein structure prediction even if a

limited number of NMR data is available.

I propose a new machine learning approach—LS Boost—to solve the protein fold recog-

nition problem. I use a regression approach which is proved to be both more accurate and

efficient than classification based approaches. The algorithm achieves strong sensitivity re-

sults compared to other fold recognition methods, including both machine learning methods

and z -score based methods. Moreover, it is significantly more efficient for both the training

and testing phases, which may allow genome-scale scale structure prediction.
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In the field of machine learning, I present a new semi-supervised training procedure

for conditional random fields (CRFs) that can be used to train sequence segmentors and

labelers from a combination of labeled and unlabeled training data. My approach is based

on extending the minimum entropy regularization framework to the structured prediction

case, yielding a training objective that combines unlabeled conditional entropy with labeled

conditional likelihood. I apply the new training algorithm to the problem of identifying

gene and protein mentions in biological texts and show that incorporating unlabeled data

improves the performance of the supervised CRFs in this case.

1.3 Organization

The rest of the thesis is organized as follows:

In Chapter 2 I will introduce some background on graphical models, especially on

conditional random fields. Also I will introduce the tree decomposition algorithm, which

is also called the junction tree algorithm when used in graphical models.

In Chapter 3 I will introduce some basic knowledge of protein problems, such as protein

structure prediction and structure alignment.

Chapter 4 will mainly focus on machine learning and graphical problems. A new semi-

supervised conditional random fields (Semi-CRFs) method is proposed. My approach

is based on extending the minimum entropy regularization framework to the structured

prediction case, yielding a training objective that combines unlabeled conditional entropy

with labeled conditional likelihood. I will show how the derivative of the new objective can

be computed from the covariance matrix of the features on the unlabeled data. Also a new

efficient dynamic programming approach is proposed to efficiently compute the covariance

matrix of the features.

Chapters 5, 6, 7 and 8 focus primarily on protein problems, mainly with the machine

learning approach. Initially I will show how the tree decomposition algorithm is suitable

to solve some protein problems. In Chapter 5 I present a tree decomposition method that

can be used to efficiently solve protein threading for backbone prediction. In Chapter 6 I

present a tree decomposition method for protein structure alignment.

In Chapter 7 I presented a computational framework for detection of similar structures



4 Probabilistic Graphical Models and Algorithms for Protein Problems

of a target protein with sparse NMR data. The model and algorithms proposed here can

be used for protein structure prediction even if a limited number of NMR data is available.

In Chapter 8, I present a new machine learning approach—LS Boost—to solve the

protein fold recognition problem. I use a regression approach which is proved to be both

more accurate and efficient than classification based approaches. Also the algorithm is

proved to be more superior than any other machine learning methods both on performance

and efficiency.

Finally in Chapter 9, some conclusions are made, along with the proposal of future

work.



Chapter 2

Background on Graphical Models

Graphical models, in particular, have proved to be one of the most important machine

learning approaches that have been successfully applied in many important areas of data

analysis such as computer vision, bioinformatics, information retrieval, and computational

finance [80, 60]. Graphical models provide a general framework and methodology for

modeling and solving problems that involve a large number of random variables that are

linked in complex ways.

Graphical models can be thought of as the combination of probability theory and graph

theory. A graphical model is specified, in part, by a graph where nodes denote random

variables, and edges (or lack of edges) represent the conditional independence assumptions

being made among the random variables. Probability theory ensures that the entire joint

distribution specified by the graph structure and local parameters is consistent and provides

ways to characterize the interaction between nodes. By using a graphical representation,

one can easily and intuitively model a complex joint distribution over a large number

of variables with a high amount of interaction among them. Many classical problems

and algorithms in multivariate statistics and probability are actually just special cases of

general graphical models, such as Hidden Markov Models [103], Kalman filters [64, 99],

Hidden Markov Random Fields [39], mixture models [85, 116], and Conditional Random

Fields [69].

5



6 Probabilistic Graphical Models and Algorithms for Protein Problems

2.1 Representation

Given a graph G = (V,E), where V is the node set and E is the edge set, we as-

sume that the nodes denote random variables and the edges represent conditional de-

pendence/independence assumptions among these variables. The two most common forms

of graphical models are directed and undirected, based on directed acyclic graphs and undi-

rected graphs, respectively. Famous examples of directed graphical models include Hidden

Markov models and Kalman filters. Well-known examples of undirected graphical models

include Hidden Markov Random Fields and Conditional Random Fields.

2.1.1 Directed Models

In a directed graph, the edge set E consists of a set of directed edges. We assume further-

more that the directed graph is acyclic. Therefore the nodes can be topologically sorted,

where each node has a set of parent nodes (possibly empty) that occur earlier in the order-

ing. This directed graph structure specifies that each variable is conditionally independent

of its ancestor variables, given the values of its immediate parent variables. Figure 2.1

shows an example of a directed graphical model.

x1

x2

x3

x5

x4

x6

Figure 2.1: Example of a directed graph

Given a node xi, let xpi denote its set of parent nodes. For each combination of a node
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and its parents we define a conditional probability distribution on xi given each different

configuration of xpi . That is, for each different value upi of xpi we define a probability distri-

bution over the possible values v of the child variable xi. The joint probability distribution

over the entire set of random variables, x1, ..., xn, is then defined as follows

p(x1, x2, . . . , xn) =
n∏
i=1

p(xi|xpi)

To see that this defines a valid joint distribution, we need to sum the joint probabili-

ties over all possible joint configurations (x1, ..., xn). For example, if we had 10 variables

each with 5 possible values, a straightforward enumeration would consider 510 possible

combinations, which is obviously intractable in general. But by introducing the condi-

tional independence assumptions represented by the directed acyclic graph, we effectively

factorize the entire joint distribution into a product of local conditional distributions. In

particular, if x1 and x2 are conditionally independent given another variable x3, then the

conditional probability of x1 given both x2 and x3 can be reduced to

p(x1|x2, x3) = p(x1|x2)

Combining this fact with the chain rule of probability, we get

p(x1, x2, ..., xn) =
n∏
i=1

p(xi|x1...xi−1)

=
n∏
i=1

p(xi|xpi)

Finally, to show that this results in a valid joint distribution, note that

∑
x1,...,xn

p(x1, x2, ..., xn) =
∑

x1,...,xn

n∏
i=1

p(xi|xpi)

=
∑
x1

p(x1)
∑
x2

p(x2|xp2) · · ·
∑
xn

p(xn|xpn)

= 1 · 1 · · · 1
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2.1.2 Undirected Models

For an undirected graphical model, we are given an edge set E that consists of a set of

undirected edges. The conditional independence assumptions encoded by an undirected

graph are different than those encoded by a directed graph. For an undirected graph, a set

of nodes A is independent of a set of nodes B, given a third set of nodes C, if and only if

every path between A and B in the graph goes through C. Figure 2.2 shows an example

of an undirected graphical model.

x1

x2

x3

x5

x4

Figure 2.2: Example of an undirected graph

Let C denote the set of maximal cliques in the graph. We define the numerical com-

ponent of an undirected graphical model by specifying nonnegative potential functions

ψC(xC) over the maximal cliques C ∈ C. The potential functions are assumed to be

(strictly) positive, real-valued functions but are otherwise arbitrary. The joint distribution

of an undirected graphical model can then be defined as:

p(x1, ..., xn) =
1

Z

∏
C∈C

ψC(xC)
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where Z is the normalization factor

Z =
∑

x1,...,xn

∏
C∈C

ψC(xC)

The most commonly used undirected graphical model is the Markov random field

(MRF), used widely in computer vision and image processing. In this model, each node

corresponds to a pixel and the graph is given by the 2-D lattice structure. Edges in this

model connect adjacent pixels, and represent the fact that adjacent pixel values are highly

correlated [100, 42].

2.2 Important Examples—Conditional Random Fields

A few specialized forms of graphical models have been prominent in various areas of re-

search. In the past, many of the basic representations, as well as many of the basic inference

and estimation algorithms, have been independently reinvented for many of these exam-

ples. The general field of graphical models has subsequently unified these algorithms in

a common framework. For example, in my own research below, I will use an inference

algorithm called “Tree Decomposition” that is in fact equivalent to a type of “Junction

Tree Algorithm” that has been developed for graphical models. There are many kinds

of graphical models which have been proved very successful such as [103], Kalman filters

[64, 99], Hidden Markov Random Fields [39], mixture models [85, 116], and conditional

random fields [69]. Here I will introduce conditional random fields, which have recently

become very popular.

2.2.1 Definition of CRFs

Conditional random fields (CRFs) [69] are a form of undirected graphical models that

defines a conditional joint distribution over label sequences y given a particular observation

sequence x. Models that represent p(y|x) directly are referred to as discriminative (as

opposed to generative) models. Since CRFs model the conditional distribution directly,

they demonstrate improved prediction accuracy over generative models such as HMMs,

when the models are learned from data. Figure 2.3 shows one example of CRFs on
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chain structure. An intermediate form of the model is a maximum entropy Markov model

x0 x1 x2 xn

y0 y1
y2 yn

Figure 2.3: Example of a conditional random field model on a chain structure

(MEMM) [83], which represents a conditional model that is nevertheless generative on the

yt variables given the xt observations:

p(y0, ..., yN |x0, .., xN) = p(y0)
N∏
t=1

p(yt|yt−1, x0, .., xN)

CRFs go one step beyond MEMMs and use an undirected graphical model over y0, .., yN

given x0, .., xN . More generally, let G = (V,E) be a graph such that y = {yt}t∈V , so that

y is indexed by the vertices of G.1 Then (x, y) is a conditional random field on y given

x if the random variablesundirected graphical models yt obey the Markov property with

respect to the graph:

p(yt|x, {ys}s6=t) = p(yt|x, {ys}s∼t)

where s ∼ t means that s and t are neighbors in G. The conditional distribution over

y = {yt} given x is compactly represented by introducing feature functions

gk(t, yt, x) for t ∈ V and k = 1, ..., K

f`(s, t, ys, yt, x) for (s ∼ t) ∈ E and ` = 1, ..., L

associated with the graph. The feature functions are normally binary valued. The features

f` on edges are normally referred to as transition features, and the features gk on nodes

1 In particular, above we are considering a graph over y given by a chain where there is an edge between
each (yt, yt+1) pair.
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are referred to as node features. For each feature function gk or f` we associate a trainable

parameter µk or λ`, respectively, that can be estimated from training data. Then, given

the graph G = (V,E), the feature functions gk and f` and the parameters µk and λ`, the

conditional probability of a label set y given the observation x is given by:

p(y|x) ∝ exp


 ∑

`,(s∼t)∈E
λ`f`(s, t, ys, yt, x) +

∑

k,t∈V
µkgk(t, yt, x)




More precisely, if we let θ = (λ, µ), the proper conditional distribution defined by the

CRF over y given x is given by

p(y|x, θ) =
1

Z(x, θ)
exp


 ∑

`,(s∼t)∈E
λ`f`(s, t, ys, yt, x) +

∑

k,t∈V
µkgk(t, yt, x)


 (2.1)

where Z(x, θ) is the normalization factor required to ensure that a valid probability dis-

tribution over y is obtained. Note, however, that to perform structured classification,

the normalization constant Z(x, θ) does not matter because we only need to determine

y∗ = arg maxy p(y|x, θ). Therefore, once the model parameters µk and λ` have been esti-

mated, we no longer need to compute Z(x, θ).

Another important property that we exploit below is that log p(y|x, θ) is a concave

function of the parameters θ = (µ, λ), which facilitates efficient estimation.

Since they have been proposed, CRFs have demonstrated significant advantages over

HMMs and MEMMs in classification accuracy, and as a result have become very popular.

The first main advantage over HMMs is that CRFs are discriminative models that directly

represent p(y|x) instead of p(y, x). This allows CRFs to use much more flexibility, via

feature functions, to capture more complex, long range dependencies of y on x, which

would cause intractability in a generative representation. The second main advantage over

MEMMs is that CRFs are normalized globally over the entire y sequence, and not locally

over each yt given yt−1, allowing for better training algorithms that overcome the “label

bias problem” that afflicts directed graphical models [69].
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2.2.2 Parameter Estimation for CRFs

To acquire the parameters for a graphical model, one normally needs to estimate them from

data. Different estimation techniques are required depending on whether one is learning

parameters for a generative or discriminative model.

For a discriminative model, given paired data D = (xi, yi)i=1,..,T , one normally trains the

parameters to maximize the conditional likelihood of the target labels yi given the inputs

xi. Note that for a sequence model, like CRFs, the input observations xi = xi0, ..., x
i
Ni

and output observations yi = yi0, .., y
i
Ni

are themselves sequences, but we still make the IID

assumption between these sequences. Thus, we formulate a conditional likelihood objective

to be maximized as a function of θ as

l(θ) =
∑
x,y

p̃(x, y) log p(y|x, θ)

where p̃(x, y) denotes the empirical frequency of the sequence pair (x, y) in the training

data D.

For a CRFs model in particular, we can substitute the conditional probability it defines

on y given x, (2.1), into the above log-likelihood objective to obtain

l(θ) =
∑

`,(s∼t)∈E
λ`f`(s, t, ys, yt, x) +

∑

k,t∈V
µkgk(t, yt, x))− log(Z(x, θ)) (2.2)

where θ = (µ, λ). The discriminative MLE principle requires us to compute the parameters

θ that maximize this objective.

The first step toward computing a maximizer of (2.2) is to compute its gradient with

respect to the parameters θ = (µ, λ). For example, the derivative with respect to λ` is

given by

∂l(θ)

∂λ`
=

∑
x,y

p̃(x, y)
N∑
t=1

f`(t− 1, t, yt−1, yt, x)

−
∑
x,y

p̃(x)p(y|x, θ)
N∑
i=1

f`(t− 1, t, yt−1, yt, x)

= Ep̃(x,y)[f`]− Ep̃(x)p(y|x,θ)[f`]
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Note that setting the gradient to zero implies a constraint that must be satisfied by the

optimal parameters θ: the expectation of the feature functions with respect to the model

distribution must be made equal to their empirical expectations. This is the standard

constraint of maximum entropy estimation [104, 3].

There are two basic techniques used to compute an optimal θ for a CRF model. The

most obvious approach is just to perform standard optimization based on gradient ascent or

Newton optimization. Another approach is based on the iterative scaling method [15, 34].

Gradient-based Methods By computing the gradient vector g(θ), one can naively

make progress in the objective by moving a current parameter estimate θ a small amount

in the gradient direction

θ(k+1) = θ(k) + αkg(θ(k))

where αk is the step size and g(θ(k)) is the gradient vector computed at the current param-

eter estimate θ(k). Common methods for optimization based solely on gradient vectors are

steepest ascent or conjugate gradient. Importantly, as observed above, the objective func-

tion l(θ) is concave in θ, and thus standard optimization techniques, once they converge,

are guaranteed to produce a globally optimal value of θ.

The main drawback of purely gradient based methods is that their convergence is slow

and they require many iterations to solve the problem. For that reason, one is strongly

tempted to use a second order technique, such as Newton’s method, which computes a

parameter update based on the Hessian matrix of second derivatives. If H(θ(k)) denotes

the Hessian matrix computed at parameter estimate θ(k), then the Newton update is give

by

θ(k+1) = θ(k) −H−1(θ(k))g(θ(k))

Although this update converges to a maxima with much fewer iterations than gradient

based methods, each iteration is much more expensive to compute. In fact, the space re-

quired to store the Hessian matrix is usually far too great to be practical, even ignoring the

time cost needed to invert it. Real training problems on CRFs normally involve thousands

or even millions of features, which would result in a Hessian matrix with millions or even

trillions of entries to store.
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A practical compromise is to use limited-memory forms of quasi-Newton methods, such

as the limited-memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [95, 91]. The

main idea here is to only store a low rank approximation to the inverse Hessian matrix

which can be efficiently updated based on each step direction and each gradient vector

computed. Such an approach usually results in reasonably fast convergence with adequate

computation.

Iterative Scaling Method Iterative scaling is an alternative optimization method specif-

ically tailored to the training problems encountered with log-linear probability models.

Although these methods have an elegant derivation and convergence proof [97], they gen-

erally do not converge faster than standard optimization techniques like Newton or quasi-

Newton methods. Nevertheless, iterative scaling is an interesting training algorithm where

one computes a similar update to gradient ascent:

θ(k) = θ(k) + δ(k)θ(k)

Lafferty et. al have proposed two iterative scaling methods for estimating the parameters

of CRFs [69], which they refer to as the generalized iterative scaling method and improved

iterative scaling method respectively.

In my own work, I have focused on standard quasi-Newton based optimization tech-

niques, which generally converge faster [90].

2.3 Inference

In standard applications of a graphical model, the values of some nodes are observed while

some other nodes are unobserved, or “hidden”. The inference problem is to calculate or

estimate the conditional probability distribution over theses hidden nodes given the values

of the observed nodes. Let H denote the hidden nodes and O represent the observed nodes.

We need to calculate the conditional probability P (H|O)

P (H|O) =
P (H,O)

P (O)
=

P (H,O)∑
H P (H,O)
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The difficulty in this computation arises from the need to compute a marginal probability∑
H P (H,O) to normalize the conditional probability.

Inference is an inherently hard problem in the worst case, which means that one often

has to resort to approximate rather than exact inference methods in practice. Neverthe-

less, a variety of useful exact inference methods, that usefully exploit the structure of the

graphical model, also exist. I briefly discuss both exact and approximate inference methods

below.

2.3.1 Exact Inference

There are different techniques for computing the exact posterior probabilities of unobserved

nodes given observed nodes in a graphical model.

Elimination Algorithm The most straightforward approach for computing marginal or

conditional probabilities is to use a graph theoretic elimination algorithm, often referred to

as the “vertex elimination algorithm” [60]. The basic idea of this algorithm is to sum out

variables from a list of factors one by one. This algorithm requires a specific ordering on the

variables, referred to as an elimination ordering, to be provided as input. The algorithm

then proceeds mechanically by eliminating variables according to the given order.

Junction Tree Algorithm( Tree decomposition) One shortcoming of the naive elim-

ination algorithm above is that it does not do a good job of caching computations that

might be useful for other queries.

The junction tree algorithm, also called tree decomposition algorithm in tree decompo-

sition, the variable may not be probabilistic distribution , is the best understood, efficient

and provably correct method for concurrently computing multiple queries. The detail of

tree decomposition for generate graph problem will be introduced in chapter 2.4.

The running time of the tree decomposition algorithm is exponential in the size of the

largest clique. In many cases this leads to a practical algorithm for performing inference.

However, in the worst case, the tree decomposition algorithm can be impractical because

the largest clique size can sometimes grow too large. A good example of this is image

modeling, which considers graphical models defined over a grid of pixels. In these models,
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it is common to have several thousand pixels, but the maximum clique size in any junction

tree must be at least the number of pixels in either a row or column of the image. An

exponential running time in this quantity makes the exact junction tree algorithm use-

less for image processing applications. In these applications, it is necessary to consider

approximate inference algorithms.

2.3.2 Approximate Inference

In general, it is computationally hard to compute exact conditional probabilities in a

graphical model if there is no special structure present (such as being a tree). Even though

exact methods can be applied to nontrivial models, they cannot scale up to arbitrarily large

models. Ultimately, some form of approximate inference algorithm must be employed to

perform inference on large, arbitrary graphical models.

There are several different kinds of approximate inference algorithms for graphical mod-

els, each with different advantages and disadvantages.

Loopy Belief Propagation The main idea of loopy belief propagation is to exploit the

same propagation process as used in the junction tree algorithm but to simplify the graph to

yield the faster and tractable inference at the cost of sacrificing accuracy. Surprisingly, the

same propagation process when run on graphs that do not satisfy the junction tree property,

yields a good approximation to exact inference in practice. This is even true on graphs

with loops. Loopy propagation is an increasingly popular method of approximate inference

for graphical models. It is not guaranteed to converge in general, but in addition to its

empirical success, some theoretical results are known about its approximation properties

[53, 52, 96, 62].

Monte Carlo Estimation Monte Carlo refers to methods that solve problems by gen-

erating a series of random numbers and observing that fraction of the numbers obeying

some property or properties [81]. For example, to estimate a conditional probability p(y|x),

one could first sample from p(x, y) (which is easy in a generative model like an HMM),

discard all samples that do not agree on x, and use the remaining samples to estimate the

frequency of y.
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There are several kinds of sampling methods. Rejection sampling defines an upper

bound of the distribution and only accepts samples with a certain probability. However,

sometimes it is difficult to find a suitable upper bound. Importance sampling draws data

from a different distribution than the target, but then weights the samples to correct for

the difference. A more efficient approach in high dimensional problems is Markov Chain

Monte Carlo (MCMC) [94]. The MCMC method sets up a suitable Markov chain that has

the target distribution as its stationary distribution. Then by observing the simulation

and recording the states one can estimate desired probabilities. Special cases of MCMC

methods are Gibbs sampling and the Metropolis algorithm [42].

The advantage of the Monte Carlo methods is that they are easy to implement and

provide theoretical guarantees of convergence. The disadvantage is that sometimes the

convergence times will be very long. These methods are also hard to diagnose and debug.

Variational Methods Variational methods [61] provide an alternative approach to ap-

proximate inference. The main idea of these methods is to avoid performing sums over

exponentially many summands, and instead find a deterministic bound. For example, the

mean-field algorithm, which was widely used in image processing, decouples the grid model

into isolated nodes. We define a new parameter for each node (a variational parameter) and

then iteratively update these parameters by minimizing the cross-entropy (KL divergence)

between the approximate and true probability distributions. In [26], I present a variational

Bayesian framework for performing inference, density estimation and model selection in a

special case class of graphical models–Hidden Markov Random Fields (HMRFS [39]).

2.4 A Tree-Decomposition Approach to the Graph

Labeling Problem

In this section, we first introduce the concept of tree decomposition. Then I will describe

several different methods to decompose a graph into a tree decomposition and finally

describe how to search for the optimal label assignment based on the tree decomposition

of a graph.
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2.4.1 Tree Decomposition

Tree decomposition of a graph was introduced by Robertson and Seymour [106] a long

time ago. The technique of decomposing a sparse graph to its tree-decomposition has

been applied to many NP-hard problems such as frequency assignment problems [68] and

Bayesian inference [10].

L:et G = (V,E) be a graph. A tree decomposition of G is a pair (T,X)

satisfying the following conditions:

1. T = (I, F ) is a tree with a node set I and an edge set F ,

2. X = {Xi|i ∈ I,Xi ∈ V } and
⋃
i∈I Xi = V . That is, each node in the tree

T represents a subset of V and the union of all the subsets is V,

3. for every edge e = {v, w} ∈ E, there is at least one i ∈ I such that both

v and w are in Xi, and

4. for all i, j, k ∈ I, if j is a node on the path from i to k in T, then Xi

⋂
Xk ⊆

Xj.

The width of a tree decomposition is maxi∈I(|Xi|−1). The tree width of a graph

G, denoted by tw(G), is the minimum width over all the tree decompositions

of G.

Figures 2.4 and 2.5 give an example of a graph and one of its tree decompositions,

respectively. The width of a tree decomposition is a key factor in determining the compu-

tational complexity of all the tree-decomposition based algorithms. The smaller the width

of a tree decomposition is, the more efficient the tree decomposition based algorithms.

Therefore, we need to optimize the tree decomposition of a graph such that we can have a

very small tree width.

2.4.2 Algorithms for Tree Decomposition of a Graph

The optimal tree decomposition of a general graph is NP-hard [9], which means it is unlikely

to find the optimal tree-decomposition of a graph within polynomial time. The graph
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Figure 2.4: Example of a graph.
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Figure 2.5: Example of a tree decomposition with width 3.

discussed in this paper has two special features: (i) the graph is a geometric neighborhood

graph and (ii) the graph is also sparse. Therefore, using the sphere separator theorem [89],

we can have a low-degree polynomial-time algorithm to decompose the graph into some

components with size O(Du
Dl
|V | 23 log |V |) [127]. Strictly speaking, we have the following

theorem.

Theorem 1 Let G = (V,E) denote a graph describing the relationship among a set of 3D

points. The distance between any two vertices in G is at least a constant Dl and the distance

between any two adjacent vertices is no more than Du. There is a low-degree polynomial-

time algorithm to decompose G into some components with size O(Du
Dl
|V | 23 log |V |).

The sphere separator based tree decomposition algorithm is not easy to implement.

Besides this theoretically-sound tree decomposition method, many heuristic-based tree

decomposition methods exist in the literature. Later in this paper we will compare the

performance of six heuristic-based tree decomposition algorithms and show that some work
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very well in practice. The graph under consideration can be decomposed into some very

small components, which leads to a very efficient tree-decomposition based graph labeling

algorithm. Here we describe six different tree decomposition algorithms.

Method 1: minimum vertex separator This method recursively partitions a graph

into two disconnected subgraphs using a minimum vertex separator [37]. Finally, we get

a tree with separators being the internal nodes and the final subgraphs being the leaf

nodes. All the vertices along the path from the tree root node to any tree node form a

decomposition component. Given an undirected graph G = (V,E), a vertex set S is called

an (a, b)-vertex-separator if it satisfied (i) {a, b} ⊂ V \ S and (ii) every path connecting a

and b in G passes through at least one vertex contained in S. Among all the separators,

the one with the minimum cardinality is called the minimum (a,b)-vertex-separator.

Method 2: two-way-1/2-triangle This method is similar to the minimum vertex

separator method. The only difference is that this method uses a minimum 1/2-balanced

vertex separator rather than the minimum vertex separator. The “1/2-balanced” vertex

separator always partitions a graph into two subgraphs, each containing no more than one

half of all the vertices.

Method 3: two-way-2/3-triangle This method is similar to the two-way-1/2-triangle

method. The only difference is that this method uses a minimum 2/3-balanced vertex

separator rather than a minimum 1/2-balanced vertex separator. The “2/3-balanced”

vertex separator always partitions a graph into two subgraphs, each containing no more

than two thirds of all the vertices.

Method 4: minimum-degree It is a heuristic algorithm that iteratively chooses one

vertex and forms a decomposition component based on this vertex [16]. At each iteration,

this method chooses a vertex with the smallest number of neighbors and adds edges to

the graph such that any two neighbors of the selected vertex are connected by an edge.

The selected vertex with its neighbors forms a partition of the graph. Then, this method

removes the selected vertex from the graph and recursively chooses the next vertex until

the graph is empty.
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Method 5: minimum-width It is a heuristic method similar to the “minimum-degree”

method. It differs from the “minimum-degree” method in that this method does not

connect edges to the neighbors of the chosen vertex.

Method 6: minimum-discrepancy It is a heuristic method similar to the “minimum-

degree” method. It differs from the “minimum-degree” method in that at each iteration,

this method selects the vertex with the minimum number of edges missing between its

neighbors.

2.4.3 Tree Decomposition-Based Graph Labeling Algorithms

Xr

X

X

X k
j

i

Figure 2.6: A tree decomposition (T,X) of G.

Assume that we have a tree decomposition (T,X) of a geometric neighborhood graph

G. We describe an algorithm to search for the optimal label assignment based on the tree

decomposition. For simplicity, we assume that tree T has a root Xr and that each node is

associated with a height. The height of a node is equal to the maximum height of its child

nodes plus one. Figure 2.6 shows an example of a tree decomposition in which component

Xr is the root. Let Xr,j denote the intersection between Xr and Xj. If we remove all

the vertices in Xr,j, then this tree decomposition becomes two disconnected subtrees. Let

F (Xj, A(Xr,j)) denote the optimal label assignment of the subtree rooted at Xj given that

the label assignment to Xr,j is fixed to A(Xr,j). Then F (Xj, A(Xr,j)) is independent of

the rest of the whole tree decomposition. Let C(j) denote the set of child components
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of Xj and Score(Xj, A(Xj)) denote the assignment score of component Xj with the label

assignment being A(Xj). Let D[X] denote all the possible label assignments to the vertices

in X. Therefore, we have the following recursive equation.

F (Xj, A(Xr,j)) = min
A∈D[Xj−Xr,j ]

{
∑

i∈C(j)

F (Xi, A(Xj,i))

+Score(Xj, A(Xj))}

Based on the above equation, we can calculate the optimal label assignment in two steps.

First, we calculate the optimal energy function from bottom to top and then we extract

the optimal label assignment from top to bottom.

Bottom-to-Top Starting from a leaf node i in the tree T , we assume that node j is

the parent of i in T . Let Xj,i denote the intersection between Xi and Xj and D[Xj,i] the

set of all the possible label assignments to the vertices in Xj,i. Given a label assignment

A(Xj,i) ∈ D[Xj,i] to the vertices in Xj,i, we enumerate all the possible label assignments

to Xi − Xj,i and then find the best label assignment such that the energy of the subtree

rooted at Xi is minimized. We use F (Xi, A(Xj,i)) to denote this minimized energy. At the

same time, we also save the optimal assignment to Xi − Xj,i for a given A(Xj,i) since in

the top-to-bottom step we need it for traceback. For example, in Figure 2.5, if we assume

the node acd is the root, then node defm is an internal node with parent cdem. For each

label assignment to vertices d, e and m, we can find the best label assignment to vertex

f such that the energy of the subtree rooted at defm is minimized. In this bottom-to-

top process, a tree node can be calculated only after all of its child nodes are calculated.

When we calculate the root node of T , we enumerate all the possible label assignments to

this node and find the optimal label assignment such that the energy is minimized. This

minimized energy is also the minimum energy of the whole system.

Top-to-Bottom After finishing calculating the root node of tree T , we obtain the

optimal label assignment to this root node. Now we trace back from the parent node to

its child nodes to extract out the optimal label assignment to all the child nodes. Assume

that we have the optimal label assignment to node j and node i is a child of j. We can

easily extract out the optimal label assignment to Xi−Xj,i based on the assignment to Xj,i

since we have already saved this label assignment in the bottom-to-top step. Recursively,
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we can track down to the leaf nodes of T to extract out the optimal label assignment to

all the vertices in G.

In addition, based on the definition of tree decomposition, one vertex might occur in

several tree nodes of the tree decomposition of G. To avoid incorporating the singleton

score of this vertex into the overall system energy more than once, we incorporate the

singleton score of this vertex into the system only when we are calculating the tree node

with the maximal height among all the nodes containing this vertex. We can prove that

there is one and only one such a tree node. Similarly, an edge in graph G might also occur

in several tree nodes. We can use the same method to avoid a redundant addition of its

pairwise score.

In the following chapter, I will show how the tree decomposition algorithm is used

for protein structure prediction and protein structure alignment. I will also show the

effectiveness of the algorithm and the reason why it works.



Chapter 3

Background on Protein Problems

Over the last few years, major achievements have been made in the area of genomics,

especially in the accomplishment of the Human Genome Project. In the post-genomic

era, more research has focused on proteins. Proteins play a central role in biology, and

the understanding of protein functions has become a key step toward modeling complete

biological systems. It has been established that the functions of a protein are directly

linked to its three-dimensional structure. Proteins sharing the similar structures are more

likely to have similar functions. In the following sections, I review some related problems

such as protein structure prediction and protein structure alignment that is related to my

research.

3.1 Introduction to Protein Structure

Proteins are large, complex molecules consisting of chains of amino acids, which are the

basic units of proteins. The sequence of amino acids in each protein is determined by

the gene that encodes it. The gene is transcribed into a messenger RNA (mRNA) and

the mRNA is translated into a protein by the ribosome. The spatial conformation of a

protein is determined by the order of the amino acids and the side chain. The description

of protein structure can be broken down into four levels:

1. The basic unit of a protein is the amino acid, which consists of an α-carbon atom in

the center, a N-terminal (-NH2), a hydrogen atom, a carboxyl group (-COOH) and a side

24
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chain R group. In nature, there are 20 different kinds of amino acids in total, which differ

only in the R group. The primary structure refers to the ”linear” sequence of amino acids.

2. Secondary structure is the “local” ordered structure brought about via hydrogen

bonding, mainly within the peptide backbone. There are two different types of secondary

structure: the α-helix and the β-sheet.

3. Tertiary structure is the “global” folding of a single polypeptide chain. With long-

range interactions, all secondary fragments in a protein can form a specific tertiary structure

with the loops connecting between them. An important type of tertiary structure is also

called the fold, and it is much more conserved than sequences during the course of protein

evolution. There are limited types of folds that occur in nature according to the protein

data bank.

4. Quaternary structure involves the association of two or more polypeptide chains into

a multi-subunit structure.

When we refer to protein structure, normally we mean tertiary and quaternary struc-

ture. Figure 3.1 shows the four levels of protein structures.

Figure 3.1: Four levels of protein structure
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3.2 Representation of 3-D Protein Structure—Contact

Graphs

Here we use a contact graph “contact graphs” to represent the 3D protein structure. Each

residue is represented by a vertex in V , associated with its secondary structure type, its

N-H bond and the coordinate of its residue center. For each residue, we use its Cα atom

as the residue center. There is a contact edge (i, j) ∈ E between two residues i and j if

and only if their spatial distance is within a given distance cutoff Du. Since the distance

between two hydrogen atoms related by a long-range NOE restraint usually is no more than

5Ȧ away from each other, Du ranges from 7Ȧ to 8Ȧ. One edge is also added to connect any

two sequentially adjacent residues. Given a protein chain A, let G[A] denote its contact

map graph. For a substructure P of A, let G[P ] denote the contact map subgraph induced

by substructure P .

In a typical protein, two residues cannot be arbitrarily close, which is one of the under-

lying reasons why lattice models can be used to approximate protein folding. According

to simple statistics on the PDB database [14], 99% of inter-residue distances are more

than 3.5Ȧ. Let the constant Dl (Dl > 0) denote the minimum inter-residue distance in a

protein. Therefore, it can be easily verified that any residue can be adjacent to at most

(1+ 2Du
Dl

)3 residues. Figure 3.2 show a sample contact graph. Suppose a small protein with

5 residues, residue 1 and residue 3 is very close while residue 2 and 5 is very close. Edges

are added between node 1,3 and node 2, 5.

1 2 3 54

Figure 3.2: Example of contact graph
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3.3 Protein Structure Prediction

The problem of protein structure prediction is: Given the sequence of a protein (Primary

structure), what is its 3D structure? (i.e. either Tertiary structure or Quaternary structure)

It is well known that the function of the protein is determined by its 3D structure.

Currently experimental methods to determine the protein structure, such as X-ray crys-

tallography and magnetic resonance spetroscopy (NMR), are both time-consuming and

expensive. For example, using the X-ray method, it will take half a year and millions

of dollars to determine the structure of some large proteins. Subsequently, there is a big

gap between the numbers of available sequences and available structures, which makes the

computation methods greatly needed.

3.3.1 Main Methods for Structure Prediction

There are many approaches to predict the structure of proteins, which fall into four main

types.

Homology Modelling The homology modelling approach attempts to predict the struc-

ture of a given protein by first searching for homologous proteins from a database and then

using the retrieved structures to provide predictions. Factors that account for homology

could either be similar sequence or structure or that the proteins evolved from a common

ancestor.

Ab inito Folding The ab initio folding approach builds the structural model directly

from the original primary sequence. By defining a score function, optimization techniques

can be used to find the most probable model. Although some achievements have been

obtained using this approach in recent years, the performance of this method is still dis-

couraging because the real physical processes of folding are still not very clear yet.

Consensus Methods In this approach, one predicts the structure by analyzing and

combining the outputs of different structure prediction methods. Although this approach
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can achieve a more sensitive and specific prediction than any individual approach, it does

not really contribute new understanding to the underlying problem of structure prediction.

Threading Methods Threading methods predict protein structure by exploiting sta-

tistical knowledge of the relationship between the structure and the sequence. Predictions

are made by first threading the query sequence to each template in a database and then

choosing a best-fit template based on the threading results. Protein threading consists of

the following five components: (1) a library of template structures; (2) a representation

of targets and templates; (3) an objective function for measuring the quality sequence-

template alignments; (4) an algorithm finding the best sequence-template alignment; and

(5) a method for selecting the best template based on all the sequence-template align-

ments. A library of template structures is a set of representative structures selected from

the PDB. Usually, to save computing time, among all the highly similar protein structures,

only one is kept in the template library. To construct a library of template structures,

we can cluster all the proteins from PDB into several thousand groups and then choose

one representative from each group to serve as a structural template. We can also build a

template library using a set of representative proteins from the SCOP database [93].

Compared with the homology method, which mainly considers sequence similarity be-

tween the target and the template, protein threading makes use of the structural informa-

tion encoded in the template to improve prediction accuracy, including the use of secondary

structure, solvent accessibility and pairwise interactions. The threading approach is one of

the most promising structure prediction methods developed to date [123, 66].

3.3.2 Threading Algorithms

For threading methods, if we use a contact graph based method (that is, a 2D graph based

method), it is NP-hard to find the best sequence-template alignment [73, 5], which means it

is unlikely to have a polynomial-time algorithm for finding the best alignment. Therefore,

one must either resort to approximate threading algorithms or try to develop fast, exact

algorithms which nevertheless cannot be scaled up to arbitrarily large problems.
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Approximate algorithms Many approximate or heuristic algorithms have been pro-

posed for protein threading. Madej et al. [114, 20] proposed a Gibbs sampling technique to

search for the optimal sequence-template alignment. Godzik et al. [1] and Jones et al. [58]

proposed an interaction-frozen approximation algorithm to find a good sequence-template

alignment iteratively. In each iteration, this approach assumes that one end of a contact is

fixed when calculating the pairwise interaction score. Thiele and Zimmer developed a re-

cursive dynamic programming approach [102]. Recently, Balev [13] proposed a Larangian

relaxation algorithm to solve this problem. The advantage of the Lagrangian approach

is that one can estimate the gap between the optimal value and the best objective value

observed so far. This algorithm also runs very efficiently in practice when the target and

the template are similar, although it cannot guarantee the optimal solution.

Exact algorithms If the length of the template is limited, a dynamic programming algo-

rithm can be used to find the optimal sequence-template alignment. However, in most cases

the running time of dynamic programming is impractical. Lathrop and Smith [75, 101, 74]

developed a branch-and-bound algorithm to solve for the optimal sequence-template align-

ment. In this algorithm, the complete search space is split into many small subspaces

by partitioning the alignment domain of a single template position into several intervals.

The lower and upper bound of the objective function in each subspace is estimated based

on the sequence-template alignment generated without considering pairwise interactions.

During the search process, some subspaces can be discarded based on the estimated lower

and upper bounds. The algorithm terminates when the pruned search space contains only

the best sequence-template alignment. This algorithm runs particularly fast when the

similarity between the target and the template is high.

Xu et al. [131, 130] designed a divide-and-conquer algorithm that is used in their struc-

ture prediction program, PROSPECT [66], based on an observation that if the contact

cutoff distance is not big, then the residue interaction pattern of many templates can be

represented as a sparse graph. This algorithm splits a template into two subsegments

resulting in few inter-segment contacts, recursively aligns each subsegment to the target

respectively, and finally, merges the alignments of two subsegments to form a complete

alignment. PROSPECT runs very fast for approximately three quarters of the templates
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in the library. However, it runs very slowly or runs out of memory on a 32-bit platform on

the remaining one-quarter templates, which have many inter-residue contacts.

Both the branch-and-bound and divide-and-conquer algorithms can find the globally

optimal solution to the sequence-template alignment problem. However, both algorithms

are still computationally expensive and not suitable for genome-scale protein structure

prediction. Xu proposed an efficient linear programming (LP) approach to the optimal

sequence-template alignment problem. Empirically, the LP approach can find the optimal

alignment for 99% of threading instances within polynomial-time [131, 130].

3.3.3 Fold Recognition

Fold recognition identifies the best template for a given target based on all the generated

sequence-template alignments. The sequence-template alignment score cannot be directly

used to rank the templates due to the bias introduced by residue composition and the

number of alternative sequence-template alignments for a given pair of target and template

[21]. Both Z-score [114, 21] and machine learning methods [130, 57] are used to do fold

recognition. Most of the current structure prediction programs use Z-score [108, 66, 113] to

recognize the best-fit templates, whereas several programs such as GenTHREADER [57]

and PROSPECT-I [134] use a neural network model to rank the templates. The neural

network method formulates the fold recognition problem as a classification problem. The

machine learning methods extract some features from a sequence-template alignment to

describe the quality of this alignment in many different aspects and then try to predict if

this pair of target and template is in the same fold or to predict the overall quality of the

alignment. A machine learning model directly predicting the quality of a three-dimensional

structural model built from a sequence-template alignment can also be used to conduct

fold recognition [120]. According to [124], the machine learning methods are better than

Z-score in terms of both sensitivity and specificity. In fact, Z-score cannot cancel out all the

bias introduced by the protein sizes. A large target protein tends to have a large Z-score.

The Z-score was proposed to cancel out the bias caused by sequence residue composition

and by the number of alternative sequence-template alignments. A typical procedure to

calculate Z-score [21] is as follows: (1) shuffle the residues of the target randomly; (2)

find the optimal alignment between the shuffled target and the template and calculate
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the alignment score; (3) repeat the above two steps as many as 100 times or until the

distribution of the generated alignment scores converges. Z-score is the alignment score in

standard deviation units relative to the mean alignment score. The higher the Z-score is,

the better the alignment.

The Z-score method has the following two drawbacks. First, it takes a lot of extra time

to calculate Z-score for a pair of target and template. In order to calculate Z-score for each

pair, the target has to be shuffled and threaded many times to the template. This hinders

the use of Z-score methods in genome-scale structure prediction. In contrast, machine

learning methods require only one-time threading for a given target and template. Sec-

ondly, the Z-score is hard to interpret, especially when the scoring function is the weighted

sum of various energy items such as mutation score, environmental fitness score, pairwise

score, secondary structure score, gap penalty and score induced from NMR data. For ex-

ample, when the target is shuffled, shall we shuffle the position specific profile information

and the predicted secondary structure type at each sequence residue? If we choose to shuf-

fle the secondary structure, then the shuffled secondary structure arrangement does not

look like a protein’s since the regular secondary structure types (i.e., -helix and - strand)

disperse randomly in the target. Otherwise, if we choose to predict the secondary structure

again, the whole process will take a very long time.

3.4 Protein Structure Alignment

It is known that a protein’s function is determined by its 3D structure and that two

proteins sharing similar structures are more likely to have similar function. Therefore, it

is important to provide structure alignment algorithms and software to biologists to aid in

protein function determination. Normally, protein structure alignment tools are the most

common used tools to analyze the similarity of two proteins [71, 76].

There are two major methods to measure the similarity between two proteins: the co-

ordinate distance-based method and inter-residue contact-based method. The first type of

measure uses the Euclidean distance between two matched residues or atoms in the two

proteins compared. Many programs such as STRUCTAL [43], 3dSearch [112], and VAST

[44] belong to this category. To use this method, the optimal rigid-body transformation
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between two proteins must be determined. The other type of measure employs a contact

map graph to describe the structure of a protein and compares the contact map graphs

of two proteins under consideration [70, 23]. A contact in a protein is a pair of residues

that are spatially close to each other. A contact map graph consists of all the residues

(i.e, vertices) and their contacts (i.e., edges) and is inferred from crystal structures. Using

this method, the protein structure alignment problem is often formulated as a maximum

common subgraph problem. It is unnecessary to find the optimal rigid-body transfor-

mation before obtaining the best match between two proteins. Usually the rigid-body

transformation is calculated after the best match is determined. A variant of a contact

map representation of a protein structure is a distance matrix in which an element is the

spatial distance between two residues. Two distance matrices are compared to render the

best common submatrix. Several widely used protein structure alignment tools such as

DALI [49], CE [111] and SARF [7] employ the distance matrix representation of a protein

structure.

Previous studies show that contact map-based protein structure alignment is NP-hard

and also hard to approximate [45, 118, 56], regardless of whether the alignment is sequential

or non-sequential. A non-sequential alignment refers to one in which the sequential order

of residues in a protein is ignored, and only the spatial proximity between two residues

is taken into consideration. Many structure alignment tools support both sequential or

non-sequential structure alignment [49, 136, 35, 138].

Many protein structure comparison programs such as DALI [49] use heuristic algo-

rithms to find a good, but not the best, alignment. The advantage of these algorithms is

that they are computationally efficient. While these algorithms have no performance guar-

antee, empirically they generate good alignment accuracy. There are also some globally

optimal algorithms for this problem. For example, Lancia et al. [70] used a branch-and-cut

method to find the optimal alignment between two proteins when a protein is modeled by

a contact map. Later, Caprara & Lancia also developed a Lagrangian relaxation algorithm

[23], which runs fast and sometimes can generate a globally optimal solution. The dis-

advantage of these algorithms is that they do not have good theoretical time complexity.

Recently, Kolodny & Linial [67] proposed an interesting polynomial-time approximation

scheme for this problem when a STRUCTAL-type objective function [43] (i.e., Gerstein &
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Levitt’s coordinate distance based measurement) is used to measure the similarity between

two proteins. However, there is still no good approximation algorithm in the case where

the two proteins under consideration are modeled by a contact map. Instead, Goldman,

Papadimitriou & Istrail have shown that, based on the maximum common subgraph formu-

lation, the contact map-based protein structure alignment problem is hard to approximate

[45]. The hardness of the protein structure alignment problem partially comes from the

fact that when two contact maps are aligned, the geometric information in the protein

structure is not taken into consideration.



Chapter 4

Semi-Supervised Conditional

Random Fields

In this chapter, I will introduce some research work on machine learning, special on graph-

ical models, from theory to application. The background for graphical models and condi-

tional random fields has been introduced in chapter 3.

I present a new semi-supervised training procedure for conditional random fields (CRFs)

that can be used to train sequence segmentors and labelers from a combination of labeled

and unlabeled training data. My approach is based on extending the minimum entropy

regularization framework to the structured prediction case, yielding a training objective

that combines unlabeled conditional entropy with labeled conditional likelihood. Although

the training objective is no longer concave, it can still be used to improve an initial model

(e.g. obtained from supervised training) by iterative ascent. I apply the new training

algorithm to the problem of identifying gene and protein mentions in biological texts, and

show that incorporating unlabeled data improves the performance of the supervised CRFs

in this case. This work was published in [54].

4.1 Introduction

Semi-supervised learning is often touted as one of the most natural forms of training for

language processing tasks, since unlabeled data is so plentiful whereas labeled data is

34
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usually quite limited or expensive to obtain.

The attractiveness of semi-supervised learning for language tasks is further heightened

by the fact that the models learned are large and complex, and generally even thousands

of labeled examples can only sparsely cover the parameter space. Moreover, in complex

structured prediction tasks, such as parsing or sequence modeling (part-of-speech tagging,

word segmentation, named entity recognition, and so on), it is considerably more difficult to

obtain labeled training data than for classification tasks (such as document classification),

since hand-labeling individual words and word boundaries is much harder than assigning

text-level class labels.

Many approaches have been proposed for semi-supervised learning in the past, includ-

ing: generative models [24, 29, 63], self-learning [25, 135], co-training [17], information-

theoretic regularization [30, 46], and graph-based transductive methods [33, 32, 122]. Un-

fortunately, these techniques have been developed primarily for single class label classifica-

tion problems, or class label classification with a structured input [33, 32, 122]. Although

still highly desirable, semi-supervised learning for structured classification problems like

sequence segmentation and labeling have not been as widely studied as in the other semi-

supervised settings mentioned above, with the sole exception of generative models.

With generative models, it is natural to include unlabeled data using an expectation-

maximization approach [63]. However, generative models generally do not achieve the

same accuracy as discriminatively trained models, and therefore it is preferable to focus

on discriminative approaches. Unfortunately, it is far from obvious how unlabeled training

data can be naturally incorporated into a discriminative training criterion. For example,

unlabeled data simply cancels from the objective if one attempts to use a traditional con-

ditional likelihood criterion. Nevertheless, recent progress has been made on incorporating

unlabeled data in discriminative training procedures. For example, dependencies can be

introduced between the labels of nearby instances and thereby have an effect on training

[122, 77, 8]. These models are trained to encourage nearby data points to have the same

class label, and they can obtain impressive accuracy using a very small amount of labeled

data. However, since they model pairwise similarities among data points, most of these ap-

proaches require joint inference over the whole data set at test time, which is not practical

for large data sets.
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In this section, I propose a new semi-supervised training method for conditional random

fields (CRFs) that incorporates both labeled and unlabeled sequence data to estimate a

discriminative structured predictor. CRFs are a flexible and powerful model for structured

predictors based on undirected graphical models that have been globally conditioned on a

set of input covariates [69]. CRFs have proved to be particularly useful for sequence seg-

mentation and labeling tasks, since, as conditional models of the labels given inputs, they

relax the independence assumptions made by traditional generative models like hidden

Markov models. As such, CRFs provide additional flexibility for using arbitrary over-

lapping features of the input sequence to define a structured conditional model over the

output sequence, while maintaining two advantages: first, efficient dynamic program can

be used for inference in both classification and training, and second, the training objective

is concave in the model parameters, which permits global optimization.

To obtain a new semi-supervised training algorithm for CRFs, I extend the minimum

entropy regularization framework of [46] to structured predictors. The resulting objective

combines the likelihood of the CRFs on labeled training data with its conditional entropy on

unlabeled training data. Unfortunately, the maximization objective is no longer concave,

but I can still use it to effectively improve an initial supervised model. To develop an

effective training procedure, I first show how the derivative of the new objective can be

computed from the covariance matrix of the features on the unlabeled data (combined

with the labeled conditional likelihood). This relationship facilitates the development of

an efficient dynamic programming for computing the gradient, and thereby allows us to

perform efficient iterative ascent for training. I apply the new training technique to the

problem of sequence labeling and segmentation, and demonstrate it specifically on the

problem of identifying gene and protein mentions in biological texts. The results show the

advantage of semi-supervised learning over the standard supervised algorithm.

4.2 Semi-supervised CRFs training

In what follows, I use the same notation as [69]. Let X be a random variable over data

sequences to be labeled, and Y be a random variable over corresponding label sequences.

All components, Yi, of Y are assumed to range over a finite label alphabet Y . For example,
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X might range over sentences and Y over part-of-speech taggings of those sentences; hence

Y would be the set of possible part-of-speech tags in this case.

Assume I have a set of labeled examples, Dl =
(

(x(1),y(1)), · · · , (x(N),y(N)
)

, and un-

labeled examples, Du =
(
x(N+1), · · · ,x(M)

)
. I would like to build a CRFs model

pθ(y|x) =
1

Zθ(x)
exp

( K∑

k=1

θkfk(x,y)
)

=
1

Zθ(x)
exp

(
〈θ, f(x,y)〉

)

over sequential input and output data x,y,

where θ = (θ1, · · · , θK)>, f(x,y) = (f1(x,y), · · · , fK(x,y))> and

Zθ(x) =
∑

y

exp
(
〈θ, f(x,y)〉

)

The goal is to learn such a model from the combined set of labeled and unlabeled examples,

Dl ∪ Du.
The standard supervised CRFs training procedure is based upon maximizing the log

conditional likelihood of the labeled examples in Dl

CL(θ) =
N∑
i=1

log pθ(y
(i)|x(i))− U(θ) (4.1)

where U(θ) is any standard regularizer on θ, e.g. U(θ) = ‖θ‖2/2. Regularization can

be used to limit over-fitting on rare features and avoid degeneracy in the case of correlated

features. Obviously, (4.1) ignores the unlabeled examples in Du.
To make full use of the available training data, I propose a semi-supervised learning

algorithm that exploits a form of entropy regularization on the unlabeled data. Specifically,

for a semi-supervised CRFs, I propose to maximize the following objective

RL(θ) =
N∑
i=1

log pθ(y
(i)|x(i))− U(θ) (4.2)

+ γ

M∑
i=N+1

∑
y

pθ(y|x(i)) log pθ(y|x(i))
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where the first term is the penalized log conditional likelihood of the labeled data under

the CRFs, (4.1), and the second line is the negative conditional entropy of the CRFs on the

unlabeled data. Here, γ is a tradeoff parameter that controls the influence of the unlabeled

data.

This approach resembles the one taken by Grandvalet and Bengio [46] for single vari-

able classification, but here applied to structured CRFs training. The motivation is that

minimizing conditional entropy over unlabeled data encourages the algorithm to find pu-

tative labelling for the unlabeled data that are mutually reinforcing with the supervised

labels; that is, greater certainty on the putative labelling coincides with greater conditional

likelihood on the supervised labels, and vice versa. For a single classification variable this

criterion has been shown to effectively partition unlabeled data into clusters [46, 105].

To motivate the approach in more detail, consider the overlap between the prob-

ability distribution over a label sequence y and the empirical distribution of p̃(x) on

the unlabeled data Du. The overlap can be measured by the Kullback-Leibler diver-

gence D(pθ(y|x)p̃(x)‖p̃(x)). It is well known that Kullback-Leibler divergence (Cover and

Thomas 1991) is positive and increases as the overlap between the two distributions de-

creases. In other words, maximizing Kullback-Leibler divergence implies that the overlap

between two distributions is minimized. The total overlap over all possible label sequences

can be defined as
∑
y

D(pθ(y|x)p̃(x)‖p̃(x))

=
∑

y

∑
x∈Du

pθ(y|x)p̃(x) log
pθ(y|x)p̃(x)

p̃(x)

=
∑
x∈Du

p̃(x)
∑

y

pθ(y|x) log pθ(y|x)

which motivates the negative entropy term in (4.2).

The combined training objective (4.2) exploits unlabeled data to improve the CRFs

model, as I will show. However, one drawback with this approach is that the entropy

regularization term is not concave. To see why, note that the entropy regularizer can be

seen as a composition, h(θ) = f(g(θ)), where f : <|Y| → <, f(g) =
∑

y gy log gy and

gy : <K → <, gy(θ) = 1
Zθ(x)

exp
(∑K

k=1 θkfk(x,y)
)

. For scalar θ, the second derivative of
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a composition, h = f ◦ g, is given by [19]

h′′(θ) = g′(θ)>∇2f(g(θ))g′(θ)+∇f(g(θ))>g′′(θ)

Although f and gy are concave here, since f is not nondecreasing, h is not necessarily

concave. So in general there are local maxima in (4.2).

4.3 An Efficient Training Procedure

As (2) is not concave, many of the standard global maximization techniques do not apply.

However, one can still use unlabeled data to improve a supervised CRFs via iterative

ascent. To derive an efficient iterative ascent procedure, I need to compute gradient of

(4.2) with respect to the parameters θ. Taking derivative of the objective function (4.2)

with respect to θ yields Appendix A for the derivation)

∂

∂θ
RL(θ) (4.3)

=
N∑
i=1

f(x(i),y(i))−
∑

y

pθ(y|x(i))f(x(i),y(i))

− ∂

∂θ
U(θ) + γ

M∑
i=N+1

covpθ(y|x(i))

[
f(x(i),y)

]
θ

The first three items on the right hand side are just the standard gradient of the CRFs

objective, ∂CL(θ)/∂θ [69], and the final item is the gradient of the entropy regularizer (the

derivation of which is given in Appendix A.

Here, covpθ(y|x(i))

[
f(x(i),y)

]
is the conditional covariance matrix of the features, fj(x,y),
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given sample sequence x(i). In particular, the (j, k)th element of this matrix is given by

covpθ(y|x)

[
fj(x,y)fk(x,y)

]

= Epθ(y|x)

(
fj(x,y)fk(x,y)

)

−Epθ(y|x)

(
fj(x,y)

)
Epθ(y|x)

(
fk(x,y)

)

=
∑

y

pθ(y|x)
(
fj(x,y)fk(x,y)

)
(4.4)

−
(∑

y

pθ(y|x)fj(x,y)
)(∑

y

pθ(y|x)fk(x,y)
)

To efficiently calculate the gradient, I need to be able to efficiently compute the ex-

pectations with respect to y in (4.3) and (4.4). However, this can pose a challenge in

general, because there are exponentially many values for y. Techniques for computing the

linear feature expectations in (4.3) are already well known if y is sufficiently structured

(e.g. y forms a Markov chain) [69]. However, I now have to develop efficient techniques

for computing the quadratic feature expectations in (4.4).

For the quadratic feature expectations, first note that the diagonal terms, j = l, are

straightforward, since each feature is an indicator, I have that fj(x,y)2 = fj(x,y), and

therefore the diagonal terms in the conditional covariance are just linear feature expecta-

tions Epθ(y|x)

(
fj(x,y)2

)
= Epθ(y|x)

(
fj(x,y)

)
as before.

For the off diagonal terms, j 6= l, however, I need to develop a new algorithm. For-

tunately, for structured label sequences, Y, one can devise an efficient algorithm for cal-

culating the quadratic expectations based on nested dynamic programming. To illustrate

the idea, I assume that the dependencies of Y, conditioned on X, form a Markov chain.

Define one feature for each state pair (y′, y), and one feature for each state-observation

pair (y, x), which I express with indicator functions fy′,y(〈u, v〉,y|〈u,v〉,x) = δ(yu, y
′)δ(yv, y)

and gy,x(v,y|v,x) = δ(yv, y)δ(xv, x) respectively. Following [69], I also add special start

and stop states, Y0 = start and Yn+1 = stop. The conditional probability of a label

sequence can now be expressed concisely in a matrix form. For each position j in the

observation sequence x, define the |Y|× |Y| matrix random variable Mj(x) = [Mj(y
′, y|x)]

by
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Mj(y
′, y|x) = exp(Λj(y

′, y|x)) where

Λj(y
′, y|x) =

∑

k

λkfk
(
ej,y|ej = (y′, y),x

)

+
∑

k

µkgk
(
vj,y|vj = y,x

)

Here ej is the edge with labels (Yj−1,Yj) and vj is the vertex with label Yj.

For each index j = 0, · · · , n+ 1 define the forward vectors αj(x) with base case

α0(y|x) =

{
1 if y = start

0 otherwise

and recurrence

αj(x) = αj−1(x)Mj(x)

Similarly, the backward vectors βj(x) are given by

βn+1(y|x) =

{
1 if y = stop

0 otherwise

βj(x) = Mj+1(x)βj+1(x)

With these definitions, the expectation of the product of each pair of feature functions,

(fj(x,y), fk(x,y)), (fj(x,y), gk(x,y)), and (gj(x,y), gk(x,y)), for j, k = 1, · · · , K, j 6= k,

can be recursively calculated.

First define the summary matrix

Ms+1,t−1(y, y′|x) =
( t−1∏

l=s+1

Ml(x)
)
y,y′

Then the quadratic feature expectations can be computed by the following recursion, where

the two double sums in each expectation correspond to the two cases depending on which
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feature occurs first (es occuring before et).

Epθ(y|x)

(
fj(x,y)fk(x,y)

)

=
∑
x∈Du

n+1∑
s,t=1,s<t

∑

y′,y

fj (es,y|es = (y′, y),x)

∑

y′′,y′′′
fk (et,y|et = (y′′, y′′′),x)

αs−1(y′|x)Ms(y
′, y|x)Ms+1,t−1(y, y′′|x)

Mt(y
′′, y′′′|x)βt(y

′′′|x)/Zθ(x)

+
∑
x∈Du

n+1∑
s,t=1,t<s

∑

y′,y

fj (et,Y|et = (y′, y),x)

∑

y′′,y′′′
fk (es,Y|es = (y′′, y′′′),x)

αt−1(y′′′|x)Mt(y
′′′, y′′|x)Mt+1,s−1(y′′, y′|x)

Ms(y
′, y|x)βt(y|x)/Zθ(x)



Semi-Supervised Conditional Random Fields 43

Epθ(y|x)

(
fj(x,y)gk(x,y)

)

=
∑
x∈Du

n+1∑
s,t=1,s≤t

∑

y′,y

fj (es,y|es = (y′, y),x)

∑

y′′
gk (vt,Y|vt = y′′,x)αs−1(y′|x)Ms(y

′, y|x)

Ms+1,t−1(y, y′′|x)βt(y
′′|x)/Zθ(x)

+
∑
x∈Du

n+1∑
s,t=1,t<s

∑

y′,y

fj (et,y|et = (y′, y),x)

∑

y′′
gk (vs,y|vs = y′′,x)αt−1(y′′|x)

Mt+1,s−1(y′′, y′|x)Ms(y
′, y|x)βt(y|x)/Zθ(x)

Epθ(y|x)

(
gj(x,y)gk(x,y)

)

=
∑
x∈Du

n+1∑
s,t=1,s<t∑

y′
gj (vs,y|vs =y′,x)

∑
y

gk (vt,y|vt =y,x)

αs−1(y′|x)Ms+1,t−1(y′, y|x)βt(y|x)

Zθ(x)

+
∑
x∈Du

n+1∑
s,t=1,t<s∑

y′
gj (vt,y|vt =y′,x)

∑

y′
gk (vs,y|vs =y,x)

αt−1(y|x)Mt+1,s−1(y, y′|x)βt(y
′|x)

Zθ(x)

The computation of these expectations can be organized in a trellis, as illustrated in Fig-

ure 4.1.
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Once I obtain the gradient of the objective function (2), I use limited-memory L-BFGS,

a quasi-Newton optimization algorithm [82], to find the local maxima with the initial value

being set to be the optimal solution of the supervised CRFs on labeled data.

4.4 Time and Space Complexity

The time and space complexity of the semi-supervised CRFs training procedure is greater

than that of standard supervised CRFs training, but nevertheless remains a small degree

polynomial in the size of the training data. Let

ml = size of the labeled set

mu = size of the unlabeled set

nl = labeled sequence length

nu = unlabeled sequence length

nt = test sequence length

s = number of states

c = number of training iterations.

Then the time required to classify a test sequence is O(nts
2), independent of training

method, since the Viterbi decoder needs to access each path.

For training, supervised CRFs training requiresO(cmlnls
2) time, whereas semi-supervised

CRFs training requires O(cmlnls
2+cmun

2
us

3) time. The additional cost for semi-supervised

training arises from the extra nested loop required to calculated the quadratic feature ex-

pectations, which introduces in an additional nus factor.

However, the space requirements of the two training methods are the same. That

is, even though the covariance matrix has size O(K2), there is never any need to store

the entire matrix in memory. Rather, since I only need to compute the product of the

covariance with θ, the calculation can be performed iteratively without using extra space

beyond that already required by supervised CRFs training.
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Figure 4.1: Small Trellis for computing the expectation of a feature product over a pair of

feature functions, f00 vs f10, where the feature f00 occurs first. This leads to one double

sum.

4.5 Experimental Results

I have developed the new semi-supervised training procedure to address the problem of

information extraction from biomedical text, which has received significant attention in

the past few years.

I have specifically focused on the problem of identifying explicit mentions of gene and

protein names

Recently, McDonald and Pereira [84] have obtained interesting results on this problem

by using a standard supervised CRFs approach. However, our contention is that stronger

results could be obtained in this domain by exploiting a large corpus of un-annotated

biomedical text to improve the quality of the predictions, which I now show.

Given a biomedical text, the task of identifying gene mentions can be interpreted as a

tagging task, where each word in the text can be labeled with a tag that indicates whether

it is the beginning of gene mention (B), the continuation of a gene mention (I), or outside of

any gene mention (O). To compare the performance of different taggers learned by different
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Table 4.1: Performance of the supervised CRF

Precision Recall F-Measure

Set B 0.8 0.36 0.50

Set C 0.77 0.29 0.43

Set D 0.74 0.30 0.43

mechanisms, one can measure the precision, recall and F-measure, given by

precision =
# correct predictions

# predicted gene mentions

recall =
# correct predictions
# true gene mentions

F-measure =
2×precision×recall
precision+recall

In my evaluation, I compared the proposed semi-supervised learning approach to the

state of the art supervised CRFs of McDonald and Pereira (2005), and also to self-training

[25, 135], using the same feature set as [84]. The CRFs training procedures, supervised

and semi-supervised, were run with the same regularization function, U(θ) = ‖θ‖2/2, used

in (McDonald and Pereira 2005).

First I evaluated the performance of the semi-supervised CRFs in detail, by varying

the ratio between the amount of labeled and unlabeled data, and also varying the tradeoff

parameter γ. I choose a labeled training set A consisting of 5448 words, and considered

alternative unlabeled training sets, B(5210 words), C(10,208 words), and D (25,145 words),

consisting of the same, 2 times and 5 times as many sentences as A respectively. All of

these sets were disjoint and selected randomly from the full corpus, the smaller one in

[84], consisting of 184,903 words in total. To determine sensitivity to the parameter γ I

examined a range of discrete values 0, 0.1, 0.5, 1, 5, 10, 20, 50.

In the first experiment, I train the CRFs models using labeled set A and unlabeled sets

B, C and D respectively. Then test the performance on the sets B, C and D respectively

The results of The evaluation are shown in Table 1. The performance of the supervised

CRFs algorithm, trained only on the labeled set A, is given on the first row in Table 1

(corresponding to γ = 0). By comparison, the results obtained by the semi-supervised

CRFs on the held-out sets B, C and D are given in Table 1 by increasing the value of γ.
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Table 4.2: Performance of the semi-supervised CRFs obtained on the held-out sets B, C

and D. P=Precision, R=Recall, F=F-Measure

Test Set B Test Set C Test Set D

γ P R F P R F P R F

0 0.80 0.36 0.50 0.77 0.29 0.43 0.74 0.30 0.43

0.1 0.82 0.4 0.54 0.79 0.32 0.46 0.74 0.31 0.44

0.5 0.82 0.4 0.54 0.79 0.33 0.46 0.74 0.31 0.44

1 0.82 0.4 0.54 0.77 0.34 0.47 0.73 0.33 0.45

5 0.84 0.45 0.59 0.78 0.38 0.51 0.72 0.36 0.48

10 0.78 0.46 0.58 0.66 0.38 0.48 0.66 0.38 0.47

The results of this experiment demonstrate quite clearly that in most cases the semi-

supervised CRFs obtains higher precision, recall and F-measure than the fully supervised

CRFs, yielding a 20% improvement in the best case.

In the second experiment, again I train the CRFs models using labeled set A and unla-

beled sets B, C and D respectively with increasing values of γ, but I test the performance

on the held-out set E which is the full corpus minus the labeled set A and unlabeled sets

B, C and D. The results of evaluation are shown in Table 2 and Figure 2. The blue line

in Figure 2 is the result of the supervised CRFs algorithm, trained only on the labeled set

A. In particular, by using the supervised CRFs model, the system predicted 3334 out of

7472 gene mentions, of which 2435 were correct, resulting in a precision of 0.73, recall of

0.33 and F-measure of 0.45. The other curves are those of the semi-supervised CRFs.

The results of this experiment demonstrate quite clearly that the semi-supervised CRFs

simultaneously increase both the number of predicted gene mentions and the number of

correct predictions, thus the precision remains almost the same as the supervised CRFs,

and the recall increases significantly.

Both experiments as illustrated in Figure 2 and Tables 1 and 2 show that clearly

better results are obtained by incorporating additional unlabeled training data, even when

evaluating on disjoint testing data (Figure 2). The performance of the semi-supervised

CRFs is not overly sensitive to the tradeoff parameter γ, except that γ cannot be set too
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Figure 4.2: Performance of the supervised and semi-supervised CRFs. The sets B, C and D

refer to the unlabeled training set used by the semi-supervised algorithm.

For completeness, I also compared the results to the self-learning algorithm, which has

commonly been referred to as bootstrapping in natural language processing and originally

popularized by the work of Yarowsky in word sense disambiguation [2, 135]. In fact, similar

ideas have been developed in pattern recognition under the name of the decision-directed

algorithm [36], and also traced back to 1970s in the EM literature [25]. The basic algorithm

works as follows:

1. Given Dl and Du, begin with a seed set of labeled examples, D(0), chosen from Dl.
2. For m = 0, 1, · · ·

(a) Train the supervised CRFs on labeled examples D(m), obtaining θ(m).
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Table 4.3: Performance of the semi-supervised CRFs trained by using unlabeled sets B, C

and D with Test Set E. P=num of predictions, C=num of correct predictions

B C D

γ # P # C # P # C # P # C

0.1 3345 2446 3376 2470 3366 2466

0.5 3413 2489 3450 2510 3376 2469

1 3446 2503 3588 2580 3607 2590

5 4089 2878 4206 2947 4165 2888

10 4450 2799 4762 2827 4778 2845

(b) For each sequence x(i) ∈ Du, find y
(i)
(m) = arg maxy pθ(m)(y|x(i)) via Viterbi

decoding or other inference algorithm, and add the pair (x(i),y
(i)
(m)) to the set of

labeled examples (replacing any previous label for x(i) if present).

(c) If for each x(i) ∈ Du, y
(i)
(m) = y

(i)
(m−1), stop; otherwise m = m+ 1, iterate.

I implemented this self training approach and tried it in for experiments. Unfortunately,

I were not able to obtain any improvements over the standard supervised CRFs with self-

learning, using the sets Dl = A, and Du ∈ {B,C,D}. The semi-supervised CRFs remains

the best of the approaches I have tried on this problem.

4.6 Conclusions

I have presented a new semi-supervised training algorithm for CRFs, based on extend-

ing minimum conditional entropy regularization to the structured prediction case. The

approach is motivated by the information-theoretic argument [46, 105] that unlabeled ex-

amples can provide the most benefit when classes have small overlap. An iterative ascent

optimization procedure was developed for this new criterion, which exploits a nested dy-

namic programming approach to efficiently compute the covariance matrix of the features.

I applied the new approach to the problem of identifying gene name occurrences in

biological text, exploiting the availability of auxiliary unlabeled data to improve the per-

formance of the state of the art supervised CRFs approach in this domain.
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The semi-supervised CRFs approach shares all of the benefits of the standard CRFs

training, including the ability to exploit arbitrary features of the inputs, while obtaining

improved accuracy through the use of unlabeled data. The main drawback is that training

time is increased because of the extra nested loop needed to calculate feature covariances.

Nevertheless, the algorithm is sufficiently efficient to be trained on unlabeled data sets

that yield a notable improvement in classification accuracy over standard supervised train-

ing. To further accelerate the training process of the semi-supervised CRFs, I may apply

stochastic gradient optimization method with adaptive gain adjustment as proposed by

[119].

4.7 Appendix A: Deriving the gradient of the entropy

I wish to show that

∂

∂θ

(
M∑

i=N+1

∑
y

pθ(y|x(i)) log pθ(y|x(i))

)

=
M∑

i=N+1

covpθ(y|x(i))

[
f(x(i),y)

]
θ (4.5)

First, note that some simple calculation yields

∂ logZθ(x
(i))

∂θj
=

∑
y

pθ(y|x(i))fj(x
(i),y)

and

∂pθ(y|x(i))

∂θj
=

∂

∂θj


exp

(
〈θ, f(x(i),y)〉

)

Zθ(x(i))




= pθ(y|x(i))fj(x
(i),y)

− pθ(y|x(i))
∑

y

pθ(y|x(i))fj(x
(i),y)
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Therefore

∂

∂θj

(
M∑

i=N+1

∑
y

pθ(y|x(i)) log pθ(y|x(i))

)

=
M∑

i=N+1

∂

∂θj

(∑
y

pθ(y|x(i))〈θ, f(x(i),y)〉

− logZθ(x
(i))
)

=
M∑

i=N+1

(∑
y

pθ(y|x(i))fj(x
(i),y)

+
∑

y

∂pθ(y|x(i))

∂θj
〈θ, f(x(i),y)〉

−
∑

y

pθ(y|x(i))fj(x
(i),y)

)

=
M∑

i=N+1

(∑
y

pθ(y|x(i))fj(x
(i),y)〈θ, f(x(i),y)〉

−[
∑

y

pθ(y|x(i))〈θ, f(x(i),y)〉]

[
∑

y

pθ(y|x(i))fj(x
(i),y)]

)

=
M∑

i=N+1

(∑

k

θk

[∑
y

pθ(y|x(i))fj(x
(i),y)fk(x

(i),y)

−[
∑

y

pθ(y|x(i))fk(x
(i),y)]

[
∑

y

pθ(y|x(i))fj(x
(i),y)]

])

In the vector form, this can be written as (5)
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∂

∂θ

(
M∑

i=N+1

∑
y

pθ(y|x(i)) log pθ(y|x(i))

)

=
M∑

i=N+1

covpθ(y|x(i))

[
f(x(i),y)

]
θ



Chapter 5

Tree Decomposition for Protein

Structure Prediction

By using a 2-D contact graph, threading problem can be formulated as an alignment

between chain structure graph (sequence) and contact graph, while structure alignment

can be formulated as an alignment between two contact graphs. Figure 5.1 show the

relationship of the two problems.

Protein structure

prediction---chain

aligned to contact graph

Protein structure

alignment---contact graph

aligned to contact graph

Figure 5.1: Example of protein structure prediction alignment

These two problem can be treated as one frequency assignment problem and tree de-

composition algorithm might be a good choice since it is an exact solution and also is

efficient with the small tree width.

53
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As we discuss in chapter 2, the width of a tree decomposition is a key factor in de-

termining the computational complexity of all the tree-decomposition based algorithms.

The smaller the width of a tree decomposition is, the more efficient the tree decomposition

based algorithms. Also we have introduced six different decomposition algorithms.

Table 5 lists the performance of six tree-decomposition methods for the decomposition

of 5280 template contact graphs. Any two templates share no more than 40% sequence

identity. As shown in this table, the minimum-degree and the minimum-discrepancy meth-

ods are the best for the decomposition of the template contact graphs. This table also in-

dicates that more than 98% template contact graphs can be decomposed into components

containing no more than 6 vertices if a good decomposition method is employed.

Table 5.1: Performance of six different tree decomposition methods. The numbers in this

table are the percentage of template contact graphs with a given treewidth.

tree decomposition method tree width average

≤ 2 3 4 5 ≥ 6 tree width

minimum vertex separator 18.13 10.53 11.86 12.33 47.16 5.676

two-way-1/2-triangle 18.86 20.25 16.52 22.92 21.46 4.121

two-way-2/3-triangle 21.19 14.53 29.72 19.05 15.51 3.874

minimum-degree 22.97 34.41 31.12 9.53 1.97 3.198

minimum-width 22.92 27.35 25.72 13.84 10.34 3.565

minimum-discrepancy 22.95 34.39 31.93 9.09 1.63 3.185

We can see by using the minimum-degree or minimum-discrepancy method, we can

obtain a very small average tree width.

The low tree width property of the contact graph suggests that the tree decomposition

algorithm is very suitable for protein problems because it provides an exact solution while

being very efficient in this case. This algorithm had first been used in protein side-chain

packing [126]. In the next two chapters, I will show how this algorithm can be used on

protein structure prediction and structure alignment. The research for structure prediction

was published in [128] and structure alignment was published in [129].

In this chapter I propose a tree decomposition of protein structure that can be used

to efficiently solve protein threading for backbone prediction. I model this problem as a
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geometric neighborhood graph labelling problem. Theoretically, one can have a low-degree

polynomial time algorithm to decompose a geometric neighborhood graph G = (V,E)

into components with size O(|V | 23 log |V |). The computational complexity of the tree-

decomposition based graph labelling algorithms is O(|V |∆tw+1) where ∆ is the average

number of possible labels for each vertex and tw(= O(|V | 23 log |V |)) the tree width of G.

Empirically, tw is very small and the tree-decomposition method can solve these the prob-

lem very efficiently. I also compare the computational efficiency of the tree-decomposition

approach with the linear programming approach and identify the conditions under which

tree-decomposition is more efficient than linear programming. My experimental results

indicate that the tree-decomposition approach is often more efficient. This work was pub-

lished in [128].

5.1 Problem Formulation-Protein Threading

A structural template can be modeled using a template contact graph as follows. The

primary structure of a template is parsed as a linear series of cores with a connecting loop

between two adjacent cores. Cores are the most conserved segments in a protein structure.

When aligning a protein sequence with structure to be predicted to a template, alignment

gaps are confined to loops. The biological justification is that cores are so conserved that

the chance of insertions or deletions within them is very slim. I consider only interactions

between residues in the cores. It is generally believed that interactions involving loop

residues can be ignored as their contribution to fold recognition is relatively insignificant.

We say that an interaction exists between two residues if the spatial distance between their

Cβ atoms is within 7Ȧ and they are at least 4 residues apart along the template sequence.

We say that an interaction exists between two cores if there exists at least one inter-residue

interaction between the two cores. One can model a protein structural template using a

template contact graph G = (V,E). Each template core is represented by a vertex in V .

There is one edge between two cores if and only if an interaction exists between them.

Therefore, the protein threading problem can be formulated as follows [131, 130]. Let

D[i] denote the set of possible alignment positions for core i. For each possible alignment

position l ∈ D[i], there is an associated singleton score, denoted by Si(l). This singleton
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score measures how well to align core i to sequence position l. In the energy function,

Si(l) includes mutation score, environmental fitness score and secondary structure score.

For any two alignment positions l ∈ D[i] and k ∈ D[j] (i 6= j), there is also an associated

pairwise score, denoted by Pi,j(l, k), if there is an edge between core i and core j. Pi,j(l, k)

is the interaction score between cores i and j when their alignment positions are l and k,

respectively. In the sequence-template alignment, there is no crossover allowed. That is,

if i < j, then k must be larger than l plus the length of core i. In order to guarantee a

valid alignment, one can set Pi,j(l, k) to be +∞ when crossover occurs. For the alignment

involved with the loop regions of a template, some gaps may exist. In order to penalize

gaps, the scoring function also contains some gap penalty. Assume that core i is aligned

to sequence position A(i). The quality of this sequence-template alignment is measured

by the following energy function.

E(G) =
∑
i∈V

Si(A(i)) +
∑

i6=j,(i,j)∈E
Pi,j(A(i), A(j)) (5.1)

The smaller the system energy E(G) is, the better the sequence-template alignment.

5.2 Experimental Results

This section compares the computational efficiency of the tree-decomposition approach

and the linear programming approach to protein structure prediction and identifies the

condition under which the tree-decomposition based approach is more efficient than the

linear programming approach. Both approaches can solve the problems to their optimal

solutions. Therefore, both approaches have the same prediction accuracy.

To compare the computational efficiency of the tree-decomposition based approach and

the linear programming approach, I randomly chose 1000 structural templates from RAP-

TOR’s template database and 100 sequences from the Lindahl’s benchmark [78], respec-

tively. Any two structural templates share no more than 40% sequence identity, so do any

two sequences. I threaded each sequence to each template using both approaches. Tested

on a PC Linux box with a 1.7GHz CPU, it takes the linear programming approach ap-

proximately 100 hours to finish all the 100,000 threading pairs and the tree-decomposition
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approach approximately 58 hours. In my experiment, I used the linear program solver

CLP in the COIN package to solve all the linear programs.

Figure 5.2: Computational efficiency of the tree-decomposition based approach and the

linear programming approach to the protein threading problem. A ‘*’ indicates that the

linear programming approach is better, while a ‘.’ indicates that the tree-decomposition

based approach is better.

I further examined the conditions under which the tree-decomposition approach is bet-

ter than the linear programming approach. The running time of the tree-decomposition

based approach is related to both the tree width of the tree decomposition, the template

length and the sequence length. I calculated the average running time of threading a given

sequence to all the templates with the same tree width. In figure 5.2, I use a ‘*’ to in-

dicate that the linear programming method is more efficient than the tree-decomposition

based method and a ‘.’ to indicate the reverse situation. As shown in Figure 5.2, the

tree-decomposition based method runs faster than the linear programming approach when

the tree width is smaller than 5. From this figure we can see that when the tree width

is smaller than 5, the tree-decomposition method is always more efficient than the linear

programming method. If the tree width is equal to or large than 5, the linear programming

method is better if the sequence length is large. When the tree width is equal to 5, the
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tree-decomposition based method is better if the sequence has no more than 350 residues.

When the tree width is equal to 6 or 7, the tree-decomposition based method is better if the

sequence length is less than 170. When the tree width is equal to 8, the tree-decomposition

based method is better if the sequence length is less than 150. In a summary, the trend

is that when the tree width is big and the sequence is long, then the linear programming

method is better than the tree-decomposition method, otherwise the tree-decomposition

method is better.

One can further improve the computational efficiency by combining these two methods.

That is, I use the tree-decomposition based approach to the protein threading problem

when one of the following conditions is satisfied: (i) the template tree width is smaller

than 5; or (ii) the template tree width is equal to 5 and the sequence has no more than 350

residues; or (iii) the template tree width is less than 9 and the sequence has no more than

150 residues. Otherwise, I use the linear programming approach. Then the total running

time of threading all the 100,000 pairs can be improved to 52 hours, which is approximately

half of the running time of the linear programming approach.

Both the tree-decomposition based approach and the linear programming approach

have the same prediction accuracy. I compared the prediction accuracy of these two ap-

proaches using thirty CASP6 test proteins, which were released from June 2004 to August

2004. These test proteins are available at the CASP6 website. The template database

was generated from the PDB database in April 2004. In total there are about 5000 tem-

plates and any two templates share no more than 40% sequence identity. Table 5.2 lists

the best template predicted for each test protein using two different threading approaches

(�i.e., linear programming and tree-decomposition). Both approaches generate the same top

template for each test protein.

5.3 Conclusions

Here I used a tree-decomposition based approach instead of linear programming approach

to solve protein structure prediction problems. Both approaches have their own advantages,

but the tree-decomposition based approach is more efficient than the linear programming

approach. We also obtained the rule by which for a given threading pair, one can easily
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Table 5.2: Top templates chosen by both the linear programming approach and the tree-

decomposition approach for the thirty CASP6 test proteins.

test protein t0200 t0201 t0202 t0203 t0204 t0205 t0206 t0207

top template 1hp1a 1unnc 1ko7a 1rxxa 1guqa 1h0xa 1mv3a 1h75a

test protein t0210 t0211 t0212 t0213 t0214 t0215 t0216 t0217

top template 1j58a 1gvna 1fw9a 1ukfa 1nwaa 1vjqa 1iruf 1i60a

test protein t0220 t0221 t0222 t0223 t0224 t0225 t0226 t0227

top template 1nvta 1dnya 1o60a 1nox 1jx7a 1n7ha 1c7qa 1mq0a

choose the approach that is the most efficient for aligning this pair. Combing these two

approaches, one can achieve a better computational efficiency than any single method.



Chapter 6

Tree Decomposition for Protein

Structure Alignment

I have also proposed a tree decomposition algorithm for aligning two protein structures.

The result is achieved by decomposing the protein structure using tree decomposition and

discretizing the rigid-body transformation space. I implemented the proposed algorithm

and preliminary experimental results indicate that on a Linux PC, it takes from ten minutes

to one hour to align two proteins with approximately 100 residues. This was joint worked

with Jinbo Xu and was published in [129].

6.1 Problem Formulation

Given two proteins A and B, each is represented by a contact map graph. There is a

contact between two residues if their distance is no more than Du. The optimal alignment

between A and B is an alignment such that the number of equivalent contact edges is

maximized and after the two proteins are superimposed, the Euclidean distance between

two equivalent residues is no more than a threshold Dc.

Let E[A] and E[B] denote the set of contacts in proteins A and B, respectively. For

any residue u in A, let M(u) denote its equivalent residue in B. If there is no equivalent

residue for u, then M(u) = φ. The protein structure alignment problem is to maximize

60
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the following objective function:

∑

u,v∈V [A],u<v

f(u, v,M(u),M(v)) (6.1)

where

f(u, v,M(u),M(v)) =





−∞ M(u) = M(v) 6= φ

1 (u, v) ∈ E[A], (M(u),M(v)) ∈ E[B]

0 otherwise

(6.2)

Note that f(u, v,M(u),M(v)) = −∞ is used to avoid two different residues u and v

being aligned to the same residue in B.

We can further generalize the above problem to the case where protein A is represented

as a contact graph and protein B as a distance matrix. That is, f(u, v,M(u),M(v)) =

h(|u−v|, |M(u)−M(v)|) when (u, v) ∈ E[A] where h(x, y) takes two contact distances and

outputs a positive value. The closer these two contact distances, the higher the output.

The algorithm described here can solve the protein structure alignment problem with

(7.6) as the objective function. To enforce sequential order in the alignment, one can set

f(u, v,M(u),M(v)) to be −∞ if u < v while M(u) > M(v).

6.2 Tree-decomposition for Structure Alignment Al-

gorithm

Here I describe a tree-decomposition based algorithm for the optimal protein structure

alignment problem, assuming that the positions of both proteins are fixed. This algorithm

has an exponential time complexity and will be used as a subroutine of the final algorithm

described in the following section.

In (7.6), in order to detect if two residues in A align to the same residue in B, one

has to enumerate all the residue pairs in A. To be able to easily detect if two residues in

protein A are aligned to the same residue in B or not, I extend the contact graph G[A]

to G′[A] = (V [A], E ′[A]) by adding more edges to G[A]. Besides all the edges in G[A], I

add extra edge (u, v) to G′[A] if the distance between u and v is less than 2Dc but more
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than Du. Therefore, for any two residues u and v in A, if there is no edge between them

in G′[A], then they cannot align to the same residue in B since the distance between two

equivalent residues is no more than Dc. Using the extended graph, one can revise the

objective function in (7.4) as follows:

∑

(u,v)∈E′[A]

f(u, v,M(u),M(v)) (6.3)

where

f(u, v,M(u),M(v)) =





−∞ M(u) = M(v) 6= φ

1 (u, v) ∈ E[A], (M(u),M(v)) ∈ E[B]

0 otherwise

Since now we only need to enumerate all the edges in G′[A] to calculate the objective

function in (6.3), we can perform a tree-decomposition on graph G′[A] and then use the

same tree-decomposition based algorithm as described chapter 2.4 to maximize the objec-

tive function. Any two residues in A that might align to the same residue in B appear

simultaneously in at least one tree decomposition component. So when calculating on this

tree decomposition component, we can detect if these two residues are aligned to the same

residue or not. Using the same proof technique as in paper [126], one can prove that the

tree width of G′[A] is no more than O(max{2Dc,Du}
Dl

n2/3 lg n). Since the distance between

two matched residues is no more than Dc, each residue in A can be aligned to at most

O
(

(1 + 2Dc
Dl

)3
)

residues in B. So we have the following theorem.

Theorem 2 Let A and B be two protein structures in <3. Assume that the spatial positions

of A and B are fixed and the distance between two equivalent residues is no more than

Dc. There is an algorithm with time complexity O(n2tw lg ∆) generating the optimal non-

sequential alignment between A and B, where n is the protein size, ∆ = O
(

(1 + 2Dc
Dl

)3
)

,

and tw = O(max{2Dc,Du}
Dl

n2/3 lg n).

Assume that protein A is inscribed in a minimal axis-parallel 3D rectangle and the

widths along each dimension are Wx, Wy, and Wz respectively. The following lemma gives

another upper bound on the running time of the tree-decomposition based algorithm.

Let A and B be two protein structures in <3. Assume that the spatial positions of A and

B are fixed and the distance between two equivalent residues is no more than Dc. There
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is an algorithm with time complexity O(n2tw lg ∆) generating the optimal non-sequential

alignment between A and B, where n is the protein size, ∆ = O
(

(1 + 2Dc
Dl

)3
)

,

and tw = O(max{2Dc,Du}
D3
l

min{WxWy,WxWz,WyWz}).

6.3 Structure Alignment with Rigid-body Transfor-

mations

In this section, we assume that we can move protein A in any way and the position of

protein B is fixed. We are going to find the best transformation of A such that the

objective function in Eq. 7.4 is maximized. Kolodny and Linial [67] achieved a PTAS

algorithm for the coordinate based structure alignment problem by discretizing the rigid-

body transformation space into a polynomial number of discrete transformations. We will

present a similar but more involved discretization technique for our problem.

A rigid-body transformation consists of two steps: rotation and translation. Mathe-

matically, it can be represented by a triple (w, θ, t), where w is a normalized vector in <3, θ

the rotation angle and t the translation. The vector w and the angle θ form a quaternion,

which is the classic representation for rotation. The normalized vector w is the unit axis

around which an object is rotated by θ. Assume v̂ to be the resultant vector for rotating

a vector v by an angle of θ around a unit axis w. Then v̂ can be calculated using the

following formula:

v̂ = w(v · w) + (v − w(v · w))cos(θ) + (v × w)sin(θ) (6.4)

where · is the dot product of two vectors and ×, the cross product. According to Eq. 7.12,

if the unit axis w is changed by a small degree δw, then |v̂| will be changed by O(|v||δw|).
If the rotation angle θ is changed by δθ, then |v̂| will be changed by O(|v||δθ|). Without

loss of generality, we can assume that the unit axis w originates at the center point of a

protein structure. Then |v| ≤ R where R is the radius of a protein structure. A small

change in the unit axis w by ε/R or the rotation angle θ by ε/R will change |v̂| by at most

ε. All the unit axes form the surface of a sphere with radius 1, and the rotation angle

ranges from 0 to 2π.
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For any given vector v, a translation t will lead to a new vector v̂ = v + t. Therefore,

a small change in the translation t by (ε, ε, ε) will change |v̂| by at most O(ε). Assume

that a protein structure A is enclosed in a rectangle with dimensions Wx(A), Wy(A) and

Wz(A). Then all the possible translations between proteins A and B are in a rectangle

with dimensions Wx(A) +Wx(B), Wy(A) +Wy(B), and Wz(A) +Wz(B).

Since a small change in the transformation will not greatly change the spatial position

of protein A, we can discretize the whole transformation space into a polynomial number

of possible transformations. By working on these possible discrete transformations, we can

find an alignment between two proteins with an alignment score very close to the optimal.

In fact, we can find all the possible transformations that lead to a near-optimal alignment.

6.4 Experimental Results

The algorithm is implemented on a cluster of Linux PCs with 2.5 GHz CPU. In total,

I used 15 proteins from two different folds in the test set described in [22] to test the

algorithm. I set the contact distance cutoff Du to 6.75 Ȧ and the maximum distance

between two matched residues Dc to 3.0 Ȧ. In doing structure alignment, I always fix

protein B and transform protein A. The space of unit rotation axis is discretized into a

36 × 18 longitude-latitude grid. The rotation angle is evenly discretized into 36 possible

angles. The translation space is discretized into 35 × 35 × 35 discrete points. That is, if

we fix the center of protein B to the origin, then the possible center positions of protein

A form a set {(x/2, y/2, z/2)| − 17 ≤ x ≤ 17,−17 ≤ y ≤ 17,−17 ≤ z ≤ 17}. I start from

(0, 0, 0) and gradually increase the distance between two protein centers to search for the

best translation position. In total, the rigid-body transformation space is discretized into

1, 000, 188, 000 discrete transformations.

Currently, only the non-sequential alignment result is tested. In our implementation,

before calling the tree decomposition algorithm, we estimate the maximum number of

aligned contacts. If this estimation is no more than the current best result, then the tree

decomposition algorithm would not be called so that we can save some computational

time. Because of this, aligning two similar proteins is faster than aligning two dissimilar

proteins since the algorithm can obtain a good alignment between two similar proteins in
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an early stage due to our translation space search strategy. Tables 6.1, 6.2 and 6.3 show

the detailed alignment results of some protein pairs. The running time of aligning one

protein pair ranges from ten minutes to one hour. According to Caprara et. al. [22], for

the contact distance threshold 6.75 Ȧ, one can cluster two proteins into the same fold if

the number of aligned contacts is at least 0.559 times min{cA, cB} where cA and cB are the

numbers of contacts of both proteins, respectively. The experimental results comply with

this criterion very well. However, to achieve the maximum number of aligned contacts,

Dc = 3.0Ȧ may not be big enough for some protein pairs. For example, we need a bigger

Dc to obtain more aligned contacts between 1booa and 1dbwa although Dc = 3.0Ȧ gives

a very good alignment between 2pcy and 2plt. I plan to investigate the cutoff value of Dc

further. While the sequential order in the alignment is not required, there are almost no

sequential disorders in the generated alignment if two proteins are in the same class.

Table 6.1: Structure alignments of some proteins with the Flavodoxin-like fold.

protein protein # contacts # contacts time (s) # aligned

(A) (B) (A) (B) contacts

1booa 1dbwa 441 457 2244 249

1booa 1nat 441 435 2268 279

1booa 1qmpc 441 452 1604 317

1nat 1boob 435 444 1650 262

1nat 1dbwa 435 457 1315 285

1nat 4tmya 435 446 1626 351

1qmpc 1boob 461 444 2277 332

1qmpc 4tmya 461 446 1044 373

4tmya 1boob 446 444 1501 289

6.5 Conclusions

I have presented a tree-decomposed algorithm for the contact map-based protein structure

alignment problem, which has been proven to be NP-hard. The time complexity is polyno-

mial in the protein size and exponential with respect to several parameters, which usually
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Table 6.2: Structure alignments of some proteins with Cupredoxins fold.

protein protein # contacts # contacts time (s) # aligned

(A) (B) (A) (B) contacts

1bawa 1byob 387 350 799 306

1bawb 1byoa 389 355 795 307

1bawa 1pla 387 340 1309 298

1byoa 1kdi 355 361 1746 257

1byob 1nin 350 376 1679 231

1byob 1kdi 350 361 1478 264

1pla 2b3ia 340 341 1188 226

2b3ia 2pcy 341 357 1053 265

2b3ia 2plt 341 367 1010 293

2pcy 2plt 357 367 527 343

can be treated as constants. However, the method proposed here might not be useful for

everyday structure alignment since while theoretically significant, the computational time

complexity is still expensive. A tool based on this method can be used as a benchmark

to evaluate the performance of other heuristic-based structure alignment algorithms. The

experimental results reported in this paper are still preliminary. It is still essentially a

threading method, and depending on templates. The NMR data might have helped, how-

ever it has not fully utilized as we would have liked to use them—that is, using them to

adjust structures.

I plan to carefully investigate how alignment accuracy depends on Du, Dc and the

discretization step size, and how the empirical computational time depends on Du and Dc.

Another problem worth studying is how to search through the transformation space so

that we can use some branch-and-bound technique to speed up our algorithm.
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Table 6.3: Structure alignments of some proteins from two different folds Flavodoxin-like

and Cupredoxins.

protein protein # contacts # contacts time (s) # aligned

(A) (B) (A) (B) contacts

1booa 1bawa 441 387 3588 109

1booa 1byoa 441 355 3609 92

1booa 1dpsb 441 586 3384 125

1nat 1amk 435 933 2963 166

1nat 1dpsb 435 586 3163 136

1qmpc 2pcy 452 357 3778 107

1qmpa 8tima 463 930 3516 169

4tmya 1bawa 446 387 3306 110

4tmya 1amk 446 933 2952 154

4tmya 1dpsc 446 587 3242 121

1bawa 1aw2b 387 966 2954 103

1bawa 1b9ba 387 953 2745 120

1bawa 1dpsb 387 586 2543 114



Chapter 7

Combining Spare NMR Data to

Improve Protein Structure Prediction

In this chapter I presents a computational framework for detecting similar structures of a

target protein with unknown structure using sparse NMR data including chemical shifts,

nuclear Overhauser effects (NOE) distance restraints and residual dipolar coupling (RDC).

Based on the algorithm proposed in this chapter, I have developed a computer program

RAPTOR-NMR for protein structure prediction, through searching for a structural ho-

molog or analog of the target protein in the Protein Data Bank. RAPTOR-NMR can

simultaneously take several types of NMR data as input and predict the structure of a

target protein. The performance of RAPTOR-NMR is independent of sequence similarity.

Therefore, RAPTOR-NMR can go beyond the limitation of current many protein threading

or homology modeling based protein structure prediction programs. Experimental results

demonstrate that RAPTOR-NMR can correctly identify structural folds for many target

proteins with only a limited number of NMR data.

7.1 Introduction

X-ray crystallography and NMR are two major experimental methods for the determination

of a protein structure. Compared to the x-ray crystallography technique which requires a

high-quality crystal of a protein, the NMR technique can solve the structure of a protein

68
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in solution. The available NMR data includes nuclear Overhauser effects (NOE) distance

restraints, chemical shifts and residual dipolar coupling (RDC). Chemical shifts identify

atoms on the spectrum while an NOE restraint relates two atoms together. The secondary

structure type of a protein can be predicted from chemical shifts. For example, several

programs such as PsiCSI [51] and TALOS [31] have been developed for secondary structure

prediction based on available chemical shifts of a protein.

An NOE distance restraint can specify the spatial distance between two hydrogen

atoms, which are usually no more than 5Ȧ away from each other. The residues that

the related two hydrogen atoms belong to are not necessarily sequentially adjacent along

the primary sequence. The secondary structure and tertiary structure of a protein can

be inferred if enough number of high-quality NOE restraints are available from the NMR

experiment.

RDC in weak alignment media represents a new NMR technique and is gaining great

popularity because it can overcome some limitations of NOE-based NMR structure deter-

mination methods. RDC provides information about the angles of atomic bonds, e.g., N-H

bonds, of a residue with respect to a particular three-dimensional alignment frame (x,y,z).

Let θ denote the angle between the bond and the z-axis of the principal alignment frame

and φ the angle between the bond’s projection in the x-y plane and the x-axis, respectively.

The RDC value of this bond can be calculated as follows.

D = Da(3 cos2 θ − 1) + 1.5Dr(sin
2 θ cos 2φ) (7.1)

where Da and Dr represent the axial and rhombic component of the alignment tensor.

Intuitively, Da and Dr are the intensity of alignment. They can be estimated using a

histogram method as follows [27].

Da = Dzz/2 (7.2)

Dr = −2

3
Dyy − 1

3
Dzz (7.3)

where Dzz and Dyy are the maximum or the minimum values of the experimental RDC

values, respectively, with |Dzz| > |Dyy|.
If enough data is available from NMR experiments, then theoretically, the structure

of a protein can be solved using energy minimization and molecular dynamics simulation.

However, the NMR techniques cannot guarantee to generate enough high-quality data for
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all the proteins, especially a large protein. It is also time-consuming to generate all the

necessary data for the accurate determination of a protein structure. Instead it is relatively

easy and less time-consuming to obtain some sparse NMR data for a large protein. Another

difficulty in applying RDC data to protein structure determination is that the mapping

between an N-H bond and an RDC value is not one-to-one. According to Eq. 7.1, an RDC

value does not uniquely define a single physical orientation of an N-H bond. In fact, a

single RDC value only restricts the orientation of the bond to two symmetric cones. If not

enough RDC values are available, then this kind of degeneracy will render a huge number

of possible conformations.

A reliable protein structure prediction tool based on an incomplete set of NMR data

fully exploit the available experimental data and extend the capability of current protein

structure determination techniques. The NMR data based protein structure prediction

procedure is also useful to some NMR peak assignment algorithms [121] that usually use

this procedure as a subroutine. There are a number of studies on how to do protein

structure prediction using sparse NMR data, including (i) combination of ab initio protein

structure prediction methods with sparse NMR data [47, 86, 18, 107, 137, 92, 12, 115]; and

(ii) combination of comparative modeling methods (i.e., protein threading or homology

modeling) with sparse NMR data [98, 132, 87, 38]. The comparative modeling methods

search for a similar structure from the Protein Data Bank for a target protein with only

a limited number of NMR data. A measure is used to calculate the compatibility between

the existing protein structure and the NMR data of the target protein. According to an

observation that in nature there are a limited number of unique protein folds, there is a

good chance that a new protein has a similar structure in the Protein Data Bank. The

comparative modeling methods plays an important role in protein structure prediction,

partially because that the Structural Genomics Initiative has been producing more and

more unique protein folds. Although there are a few papers studying how to combine

comparative modeling methods with sparse NMR data, they either study how to combine

RDC data with comparative modeling methods [98, 87] or how to combine NOE data with

comparative modeling methods [132, 6, 4]. To the best of our knowledge, few-if any papers

study how to combine comparative modelling methods with both RDC data and NOE

distance restraints simultaneously.
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The main focus of this chapter is to develop a computational framework for protein

structure prediction with only sparse NMR data including NOE restraints, chemical shifts

and RDC data. In contrast to many other methods that predict protein structures based

on either NOE restraints or RDC data, our method can do structure prediction using both

NOE restraints and RDC data simultaneously, which enables us to fully exploit available

NMR data such that a higher prediction accuracy can be achieved. To deal with RDC

data, I developed a knowledge-based scoring function, which, to the best of our knowledge,

is the first one for RDC data. I formulate this problem as a combinatorial problem and

solve it using a linear programming (LP) approach plus discretization of the rotation space.

The linear programming approach can treat the NOE data in a strict way and allows us

to utilize the existing powerful LP solvers to rapidly reach the optimal solution. In this

chapter, I assume that all the NMR data are already assigned to the target protein. NMR

assignment is another important and challenging problem, which has been studied by many

groups [28, 133, 11, 65, 72].

This chapter is organized as follows. In Section 7.2, I model both the protein structures

and the target protein with NMR data using graphs and formulates the problem as a com-

binatorial optimization problem. Section 7.3 describes a knowledge-based scoring function

for RDC data. In Section 7.4, I present two algorithms to process RDC and NOE data,

respectively. For the RDC data, a rotation space discretization algorithm is presented,

while for the NOE data, a linear programming approach is described. Using the linear

program algorithm as an inner-loop subroutine of the discretization algorithm, I can have

an algorithm to deal with both RDC and NOE data simultaneously. Section 7.5 presents

some implementation details of our program RAPTOR-NMR. In Section 7.6, I present

some experimental results including alignment accuracy and fold recognition rate. Finally,

Section 7.7 draws a conclusion and discusses future extensions of the algorithm.

7.2 Problem Formulation

Representation of Protein Structures. As described in chapter 3, I use a contact

map graph G = (V,E) to model a protein structure in <3. Each residue is represented

by a vertex in V , associated with its secondary structure type, its N-H bond and the
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coordinate of its residue center. For each residue, I use its Cα atom as the residue center.

There is a contact edge (i, j) ∈ E between two residues i and j if and only if their spatial

distance is within a given distance cutoff Du. Since the distance between two hydrogen

atoms related by a long-range NOE restraint usually is no more than 5Ȧ away from each

other, Du ranges from 7Ȧ to 8Ȧ. One edge is also added to connect any two sequentially

adjacent residues. Given a protein chain A, let G[A] denote its contact map graph. For a

substructure P of A, let G[P ] denote the contact map subgraph induced by substructure

P .

In a typical protein, two residues cannot be arbitrarily close, which is one of the under-

lying reasons why lattice models can be used to approximate protein folding. According

to simple statistics on the PDB database [14], 99% of inter-residue distances are more

than 3.5Ȧ. Let the constant Dl (Dl > 0) denote the minimum inter-residue distance in a

protein. Therefore, it can be easily verified that any residue can be adjacent to at most

(1 + 2Du
Dl

)3 residues.

Representation of A Target Protein With Sparse NMR Data. I also use a graph

to represent a target protein with sparse NMR restraints. In this graph, each vertex

corresponds to a residue in the target protein. Each edge corresponds to one long-range

NOE restraint between two residues. One edge is also added to connect any two sequentially

adjacent residues. Each residue is labeled with its predicted secondary structure type and

experimental RDC values. The secondary structure of a target protein can be predicted

by PsiCSI [51] if its chemical shift data is available or by PSIPRED [59] if only sequence

information is available.

NMR-template Alignment. The NMR data including chemical shift, NOE restraints

and RDC data measures the geometric features of a protein structure. Two proteins with

a similar structure are more likely to produce similar NMR measure on their backbone

atoms. Therefore, given a target protein with a limited number of NMR data, to find

its similar protein structures in the PDB database, I align the target protein to each of

the existing protein structures to see how well the NMR measurement calculated from the

existing protein structure is compatible with the sparse NMR constraints. We call this kind

of alignment as NMR-template alignment where a template refers to an existing protein
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structure. Since both the target protein and the template are modeled using graphs, the

NMR-template alignment problem can be formulated in a similar way as the contact graph

based protein structure alignment problem [129].

Given a structural template A and a target protein B with sparse NMR data, an align-

ment between A and B is a pair of subchains P and Q satisfying the following conditions:

• P is a substructure of A and Q is a subchain of B;

• There is a one-to-one mapping between the residues in P and Q. One residue p in

A is equivalent to residue q in B if and only if p is mapped to q; One contact edge

in A is equivalent to one NOE restraint in B if and only if their two end points are

equivalent.

• The alignment is sequential. That is, if two residues p1 and p2 of A are aligned to q1

and q2 of B and p1 is before p2 along the primary sequence A, then q1 must be before

q2 along the primary sequence of B.

The optimal NMR-template alignment is one that minimizes the following scoring func-

tion. The scoring function consists of NOE compatibility score Enoe, secondary structure

compatibility score Ess, residual dipolar coupling score Erdc and gap penalty Eg. The

overall scoring function E has the following form.

E = WnoeEnoe +WssEss +WrdcErdc +WgEg (7.4)

where Wnoe, Wss, Wrdc and Wg are weight factors to be determined later. The gap penalty

can be calculated using a linear function Eg = ag+ b where g is the number of gaps and a

and b are gap extension penalty and gap open penalty, respectively. Here we only use part

of RAPTOR scores because the goal in this chapter is to test whether the NOE and RDC

data will improve protein structure prediction.

Let E[A] denote the set of contacts in proteins A and E[B] the set of NOE restraints

in B. For any residue u in A, let M(u) denote its equivalent residue in B. If there is

no equivalent residue for u, then M(u) = Λ. Then the NOE compatibility score can be

calculated as follows:
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Enoe = −
∑

u,v∈V [A],u<v

f(u, v,M(u),M(v)) (7.5)

where

f(u, v,M(u),M(v)) =



−∞ M(u) ≥M(v) 6= Λ

1 (u, v) ∈ E[A], (M(u),M(v)) ∈ E[B]

0 otherwise


 (7.6)

Note that f(u, v,M(u),M(v)) = −∞ is used to avoid two different residues u and v

being aligned to the same residue in B or the alignment violating the sequential constraint.

The RDC compatibility score can be calculated as follows.

Erdc =
∑

u∈V [A],M(u)6=Λ

Erdc(u,M(u)) (7.7)

where Erdc(u,M(u)) is the RDC score for position u being aligned to position M(u). The

RDC score will be carefully designed in Section 7.3.

The secondary structure compatibility score can be calculated as follows.

Ess =
∑

u∈V [A],M(u)6=Λ

(Prob(loop,M(u))− Prob(SS(u),M(u))) (7.8)

where SS(u) is the secondary structure type at position u, and Prob(s, u) is the probability

of position u with secondary structure type s. The secondary structure type at one position

can be helix, beta-strand or loop.

7.3 A Knowledge-Based Scoring Function For RDC

Data

To develop a knowledge-based scoring function for RDC data, I randomly chose approx-

imately 1,000 protein pairs from the Protein Data Bank. Two proteins in a pair can be

similar in a family level, in a superfamily level or in a fold level. I did structure alignment on

each pair using a structure alignment program SARF [7] and superimposed each pair using
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the transformation generated by SARF. Then for each pair, I calculated the difference of the

RDC values between two equivalent residues by setting Da = 1 and Dr
Da

= 0.1, 0.2, ..., 0.9.

Finally, we can have nine different statistical distributions on the difference of the RDC

values between two equivalent residues. From these statistical distributions, I can estimate

the probability of a given RDC difference value P (Xrdc > RDCdiff ) where Xrdc is a ran-

dom variable representing RDC difference and RDCdiff is a given RDC difference value.

Figure 7.1 shows one statistical distribution of the RDC difference.
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Figure 7.1: An example of RDC difference distribution.

I also examined the statistical distribution of the RDC difference with respect to the

similarity relationship between two proteins. In the same superfamily or family level, the

mean RDC difference ranges from 0.52 to 0.62 depending on Dr
Da

. In the same fold level,

the mean RDC difference ranges from 0.72 to 0.82, depending on Dr
Da

. Please refer to our

supplemental data at http://ttic.uchicago.edu/˜jinbo/RAPTOR-NMR/ for more detailed

results. The statistical data indicates that RDC data will be more helpful for the alignment

between two proteins in the same superfamily or family.
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Based on these empirical results, I designed the following three scoring functions for

RDC data.

Erdc(u,M(u)) =
|RDC(u)−RDC(M(u))|

max{|RDC(u)|, |RDC(M(u))|} −m(
Dr

Da

) (7.9)

where m(Dr
Da

) is the mean of |RDC(u)−RDC(M(u))|
max{|RDC(u)|,|RDC(M(u))|} and ranges from 0.62 to 0.8, depending

on Dr
Da

.

Erdc(u,M(u)) = − log(P (Xrdc > |RDC(u)−RDC(M(u))|)) (7.10)

Erdc(u,M(u)) = −P (Xrdc > |RDC(u)−RDC(M(u))|) (7.11)

Experimental results show that Eq. 7.11 generates the best alignment accuracy 1.

Therefore, I incorporate Eq. 7.11 into the scoring function Eq. 7.7 to deal with RDC

data. Please notice that in both Eq. 7.10 and Eq. 7.11, the probability depends on Dr
Da

.

7.4 Algorithms For NMR-template Alignment

A Discretization Algorithm For RDC Data One of the key issues with the RDC

data is that we do not know the principal alignment frame which is used to generate the

RDC data. We cannot easily infer the principal alignment frame from the RDC data unless

we have enough RDC data. Without the alignment frame, we have no way to calculate the

RDC values of the N-H bonds of the protein structure. We need an algorithm to search for

the principal alignment frame so that the best match between the RDC data of the target

protein and the N-H bonds of the template can be achieved. This problem is equivalent

to fixing the principal alignment frame to an arbitrary coordinate system and rotating all

the N-H bonds of protein A such that the objective function in Eq. 7.4 is minimized.

A rotation can be represented by a triple (α, β, γ) where α, β and γ are Euler angles.

Assume v̂ to be the resultant vector for rotating a vector v by (α, β, γ). Then v̂ can be

1In this chaper, the alignment accuracy is defined as the number of correctly aligned positions. One
target position is correctly aligned if its alignment is no more than 4 positions away from the correct one,
which is generated by a structure alignment program SARF.
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calculated using the following formula:

v̂ = Rz(γ)Ry(β)Rx(α)v (7.12)

where

Rx(α) =




1 0 0

0 cosα sinα

0 − sinα cosα


 (7.13)

Ry(β) =




cos β 0 − sin β

0 1 0

sin β 0 cos β


 (7.14)

Rz(γ) =




cos γ sin γ 0

− sin γ cos γ 0

0 0 1


 (7.15)

A small change δα of the rotation angle α will change the resultant vector v̂ by at

most O(|v||δα|). Since the bond length can be treated as a constant, a small change δα of

the rotation angle α will change the (θ, φ) angles of the N-H bonds by O(δα). Similarly,

a small change of β and γ will not change the bond angles dramatically. According to

Eq. 7.1, a small change of bond angles θ and φ will change the RDC value in the same

order of magnitude. This means that a small change of the principal alignment frame will

change the RDC value in the same order of magnitude. Therefore, we can discretize the

whole rotation space into a polynomial number of possible rotations. By working on these

possible discrete rotations, we can find an NMR-template alignment with an alignment

score very close to the optimal. In fact, we can find all the possible rotations that lead to

a near-optimal NMR-template alignment.

If only RDC data is used with the target protein, then for each discrete rotation, we

can use a dynamic programming algorithm to find the optimal NMR-template alignment.

This algorithm has been described in Qu et. al.’s paper [98]. In fact, combining the

discretization technique and dynamic programming algorithm, we can prove that there is

a polynomial-time approximation algorithm for this case, using a similar proof technique

described in Kolodny and Linial’s paper [67].
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Simplified Representation of Structural Templates NOE data can define the dis-

tance between two residues as long as there are pairwise items and variables gaps in the

alignment the threading problem is NP hard and we can use linear programming to solve

this problem. To decrease computational time, I further simplify the representation of a

protein structural template. I assume that the primary sequence of the template is parsed

as a linear series of cores with the connecting loops between the adjacent cores. Each core is

a conserved segment of an α-helix or β-sheet secondary structure. Although the secondary

structure is often conserved, insertion or deletion may occur at the two ends of a secondary

structure. So I only keep the most conserved part. In doing NMR-template alignment, I

assume that no gap occurs within a core and only consider the contacts between two core

residues. The reason is that the contacts between two core residues are more conserved

than other contacts. Let ci (i = 1, 2, . . . ,M) denote all the cores of one structural template,

where M is the number of the cores. Two cores ci and ci+1 are sequentially adjacent along

the primary sequence of the structural template. The segment between ci and ci+1 is a

loop, for each i. Let headi denote the position of the first residue in core ci and leni denote

the length of core ci.

The original contact graph representation of the structural template can be simplified

accordingly. All the vertices in the original graph are merged into a single vertex and all

the edges between the residues of two cores are merged into a single edge. I use Ecore[A]

to denote the set of inter-core edges of protein A. I assume that there is no gap occurring

within a core since cores are the most conserved segments in a protein. Therefore, the

search space of feasible NMR-template alignments is greatly reduced.

Linear Programming Formulation For simplicity, when we say core ci is aligned

to target protein position sj, we always mean that the template segment that this core

represents is aligned to target protein segment (sj,sj+leni−1). Let D[i] denote all valid target

protein positions that ci could be aligned to. For any i, j and l ∈ D[i], let R[i, j, l] denote

all the valid target protein positions of cj given ci is aligned to target protein position

sl. To keep the sequential order in the alignment, if i < j, then, for any k ∈ R[i, j, l],

k − l > leni holds. See Figure 7.2 for an example of D[i] and R[i, j, l].

An alignment is valid if and only if the following three conditions are satisfied: (1) each
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D[4]D[3]D[2]D[1]

R[1,2,k]

k

y

x

Sequence

core1 core2 core4core3

Figure 7.2: Example of D[i] and R[i, j, l].

core of protein A is aligned to one position of protein B 2; (2) the alignment orders of any

two different cores ci1 and ci2 are kept; and (3) if cij is aligned to target protein positions

slj , j = 1, 2, then sl1 ∈ R[i2, i1, sl2 ] and sl2 ∈ R[i1, i2, sl1 ].

In formulating the problem as a linear program, I introduce two different kinds of binary

variables x and y. Let xi,l be a binary variable such that xi,l = 1 if and only if core ci

is aligned to target protein position sl. Similarly, for any two cores ci1 and ci2 that are

connected by an edge in Ecore, let y(i1,l1),(i2,l2) indicate that core ci1 is aligned to target

protein position sl1 and simultaneously core ci2 is aligned to target protein position sl2 .

The variable y(i1,l1),(i2,l2) is equal to 1 if and only if both xi1,l1 and xi2,l2 are equal to 1.

We say that y(i1,l1),(i2,l2) is generated by xi1,l1 and xi2,l2 . The x variables are called the

alignment variables and y variables are called the contact variables.

Now the NMR-template alignment problem can be formulated as the following integer

program.

minE = WnoeEnoe +WssEss +WrdcErdc +WgEg (7.16)

2We add some artificial amino acids at the two ends of protein B to guarantee that any core of A can
be aligned to one position in B.
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Enoe =
∑

(ci,cj)∈Ecore[A]

∑

l∈D[i]

∑

k∈R[i,j,l]

y(i,l),(j,k)NOE(i, j, l, k), (7.17)

NOE(i, j, l, k) =

leni−1∑
u=0

lenj−1∑
v=0

f(headi + u, headj + v, l + u, k + v) (7.18)

Erdc =
M∑
i=1

∑

l∈D[i]

[xi,l ×
leni−1∑
u=0

Erdc(headi + u, l + u)] (7.19)

Ess =
M∑
i=1

∑

l∈D[i]

[xi,l ×
leni−1∑
u=0

(Prob(loop, l + u)− Prob(SS(headi + u), l + u))] (7.20)

Eg =
M∑
i=1

∑

l∈D[i]

∑

k∈R[i,i+1,l]

y(i,l),(i+1,k)G(i, l, k) (7.21)

where Eq.7.17 and Eq.7.18 calculate the NOE compatibility score, Eq. 7.19 calculates the

RDC compatibility score, Eq. 7.20 calculates the secondary structure compatibility score,

and Eq. 7.21 calculates the gap penalty in the alignment. NOE(i, j, l, k) is the NOE score

corresponding to the contacts between ci and cj when they are aligned to target protein

positions sl and sk, respectively. G(i, l, k) is the gap penalty score when the loop region

between ci and ci+1 is aligned to the target protein segment sl,sl+1,...,sk. Given i, l, k,

G(i, l, k) can be computed by a dynamic programming algorithm in advance.

The constraint set is as follows:

∑

j∈D[i]

xi,j = 1, i = 1, 2, . . . ,M ; (7.22)

∑

k∈R[i,j,l]

y(i,l)(j,k) = xi,l, (ci, cj) ∈ Ecore[A]; (7.23)

∑

l∈R[j,i,k]

y(i,l)(j,k) = xj,k, (ci, cj) ∈ Ecore[A]; (7.24)

xi,j ∈ {0, 1}, j ∈ D[i], i = 1, 2, . . . ,M ; (7.25)
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y(i,l)(j,k) ∈ {0, 1}, ∀l ∈ D[i], k ∈ D[j], i, j = 1, 2, . . . ,M. (7.26)

Constraint 7.22 says that one core can be aligned to a unique target protein position.

Constraints 7.25 and 7.26 guarantee x and y variables to be either 0 or 1. Constraints

7.23 and 7.24 imply that one y variable is equal to 1 if and only if its two x variables

are equal to 1. The linear program formulation used here is very similar to that used in

the protein structure prediction server RAPTOR [131, 130]. By minimizing the objective

function (7.16) under constraints (7.22)-(7.26), we can obtain an alignment with minimized

alignment score.

7.5 Implementation

To achieve a tradeoff between computational time and alignment accuracy, the rotation

space is discretized in two stages. In the first stage, the step size for rotation space

discretization is 30 degrees. After I find the best rotation in this stage, I further discretize

the rotation space in the region around the best rotation using step size 15 degrees.

If both RDC and NOE data are available, it takes a long time to find the best alignment

between two large proteins. To save computational time, I choose only 10 or 20 rotations

that can lead to a good match between the set of template RDC values and the set of

experimental RDC values. I calculate the similarity between two sets of RDC values using

their histograms. The histogram similarity is measured as the area of the intersection of

two histograms normalized by the target protein size. When the template size is much

larger than the target protein size, the histogram similarity is biased toward bigger. To

offset this bias, I cut the template into many segments every 10 residues along its primary

sequence. Each segment has the same length as the target protein. Then I calculate one

histogram for each segment. For a given rotation, the histogram similarity between the

target protein and the template is defined as the best histogram similarity between the

target protein and all the template segments. Experimental results demonstrate that top

10 rotations chosen in this way can produce a good NMR-template alignment.

The weight factors Wss,Wnoe, Wrdc and Wg are chosen by optimizing the overall align-

ment accuracy on the training set, which is arbitrarily chosen from the Protein Data Bank.

In fact, I did not conduct a strict optimization procedure to determine the weight factors.
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Instead, I randomly generated 300 combinations of weight factors with uniform distribu-

tion in range 0 to 1 and tested their performance on the training set and picked up the

best combination. The alignment accuracy is not very sensitive to the above four weight

factors since there are also many other weight factors used in RAPTOR. Many sets of

weight factors that can produce a good alignment accuracy.

7.6 Experimental Results

Alignment accuracy I random chose 40 protein pairs with a similar fold to test the

alignment accuracy of the NMR data. I tested the performance of RAPTOR-NMR using

only RDC data, only NOE data, and both RDC and NOE data, respectively. For a given

target protein, all the available RDC data is used and some long-range NOE restraints are

randomly chosen. The number of long-range NOE restraints is no more than the target

protein size. The secondary structure of a target protein is predicted using PSIPRED

[59]. Due to space limit, I only list the alignment accuracy of some test pairs in Table

7.1. As shown in this table, if two proteins are in the same family, then any method works

very well. However, if two proteins are similar in only a fold level, then RAPTOR-NMR

performs better than RAPTOR without experimental data. The NOE data can produce

a better alignment accuracy than the RDC data. RAPTOR-NMR’s performance is more

robust if both RDC and NOE data are used, compared to only RDC data or only NOE

data is used.

Fold recognition. I tested 18 target proteins with both RDC and NOE data against

a template database to measure the fold recognition rate of different NMR data. The

template database consists of approximately 2,900 domains taken from the most recent

SCOP database (version 1.69). In the template database, any two domains share no more

than 40% sequence identity and there is only one representative for each SCOP family.

The templates are ranked by the alignment score and the best template is chosen as the

predicted fold of the target protein. In fact, since the target proteins have a similar

structure in the template database, any kind of NMR data performs similarly. Due to

space limit, I only list the prediction result of RAPTOR-NMR with only RDC data in
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Table 7.2. Please refer to http://ttic.uchicago.edu/˜jinbo/RAPTOR-NMR/ for all the

detailed results.

As shown in Table 7.2, RAPTOR-NMR performs very well with only RDC data for

all the target proteins but 1f3ya, 1nyaa and 1b4ca. RAPTOR-NMR can have a very good

prediction for 1f3ya and a reasonably good prediction for 1nyaa if both RDC and NOE data

are used. If I enlarge the template database to 7,200 domains by removing the restriction

that only one representative is chosen for each SCOP family, then RAPTOR-NMR with

only RDC data can also give a very good prediction for 1b4ca, 1f3ya and 1nyaa.

Computational efficiency. If only RDC data is used, RAPTOR-NMR runs very fast.

It takes an average of one second to conduct one NMR-template alignment on a Linux PC.

If both RDC and NOE data are used, it takes approximately 10 seconds to conduct one

NMR-template alignment. An optimization of our C++ source codes will further improve

the computational efficiency. Therefore, with a small Linux cluster, I can do structure

prediction for a target protein within several hours.

7.7 Conclusions

This chapter presented a computational framework for detection of similar structures of a

target protein with sparse NMR data. Experimental results demonstrate that the model

and algorithms proposed in this chapter can be used for protein structure prediction even

if a limited number of NMR data is available.

The prediction accuracy of RAPTOR-NMR is limited by several factors. First, RAPTOR-

NMR currently uses the alignment score (i.e., objective function value) to rank all the tem-

plates for a given target protein, to avoid the time-consuming calculation of Z-score. The

alignment score is usually biased by the length difference of the target and the template.

A better method is to develop a machine learning algorithm to rank all the templates

based on their alignments to the target protein, just like what our RAPTOR server does

[131, 130]. Second, in current alignment model, if two template cores are aligned to the

target protein, then all the cores between them are also required to be aligned to the tar-

get protein. Sometimes this requirement will limit the alignment accuracy. Finally, our
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alignment model does not allow gaps within a core, which might impact the alignment

accuracy slightly. To allow for gaps within a single core, I need to develop a more efficient

alignment algorithm.

In the alignment scoring function, I does not take into consideration the sequence

similarity. This feature enables us to detect the analog structures of a target protein.

An interesting question is what if I use the sequence information in RAPTOR-NMR? In

this chapter, I assume that all the NMR data are already assigned to the target protein.

NMR peak assignment itself is an important and challenging problem. The next step is to

develop an efficient algorithm to conduct NMR assignment and NMR-template alignment

simultaneously.
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Table 7.1: Alignment accuracy of different experimental data on 22 test protein pairs.

The right four columns are the alignment accuracy with different NMR data. The fifth

column is the maximum alignment accuracy that can be achieved by any method. (seq

ide=sequence identity)

template target #RDC seq SARF RAPTOR RDC NOE RDC

protein used ide (%) accuracy accuracy only only +NOE

1cb1 1b4ca 53 30 52 38 52 48 52

1k8ua 1b4ca 53 39 68 68 68 68 68

1agre 1cmza 72 45 124 124 124 124 123

1dk8a 1cmza 72 11 118 116 105 115 114

1eova 1d2ba 85 12 66 18 0 46 52

1fr3a 1d2ba 85 6 50 25 26 50 50

3chbd 1d2ba 85 3 65 11 20 53 41

1czpa 1d3za 63 6 60 38 41 41 50

1n62a 1d3za 63 12 56 30 54 41 54

1b9oa 1e8la 108 36 117 117 117 109 117

1qsaa 1e8la 108 14 95 39 52 37 58

1gg3a 1i42a 56 4 47 30 45 44 44

1jroa 1i42a 56 2 46 13 11 26 30

2pia 1i42a 56 12 47 13 37 33 37

1alvb 1kqva 64 9 65 20 25 28 28

1wdcc 1kqva 64 16 60 28 28 50 36

1ra9 1luda 143 30 148 145 147 147 146

1axib 1n6ua 109 10 139 122 114 123 125

1fyhb 1n6va 109 8 124 121 121 119 124

1kshb 1n6va 109 1 48 10 16 43 43

1d5ga 1n7ta 82 32 77 75 75 73 75

2sas 1nyaa 73 14 105 104 89 104 104
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Table 7.2: The best templates found for 18 target proteins. Only RDC data is used.

target protein 1b4ca 1c06a 1cmza 1d2ba 1d3za 1e8la 1f3ya 1i42a

target size 92 159 128 126 76 129 165 89

best template 1s7ba 1fjgd 1agre 1oo9b 1ogwa 3lzt 1aqca 1h8ca

alignment accuracy 27 155 124 117 72 129 10 65

target protein 1jwea 1khma 1ksma 1l3ga 1luda 1m12a 1n7ta 1nyaa

target size 114 89 76 123 162 84 103 179

best template 1b79a 1dtja 1qx2a 1bm8 1ra9 1nkl 1kwaa 1jj2u

alignment accuracy 98 65 70 91 147 75 74 17



Chapter 8

LS Boosting for Protein Fold

Recognition

As introduced in chapter 3, protein structure prediction is one of the most important and

difficult problems in computational molecular biology. Protein threading represents one

of the most promising techniques for this problem. One of the critical steps in protein

threading, fold recognition, is to choose the best-fit template for the query protein with

the structure to be predicted. The standard method for template selection is to rank

candidates according to the z-score of the sequence-template alignment. However, the z-

score calculation is time-consuming, which greatly hinders structure prediction at a genome

scale.

In this chapter, we present a machine learning approach that treats the fold recognition

problem as a regression task and uses a least-squares boosting algorithm (LS Boost) to

solve it efficiently. We test our method on Lindahl’s benchmark and compare it with other

methods. According to our experimental results we can draw the conclusions that: (1)

Machine learning techniques offer an effective way to solve the fold recognition problem.

(2) Formulating protein fold recognition as a regression rather than a classification problem

leads to a more effective outcome. (3) Importantly, the LS Boost algorithm does not

require the calculation of the z-score as an input, and therefore can obtain significant

computational savings over standard approaches. (4) The LS Boost algorithm obtains

superior accuracy, with less computation for both training and testing, than alternative

87
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machine learning approaches such as SVMs and neural networks, which also need not

calculate the z-score.

Finally, by using the LS Boost algorithm, one can identify important features in the

fold recognition protocol, something that cannot be done using a straightforward SVM

approach.

8.1 Introduction

The traditional fold recognition technique is based on calculating the z-score, which statis-

tically tests the possibility of the target sequence folding into a structure very similar to the

template [21]. In this technique, the z-score is calculated for each sequence-template align-

ment by first determining the distribution of alignment scores among random re-shufflings

of the sequence, and then comparing the alignment score of the correct sequence (in stan-

dard deviation units) to the average alignment score over random sequences. Note that the

z-score calculation requires the alignment score distribution to be determined by randomly

shuffling the sequence many times (approx. 100 times), meaning that the shuffled sequence

has to be threaded to the template repeatedly. Thus, the entire process of calculating the

z-score is very time-consuming. In this chapter, instead of using the traditional z-score

technique, we propose to solve the fold recognition problem by treating it as a machine

learning problem.

Several research groups have already proposed machine learning methods, such as neu-

ral networks [57, 134] and support vector machines (SVMs) [125, 131] for fold recognition.

In this general framework, for each sequence-template alignment, one generates a set of fea-

tures to describe the instance, treats the extracted features as input data, and the alignment

accuracy or similarity level as a response variable. Thus, the fold recognition problem can

be expressed as a standard prediction problem that can be solved by supervised machine

learning techniques for regression or classification. In this chapter we investigate a new

approach that proves to be simpler to implement, more accurate and more computationally

efficient. In particular, we combine the gradient boosting algorithm of Friedman [41] with

a least-squares loss criterion to obtain a least-squares boosting algorithm, LS Boost. We

use LS Boost to estimate the alignment accuracy of each sequence-template alignment and
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employ this as part of our fold recognition technique.

To evaluate our approach, we experimentally test it on Lindahl’s benchmark [78] and

compare the resulting performance with other fold recognition methods, such as the z-score

method, SVM regression, SVM classification, neural networks and Bayes classification.

Our experimental results demonstrate that the LS Boost method outperforms the other

techniques in terms of both prediction accuracy and computational efficiency. It is also a

much easier algorithm to implement.

The remainder of the chapter is organized as follows. We first show how to generate fea-

tures from each sequence-template alignment and convert protein threading into a standard

prediction problem (making it amenable to supervised machine learning techniques). We

discuss how to design the least-squares boosting algorithm by combining gradient boosting

with a least-squares loss criterion, and then describe how to use our algorithm to solve the

fold recognition problem. Finally, we will describe our experimental set-up and compare

LS Boost with other methods, leading to the conclusions we present in the end.

8.2 Protein Threading and Fold Recognition

8.2.1 The z-score Method for Fold Recognition

The z-score is defined to be the “distance” (in standard deviation units) between the

optimal alignment score and the mean alignment score obtained by randomly shuffling the

target sequence. An accurate z-score can cancel out the sequence composition bias and

offset the mismatch between the sequence size and the template length. Bryant et al. [21]

proposed the following procedures to calculate z-score:

1. Shuffle the aligned sequence residues randomly.

2. Find the optimal alignment between the shuffled sequence and the template.

3. Repeat the above two steps N times, where N is on the order of one hundred. Then

calculate the distribution of these N alignment scores.

After the N alignment scores are obtained, we calculate the deviation of the optimal

alignment score from the distribution of these N alignment scores.
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We can see from above that in order to calculate the z-score for each sequence-template

alignment, we need to shuffle and rethread the target sequence many times, which takes

a significant amount of time and essentially prevents this technique from being applied to

genome-scale structure prediction.

8.2.2 Machine Learning Methods for Fold Recognition

Another approach to the fold recognition problem is to use machine learning methods, such

as neural networks, as in the GenTHREADER [57] and PROSPECT-I systems [134], or

SVMs, as in the RAPTOR system [131]. Current machine learning methods generally treat

the fold recognition problem as a classification problem. However, there is a limitation

to the classification approach that arises when one realizes that there are three levels

of similarity that one can draw between two proteins: fold level similarity, superfamily

level similarity and family level similarity. Currently, classification-based methods treat

the three different similarity levels as a single level, and thus are unable to effectively

differentiate one similarity level from another while maintaining a hierarchical relationship

between the three levels. Even a multi-class classifier cannot deal with this limitation very

well since the three levels are in a hierarchical relationship.

Instead, we use a regression approach, which simply uses the alignment accuracy as

the response value. That is, we reformulate the fold recognition problem as predicting the

alignment accuracy of a threading pair, which then is used to differentiate the similarity

level between proteins. In our approach, we use SARF [7] to generate the alignment

accuracy between the target protein and the template protein. The alignment accuracy

of threading pair is defined to be the number of correctly aligned positions, based on the

correct alignment generated by SARF. A position is correctly aligned only if its alignment

position is no more than four position shifts away from its correct alignment. On average,

the higher the similarity level between two proteins, the higher the value of the alignment

accuracy will be. Thus alignment accuracy can help to effectively differentiate the three

similarity levels. Below we will show in our experiments that the regression approach

obtains much better results than the standard classification approach.
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8.3 Feature Extraction

One of the key steps in the machine learning approach is to choose a set of proper features

to be used as inputs for predicting the similarity between two proteins. After optimally

threading a given sequence to each template in the database, we generate the following

features from each threading pair.

1. Sequence size, which is the number of residues in the sequence.

2. Template size, which is the number of residues in the template.

3. Alignment length, which is the number of aligned residues. Usually, two proteins

from the same fold class should share a large portion of similar sub-structure. If the

alignment length is considerably smaller than the sequence size or the template size,

then it indicates that this threading pair is unlikely to be in the same SCOP class.

4. Sequence identity. Although a low sequence identity does not imply that two proteins

are not similar, a high sequence identity can indicate that two proteins should be

considered as similar.

5. Number of contacts with both ends being aligned to the sequence. There is a contact

between two residues if their spatial distance is within a given cutoff. Usually, a

longer protein should have more contacts.

6. Number of contacts with only one end being aligned to the sequence. If this number

is big, then it might indicate that the sequence is aligned to an incomplete domain

of the template, which is not good since the sequence should fold into a complete

structure.

7. Total alignment score.

8. Mutation score, which measures the sequence similarity between the target protein

and the template protein.

9. Environment fitness score. This feature measures how well to put a residue into a

specific environment.
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10. Alignment gap penalty. When aligning a sequence and a template, some gaps are

allowed. However, if there are too many gaps, it might indicate that the quality

of the alignment is bad, and therefore the two sequences may not be in the same

similarity level.

11. Secondary structure compatibility score, which measures the secondary structure

difference between the template and the sequence in all positions.

12. Pairwise potential score, which characterizes the capability of a residue to make a

contact with another residue.

13. The z-score of the total alignment score and the z-score of a single score item such

as mutation score, environment fitness score, secondary structure score and pairwise

potential score.

Notice that here we still take into consideration the traditional z-score for the sake

of performance comparison. But later we will show that we can obtain nearly the same

performance without using the z-score, which means it is unnecessary to calculate the

z-score as one of the features.

We calculate the alignment accuracy between the target protein and the template pro-

tein using a structure comparison program SARF. We use the alignment accuracy as the

response variable. Given the training set with input feature vectors and the response vari-

able, we need to find a prediction function that maps the features to the response variable.

By using this function, we can estimate the alignment accuracy for each sequence-template

alignment. Then, all the sequence-template alignments can be ranked based on the pre-

dicted alignment accuracy and the first-ranked one is chosen as the best alignment for the

sequence. Thus we have converted the protein structure problem to a function estima-

tion problem. In the next section, we will show how to design our LS Boost algorithm

by combining the gradient boosting algorithm of Friedman [41] with a least-squares loss

criterion.
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8.4 Least-squares Boosting Algorithm for Fold Recog-

nition

The problem can be formulated as follows. Let x denote the feature vector and y the

alignment accuracy. Given an input variable x, a response variable y and some samples

{yi, xi}Ni=1, we want to find a function F ∗(x) that can predict y from x such that over the

joint distribution of {y, x} values, the expected value of a specific loss function L(y, F (x))

is minimized [41]. The loss function is used to measure the deviation between the real y

value and the predicted y value.

F ∗(x) = arg min
F (x)

Ey,xL(y, F (x))

= arg min
F (x)

Ex[EyL(y, F (x))|x] (8.1)

Normally F (x) is a member of a parameterized class of functions F (x;P ), where P is a

set of parameters. We use the form of the “additive” expansions to design the function as

follows:

F (x;P ) =
M∑
m=0

βmh(x;αm) (8.2)

where P = {βm, αm}Mm=0. The functions h(x;α) are usually simple functions of x with

parameters α = {α1, α2, . . . , αM}. When we wish to estimate F (x) non-parametrically the

task becomes more difficult. In general, we can choose a parameterized model F (x;P )

and change the function optimization problem to parameter optimization. That is, we

fix the form of the function and optimize the parameters instead. A typical parameter

optimization method is a “greedy-stagewise” approach. That is, we optimize {βm, αm}
after all of the {βi, αi}(i = 0, 1, . . . ,m− 1) are optimized. This process can be represented

by the following two recursive equations.

(βm, αm) = arg min
β,α

N∑
i=1

L(yi, Fm−1(xi) + βh(xi;α)) (8.3)

Fm = Fm−1(x) + βmh(x;αm) (8.4)
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Friedman proposed a steepest-descent method to solve the optimization problem described

in Equation 8.2 [41]. This algorithm is called the Gradient Boosting algorithm and its

entire procedure is given in Figure 8.1.

By employing the least square loss function (L(y, F )) = (y − F )2/2 we have a least-

squares boosting algorithm shown in Figure 8.2. For this procedure, ρ is calculated as

follows:

(ρ, αm) = arg min
ρ,α

N∑
i=1

[ỹi − ρh(xi;αm)]2

and therefore ρ = N × ỹi/
N∑
i=1

h(xi;αm) (8.5)

The simple function h(x, α) can have any form that can be conveniently optimized over

α. In terms of boosting, optimizing over α to fit the training data is called weak learning.

In this chapter, for considerations of speed, we choose some function for which it is easy to

obtain α. The simplest function to use here is the linear regression function: note α = (a, b)

y = ax+ b (8.6)

where x is the input feature and y is the alignment accuracy. The parameters of the linear

regression function can be solved easily by the following equation:

a =
lxy
lxx
, b = y − ax

where lxx = n×
n∑
i=1

x2
i − (

n∑
i=1

xi)
2

lxy = n×
n∑
i=1

xiyi − (
n∑
i=1

xi)(
n∑
i=1

yi)

There are many other simple functions one can use, such as an exponential function

y = a + ebx, logarithmic function y = a + blnx, quadratic function y = ax2 + bx + c, or

hyperbolic function y = a+ b/x, etc.

For each round, we choose one feature and obtain the simple function h(x, α) with the

minimum least-squares error. The underlying reasons for choosing a single feature at each
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round are: i) we would like to see the role of each feature in fold recognition; and ii) we

notice that alignment accuracy is proportional to some features. For example, the higher

the alignment accuracy, the lower the mutation score, fitness score and pairwise score.

Figure 8.3 shows the relation between alignment accuracy and mutation score.

In the end, we combine these simple functions to form the final regression function. As

such, Algorithm 8.2 translates to the following procedures.

1. Calculate the difference between the real alignment accuracy and the predicted align-

ment accuracy. We call this difference the alignment accuracy residual. Assume the

initial predicted alignment accuracy is the average alignment accuracy of the training

data.

2. Choose a single feature which correlates best with the alignment accuracy residual.

The parameter ρ is calculated by using Equation 8.5. Then the alignment accuracy

residual is predicted by using this chosen feature and the parameter.

3. Update the predicted alignment accuracy by adding the predicted alignment accuracy

residual. Repeat the above two steps until the predicted alignment accuracy does

not change significantly.

8.5 Experimental Results

When predicting protein structure , we thread its sequence to each template in the database

and obtain the predicted alignment accuracy using the LS Boost algorithm. We choose

the template with the highest alignment accuracy as the basis to build the structure of the

target sequence.

We can describe the relationship between two proteins at three different levels: family

level, superfamily level and fold level. If two proteins are similar at the family level, then

these two proteins have evolved from a common ancestor and usually share more than 30%

sequence identity. If two proteins are similar only at the fold level, then their structures

are similar even though their sequences are not similar. The superfamily-level similarity

is something in between family level and fold level. If the target sequence has a template

that is in the same family as the sequence, then it is easier to predict the structure of the



96 Probabilistic Graphical Models and Algorithms for Protein Problems

sequence. If two proteins are similar only at fold level, it means they share less sequence

similarity and it is harder to predict their relationship.

We use the SCOP database [93] to judge the similarity between two proteins and

evaluate our predicted results at different levels. If the predicted template is similar to the

target sequence at the family level according to the SCOP database, we treat it as correct

prediction at the family level. If the predicted template is similar at the superfamily

level but not at the family level, then we assess this prediction as being correct at the

superfamily level. Similarly, if the predicted template is similar at the fold level but not

at the other two levels, we assess the prediction as correct at the fold level. When we say

a prediction is correct according to the top K criterion, we mean that there are no more

than K − 1 incorrect predictions ranked before this prediction. The fold-level relationship

is the hardest to predict because two proteins share very little sequence similarity in this

case.

To train the parameters in our algorithm, we randomly choose 300 templates from the

FSSP list [5] and 200 sequences from Holm’s test set [50]. By threading each sequence to

all the templates, we obtain a set of 60,000 training examples.

To test the algorithm, we use Lindahl ’s benchmark, which contains 976 proteins, each

pair of which shares at most 40% sequence identity. By threading each one against all

the others, we obtain a set of 976 × 975 threading pairs. Since the training set is chosen

randomly from a set of non-redundant proteins, the overlap between the training set and

Lindahl’s benchmark is fairly small, which is no more than 0.4 percent of the whole test

set. To ensure the complete separation of training and testing sets, these overlap pairs are

removed from the test data. We calculate the recognition rate of each method at the three

similarity levels.

Sensitivity Figure 8.4 shows the sensitivity of our algorithm at each round. We can see

that the LS Boost algorithm nearly converges within 100 rounds, although we train the

algorithm further to obtain higher performance.

Table 8.1 lists the results of our algorithm against several other algorithms. PROSPECT

II uses the z-score method, and its results are taken from Kim et al.’s paper [66]. We can

see that the LS Boost algorithm is better than PROSPECT II at all three levels. The
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Table 8.1: Sensitivity of the LS Boost method compared with other structure prediction

servers.
Family Level Superfamily Level Fold Level

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

RAPTOR (LS Boost) 86.5% 89.2% 60.2% 74.4% 38.8% 61.7%

PROSPECT II 84.1 % 88.2% 52.6% 64.8% 27.7% 50.3%

FUGUE 82.3% 85.8% 41.9% 53.2% 12.5% 26.8%

PSI BLAST 71.2% 72.3% 27.4% 27.9% 4.0% 4.7%

HMMER PSIBLAST 67.7% 73.5% 20.7% 31.3% 4.4% 14.6%

SAMT98-PSIBLAST 70.1% 75.4% 28.3% 38.9% 3.4% 18.7%

BLASTLINK 74.6% 78.9% 29.3% 40.6% 6.9% 16.5%

SSEARCH 68.6% 75.7% 20.7% 32.5% 5.6% 15.6%

THREADER 49.2% 58.9% 10.8% 24.7% 14.6% 37.7%

results for the other methods are taken from Shi et al’s paper [110]. Here we can see

that our method apparently outperforms the other methods. However, since we use differ-

ent sequence-structure alignment methods, this disparity may be partially due to different

threading techniques. Nevertheless, we can see that the machine learning approaches nor-

mally perform much better than the other methods.

Table 8.2 shows the results of our algorithm against several other popular machine

learning methods. Here we will not describe the detail of each method. In this experiment,

we use RAPTOR to generate all the sequence-template alignments. For each different

method, we tune the parameters on the training set and test the model on the test set. In

total we test the following six other machine learning methods.

1. SVM regression. Support vector machines are based on the concept of structural risk

minimization from statistical learning theory [117]. The fold recognition problem

is treated as a regression problem, therefore we consider SVMs used for regression.

Here we use the svm light software package [55] and an RBF kernel to obtain the

best performance. As shown in Table 8.2, LS Boost performs slightly better than

SVM regression.
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Table 8.2: Performance comparison of seven machine learning methods. The sequence-

template alignments are generated by RAPTOR.

Family Level Superfamily Level Fold Level

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

LS Boost 86.5% 89.2% 60.2% 74.4% 38.8% 61.7%

SVM (regression) 85.0% 89.1% 55.4% 71.8% 38.6% 60.6%

SVM (classification) 82.6% 83.6% 45.7% 58.8% 30.4% 52.6%

Ada Boost 82.8% 84.1% 50.7% 61.1% 32.2% 53.3%

Neural Networks 81.1% 83.2% 47.4% 58.3% 30.1% 54.8%

Bayes classifier 69.9% 72.5% 29.2% 42.6% 13.6% 40.0%

Näıve Bayes Classifier 68.0% 70.8% 31.0% 41.7% 15.1% 37.4%

2. SVM classification. The fold recognition problem is treated as a classification prob-

lem, and we consider an SVM for classification. The software and kernel we consider

is the same as for SVM regression. In this case, one can see that SVM classification

performs worse than SVM regression, especially at the superfamily level and the fold

level.

3. AdaBoost. Boosting is a procedure that combine the outputs of many “weak” classi-

fiers to produce a powerful “committee”. We use the standard AdaBoost algorithm

[40] for classification, which is similar to LS Boost except that it performs classifi-

cation rather than regression and uses the exponential instead of least-squares loss

function. The AdaBoost algorithm achieves a comparable result to SVM classification

but is worse than both of the regression approaches, LS Boost and SVM regression.

4. Neural networks. Neural networks are one of the most popular methods used in

machine learning [96]. Here we use a multi-layer perceptron for classification, based

on the Matlab neural network toolbox. The performance of the neural network is

similar to SVM classification and Adaboost.

5. Bayesian classifier. A Bayesian classifier is a probability based classifier which assigns

a sample to a class based on the probability that it belongs to the class [88].
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6. Näıve Bayesian classifier. The Näıve Bayesian classifier is similar to the Bayesian

classifier except that it assumes that the features of each class are independent,

which greatly decreases computation [88]. We can see both Bayesian classifier and

Näıve Bayesian classifier obtain poor performance.

Our experimental results show clearly that: (1) The regression based approaches demon-

strate better performance than the classification based approaches. (2) LS Boost performs

slightly better than SVM regression and significantly better than the other methods. (3)

The computational efficiency of LS Boost is much better than SVM regression, SVM clas-

sification and the neural network.

One of the advantages of our boosting approach over SVM regression is its ability to

identify important features, since at each round LS Boost only chooses a single feature

to approximate the alignment accuracy residual. The following are the top five features

chosen by our algorithm. The corresponding simple functions associated with each feature

are all linear regression functions y = ax+ b, showing that there is a strong linear relation

between the features and the alignment accuracy. For example, from the figure 8.3, we can

see that the linear regression function is the best fit.

1. Sequence identity;

2. Total alignment score;

3. Fitness score;

4. Mutation score;

5. Pairwise potential score.

It seems surprising that the widely used z-score is not chosen as one of the most

important features. This indicates to us that the z-score may not be the most important

feature and redundant. To confirm our hypothesis, we re-trained our model using all

the features except all the z-scores. That is, we conducted the same training and test

procedures as before, but with the reduced feature set. The results given in Table 8.3 show

that for LS Boost there is almost no difference between using the z-score as an additional
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Table 8.3: Comparison of fold recognition performance with zscore and without zscore.

Family Level Superfamily Level Fold Level

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

LS Boost with z-score 86.5% 89.2% 60.2% 74.4% 38.8% 61.7%

LS Boost without z-score 85.8% 89.2% 60.2% 73.9% 38.3% 62.9%

Table 8.4: Error Analysis of seven machine learning methods for fold level. The sequence-

template alignments are generated by RAPTOR.
Top 1 Top 5

mean std mean std
LS Boost 38.9% 0.027 61.8% 0.036
SVM (R) 38.7% 0.027 60.7% 0.035
SVM (C) 30.4% 0.024 52.8% 0.032

Ada Boost 32.1% 0.025 53.4% 0.034
NN 30.2% 0.024 55.0% 0.033
B C 13.7% 0.016 40.1% 0.028

N B C 15.1% 0.017 37.3% 0.027

feature or without using it. Thus, we conclude that by using the LS Boost approach it

is unnecessary to calculate z-score to obtain the best performance. This means that we

can greatly improve the computational efficiency of protein threading without sacrificing

accuracy, by completely avoiding the calculation of the expensive z-score.

To quantify the margin of superiority of LS Boost over the other machine-learning

methods, we use bootstrap method to get the error analysis. After training the model, we

randomly sample 600 sequences from Lindahl’s benchmark and calculate the sensitivity

using the same method as before. We repeat the sampling for 1000 times and get the mean

and standard deviation of the sensitivity of each method as listed in table 8.4, 8.5 and 8.6.

We can see that LS Boost method is slightly better than SVM regression and much better

than other methods.

Specificity We further examine the specificity of the LS Boost method with Lindahl’s

benchmark. All threading pairs are ranked by their confidence score (i.e., the predicted
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Table 8.5: Error Analysis of seven machine learning methods for family level. The sequence-

template alignments are generated by RAPTOR.
Top 1 Top 5

mean std mean std
LS Boost 86.6% 0.029 89.2% 0.031
SVM (R) 85.2% 0.031 89.2% 0.031
SVM (C) 82.5% 0.028 83.8% 0.030

Ada Boost 82.9% 0.030 84.2% 0.029
NN 81.8% 0.029 83.5% 0.030
B C 70.0% 0.027 72.6% 0.027

N B C 68.8% 0.026 71.0% 0.028

Table 8.6: Error Analysis of seven machine learning methods for super-family level. The

sequence-template alignments are generated by RAPTOR.
Top 1 Top 5

mean std mean std
LS Boost 60.2% 0.029 74.3% 0.034
SVM (R) 55.6% 0.029 72.0% 0.033
SVM (C) 45.8% 0.026 58.9% 0.030

Ada Boost 50.7% 0.028 61.2% 0.031
NN 47.5% 0.027 58.4% 0.031
B C 29.1% 0.021 42.6% 0.026

N B C 31.1% 0.022 41.9% 0.025
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alignment accuracy or the classification score if an SVM classifier is used) and the sensitivity-

specificity curves are drawn in Figure 8.5, 8.6 and 8.7. Figure 8.6 demonstrates that at

the superfamily level, the LS boost method is consistently better than SVM regression and

classification within the whole spectrum of sensitivity. At both the family level and fold

level, LS Boost is a little better when the specificity is high while worse when the specificity

is low. At the family level, LS Boost achieves a sensitivity of 55.0% and 64.0% at 99%

and 50% specificities, respectively, whereas SVM regression achieves a sensitivity of 44.2%

and 71.3%, and SVM classification achieves a sensitivity of 27.0% and 70.9% respectively.

At the superfamily level, LS Boost has a sensitivity of 8.2% and 20.8% at 99% and 50%

specificities, respectively. In contrast, SVM regression has a sensitivity of 3.6% and 17.8%,

and SVM classification has a sensitivity of 2.0% and 16.1% respectively. Figure 8.7 shows

that at the fold level, there is no big difference between LS Boost method, SVM regression

and SVM classification method.

Computational Efficiency Overall, the LS Boost procedure achieves superior compu-

tational efficiency during both training and testing. By running our program on a 2.53

GHz Pentium IV processor, after extracting the features, the training time is less than

thirty seconds and the total test time is approximately two seconds. Thus we can see

that our technique is very fast compared to other approaches, in particular the machine

learning approaches such as neural networks and SVMs which require much more time to

train. Table 8.7lists the running time of several different fold recognition methods. From

this table, we can see that the boosting approach is more efficient than the SVM regression

method, which is desirable for genome-scale structure prediction. The running time shown

in this table does not contain the computational time of sequence-template alignment.

8.6 Conclusions

In this chapter, we propose a new machine learning approach—LS Boost—to solve the

protein fold recognition problem. We use a regression approach which is proved to be

both more accurate and efficient than classification based approaches. One of the most

significant conclusions of our experimental evaluation is that we do not need to calculate
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Table 8.7: Running time of different machine learning approaches.

Training time Testing time

LS Boost 30 seconds 2 seconds

SVM classification 19 mins 26 mins

SVM regression 1 hour 4.3 hours

Neural Network 2.3 hours 2 mins

Näıve Bayes Classifier 1.8 hours 2 mins

Bayes Classifier 1.9 hours 2 mins

the standard z -score, and can thereby achieve a substantial computational savings without

sacrificing prediction accuracy. Our algorithm achieves strong sensitivity results compared

to other fold recognition methods, including both machine learning methods and z -score

based methods. Moreover, our approach is significantly more efficient for both the training

and testing phases, which may allow genome-scale scale structure prediction.
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Algorithm 1: Gradient Boost

• Initialize F0(x) = arg minρ
∑N

i−1 L(yi, ρ)

• For m = 1 to M do:

• Step 1. Compute the negative gradient

ỹi = −
[
∂L(yi, F (xi))

∂Fxi

]

• Step 2. Fit a model

αm = arg min
α,β

N∑
i=1

[ỹ − βh(xi;α)]2

• Step 3. Choose a gradient descent step size as

ρm = arg min
ρ

N∑
i−1

L(yi, Fm− 1(xi)

+ρh(xi;αm))

• Step 4. Update the estimation of F (x)

Fm(x) = Fm−1(x) + ρmh(x;αm)

• end for

• Output the final regression function Fm(x)

Figure 8.1: Gradient boosting algorithm
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Algorithm 2: LS Boost

• Initialize F0 = ȳ = 1
N

∑
i yi

• For m = 1 to M do:

• ỹi = yi − Fm−1(xi, i = 1, . . . , N)

• (ρm, αm) = arg min
ρ,α

N∑
i=1

[ỹi − ρh(xi;αm)]2

• Fm(x) = Fm−1(x) + ρmh(x;αm)

• end for

• Output the final regression function Fm(x)

Figure 8.2: LS Boost algorithm
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Figure 8.3: The relation between alignment accuracy and mutation score.
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Figure 8.5: Family-level specificity-sensitivity curves on Lindahl’s benchmark set. The

three methods LS Boost, SVM regression and SVM classification are compared.
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Figure 8.6: Superfamily-level specificity-sensitivity curves on Lindahl’s benchmark set.

The three methods LS Boost, SVM regression and SVM classification are compared.
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Figure 8.7: Fold-level specificity-sensitivity curves on Lindahl’s benchmark set. The three

methods LS Boost, SVM regression and SVM classification are compared.



Chapter 9

Conclusions and Future work

9.1 Conclusions

In this thesis, I focused on graphical models and algorithms for protein problems. For

graphical models I presented some of the research on semi-supervised methods on condi-

tional random fields. For protein problems, I proposed a tree decomposition framework

to solve both protein structure prediction and protein structure alignment problems. I

proposed a computational framework for detection of similar structures of a target protein

with sparse NMR data. Also I proposed a new machine learning approach—LS Boost—to

solve the protein fold recognition problem.

In Chapter 4, I present a new semi-supervised training procedure for conditional ran-

dom fields (CRFs) that can be used to train sequence segmentors and labelers from a

combination of labeled and unlabeled training data. My approach is based on extending

the minimum entropy regularization framework to the structured prediction case, yielding

a training objective that combines unlabeled conditional entropy with labeled conditional

likelihood. I apply the new training algorithm to the problem of identifying gene and

protein mentions in biological texts, and show that incorporating unlabeled data improves

the performance of the supervised CRFs in this case.

In Chapter 5 and 6, I propose a framework to solve both protein structure prediction

and structure alignment problems. The method is based on the tree decomposition method.

We reveal that the low tree width of protein contact graph determines tree decomposition

111
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method is very suitable for protein problems.

In Chapter 7, I presented a computational framework for detection of similar structures

of a target protein with sparse NMR data. The model and algorithms proposed here can

be used for protein structure prediction even if a limited number of NMR data is available.

In Chapter 8, I proposed a new machine learning approach—LS Boost—to solve the

protein fold recognition problem. I used a regression approach that proved to be both more

accurate and efficient than classification based approaches. The algorithm achieves strong

sensitivity results compared to other fold recognition methods, including both machine

learning methods and z -score based methods. Moreover, it is significantly more efficient for

both the training and testing phases that may allow genome-scale scale structure prediction.

9.2 Future work

For semi-supervised CRFs, choosing the regularization parameter γ is a very difficult prob-

lem. Currently I just train batch models using different γ values, which might lead to over-

fitting problems and also is not efficient. In [48], Hastie proposed a method to estimate

the regularization parameter for an SVM, by fitting the entire path of an SVM solution for

every value of the regularization parameter with essentially the same computational cost

as fitting a single SVM model. I would like to adapt the same technique to semi-supervised

CRFs.

I would also like to conduct research on how to choose a suitable amount of unlabeled

data to combine with labeled data for training CRFs. The size of the unlabeled data set

affects both the training time and the accuracy, and a suitable choice of unlabeled training

set size can have a significant impact on performance. If the size is too small, training time

will be fast but the unlabeled data will have no effect. Conversely, if the size is too big, the

unlabeled data can overwhelm the labeled data, leading to overfitting in addition to high

computational cost. I would like to consider some of the existing work on generalization

bounds, which might provide some theoretical support for the approach I have proposed.

Also, I would like to consider the prospects of combining semi-supervised training with

boosting.

CRFs have been used in many areas in computational biology. In [79], Segmentation
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Conditional Random Fields (SCRFs) were proposed for fold recognition. Compared with

traditional graphical models such as Hidden Markov Model (HMM), SCRFs follow a dis-

criminative approach. It has the flexibility to include overlapping or long-range interaction

features over the whole sequence, as well as global optimally solutions for the parameters.

On the other hand, the segmentation setting in SCRFs makes its graphical structures in-

tuitively similar to the protein 3-D structures and more importantly, provides a framework

to model the long-range interactions directly [79]. Also in [109],CRFs was used on RNA

secondary structural alignment. The approach has specific features compared with pre-

vious methods. For instance the parameters for structural alignment are estimated such

that the model can most probably discriminate between correct alignments and incorrect

alignments, and has the generalization ability so that a satisfiable score matrix can be

obtained even with a small number of sample data without overfitting [109]. Since we have

demonstrated the superiority of Semi-CRFs over the general CRFs algorithm, it will be of

great interest to apply the Semi-CRFs algorithm to these two problems and see how much

gain we can obtain.

Currently in protein structure prediction we build a uniform model for all proteins. But

since some protein folds may differ significantly, it might be helpful if we build different

models for different folds, both in threading and in fold recognition steps. We can build

some typical individual models for different proteins and a probability can be calculated for

it. In fact we need to predict the second structure and the accuracy of it is limited (80we

can combine it with 3D structure prediction and build a uniform propositional model.

P (3d|sequence) = P (3d|2d)∗P (2d|sequence) = P (3d|fold)∗P (fold|2d)∗P (2d|sequence).
The unified graphical model can be shown as Figure 9.1. Further research will be done in

the future for this model. Machine learning and bioinformatics are the two most promising

and developing areas. There are still many mysterious and attractive research topics in

these two fields, which will surely lead to some promising and fruitful results.



114 Probabilistic Graphical Models and Algorithms for Protein Problems

3D

Fold 2D

1D

Figure 9.1: A graphical model for protein structure prediction
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