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Abstract

Protein interactions drive diverse processes essential to living organisms, and thus

numerous biomedical applications center on understanding, predicting, and designing

how proteins recognize their partners. While unfortunately the number of interac-

tions of interest still vastly exceeds the capabilities of experimental determination

methods, computational methods promise to fill the gap. My thesis pursues the de-

velopment and application of computational methods for several protein interaction

prediction and design tasks. First, to improve protein-glycan interaction specificity

prediction, I developed GlyBERT, which learns biologically relevant glycan represen-

tations encapsulating the components most important for glycan recognition within

their structures. GlyBERT encodes glycans with a branched biochemical language

and employs an attention-based deep language model to embed the correlation be-

tween local and global structural contexts. This approach enables the development

of predictive models from limited data, supporting applications such as lectin binding

prediction. Second, to improve protein-protein interaction prediction, I developed a

unified geometric deep neural network, ‘PInet’ (Protein Interface Network), which

leverages the best properties of both data- and physics-driven methods, learning and

utilizing models capturing both geometrical and physicochemical molecular surface

complementarity. In addition to obtaining state-of-the-art performance in predicting

protein-protein interactions, PInet can serve as the backbone for other protein-protein

interaction modeling tasks such as binding affinity prediction. Finally, I turned from
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prediction to design, addressing two important tasks in the context of antibody-

antigen recognition. The first problem is to redesign a given antigen to evade antibody

recognition, e.g., to help biotherapeutics avoid pre-existing immunity or to focus vac-

cine responses on key portions of an antigen. The second problem is to design a panel

of variants of a given antigen to use as “bait” in experimental identification of anti-

bodies that recognize different parts of the antigen, e.g., to support classification of

immune responses or to help select among different antibody candidates. I developed

a geometry-based algorithm to generate variants to address these design problems,

seeking to maximize utility subject to experimental constraints. During the design

process, the algorithm accounts for and balances the effects of candidate mutations

on antibody recognition and on antigen stability. In retrospective case studies, the

algorithm demonstrated promising precision, recall, and robustness of finding good

designs. This work represents the first algorithm to systematically design antigen

variants for characterization and evasion of polyclonal antibody responses.
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Chapter 1

Introduction

Section 1.1

Protein Recognition

The ability of proteins to sensitively and specifically recognize their partners (small

molecules, nucleic acids, other proteins, etc.) drives diverse processes essential to

living organisms, ranging from enzymatic catalysis to gene expression to intra- and

inter-cellular communication. This thesis focuses in particular on two different types

of partners, or “ligands”: glycans and other proteins. Lectins are proteins that recog-

nize glycans, e.g., on glycosylated proteins and lipids, and thus play important roles in

numerous processes [11]. For example, microbial surface lectins bind to glycosylated

proteins on a target cell’s surface, helping to initiate infection [102]. On the flip side,

some lectins also serve on the defense, having high affinity against glycoproteins on

the envelopes of viruses such as HIV and SARS coronavirus [103], thereby inhibiting

viral replication. Protein-protein interactions (PPIs) control wide-ranging molecular

functions, including both transiently (e.g., propagating signals, such as insulin ac-

tivating its receptor in the regulation of glucose homeostasis [124]) and more stably

(e.g., protomers forming viral capsids). The finely tuned recognition of antigens (Ags)
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1.1 Protein Recognition Introduction

by antibodies (Abs) is a significant special case of PPIs [145], playing crucial roles in

the adaptive immune response by blocking key antigenic functions and helping drive

immune-mediated clearance of pathogens [97].

To better understand and potentially manipulate such machinery, it is important

to know not just whether or not a particular protein interacts with a particular po-

tential ligand, but also how they interact [146]. To this end, numerous experimental

techniques have been developed, with the most detailed information provided by pro-

tein complex determination methods such as X-ray crystallography (X-ray), Nuclear

Magnetic Resonance spectroscopy (NMR), and cryo-electron microscopy (cryo-EM).

The vast majority of solved structures have been based on X-ray crystallographic tech-

niques, with NMR, though usually of lower resolution, stepping in for some smaller

proteins that aren’t readily crystallizable, as well as enabling studies of protein dy-

namics [147]. Historically, cryo-EM was limited to large proteins complexes and

provided low resolution, but due to recent rapid methodological developments, it can

now be used on smaller proteins and can provide resolution in many cases comparable

to that of X-ray and NMR [9].

Other more or less precise experimental approaches have been employed to pro-

vide some amount of recognition information without solving the complex structure.

Hydrogen–deuterium exchange relies on the natural exchange between a protein’s ex-

posed hydrogens and those in the surrounding solvent, a process that is blocked by

ligand binding and can be detected by incorporating heavy atoms (i.e., deuterium) on

one side or the other and assessing localized mass differences between free and bound

states by mass spectrometry [187, 167, 1]. Alanine scanning assesses the effects on

binding of single-point alanine substitutions, scanning position by position through

the protein to evaluate which substitutions disrupt binding and thus are potential

interaction sites [75, 117, 116, 94]. Electron microscopy-based methods map binding
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1.2 Protein Recognition Prediction Introduction

sites by comparing sets of 2D images of the protein complex [158]. For protein-glycan

interactions in particular, X-ray and NMR structure determination techniques are

quite limited due to glycan structural diversity, incomplete glycosylation, crystal-

lization difficulties, and chemical shift overlap [150]. Thus, other methods such as

shotgun glycomics [151] and glycan microarrays [11] are used to determine which

lectins bind to which glycans, without providing insights into where and how.

Section 1.2

Protein Recognition Prediction

The number of interactions of interest vastly exceeds the capabilities of the experi-

mental methods described in the previous section, even the lower-resolution mapping

methods and higher-throughput array methods. This is particularly the case in appli-

cations such as characterizing how millions of antibodies from repertoire sequencing

[16] recognize their antigen targets. Computational methods, on the other hand, can

scale to meet demands for such large-scale predictions of protein recognition.

1.2.1. Protein-Glycan Interactions

Glycans are carbohydrate-based polymers, i.e., polysaccharides, that mostly adopt

branched tree structures with rare cases of ring structures. Protein glycosylation, the

attachment of a glycan to a protein, is an important post-translational modification,

with the resulting glycoproteins central many diverse biological processes. For exam-

ple, the recognition of glycans on viral glycoproteins such as HIV gp120 and influenza

hemagglutinin by cell surface receptors enables these viruses to enter the cell [92].

Unfortunately, predicting protein-glycan interactions is extremely hard due to the

diversity in glycan structure, monosaccharide composition, and glycosidic bond ar-

rangements [106, 22]. Current computational methods for predicting protein-glycan
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1.2 Protein Recognition Prediction Introduction

interaction mainly focus on binding specificity, i.e., whether a glycan and a pro-

tein bind or not. These methods are dominated by pattern-based methods which

identify common structural motifs among glycans with shared binding properties

[61, 29, 82, 22]; for example the motif N-acetyl-lactosamine can be used to charac-

terize immunogenicity. One state of the art prediction method [22] seeks to regress

interaction strength by glycan motif fingerprints and was able to train a model for

mammalian glycans and 352 glycan-binding proteins. A key strength of motif-based

methods is their high interpretability, but this is balanced by a limited ability to rep-

resent complex patterns, e.g., current motif representations mainly consist of simple

patterns defined by connected and nearby monosaccharides [29, 128]. To capture a

richer representation of glycan composition, recent methods have employed language

models [14] and graph convolutional networks [20], thereby attaining improved pre-

diction performance and an ability to accurately predict host taxonomy and glycan

immunogenicity. However, they still fall short of learning global structural contexts

due to the limitations in their network architectures. For example, the context in

which a motif is presented, i.e., the global structure surrounding the motif and the

linkages connecting the motif, also has an impact on interactions [91]; for example,

Neu5Acα(2-6)Gal binds differently to hemagglutinins when presented in symmetric

and asymmetric glycans [171]. The need to capture structural contexts mediating

recognition motivated the work in this thesis on constructing a structured latent

space for glycans, learning an embedding for motifs and their contexts that enables

protein-glycan interaction prediction from limited data.

1.2.2. Protein-Protein Interactions

Current computational methods for predicting PPIs can be roughly divided into phys-

ically based and data-driven approaches.

Physically based methods rely on structural modeling, e.g., via docking meth-
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1.2 Protein Recognition Prediction Introduction

ods [83, 23, 177, 148, 37], to generate and evaluate possible “poses” (rotations and

translations) of the proteins leading to a possible interaction. Beyond the computa-

tional cost of sampling a comprehensive set of poses, a key difficulty is scoring them.

Scoring functions include carefully handcrafted potential functions [37, 83] as well

as learned models, e.g., via 3D convolutional neural networks [170, 134]. Successful

docking methods [177, 37, 83] typically include near-native pose in the top 5 or 10

conformations, but it remains a problem to identify exactly which one, as shown in a

recent Critical Assessment of Prediction of Interactions (CAPRI) assessment [89].

In contrast, data-driven models do not attempt to directly model the interaction

structure, but instead use existing data to learn patterns, based on representations of

the proteins’ sequences or structures, that enable prediction of the interfaces mediat-

ing recognition. While some methods [152, 43] work from sequence alone, recognition

is largely dependent on three-dimensional structure [183], and thus structure-based

methods can learn richer representations and attain better performance when struc-

tures are available [111]. Furthermore, while some methods are “partner independent”

[62, 51], i.e., seek to predict spots on one protein that are generally amenable to recog-

nition by any partner, “partner dependent” methods [136, 126, 84, 142, 73, 2, 137]

are able to leverage information from both parties in the interaction in order to make

more specific predictions in the scenario where both are known. For example, [2]

trained a support vector machine (SVM) to classify whether or not a pair of residues

will interact, and then post-processed this contact map prediction to yield predicted

binding interfaces. [137] improved this general idea by using XGBoost classifiers [24],

attaining SOA performance at the time. With the recent advance in deep learning,

methods using handcrafted structural features with simple Neural Networks [73, 181],

Graph Convolutional Networks (GCNs) [126, 156], or Geometric Deep Learning [51]

have been developed and shown to outperform traditional machine learning methods
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1.2 Protein Recognition Prediction Introduction

[136, 2, 137].

Recent approaches combine physical modeling and data-driven modeling. For ex-

ample, Alphafold2-multimer [45] and RoseTTAFold [6] are based on deep modeling

methods originally designed for protein structure prediction, but then extended to

predict interactions. The network architectures and overall processing employed by

these methods draw heavily from physical modeling approaches, but the methods use

data to learn underlying parameters such as residue sequence/structure correlations.

Some recent studies [52, 154] utilize SE(3)-equivariant inputs to reduce the complex-

ity due to the input orientation, and then use geometric deep learning techniques

to improve protein rigid docking, achieving close to SOA performance much faster.

These results demonstrate the potential for solving complex problems such as rigid

and even non-rigid docking by employing a combination of physical modeling and

data-driven approaches.

As discussed above, Ab-Ag recognition is one particularly important special case

of protein-protein recognition. The prediction task is often formulated in terms of

predicting the “epitope”, the residues on the Ag that are bound by the Ab. There

are numerous approaches to epitope prediction, using Ab-Ag specific post-docking

scoring [83, 15], statistical inference [85], geometric matching and machine learning

scoring [84], and GCNs with attention mechanisms [126]. While the SOA perfor-

mance achieved by these approaches has continually improved, the precision and/or

recall still remains moderate. This motivated the work described in this thesis on

combining the advantages of physically-based and data-driven methods to develop a

robust model which is suitable for epitope prediction and even general protein-protein

interaction binding interface prediction.
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1.3 Antibody Recognition Evasion Introduction

Section 1.3

Antibody Recognition Evasion

The adaptive immune response against a pathogen often culminates with the devel-

opment of B cells selected and matured for potent recognition of pathogen antigens

[143]. The “goal” of this humoral immune response could be characterized as develop-

ing antibodies with high affinity and specificity against the antigen, ultimately leading

to beneficial functions such as neutralizing the pathogen or mediating clearance. In

contrast, a “goal” of the pathogen would be to escape this recognition. Likewise, in

various therapeutic applications, protein engineers can seek to modify a protein so as

to disrupt Ab-Ag binding and thereby escape recognition. Techniques to evade anti-

body recognition have been successfully employed, for example, in the development of

protein therapeutics that attain improved efficacy by escaping recognition by existing

antidrug antibodies (ADAs) that developed from previous therapeutic application or

natural environmental exposure [138]. Antibody recognition evasion has also been

used in designing vaccine antigens to focus the immune response against an epitope

of interest, by escaping responses against undesired epitopes [182]. In addition to

silencing unwanted binding, antibody recognition evasion has also been used to learn

binding information such as localizing antibody epitopes [118, 139, 59, 66, 98] by

identifying mutations that disrupt binding and to identify binding antibodies [173]

by sorting antibodies against different variants.

1.3.1. Motivating applications

The work in this thesis on antibody recognition evasion was inspired by two prospec-

tive applications we are pursuing in collaboration with experimental groups. While

these collaborative efforts are beyond the scope of this thesis, their goals drove the

approaches developed here, and they provide concrete examples from which we gen-
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1.3 Antibody Recognition Evasion Introduction

eralized our methodology.

The first motivating example is B cell epitope deletion, i.e., evasion of pre-existing

antibodies, for the enzyme lysostaphin, a potent antimicrobial agent against Staphy-

lococcus aureus. Since lysostaphin is itself of bacterial origin, it elicits an immune

response, including anti-drug antibodies that can lead to loss of efficacy among other

detrimental outcomes [132]. Recent work has led to the development of lysostaphin

variants from which T cell epitopes have been depleted [185, 184], so that in theory

subjects who have never been exposed to lysostaphin would not mount an immune re-

sponse against it. However, since lysostaphin is derived from Staphylococcus simulans,

another common microbe, some subjects may have already encountered it and thus

not be immunologically naive, and in fact already have developed anti-lysostpnin

ADAs. Importantly, underlying the antibody response is an uncharacterized, and

perhaps subject-dependent, polyclonal mixture of B cells — different antibodies may

recognize different epitopes on lysostaphin, and these specificities are unknown. Thus,

our collaborative goal is to find functional lysostaphin variants which evade unchar-

acterized pre-existing B cell responses.

The other motivating example is understanding how antibodies bind to SARS-

CoV2 spike protein (S protein) receptor binding domain (RBD). Unfortunately a

vaccine developed against one variant may elicit less potent neutralization against

newly evolved variants [54]. Thus it is helpful to understand which antibodies in the

human repertoire bind to what parts of RBD [178], as this knowledge may enable

the development of better vaccines able to broadly block the attachment and entry

of different viral variants. We here define this type of problem as “epitope map

deconvolution”; the goal is to design a panel of variants for an Ag target that will

differentially disrupt Ab binding against different epitopes on the Ag. Such a panel

can enable experimental localization of Abs to their epitopes according to which
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1.3 Antibody Recognition Evasion Introduction

variants they no longer bind. It can also serve as the basis for reagents able to sort

of Abs from polyclonal serum according to their specificities [25]. We aim to develop

a limited-size panel (i.e., not requiring excessive experimental effort) that efficiently

and effectively uses different sets of mutations on different parts of the Ag surface to

sufficiently disrupt Ag binding by a wide range of (unknown) Abs in a mixture, and

thereby deconvolve and localize the Abs according to their different epitopes.

Though B cell epitope deletion and epitope map deconvolution have different

goals, they share a common underlying approach: designing sets of mutations on an

Ag’s surface to disrupt Ab binding. For B cell epitope deletion, disruption is the goal,

finding an Ag variant that escapes all Abs. For epitope map deconvolution, disruption

is a means to the goal, namely identifying epitopes and the Abs that recognize them.

Note that for B cell epitope deletion, we seek a single Ag variant that escapes all

Abs, while for epitope map deconvolution, we seek a panel of Ag variants that work

together to map and sort.

1.3.2. Previous work: B cell epitope deletion

In general, B cell epitope deletion seeks to modify the surface of the target protein, so

that it no longer presents the epitopes recognized by preexisting Abs, but it retains

its structure and function [57, 109]. Since alanine mutations are generally relatively

benign from a stability and function standpoint, but at the same time can disrupt

Ab binding, [94] used alanine scanning mutagenesis as the basis for engineering a

38-kDa fragment of Pseudomonas exotoxin A (PE38) to evade recognition by exist-

ing Abs. Expanding the mutational choices from alanine to also include glycine and

serine, [139] engineered an Ab-evading variant of truncated diphtheria-toxin (DT)

by mutating hydrophilic surface residues to amino acids randomly chosen from these

three possibilities. Further enlarging the amino acid repertoire, [59] used random mu-

tagenesis to reduce the interaction of Abs against Chemotaxis inhibitory protein of
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1.3 Antibody Recognition Evasion Introduction

Staphylococcus aureus. To modify undesired epitopes on the Dengue virus envelope

protein domain III (DENV DIII), [133] used a combinatorial approach mutageniz-

ing selected epitope residues to all possible amino acids. Finally, in order to better

ensure maintenance of stability and function in a case study application of engineer-

ing enhanced green fluorescent protein (EGFP) to evade recognition by a particular

nanobody, [27] employed a Pareto optimization approach, computationally designing

mutational variants according to predicted trade-offs between disruptiveness of Ab

binding and preservation of Ag stability.

1.3.3. Previous work: Partial epitope map deconvolution

As previously discussed, alanine scanning mutagenesis can be leveraged to epitope

map an Ag, mutating residues to alanine and evaluating effects on antibody binding

and thereby identifying which are important to recognition. In order to epitope map

PE38 for a set of mouse Abs, [118] evaluated both alanine and glycine mutations at

41 highly exposed surface residues, evenly spread out over the surface. [25] designed a

panel of gp120 single mutation variants to enable epitope mapping of Abs against the

important HIV-1 glycoprotein 120 (gp120) CD4-binding site (CD4bs) from polyclonal

serum. [66] localized epitopes of tumor Ag B7H6 against two Abs TZ47 and PB11

using a set of 6 Ag triple mutants designed by docking models. [98] further built

on this approach to computationally cluster repebodies (leucine-rich repeat binding

scaffold) targeting interleukin-6 (IL-6) based on shared predicted epitope specifici-

ties, and then designed a set of triple-mutant variants to experimentally validate the

epitopes.

Mutating surface residues of an Ag can also yield reagents useful in isolating or

sorting Abs from a polyclonal mixture. For example, to find new HIV broadly neu-

tralizing antibodies (bnAbs), [173] resurfaced gp120 to obtain a variant that preserved

the CD4bs antigenic area but eliminated all other antigenic areas. In addition to epi-
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1.4 Specific Aims Introduction

tope mapping as discussed above, [25]’s panel also enabled sorting of HIV antibodies

by epitope specificity, according to “signatures” of which mutations disrupted bind-

ing. [17] used mutagenesis data of herpes simplex virus (HSV) glycoprotein D (gD)

together with epitope binning experiments and docking methods in order identified

four clusters of anti-gD Abs.

Section 1.4

Specific Aims

This thesis uses deep learning to improve prediction of protein recognition, for both

lectin-glycan interactions and Ab-Ag interactions, and it further leverages deep learn-

ing models to design variants so as to escape Ab recognition. For lectin-glycan inter-

actions, we designed a high dimensional representation that incorporates both local

[82] and global structural [91] information and enables improved prediction of lection-

glycan binding. For Ab-Ag interactions, we designed a deep learning architecture that

is able to learn and leverage geometrical and physicochemical information. For Ab

recognition evasion, we designed computational methods to identify beneficial mu-

tations on an Ag predicted to reduce Ab binding while retaining protein stability,

supporting both B cell epitope deletion and epitope map deconvolution.

Aim 1. Physicochemically-oriented geometric deep learning for partner-spe-

cific protein-protein interaction binding interface prediction. In order to

improve protein interaction interface prediction, we leveraged the advantage of both

machine learning and physics-driven methods to develop a unified geometric deep

neural network, “PInet” (Protein Interface Network) [33]. In order to learn shape

and physicochemical complementarity, PInet takes as input pairs of protein sur-

face meshes and feeds them to a geometric deep learning framework that segments
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1.4 Specific Aims Introduction

their structural regions mediating interaction. We tested PInet on representative

PPI datasets, matching or outperforming SOA methods on benchmark datasets from

Docking benchmark Dataset v5 (DBD5) [168], EpiPred [84], and MaSIF [51].

Aim 2. Context-aware glycan embedding for lectin-glycan interaction

specificity prediction. In order to improve lectin-glycan interaction specificity

prediction, we developed GlyBert [34] to capture complex patterns including global

contexts and local motifs. To reflect both global contexts and local motifs in a

straightforward representation, we developed a tree-based glycan encoding that prop-

erly annotates the linearity and flexibility of the structure. To leverage the advantages

of self-attention in learning local and global correlations, as demonstrated in natural

language processing applications [93], we pre-trained a BERT [39] like language model

to learn embeddings of whole glycans and their constituent monosaccharides, based

on a set of semi-supervised and supervised tasks. We then fine-tuned the network on

a lectin-glycan binding specificity prediction task, yielding significant improvement in

predictive performance from that obtained by a motif-based method [29] and a graph

neural network based method [22]. We also explored the potential of the model for de-

sign, developing a proof-of-concept generative design algorithm in which we modified

glycans to transform them from non-immunogenic to immunogenic.

Aim 3. Antigen variant design for B cell epitope deletion and epitope map

deconvolution. We developed algorithms to optimize Ag variants so as to disrupt

Ab binding while preserving Ag stability. For B cell epitope deletion, a geometry-

based algorithm designs a set of variants to disrupt potential epitopes; these are

subsequently ranked by predicted effects on Ag stability and coverage of predicted

epitopes. For epitope map deconvolution, a related geometry-based algorithm gen-

erates a set of variant panels, each composed of a set of variants targeting different

12



1.4 Specific Aims Introduction

potential epitopes; the panels are ranked by predicted overall variant stability and

epitope coverage. Retrospective case studies showed that the B cell epitope deletion

algorithm can attain high recall in finding stable but disruptive mutations, while the

epitope map deconvolution algorithm promises to efficiently and effectively deconvolve

and localize Abs to different epitope regions.

13



Chapter 2

Protein Interaction Interface

Region Prediction by Geometric

Deep Learning

Motivation: Protein-protein interactions drive wide-ranging molecular processes,

and characterizing at the atomic level how proteins interact (beyond just the fact

that they interact) can provide key insights into understanding and controlling this

machinery. Unfortunately, experimental determination of three-dimensional protein

complex structures remains difficult and does not scale to the increasingly large sets of

proteins whose interactions are of interest. Computational methods are thus required

to meet the demands of large-scale, high-throughput prediction of how proteins inter-

act, but unfortunately both physical modeling and machine learning methods suffer

from poor precision and/or recall.

Results: In order to improve performance in predicting protein interaction interfaces,

we leverage the best properties of both data- and physics-driven methods to develop a

unified Geometric Deep Neural Network, “PInet” (Protein Interface Network). PInet

consumes pairs of point clouds encoding the structures of two partner proteins, in

14



2.1 Introduction PInet

order to predict their structural regions mediating interaction. To make such predic-

tions, PInet learns and utilizes models capturing both geometrical and physicochem-

ical molecular surface complementarity. In application to a set of benchmarks, PInet

simultaneously predicts the interface regions on both interacting proteins, achieving

performance equivalent to or even much better than the state-of-the-art predictor for

each dataset. Furthermore, since PInet is based on joint segmentation of a represen-

tation of a protein surfaces, its predictions are meaningful in terms of the underlying

physical complementarity driving molecular recognition.

Availability: PInet [33] is published on Bioinformatics. PInet scripts and models

are available at https://github.com/FTD007/PInet.

Section 2.1

Introduction

Due to the importance of protein-protein interactions in driving cellular machinery,

numerous experimental and computational techniques have been developed to iden-

tify putative partners [146]. While these methods yield information about which

pairs of proteins might interact, they don’t characterize how they interact (Figure

2.1). Further experimental investigations or computational analyses are then neces-

sary to determine or predict binding modes, provide mechanistic insights, and guide

subsequent efforts to, e.g., design mutations to change binding affinity or specificity

or identify small molecule inhibitors of an interaction. Likewise, recent advances in

repertoire sequencing have enabled the collection of millions or billions of antibody

sequences from different individuals and conditions [16], and promise to provide valu-

able insights into vaccination and natural infection, especially if how the sequenced

antibodies recognize their antigen targets could also be characterized. The same
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2.1 Introduction PInet

Figure 2.1: Different proteins can recognize the same protein partner in very different
ways, as shown here for hen egg lysozyme (HEL; gray surface, 3LZT) and different
antibodies (colored cartoon; (purple: 1BVK, blue: 1DQJ, red: 1MLC, and orange:
2I25). Partner-independent predictions seek to label, in general, what parts of one
protein might be recognized by unknown other proteins. In this example, even with
just these few example antibodies, much of the HEL surface is recognized by one an-
tibody or another, so partner-independent prediction of binding region would largely
cover the surface. Thus when information about particular partners is available,
partner-specific predictions can be beneficial, providing a more specific characteriza-
tion of recognition by separately localizing each partner.

holds for display-based development of antibody therapeutics [46], where different

antibodies may have different modes of interacting with an antigen that may mani-

fest different trade offs, and thus early characterization could drive better selection

of leads. Unfortunately, while experimental structure determination provides “gold

standard” insights into recognition, these and even alternative less precise / confi-

dent methods (e.g., alanine scanning) cannot keep up with the scale of experimental

discovery of interacting partners.

Computational methods to predict how two given proteins interact can be roughly

split into those methods based on physical models and those leveraging data-driven

models. Physically-based approaches include protein-protein docking, e.g., [30, 125,
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141, 172, 176], wherein structures or models of the individual partners are compu-

tationally rotated and translated (and in some cases, modified) to generate possible

“poses” in which they interact. Beyond the computational cost of sampling or com-

puting a sufficient set of poses, a key difficulty is scoring them. Scoring functions are

often carefully crafted to integrate multiple factors, with shape complementarity as

the foundation [88]. Typically, as has been studied with a state-of-the art physically-

based docking program, ClusPro, near-native structures are generally included among

the top poses, but it remains difficult to identify which one(s) [159].

In contrast to physically-based approaches, data-driven / machine learning ap-

proaches seek to leverage existing databases of characterized interactions to learn

properties underlying recognition. While some methods are based on sequence alone

[127, 107], structural information can be extremely important and has been shown

to yield more accurate predictions [183], since recognition is largely based on sur-

face regions that may not be contiguous in primary sequence, and as discussed above

overall surface complementarity is critical. Fortunately, in many important cases,

structures of the individual proteins are already available, or high-quality homology

models can be readily obtained, so a number of structure-based data-driven predic-

tors have emerged. The impact of using structural information instead of sequence is

demonstrated, for example, by BIPSPI [137] and PAIRPred [2], which gain on average

a 10% improvement in precision and recall using structure vs. sequence alone.

Machine learning approaches can further be classified into those that seek to pre-

dict which residues are in the interface regions, which we call here “interface region

prediction”, and those that seek to predict which pairs of residues (one from each part-

ner) are interacting, which we call here “contact prediction”. For example, MASIF

[50] and PECAN [126] predict interface regions, ComplexContact [180] and SASNet

[156] predict contacts, and the BIPSPI and PAIRPred methods mentioned above pre-
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dict contacts and postprocess the results to predict interface regions. As discussed

above, antibody recognition of cognate antigens is one particularly important special

case of interface region prediction (the “epitope” on the antigen and the “paratope”

on the antibody are the interaction regions). Epitope prediction has been the subject

of much study, with DiscoTope [85] focusing on learning general surface properties,

EpiPred [84] combining conformational matching and a machine learning boosted

scoring function, and PECAN [126] employing graph convolution networks. Paratope

prediction is also well studied, though it is somewhat easier, due to the regularity of

immunoglobulin sequence and structure [126].

Different interface region prediction tasks leverage different available information

to achieve different goals. Partner-independent prediction seeks to predict, in gen-

eral, what portions of the surface of a protein may serve as interface regions for other

proteins (known or unknown). In contrast, partner-specific prediction accounts for a

particular partner in identifying the binding regions most suitable for that partner.

As illustrated in Figure 2.1, deconvolving the surface into partner-specific predictions

for different partners provides a better characterization of the recognition; this can

be important for subsequent engineering, for understanding underlying immune re-

sponses, and so forth. In the specific case of antibodies, while many classic epitope

predictors are partner-independent, [144] motivated the paradigm of antibody-specific

approach, since antibodies may be developed by the immune system against a variety

of different epitopes on an antigen (Figure 2.1). Further studies [142, 66] have demon-

strated the utility of this framework when information about the partner antibody is

available.

To bring deep learning to bear in developing new structure-based interface region

prediction methods, a central question is how to represent the protein structures and

thus develop a suitable neural network. Since geometry is one of the key principles
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underlying interface complementarity (as exploited by physical modeling methods),

but protein structures are not regularly-sampled grids like the images studied by

traditional deep learning, this task belongs to the general area of geometric deep

learning. Graph Convolutional Networks (GCNs) [80] are one geometric deep learn-

ing method that has been leveraged for protein interface region prediction. GCNs

generalize Convolutional Neural Networks (CNNs) from 2D grids to graphs by em-

ploying spectral convolution, enabling them to avoid the unnecessary and potentially

costly direct Euclidean domain representations of structured data (e.g., 3D voxeliza-

tion might waste a great deal of memory at high resolution, or might lose important

features at low resolution). A recent study [49] employed a GCN to learn a represen-

tation for each residue in a protein and used that representation to classify whether

or not two residues interact. This study showed that convolution is able to capture

interaction information from basic physicochemical properties of residues. Recently,

PECAN [126] combined the advantages of GCNs and attention mechanisms [7] in an

integrated model for predicting both epitopes and paratopes, learning better repre-

sentations of residues and their interaction preferences in order to focus predictions

on complementary regions.

Another recent protein interface region prediction method, MaSIF [50], used a

different form of geometric deep learning to learn and utilize geometric features,

mapping 3D surface patches of an input protein to 2D using a soft polar coordinate

system, and then using CNNs to predict the likelihood of a surface vertex being

involved in an interaction region. MaSIF was also trained on a substantially larger

data set than previous studies, using thousands rather than hundreds of complex

structures. We note that in contrast to the methods above, as well as ours, MaSIF

is partner-independent, predicting likely binding sites in general for a protein, rather

than making predictions that are specific to given partner proteins.
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In order to directly encode and exploit surface geometry and interface comple-

mentarity in a deep learning framework, we pursue here a point cloud based repre-

sentation. Traditional ways of dealing with point clouds, e.g., aggregating points into

discrete voxels for a 3D voxel CNN [99], or sorting them into a linear sequence for

an RNN [166], can ruin the detailed geometry of the data or result in an unstable

ordering of the inherently non-linear set of points into a sequence. PointNet [131] was

developed to directly learn geometrical information from point clouds, overcoming

these problems by learning functions to make points order invariant, as well as aggre-

gating local and global features over the cloud. More specifically, PointNet utilizes

a Spatial Transformer Network [70] to render the input point cloud invariant to ge-

ometric transformations, employs a multi-layer perceptron to learn high-dimensional

local feature vectors for the points, and subsequently applies a max pooling layer

over each channel to produce global feature vectors describing overall shape features.

This global feature vector can be concatenated with local feature vectors to enable

semantic segmentation by learning which subset of global features should be assigned

to a point. When different points share similar global signatures, their neighborhood

information is also extracted, thereby helping group points for segmentation. Point-

Net was shown to achieve state of the art performance on problems including 3D

object classification, part segmentation, and scene semantic segmentation.

Our contribution. In order to leverage the advantages of both physically-based

modeling and data-driven modeling, we develop a partner-specific geometric deep

learning approach to interface region prediction that is based on an explicit represen-

tation of a pair of molecular surfaces. Our approach thereby enables characterization

of shape and physicochemical complementarity driving molecular recognition, using

existing data to learn how best to score this complementarity and thereby identify in-

terface regions of a given pair of structures. In addition to predicting interface regions
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in general protein-protein pairs, we also address the specific case of epitope-paratope

prediction in antibody-antigen (Ab-Ag) recognition. Our approach, PInet, achieves

state of the art performance on each of the different interface region prediction tasks

on which we evaluate it. Strikingly, even when trained on a dataset largely comprised

of other types of protein-protein interactions rather than one focused specifically on

antibody-antigen interactions, PInet performs better than state-of-the-art epitope

predictors, demonstrating that it has learned generalized representations of protein

interface complementarity.

Section 2.2

Methods

2.2.1. Problem Setup

Given individual structures or high-quality homology models of two proteins, tradi-

tionally termed the “ligand” and “receptor” (the distinction is not important in our

approach), our goal is to predict their interface regions, i.e., the portions that are

contacting each other. While ultimately the predicted interface regions will be char-

acterized in terms of the involved residues, in order to directly represent recognition

in terms of two complementary molecular surfaces, we encode both proteins as sur-

face point clouds P l = {P l
i |i = 1 . . . nl} and P r = {P r

i |i = 1 . . . nr}, where each point

cloud includes both (x, y, z) coordinates (Gi) along with physicochemical properties

(Hi, Ei) described below. We then seek to label each point as being in the interface or

not, yielding an nl +nr by 1 output probability score. The point cloud representation

enables simultaneously capturing both geometric and physicochemical properties me-

diating recognition, and yields meaningful predictions in terms of segmented surface

regions potentially mediating interactions.
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2.2.2. Data preparation

Geometry. We first preprocess input PDB [10] files using PDB2PQR [40] to remove

solvent molecules and fill in missing atoms. We then generate surface meshes for

each protein separately and use the mesh vertices as the input point clouds; results

presented here are based on PyMOL-generated meshes [38] with a water probe radius

of 1.4 Å. Point coordinates in Gi are translated so that the point cloud’s centroid is

at the origin.

Physicochemical features. PInet allows physicochemical properties to be asso-

ciated with each point. For the results shown here, we employed representative en-

codings of the two most important classes of properties: electrostatics (Ei) and hy-

drophobicity (Hi). Combined with the 3D geometry Gi, these features make P l and

P r 5 dimensional point sets.

• Electrostatics Poisson–Boltzmann electrostatics are computed by APBS [8]

for both proteins separately, and the continuum electrostatics value for each

point (Ei) is taken as the value of the voxel containing that point normalized

by the maximum value over the whole grid.

• Hydrophobicity. The hydrophobicity value for each point (Hi) is computed

as a distance-normalized weighted sum of the Kyte-Doolittle scale [86] values

for the amino acid types of the three closest residues (Rk):

Hi =
3∑

k=1

KD(Rk) × 1

D(Pi, Rk)

where KD(Rk) is the Kyte-Doolittle value for residue type Rk and D(Pi, Rk) is

distance between the surface point and the centroid of the residue.
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Figure 2.2: Overview of our Protein Interface Network (PInet) approach for pre-
dicting interaction regions on pairs of proteins. PInet consumes two 5 dimensional
point clouds representing geometry and physicochemical properties of each protein
surface, and performs a semantic segmentation on all points from both point clouds
simultaneously. It first processes each point cloud separately. For each protein, a
Spatial Transformation network renders the surface point clouds invariant to rigid-
body transformations. Then a multi-layer perceptron (MLP) extracts local surface
features. These local surface features are then aggregated into a global protein fea-
ture vector. With each protein thus processed, the protein local surface features and
global protein features from both proteins are concatenated in order to be segmented
by another MLP. The trainable weights for canonical transformation, local and global
feature extraction are shared for the two proteins.

Interface labels. The label sets Ll and Lr assign each point a value of 1 if it is in

the interface region and 0 if it isn’t. Here, we define interface points as those within

2Å of a point on the partner protein (known in training from the complex structure).

The 2Å threshold was selected based on an analysis of the distribution of the shortest

pairwise distances across interacting proteins (Supplementary Figure 1).
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2.2.3. Architecture

We use this representation as the basis for a geometric deep learning framework (Fig.

2.2) that seeks to segment points in the interface region from the rest for both input

point clouds simultaneously. The architecture is rooted in that pioneered by PointNet

[131]. While PointNet was developed for semantic segmentation of a single point cloud

in an image according to its own features, our goal here is to learn to simultaneously

segment two point clouds into interacting and non-interacting regions. Whether or

not regions interact is revealed by shape and physicochemical complementarity of

their sub-regions, i.e., segmentation of a set of points also depends on features of

potential partner points. We thus adapt the architecture to take two point clouds as

input and learn to extract feature signatures that capture complementarity between

sub-regions of the clouds and enable simultaneous segmentation of both clouds into

interface vs. non-interface.

Point Cloud Canonical Transformation (Fig.2.2(a)) . The first step trans-

forms the points in a cloud into a canonical space in a way that is invariant to linear

transformations. The underlying problem is that there is no standard coordinate sys-

tem for protein structures, and indeed the key problem in physically-based methods is

to find the right transformation (rotation and translation) to bring the two separate

proteins together. Rather than sampling different poses we use a canonical represen-

tation approach, and in fact learn the transformation into the canonical space rather

than hand-crafting a canonical representation. In particular, we use a simplified Spa-

tial Transformation network [70] to learn a k × k transformation matrix (where k is

the dimension of the point cloud, 5 in our case) that maps each point into the new

space.
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Local Surface Feature Extraction (Fig.2.2(b)) . The next step moves beyond

individual points in a cloud to a richer representation of properties of the protein

surface. This local surface feature extraction block is implemented by a sequence

of fully connected layers on points, forming a Multilayer perceptron (MLP). Here

the MLP is learning a set of functions that map input surface point features (3D

geometry and 2D physicochemical) to a higher-dimensional vector of protein surface

features. Inspection of the first fully connected layer of a trained model from the

results reveals that some weights focus on the coordinates, aggregating geometry-

related features, while other weights focus more on electrostatics and hydrophobicity

channels, capturing physicochemical properties.

Global Protein Feature Extraction (Fig.2.2(c)) . After re-representing each

point in terms of local surface features, the next step summarizes the entire protein

surface in order to later support segmentation via comparison of local features to

this global feature. The global feature is obtained by max pooling over all points’

local features. This max pooling layer reveals points with dominant impact on each

feature, and uses the associated features of these points to summarize the whole

protein surface.

Segmentation (Fig.2.2(d)) . Finally, the binding interfaces for both proteins are

simultaneously segmented. Our segmentation block is also implemented by an MLP,

taking as input a combination, over both proteins, of all the local surface features and

the two global feature vectors. The MLP learns complementarity from the two global

feature vectors, and uses the relationship between the complementarity signature and

the local feature vectors in order to predict for each point its probability of being in

the binding interface.
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2.2.4. Loss Function

We train the model with Binary Cross Entropy loss LBCE balanced by the weight

of the positive labels. In addition, we designed a regularization term, LHist, based

on the intuition that the binding regions on both input point clouds should have

complementary shapes [119]. To describe the shapes of the binding regions, we use D2

shape distributions, which are the distance distributions (represented by histograms)

of subsets of random points in the positive labeled point clouds. We then use the

difference of distributions as a regularization loss. In particular, given the normalized

distances D between all pairs of point from a random subset, we implemented a

backpropagatable 10 bin histogram defined in terms of the bins‘ centers ci and radii

ri:

bin(d) =
9∑

i=0

(
sigmoid(

d− ci + ri
σ

) − sigmoid(
d− ci − ri

σ
)

)
bi

Hist(D) =
∑
d∈D

bin(d)

where σ is a coefficient (set by grid search in the training data) controlling the steep-

ness of the sigmoid function and bi is a 10 dimensional vector with the ith dimension

set to 1 and rest to 0. Consequently, LHist is then defined as the L2 norm of the

difference between Dligand and Dreceptor:

LHist = ||Hist(Dligand) − Hist(Dreceptor)||

The loss function with regularization LHist is then defined by:

L = LBCE + αLHist

where the hyperparameter α setting the relative weight between the losses is found

by grid search in the training data.
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2.2.5. Training

Since the input point cloud sizes can vary significantly and the memory size of the

GPU used in implementation is limited, we do not pad all input point clouds; but for

particularly large protein pairs, we uniformly subsample them, without replacement,

so as to reduce the cardinality of each to at most 20000. We feed one protein pair at

a time into the network, performing backpropagation on the average loss of every set

of complexes (16 for smaller datasets and 32 for larger ones). Thus the model is still

essentially trained using mini-batch gradient descent. We use the Adam optimizer

and train each model for 160 epochs with initial learning rate 0.001 decreasing by half

every 20 epochs. The keep rate for the dropout layer in the segmentation block is set

to be 0.7. All these parameters were determined by grid search within the training

set.

2.2.6. Data Augmentation

Since there is relatively little training data available (tens to hundreds of protein

complex structures in curated datasets), we sought to augment it artificially. In

particular, since the spatial transformation network needs sufficient data to learn

the mapping from point clouds to a canonical space, and the reference coordinate

system in each structure is essentially arbitrary, a natural augmentation is to add

randomly rotated instances of the training data. For each input pair of point clouds

in the training set, we generated a fixed number of additional input point clouds,

each randomly rotated from the original, i.e., by a random angle around a random

axis. For smaller datasets, we compared the performance using 10 or 50 additional

training instances for each original; for a large dataset we were only able to augment

with 5 additional instances each due to memory limitations.
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2.2.7. Residue-level Prediction

While PInet’s predictions are in terms of surface point clouds, most methods (and

indeed, subsequent experiments, e.g., site-directed mutagenesis) focus on which amino

acids are in the interfaces. Thus for interpretation and direct comparison with other

methods, we compute predictions for residues based on predictions for nearby surface

points. In order to ensure potential representation of all atoms in a residue, we

identify the closest surface points for each of its atoms and then the closest of those

points over all atoms in the residue. We then average the probabilities for those

nearby surface points to give the residue’s probability. More precisely, for atom Aj

let Cj be the corresponding k1 closest points in the point cloud (we used k1 = 3),

and for residue Rk, let Dk be the k2 closest points (we used k2 = 10) from the set

of points
⋃

Aj∈Rk
Cj of atoms comprising the residue and their closest points. Then

we compute the probability P (Rk) that Rk is in the binding site by summing the

evidence provided by the points associated with its constituent atoms.

P (Rk) =
1

k2

∑
Pi∈Dk

P (Pi)

Section 2.3

Results

2.3.1. Benchmarks

We evaluated PInet on three previously collected and evaluated benchmarks, summa-

rized in Supplementary Table 1 and Supplementary Figure 2, and associated state-

of-the-art predictors. Different steps were taken by each in order to clean and reduce

redundancy, as briefly summarized here.

• DBD5. The Protein-Protein Docking Benchmark 5.0 (DBD5) [168] is a non-
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redundant set of high-resolution structures of 225 general protein-protein com-

plexes. The redundancy is handled at the structural family level according to

the Structural Classification of Proteins (SCOP) [108]. We also considered the

DBD3 dataset [69], a previous version that is a subset of DBD5 of size 73.

We compare our model with representative state-of-the-art methods BIPSPI

[137] and PAIRpred [2], which are partner-specific predictors (i.e., for a given

pair of proteins) using both sequence- and structure-based features. All mod-

els followed the same protocol of leave-one-out cross-validation. We tested on

both bound conformations (i.e., the structures of the individual proteins are

extracted from the complex structure), as well as on unbound conformations

(i.e., the structures of the individual proteins were solved separately).

• MaSIF The authors of MaSIF compiled a massive dataset by combining the

PRISM [107] dataset [114], the ZDock benchmark [125], PDBBind [169], and the

SAbDab antibody database [41] filtered for a maximum of 30% sequence identity

using psi-cd-hit [67]. In all, the original dataset used 3003 proteins for training

and 359 for testing. The overall dataset was not curated for redundancy and

overlap between training and testing, so for comparison we use the same test-

train split, except for one small bit of curation: we discarded complexes whose

binding site was smaller than 1% of the size of ligand, since from inspection these

complexes have little interaction. Thus our training and testing set sizes are

2689 and 345. We compared our model with MaSIF as well as SPPIDER [127],

another partner-independent predictor based on relative solvent accessibility,

whose performance is included in the MaSIF publication [50]. The provided

benchmark uses bound conformations.

• EpiPred EpiPred [84] is one of the state-of-the art antibody epitope predic-

tors, though recently PECAN [126] outperformed it on the same dataset. The
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EpiPred dataset comprises a non-redundant set of high-resolution antibody-

antigen complex crystal structures, filtered from SAbDab [41] according to

structural quality and dissimilarity. It includes 148 Ab-Ag complexes with

Ab sequence identity less than 99% and corresponding Ag sequence identity

less than 90%, and all Ags at least 50 residues. Of these complexes, 118 are

used for training and 30 for testing. Here we compare our model with EpiPred

along with the partner-independent epitope predictor DiscoTope [85] and the

recent partner-dependent epitope predictor PECAN, which holds the current

state-of-the-art performance for the EpiPred dataset, achieving 15.7% precision

with 73.0% recall and AUC-PR of 65.5%. Here too, the provided benchmark

uses bound conformations.

We first evaluated PInet on DBD5 in order to establish a comparison with the

general state of the art in predicting how pairs of proteins interact. We also used

DBD5 to show the importance of partner-specific methods, accounting for the other

protein when predicting on the one protein, rather than just generally predicting what

part of a protein might be recognized by any partner (see again Figure 2.1). DBD5 also

provided the opportunity to assess the utility of data augmentation for our method.

We then used the MaSIF dataset to evaluate our approach on this much larger and

richer (though uncurated) dataset. As we can see in Supplementary Figure 2, in

MaSIF, the sizes of ligands and receptors tend to be more similar compared to DBD5

and EpiPred, but the proportions of residues in interface regions (i.e., percentages

of positive labels) varies substantially. We further leveraged the MaSIF dataset to

explore different variations of the the PInet model, including architecture and feature

choices. Finally we turned to the special case of antibody-antigen prediction and used

the EpiPred benchmark to evaluate PInet’s performance on this important task.

In general, due to the imbalance between positive labels (about 8%) and negative
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labels (Supplementary Table 1), we advocate the use of precision and recall as per-

formance metrics, both as single values at the 0.5 probability cut-off, as well as in

a precision-recall curve. To allow comparison with some other approaches, we also

compute AUC-ROC even though the classes are very imbalanced. For consistency of

comparison, PInet’s point-based predictions are converted to residue-level predictions

as described in the methods. In order to illustrate the power of PInet in enabling

further computational modeling or experimental evaluation, we provide illustrative

examples of resulting segmentations.

2.3.2. DBD5

We trained and tested PInet on the DBD5 and older DBD3 benchmarks using leave-

one-out cross-validation and found that, compared to representative predictors trained

and tested the same way, it attains significantly better average precision, recall, and

AUC-PR (Table 2.5 and supplementary table 2). For example, for the DBD5 bench-

mark, using a probability cutoff of 0.5, the average precision of the model trained

without data augmentation is over 51% and average recall nearly 75%, both more

than 10% higher than previous methods, while the average AUC-PR is almost 0.67,

more than 0.20 higher. Clearly the model does a good job of identifying the binding

regions, but also expands them to include some false positives. For the model trained

with 10x augmentation, the performance improves slightly, while for model trained

with 50x augmentation, the performance further improves substantially, attaining

average precision of 54%, average recall of 82%, and average AUC-PR of 0.73. To

evaluate the impact of conformational change on the predictions, we further tested

PInet on the unbound structures using the 50x augmentation model. We note that

BIPSI’s performance was more or less the same in application to bound or unbound

structures, presumably because its features are less sensitive to the conformational

changes induced by binding in these test cases. As might be expected for PInet,
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Table 2.1: Performance evaluation for DBD3 and DBD5 datasets, with published
values for PAIRPred and BIPSI, compared to PInet with no augmentation, or aug-
mented with 10 or 50 random rotations per training complex. Bolded entries are the
best in that column for that dataset. Testing is performed on either bound (B) or
unbound (U) structures, as indicated in the first column.

Struct Method precision recall AUC-ROC AUC-PR
DBD3
B PInet 0.494 0.723 0.812 0.639
B PInet (Aug 10) 0.480 0.732 0.846 0.669
B PInet (Aug 50) 0.491 0.845 0.867 0.710
U PAIRpred 0.371 0.419 0.774 0.341
U BIPSPI 0.383 0.545 0.816 0.405
U PInet (Aug 50) 0.518 0.745 0.775 0.626
DBD5
B BIPSPI 0.394 0.599 0.827 0.429
B PInet 0.511 0.749 0.837 0.667
B PInet (Aug 10) 0.523 0.755 0.851 0.685
B PInet (Aug 50) 0.538 0.824 0.877 0.734
U BIPSPI 0.391 0.558 0.822 0.410
U PInet (Aug 50) 0.492 0.723 0.753 0.596

which uses features based on higher-resolution point clouds, performance did drop,

but it still outperformed these other predictors in terms of both precision and recall.

Figure 2.3 illustrates epitope predictions (Supplementary Figure 3 gives paratopes)

for hen egg lysozyme and antibodies illustrated in Figure 2.1. The PInet predictions

clearly demonstrate a very important point: it is not just memorizing binding sites

during training — while it sees the antigen and one specific antibody during training,

it is still able to predict the very different interface of that antigen for different partner

antibodies during testing. The result also demonstrates the importance of partner-

specific prediction, as for example DiscoTope covers much of the surface as possible

binding interface without distinguishing for which antibody. In contrast, the PInet

predictions leverage antibody specific models to distinguish different binding regions

and support prioritization and follow-up studies for the different antibodies.

Figure 2.4 visualizes the PInet interface region predictions for the median per-
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formance complexes from the DBD5 Enzyme-Partner category test cases. Here too

— even at the median level of performance — PInet is able to provide high quality

interface region segmentations. Overall (Supplementary Figure 4), the prediction per-

formance is consistent across different types of protein interactions, suggesting that

PInet is learning robust, general models of interaction specificity.

2.3.3. MaSIF

The MaSIF benchmark is substantially larger, and provides more diverse but uncu-

rated training and testing data. The MaSIF paper also presents results for a model

using geometric features only, as compared to the one using both geometry and physic-

ochemical features. We trained PInet following the same protocol and, as the top rows

in Table 2.2 indicate, PInet outperforms MaSIF when using just geometric features,

and attains the same performance when using both geometric and physicochemical

properties. The relatively better performance of PInet on geometry alone leads us

to conjecture that PInet could benefit from a different encoding of physicochemical

features or a more direct aggregation of the features (e.g., as convolution would do),

In addition to the full dataset, the MaSIF paper also includes a comparison to SP-

PIDER [127] on predicting for the subset of single-chain transient interactions. We

also tested on the transient interactions subset; the bottom section of Table 2.2 shows

that we again match MaSIF’s performance in terms of AUC-ROC. For completeness,

since the dataset is quite imbalanced, we also provide AUC-PR for PInet; though a

comparison can’t be made to the other methods, we do see that it is substantially

lower than we obtained for the DBD5 dataset, suggesting that a carefully curated

training and testing regime can yield better performance.

Finally, we used the MaSIF dataset to compare different versions of the PInet

modeling approach; performance is summarized in Supplementary Table 3. The top

two rows shows the full model and the geometry-only model, as already presented
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Table 1. Performance evaluation for DBD3 and DBD5 datasets, with published
values for PAIRPred and BIPSI, compared to PInet with no augmentation, or
augmented with 10 or 50 random rotations per training complex. Bolded entries
are the best in that column for that dataset.

Dataset Method precision recall AUC-ROC AUC-PR
DBD3 PAIRpred 0.371 0.419 0.774 0.341
DBD3 BIPSPI 0.383 0.545 0.816 0.405
DBD3 PInet 0.494 0.723 0.812 0.639
DBD3 PInet (Aug 10) 0.480 0.732 0.846 0.669
DBD3 PInet (Aug 50) 0.491 0.845 0.867 0.710
DBD5 BIPSPI 0.391 0.558 0.822 0.410
DBD5 PInet 0.511 0.749 0.837 0.667
DBD5 PInet (Aug 10) 0.523 0.755 0.851 0.685
DBD5 PInet (Aug 50) 0.538 0.824 0.877 0.734

and richer (though uncurated) dataset. As we can see in Supplementary
Figure 2, in MaSIF, the sizes of ligands and receptors tend to be more
similar compared to DBD5 and EpiPred, but the proportions of residues in
interface regions (i.e., percentages of positive labels) varies substantially.
We further leveraged the MaSIF dataset to explore different variations of
the the PInet model, including architecture and feature choices. Finally
we turned to the special case of antibody-antigen prediction and used the
EpiPred benchmark to evaluate PInet’s performance on this important task.

In general, due to the imbalance between positive labels (about 8%)
and negative labels (Supplementary Table 1), we advocate the use of
precision and recall as performance metrics, both as single values at the
0.5 probability cut-off, as well as in a precision-recall curve. To allow
comparison with some other approaches, we also compute AUC-ROC even
though the classes are very imbalanced. For consistency of comparison,
PInet’s point-based predictions are converted to residue-level predictions
as described in the methods. In order to illustrate the power of PInet in
enabling further computational modeling or experimental evaluation, we
provide illustrative examples of resulting segmentations.

3.2 DBD5

We trained and tested PInet on the DBD5 and older DBD3 benchmarks
using leave-one-out cross-validation and found that, compared to
representative predictors trained and tested the same way, it attains
significantly better average precision, recall, and AUC-PR (Table 1 and
supplementary table 2). For example, for the DBD5 benchmark, using
a probability cutoff of 0.5, the average precision of the model trained
without data augmentation is over 51% and average recall nearly 75%,
both more than 10% higher than previous methods, while the average
AUC-PR is almost 0.67, more than 0.20 higher. Clearly the model does
a good job of identifying the binding regions, but also expands them to
include some false positives. For the model trained with 10x augmentation,
the performance improves slightly, while for model trained with 50x
augmentation, the performance further improves substantially, attaining
average precision of 54%, average recall of 82%, and average AUC-PR
of 0.73.

Figure 3 illustrates epitope predictions (Supplementary Figure 3 gives
paratopes) for hen egg lysozyme and antibodies illustrated in Figure 1.
The PInet predictions clearly demonstrate a very important point: it is
not just memorizing binding sites during training — while it sees the
antigen and one specific antibody during training, it is still able to predict
the very different interface of that antigen for different partner antibodies
during testing. The result also demonstrates the importance of partner-
specific prediction, as for example DiscoTope covers much of the surface
as possible binding interface without distinguishing for which antibody.
In contrast, the PInet predictions leverage antibody specific models to

PInet antibody-specific predictions

DiscoTope antibody-independent predictions

Fig. 3. Binding interface region prediction for one protein (hen egg lysozyme) with four
different antibodies. (Top four rows) PInet predictions, from two different viewpoints. The
heatmap shows predicted probability of being in the interface, with darker red for higher
probability and darker blue for lower. (Bottom row) Discotope prediction for 3LZT, again
with a heatmap showing predicted probability (darker red higher, darker blue lower).

distinguish different binding regions and support prioritization and follow-
up studies for the different antibodies.

Figure 4 visualizes the PInet interface region predictions for the median
performance complexes from the DBD5 Enzyme-Partner category test
cases. Here too — even at the median level of performance — PInet
is able to provide high quality interface region segmentations. Overall
(Supplementary Figure 4), the prediction performance is consistent across
different types of protein interactions, suggesting that PInet is learning
robust, general models of interaction specificity.

3.3 MaSIF

The MaSIF benchmark is substantially larger, and provides more diverse
but uncurated training and testing data. The MaSIF paper also presents
results for a model using geometric features only, as compared to the
one using both geometry and physicochemical features. We trained PInet
following the same protocol and, as the top rows in Table 2 indicate,
PInet outperforms MaSIF when using just geometric features, and attains
the same performance when using both geometric and physicochemical
properties. The relatively better performance of PInet on geometry alone

Figure 2.3: Binding interface region prediction for one protein (hen egg lysozyme)
with four different antibodies. (Top four rows) PInet predictions, from two different
viewpoints. The heatmap shows predicted probability of being in the interface, with
darker red for higher probability and darker blue for lower. (Bottom row) Discotope
prediction for 3LZT, again with a heatmap showing predicted probability (darker red
higher, darker blue lower).
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Fig. 4. Segmentation visualization for three example (median PInet prediction
performance) Enzyme-Partner pairs from DBD5: Enzyme-Inhibitor 3VLB (top), Enzyme-
Substrate 4H03 (middle), and Enzyme complex with a regulatory or accessory chain
1GLA (bottom). Heatmaps for the partner indicate the predicted probability of being in
the interface, with darker red for higher probability and darker blue for lower.

Table 2. Performance (area under the PR and ROC curves) on the Masif
benchmark. (top) full test set, with each model using geometric features
and physicochemical features. (middle) full test set, with each model using
geometric features only. (bottom) transient interaction subset.

Test case Method AUC-PR AUC-ROC
Full MaSIF n/a 0.87
Full PInet 0.45 0.88
Full MaSIF (geom only) n/a 0.68
Full PInet (geom only) 0.30 0.75
Transient SPPIDER n/a 0.65
Transient MaSIF n/a 0.81
Transient PInet 0.30 0.82

leads us to conjecture that PInet could benefit from a different encoding
of physicochemical features or a more direct aggregation of the features
(e.g., as convolution would do), In addition to the full dataset, the MaSIF
paper also includes a comparison to SPPIDER (Porollo and Meller, 2007)
on predicting for the subset of single-chain transient interactions. We also
tested on the transient interactions subset; the bottom section of Table
2 shows that we again match MaSIF’s performance in terms of AUC-
ROC. For completeness, since the dataset is quite imbalanced, we also
provide AUC-PR for PInet; though a comparison can’t be made to the
other methods, we do see that it is substantially lower than we obtained for
the DBD5 dataset, suggesting that a carefully curated training and testing
regime can yield better performance.

Finally, we used the MaSIF dataset to compare different versions of the
PInet modeling approach; performance is summarized in Supplementary
Table 3. The top two rows shows the full model and the geometry-only
model, as already presented in Table 2. The next two rows summarize the
impact of adding each of our two physicochemical features separately;

Table 3. Epitope prediction performance on the EpiPred test set.

Method Precision Recall AUC-ROC AUC-PR

EpiPred 0.136 0.436 NA NA
DiscoTope 0.214 0.110 NA NA
Sppider 0.153 0.363 NA NA
PECAN 0.157 0.730 0.655 0.226
PInet [EpiPred] 0.181 0.931 0.654 0.291
PInet [EpiPred & Aug] 0.216 0.774 0.687 0.368
PInet [DBD5 Aug] ave 0.206 0.752 0.651 0.321

each helps, though hydrophobocity helps more on this dataset. To evaluate
the effects of point cloud resolution, we also evaluated a model using
at most 2000 points, instead of the default 20,0000 points. As shown in
Supplementary Figure 2, most point clouds are in the 10,000 to 20,000
range, so this subsampling reduces the grid resolution and consequently
hurts performance all around. Finally, we compared the difference between
models with or without the data augmentation. The extent of augmentation
we could perform was limited due to memory constraints, and the
dataset was already quite large, so augmentation had little effect on the
performance here.

3.4 EpiPred

The final dataset covers the important special case of antibody-antigen
interactions. While our model simultaneously predicts both interfaces, the
epitope (the part of the antigen recognized by the antibody) is usually most
important, so we focus on comparison with the state-of-the-art antibody-
specific epitope predictors PECAN (Pittala and Bailey-Kellogg, 2020) and
EpiPred (Krawczyk et al., 2014), along with the state-of-the-art antibody-
independent DiscoTope (Kringelum et al., 2012), using Epipred’s training
and testing sets.

Table 3 summarizes the performance of the various approaches. The
basic PInet approach, training and testing on the EpiPred dataset alone,
is directly comparable to the state-of-the-art PECAN, and we see that it
substantially outperforms it (as well as the other methods) in terms of recall
while also doing better on precision. Data augmentation further improves
precision and also achieves the best AUC-PR and AUC-ROC. Strikingly,
the PInet models trained above on augmented DBD5 data (performance
numbers averaged over all models trained during the leave-one-out cross-
validation) achieve performance comparable to that of the other state of the
art methods, though suffer a loss in recall compared to the model trained
directly on EpiPred data. This result implies that our model robustly learns
generalizable determinants of protein-protein binding interfaces.

Figure 5 visualizes the PInet epitope predictions for representative
good and not-so-good test cases. Corresponding paratope predictions are
included in Supplementary Figure 5. Consistent with the performance
metrics, PInet identifies most or all of the epitope regions, but extends the
segmentation out a bit further beyond them. By the median performance
example, we see that PInet also produces a secondary binding site; these
false positives would need to be ruled out by subsequent computational or
experimental analysis. Finally, we evaluated the overall performance for
simultaneous paratope and epitope prediction (Supplementary Table 4).
We see that indeed the precision and recall for combined epitope+paratope
prediction tends to be higher than that for epitope prediction since, as
discussed, paratope prediction is generally easier than epitope prediction,
due to the structural and functional similarity of the complementarity
determining regions of antibodies.

Figure 2.4: Segmentation visualization for three example (median PInet prediction
performance) Enzyme-Partner pairs from DBD5: Enzyme-Inhibitor 3VLB (top),
Enzyme-Substrate 4H03 (middle), and Enzyme complex with a regulatory or acces-
sory chain 1GLA (bottom). Heatmaps for the partner indicate the predicted proba-
bility of being in the interface, with darker red for higher probability and darker blue
for lower.
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Table 2.2: Performance (area under the PR and ROC curves) on the Masif benchmark.
(top) full test set, with each model using geometric features and physicochemical fea-
tures. (middle) full test set, with each model using geometric features only. (bottom)
transient interaction subset.

Test case Method AUC-PR AUC-ROC
Full MaSIF n/a 0.87
Full PInet 0.45 0.88
Full MaSIF (geom only) n/a 0.68
Full PInet (geom only) 0.30 0.75
Transient SPPIDER n/a 0.65
Transient MaSIF n/a 0.81
Transient PInet 0.30 0.82

in Table 2.2. The next two rows summarize the impact of adding each of our two

physicochemical features separately; each helps, though hydrophobocity helps more

on this dataset. To evaluate the effects of point cloud resolution, we also evaluated

a model using at most 2000 points, instead of the default 20,0000 points. As shown

in Supplementary Figure 2, most point clouds are in the 10,000 to 20,000 range, so

this subsampling reduces the grid resolution and consequently hurts performance all

around. Finally, we compared the difference between models with or without the

data augmentation. The extent of augmentation we could perform was limited due

to memory constraints, and the dataset was already quite large, so augmentation had

little effect on the performance here.

2.3.4. EpiPred

The final dataset covers the important special case of antibody-antigen interactions.

While our model simultaneously predicts both interfaces, the epitope (the part of the

antigen recognized by the antibody) is usually most important, so we focus on com-

parison with the state-of-the-art antibody-specific epitope predictors PECAN [126]

and EpiPred [84], along with the state-of-the-art antibody-independent DiscoTope

[85], using Epipred’s training and testing sets.
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Table 2.3: Epitope prediction performance on the EpiPred test set.

Method Precision Recall AUC-ROC AUC-PR

EpiPred 0.136 0.436 NA NA
DiscoTope 0.214 0.110 NA NA
Sppider 0.153 0.363 NA NA
PECAN 0.157 0.730 0.655 0.226
PInet [EpiPred] 0.181 0.931 0.654 0.291
PInet [EpiPred & Aug] 0.216 0.774 0.687 0.368
PInet [DBD5 Aug] ave 0.206 0.752 0.651 0.321

Table 2.3 summarizes the performance of the various approaches. The basic PInet

approach, training and testing on the EpiPred dataset alone, is directly comparable

to the state-of-the-art PECAN, and we see that it substantially outperforms it (as

well as the other methods) in terms of recall while also doing better on precision.

Data augmentation further improves precision and also achieves the best AUC-PR

and AUC-ROC. Strikingly, the PInet models trained above on augmented DBD5

data (performance numbers averaged over all models trained during the leave-one-

out cross-validation) achieve performance comparable to that of the other state of

the art methods, though suffer a loss in recall compared to the model trained directly

on EpiPred data. This result implies that our model robustly learns generalizable

determinants of protein-protein binding interfaces.

Figure 2.5 visualizes the PInet epitope predictions for representative good and

not-so-good test cases. Corresponding paratope predictions are included in Supple-

mentary Figure 5. Consistent with the performance metrics, PInet identifies most or

all of the epitope regions, but extends the segmentation out a bit further beyond them.

By the median performance example, we see that PInet also produces a secondary

binding site; these false positives would need to be ruled out by subsequent compu-

tational or experimental analysis. Finally, we evaluated the overall performance for

simultaneous paratope and epitope prediction (Supplementary Table 4). We see that
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Fig. 5. Segmentation visualization for 3 example Ab-Ag pairs: best 4JR9, top 25% 3LIZ,
and 50% 3RAJ (according to AUC-PR). For these three pairs, precision ranges from 13% to
23% and recall ranges from 65% to 93%. Green structures are antibodies and gray structures
are antigens, while heatmaps for the partner indicate the predicted probability of being in
the interface, with darker red for higher probability and darker blue for lower.

4 Discussion
In order to improve the state of the art in predicting how proteins interact,
aiming to scale up to support large-scale analyses, we bridge physical
modeling approaches and data-driven approaches, training a data-driven
model using the same types of features leveraged by physically-based
modeling methods. Our unified geometric deep neural network encodes
geometry and physicochemical properties by way of point clouds and
leverages this encoding to learn how to recognize the complementarity
underlying molecular recognition. This leads to interface region prediction
that outperforms state of the art methods in precision, recall, and AUC-PR.
Moreover, our model could be directly used as a protein surface fingerprint
for more applications such as pose recovery.

The model trained on the general DBD5 dataset performed quite
well on the specific EpiPred dataset, but could potentially benefit from
additional training with antibody-antigen data. Thus we evaluated the
utility of transfer learning, pre-training a model with the DBD5 dataset
and then fine tuning it with the EpiPred training data. The transfer learning
process did boost the performance on the EpiPred test set relative to a
model trained on EpiPred alone with no augmentation, but the benefit
was not significant compared to that of a model trained on EpiPred with
augmentation (Supplementary Table 4). This suggests that, at least as far
as this dataset goes, the model of specific recognition learned from general
protein complexes already represents antibody-antigen recognition as well
as it can.

While it can be very challenging to discern what a neural network
has learned and how exactly it is representing information, we sought to
explore some of the key properties of PInet. Since the global vector is
summarized by a pooling layer, we plotted those points that most strongly
activates channels in the global vector for a couple of example proteins, and
found that PInet’s global feature extraction layer is essentially sampling
landmarks on the protein surface and using them to summarize the protein
(Supplementary Figure 6a). The following MLP layer then segments the
surface based on predictions from these points as to where interactions are
most likely. We also noticed that the global vectors of different classes of
interaction in DBD5, Ab-Ag vs. Enzyme-Partner, are distinguishable when
projected into 2D via t-SNE embedding (Supplementary Figure 6b). Even

though the model was not trained for this type of classification, it appears
to be representing differently these different types of interfaces. These
preliminary investigations point to the potential value of unsupervised pre-
training on single proteins (for which there is much more data) and using a
better encoding as the basis for learning models of interaction specificity.

The strength of PInet lies in its point cloud representation of protein
surfaces and its ability to learn representations of complementarity in
interacting surfaces. Table 2 and Supplementary Table 3 show that PInet
receives much less benefit from augmenting its geometric representation
with biophysical properties, compared to MASIF. This could be due to
the discrete encoding of electrostatic features employed by PInet, which
lacks a convolutional kernel that would more naturally capture electrostatic
locality. Future work may seek to incorporate a CNN like approach into
the point cloud architecture, or use a different encoding of electrostatics
to better leverage this important information as MASIF does.

PInet pursues a partner-specific prediction approach, reasoning that in
theory, one partner’s sequence “encodes” information regarding what it
will recognize on the other, and nature is able to “decode” this information
reliably. Thus it is worthwhile to attempt to learn such a representation,
which could be useful, e.g., to identify which of a set of isolated antibodies
target which sites on the antigen, which representative subset is thus
worth functionally characterizing, which antibodies are more likely to
be neutralizing, and so forth. The partner-specific approach clearly pays
off in the hen egg lysozyme example, where PInet deconvolves the
different antibody specificities and gives much better localizations of their
putative epitopes compared to the partner-independent method. However,
the overall precision across the benchmarks still remains low, and there
is clearly still much work to be done to achieve sufficiently accurate
predictions. While partner-specific methods have more information than
partner-independent ones, simply knowing the partner doesn’t necessarily
help all by itself, since it isn’t known a priori which part of the partner’s
surface is the interface. In fact, simultaneous prediction of both interfaces
goes a long way toward solving the docking problem. Indeed, we hope that
further development of data-driven methods explicitly encoding geometric
and biophysical complementarity may indeed enable direct prediction of
binding modes with high precision and recall over large diverse sets of
protein partners.
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indeed the precision and recall for combined epitope+paratope prediction tends to be

higher than that for epitope prediction since, as discussed, paratope prediction is gen-

erally easier than epitope prediction, due to the structural and functional similarity

of the complementarity determining regions of antibodies.

Section 2.4

Discussion

In order to improve the state of the art in predicting how proteins interact, aiming to

scale up to support large-scale analyses, we bridge physical modeling approaches and

data-driven approaches, training a data-driven model using the same types of features

leveraged by physically-based modeling methods. Our unified geometric deep neural

network encodes geometry and physicochemical properties by way of point clouds and

leverages this encoding to learn how to recognize the complementarity underlying

molecular recognition. This leads to interface region prediction that outperforms

state of the art methods in precision, recall, and AUC-PR. Moreover, our model

could be directly used as a protein surface fingerprint for more applications such as

pose recovery.

The model trained on the general DBD5 dataset performed quite well on the

specific EpiPred dataset, but could potentially benefit from additional training with

antibody-antigen data. Thus we evaluated the utility of transfer learning, pre-training

a model with DBD5 and then fine tuning it with EpiPred training data. The transfer

learning process did boost the performance on the EpiPred test set relative to a model

trained on EpiPred alone with no augmentation, but the benefit was not significant

compared to that of a model trained on EpiPred with augmentation (Supplementary

Table 4). This suggests that, at least as far as this dataset goes, the model learned

from general protein complexes already represents antibody-antigen recognition as
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well as it can.

While it can be very challenging to discern what a neural network has learned

and how exactly it is representing information, we sought to explore some of the key

properties of PInet. Since the global vector is summarized by a pooling layer, we

plotted those points that most strongly activates channels in the global vector for a

couple of example proteins, and found that PInet’s global feature extraction layer is

essentially sampling landmarks on the protein surface and using them to summarize

the protein (Supplementary Figure 6a). The following MLP layer then segments the

surface based on predictions from these points as to where interactions are most likely.

We also noticed that the global vectors of different classes of interaction in DBD5,

Ab-Ag vs. Enzyme-Partner, are distinguishable when projected into 2D via t-SNE

embedding (Supplementary Figure 6b). Even though the model was not trained for

this type of classification, it appears to be representing differently these different

types of interfaces. These preliminary investigations point to the potential value of

unsupervised pre-training on single proteins (for which there is much more data) and

using a better encoding as the basis for learning models of interaction specificity.

The strength of PInet lies in its point cloud representation of protein surfaces and

its ability to learn representations of complementarity in interacting surfaces. Ta-

ble 2.2 and Supplementary Table 3 show that PInet receives much less benefit from

augmenting its geometric representation with biophysical properties, compared to

MASIF. This could be due to the discrete encoding of electrostatic features employed

by PInet, which lacks a convolutional kernel that would more naturally capture elec-

trostatic locality. Future work may seek to incorporate a CNN like approach into

the point cloud architecture, or use a different encoding of electrostatics to better

leverage this important information as MASIF does.

The point cloud representation makes PInet more sensitive to conformational
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change upon binding (B vs. U in Table 2.5). In general, physically-based methods

such as docking depend on such details, while the features used by and representations

learned by data-driven methods may not (e.g., solvent accessibility features may be

generally unaffected by modest conformational change). As a hybrid physics/data-

driven approach, PInet falls somewhere in the middle. Thus an interesting angle for

future work is to train models that learn the features of complementary surfaces while

robustly accounting for deformations to those surfaces induced during binding.

PInet pursues a partner-specific prediction approach, reasoning that in theory,

one partner’s sequence “encodes” information regarding what it will recognize on the

other, and nature is able to “decode” this information reliably. Thus it is worthwhile

to attempt to learn such a representation, which could be useful, e.g., to identify

which of a set of isolated antibodies target which sites on the antigen, which repre-

sentative subset is thus worth functionally characterizing, which antibodies are more

likely to be neutralizing, and so forth. The partner-specific approach clearly pays

off in the hen egg lysozyme example, where PInet deconvolves the different antibody

specificities and gives much better localizations of their putative epitopes compared

to the partner-independent method. However, the overall precision across the bench-

marks still remains low, and there is clearly still much work to be done to achieve

sufficiently accurate predictions. While partner-specific methods have more informa-

tion than partner-independent ones, simply knowing the partner doesn’t necessarily

help all by itself, since it isn’t known a priori which part of the partner’s surface

is the interface. In fact, simultaneous prediction of both interfaces goes a long way

toward solving the docking problem. Indeed, we hope that further development of

data-driven methods explicitly encoding geometric and biophysical complementarity

may indeed enable direct prediction of binding modes with high precision and recall

over large diverse sets of protein partners.
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Table 2.4: Benchmark dataset sizes and binding interface fractions. µ(L1) and σ(L1)
are respectively the mean and standard deviation of fraction of positive labels (i.e.,
interface region).

Dataset Training size Testing size µ(L1) σ(L1)
DBD5 189 36 0.083 0.034
DBD3 60 13 0.088 0.026
MaSIF 2689 345 0.125 0.060
EpiPred 118 30 0.056 0.018
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Table 2.5: Additional performance evaluation for DBD3 and DBD5 datasets. Bolded
entries are the best in that column for that dataset. PInet significantly outperformed
the others in precision, recall, and AUC-PR, the most important metrics for interface
prediction.

precision recall specificity NPV AUC-ROC AUC-PR MCC
DBD3
PAIRpred 0.371 0.419 0.898 0.925 0.774 0.341 0.311
BIPSPI 0.383 0.545 0.887 0.938 0.816 0.405 0.373
PInet 0.494 0.723 0.762 0.894 0.812 0.639 0.428
PInet (Aug 10) 0.480 0.732 0.805 0.926 0.846 0.669 0.459
PInet (Aug 50) 0.491 0.845 0.751 0.938 0.867 0.710 0.497
DBD5
BIPSPI 0.391 0.558 0.889 0.940 0.822 0.410 0.385
PInet 0.511 0.749 0.778 0.900 0.837 0.667 0.459
PInet (Aug 10) 0.523 0.755 0.784 0.911 0.851 0.685 0.496
PInet (Aug 50) 0.538 0.824 0.793 0.925 0.877 0.734 0.526
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Table 2.6: Performance of different variants of PInet on the full MaSIF dataset,
evaluated by precision, recall, AUC-ROC, and AUC-PR. The full model is compared
to models using geometry alone or geometry plus either of the two physicochemical
properties, a model with the point cloud downsampled to 2000 points, and a model
incorporating the regularization term.

Method Precision Recall AUC-ROC AUC-PR
full 0.31 0.63 0.88 0.45
aug 5 0.34 0.61 0.89 0.45
geometry only 0.21 0.58 0.75 0.30
geometry + electrostatics 0.23 0.58 0.78 0.32
geometry + hydrophobicity 0.24 0.62 0.82 0.37
subsample 2000 0.28 0.53 0.81 0.38
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Table 2.7: Performance on simultaneous epitope+paratope prediction

Method Precision Recall AUC-ROC AUC-PR

PInet [EpiPred alone] 0.193 0.898 0.751 0.330
PInet [EpiPred alone Aug] 0.261 0.815 0.795 0.447
PInet [DBD5 & tuned] 0.250 0.864 0.778 0.412
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Figure 2.6: Distribution of pairwise shortest distances from each point on one protein
to the closest on the other.
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Figure 2.7: Characterization of datasets in terms of sizes of proteins and their binding
regions. Counts are normalized so that the bin areas sum to one. Protein size and
binding site size are characterized by number of points in the point cloud, and the
relative size of the binding interface is computed by number of points in interface over
total number of points in protein.
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Figure 2.8: Segmentation visualization for paratope prediction of three anti-hen egg
lysozyme antibodies (left to right, top to bottom: PDB ids IBVK, 1DQJ, 1MLC, and
2I25). Hen egg lyzosyme (PDB id 3LZT is rendered as cartoon, while antibodies are
rendered as surface heatmaps according to the predicted probability of being in the
paratope, with darker red for higher probability and darker blue for lower.
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Figure 2.9: Boxplot of AUC-PR by DBD5 protein interaction class.
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rank Ag front Ag back Ab front Ab back
best

25%

50%

Figure 2.10: Segmentation visualization for three example Ab-Ag pairs: best 4JR9,
top 25% 3LIZ, and 50% 3RAJ (according to AUC-PR). For these three pairs, preci-
sion ranges from 13% to 23% and recall ranges from 65% to 93%. Green structures
are antibodies and gray structures are antigens, while heatmaps for the partner in-
dicate the predicted probability of being in the interface, with darker red for higher
probability and darker blue for lower.
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Figure 2.11: (a) Surface points (blue) for two example proteins (left: PDB id 1DKS;
right: PDB id 1HCL), highlighting the points with the highest activation in the global
vectors (colorscale: number of channels activated). (b) t-SNE plot of global vectors
for proteins from the DBD5 dataset colored by the type of interaction (blue: Ab-Ag;
orange: Enzyme-partner).
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Chapter 3

Attention please: modeling global

and local context in glycan

structure-function relationships

Glycans are found across the tree of life with remarkable structural diversity en-

abling critical contributions to diverse biological processes, ranging from facilitat-

ing host-pathogen interactions to regulating mitosis & DNA damage repair. While

functional motifs within glycan structures are largely responsible for mediating in-

teractions, the contexts in which the motifs are presented can drastically impact

these interactions and their downstream effects. Here, we demonstrate the first deep

learning method to represent both local and global context in the study of glycan

structure-function relationships. Our method, glyBERT, encodes glycans with a

branched biochemical language and employs an attention-based deep language model

to learn biologically relevant glycan representations focused on the most important

components within their global structures. Applying glyBERT to a variety of pre-

diction tasks confirms the value of capturing rich context-dependent patterns in this

attention-based model: the same monosaccharides and glycan motifs are represented
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differently in different contexts and thereby enable improved predictive performance

relative to the previous state-of-the-art approaches. Furthermore, glyBERT sup-

ports generative exploration of context-dependent glycan structure-function space,

moving from one glycan to “nearby” glycans so as to maintain or alter predicted

functional properties. In a case study application to altering glycan immunogenic-

ity, this generative process reveals the learned contextual determinants of immuno-

genicity while yielding both known and novel, realistic glycan structures with al-

tered predicted immunogenicity. In summary, modeling the context dependence of

glycan motifs is critical for investigating overall glycan functionality and can en-

able further exploration of glycan structure-function space to inform new hypotheses

and synthetic efforts. This paper is under final editing and is available on Biorxiv

https://www.biorxiv.org/content/10.1101/2021.10.15.464532v1.full.pdf.

Section 3.1

Introduction

Glycans are complex oligosaccharides often presented in branched structures attached

to proteins, lipids, and RNA, with critical roles in a diverse range of biological pro-

cesses [162, 48]. Glycans mediate these processes through two general mechanisms

[161]: (1) specific interaction and recognition of glycoforms by glycan binding pro-

teins, such as the targeting of sialoglycans on the surface of animal cells by influenza

hemagglutinin to facilitate viral entry [36], and (2) structural and biophysical ef-

fects such as the critical modulation of antibodies’ downstream effector functions by

N-linked glycans [72]. Subtle modifications in glycan structures independent from

functional epitopes can drastically alter glycan function, as seen in the large struc-

tural and functional shifts introduced by core fucosylation [113, 140]. Additionally,

lectin-glycan interactions have recently been shown to be dependent on the surround-

53

https://www.biorxiv.org/content/10.1101/2021.10.15.464532v1.full.pdf


3.1 Introduction GlyBERT

ing global structural context in which the appropriate binding epitopes are presented

[91, 53], e.g., as demonstrated by the glycan binding preferences of Maackia amurensis

lectin I (MAL-I) (Figure 3.1, left). As glycan synthesis, purification, and presentation

techniques advance and more detailed interrogations of glycans’ structure-function

relationships become available [91, 53], methods are needed to analyze and explore

(Figure 3.1, middle and right) complex context-dependent aspects of glycan structure-

function relationships.

Figure 3.1: Schematic of an analytical framework to investigate context-
dependent structure-function relationships in glycans. (left) Local context
(functional glycan motifs such as 3’ sialyllactosamine (3’-SLN)) and global context
(non-adjacent features indicated by dashed circles) simultaneously play critical roles
in the functionalities of glycans, as demonstrated here by the glycan-binding pref-
erences of Maackia amurensis lectin I (MAL-I), which recognizes 3’-SLN on linear
glycans or on the α1,6 branch of biantennary glycans (grey circles), but only when
the opposing α1,3 branch does not present the 3’-SLN motif (yellow circles). (mid-
dle) As schematically illustrated, our glyBERT approach captures such contextual
relationships with high-dimensional glycan representations that can predict proper-
ties of new glycans. (right) GlyBERT also enables generative exploration of glycan
structure-function space to provide insights into learned patterns and probe glycan
diversity beyond the practical reach of synthesis, thereby generating novel hypotheses
and informing experimental design.

Analyses of experimental measures of glycan functions offer a means to efficiently

capture the components of diversity most relevant to functionality while also gener-

alizing to other glycans, enabling the prediction of properties of previously untested

glycans or even the generation of entirely novel glycans (Figure 3.1), thereby com-
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plementing and extending the impact of synthetic capabilities which remain limited

relative to the scale of glycan diversity [76, 90]. To date, most analytical approaches

have focused on identifying common structural motifs [31] among glycans with shared

properties, e.g., via subtree mining [61, 29], motif enrichment analysis [81], or multiple

alignment approaches [65]. These methods have been very beneficial in formalizing

high level glycan-binding preferences of proteins [60]. They will continue to retain

great utility due to their high interpretability, but this interpretability comes at the

cost of reduced ability to capture more complex and context-dependent patterns. In

general, deep learning approaches are attractive for building detailed and powerful

representations from complex information [174]. The inceptive application of deep

learning methodology directly to glycans, SweetTalk [12], used a “glycoword”-based

language model to successfully demonstrate that deep modeling could capture evo-

lutionary and functional patterns in glycan structures [14]. The follow-up SweetNet

approach [20] obtained increased prediction performance by utilizing graph-based

glycan encodings and convolutional neural networks, thereby addressing SweetTalk’s

failure to capture the branched nature of glycan structures. While convolutional ap-

proaches can capture local context, they do not preserve global relationships [164]

which are critical in glycan functionality [91, 53]. Another very recent effort, GlyNet

[22], implemented a fingerprinting approach to predict relative strengths of protein-

glycan interactions, but faces similar limitations as SweetTalk & SweetNet in terms

of disregarding global structural context.

In order to capture local and global context-dependent patterns driving glycan

structure-function relationships, we introduce here a new method based on the pow-

erful deep language model known as BERT (Bidirectional Encoder Representations

from Transformers) [39]. Our implementation, called glyBERT, utilizes a flexible gly-

can encoding based on a branched biochemical language, and presents encoded gly-
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cans to an attention-based transformer network architecture [164], thereby learning to

pay attention to particular local patterns that are important within particular global

contexts. GlyBERT effectively learns glycan representations that capture functional

pieces of glycan structural diversity in their local contexts while also incorporating

the critically important global contexts of entire structures. This enables the model

to obtain state-of-the-art performance in predicting properties of other glycans. Fur-

thermore, glyBERT supports a novel proof-of-principle generative process to explore

glycan structure-function space, providing insights into what the model has learned

as determinants of different glycan properties, as well as potentially informing exper-

imental design and focusing in vitro synthesis efforts [95].

Section 3.2

Results

GlyBERT was trained on 80% of a set of 16,048 glycans from the SugarBase database

[13], labeled with glycoprotein linkage, immunogenicity, and taxonomic origin. The

glycans from the withheld 20% were used to explore the context-dependent repre-

sentations learned by glyBERT relevant to these properties (subsection 3.2.1) and

to quantitatively evaluate prediction performance (subsection 3.2.2). GlyBERT was

further trained and evaluated for prediction of lectin-glycan recognition using gly-

can microarray data for 20 separate lectins (subsection 3.2.2). Finally, glyBERT

was leveraged to generatively explore glycan structure-immunogenicity space in a

case study application of our new algorithm for generative optimization of glycan

structure-function relationships (subsection 3.2.3).
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3.2.1. Attention-based modeling with glyBERT learns representations cap-

turing effects of local and global structural context

GlyBERT, like all machine learning methods, essentially transforms its training data

into a novel representation (schematically illustrated in Figure 3.1), enabling it to gen-

eralize to new instances (here glycans) based on how their representations compare to

the training examples. In order to make high-quality predictions about properties of

the new glycans, it is critical that the learned representations suitably capture impor-

tant, generalized components of glycan structures. We explored the extent to which

the glycan representations that glyBERT learned from the training set generalized to

new glycans in the held-out set, first in terms of global structural contexts of whole

glycans, and then in structural contexts of constituent monosaccharides. Since the

learned representations within the deep learning model are hard to interpret on their

own, they were transformed and visualized via Uniform Manifold Approximation and

Projection (UMAP) dimensionality reduction [100].

GlyBERT learned glycan representations that effectively separated out the effects

of local structural motifs based on global structural contexts, differentiating glycan

structures on the basis of immunogenicity, glycoprotein linkage, and taxonomic origin

(Figure 3.2). The immunogenicity of the same immunogenic motifs was modulated by

global structural context captured in the glyBERT-learned representations: Lewis-Y

antigen-presenting immunogenic glycan SBID3980 was grouped closer to other im-

munogenic glycans while the exact same structure with the addition of a reducing-

end terminal β-linked glucose (non-immunogenic glycan SBID4613) was grouped sep-

arately with other non-immunogenic glycans. Similarly, the immunogenic I antigen

(SBID5978) is no longer immunogenic when presented on an O-GalNAc glycan where

either the reducing-end terminal GlcNAc is substituted for a GalNAc (SBID2468) or

a GalNAc residue is added to the reducing end (SBID12833), with clear separation
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Figure 3.2: GlyBERT-learned glycan representations capture global and
local contextual relationships that are consistently manifested in an in-
dependent validation set of glycan structures. (A) This UMAP visualization
places withheld glycans with similar glyBERT representations close to each other,
colored by taxonomic origin at the kingdom rank and outlined by immunogenicity.
Clusters of glycans are labeled and circled, showing that glyBERT grouped the pre-
viously unseen glycans by shared immunogenicity and/or glycoprotein linkage. For
further interpretation, some example glycan structures from both training and test-
ing tests are provided, illustrating that glyBERT’s representations for otherwise very
similar glycans were shifted based on the influence of global context on immunogenic-
ity (indicated by colored boxes); e.g., non-immunogenic SBID4613 and immunogenic
SBID3980 both display the Lewis-Y antigen motif but in different contexts, and im-
munogenic SBID5978 and non-immunogenic SBID2468 & SBID12833 display the I
antigen motif in different contexts. (B) This UMAP visualization places individual
constituent monosaccharides of withheld glycans close to other monosaccharides with
similar glyBERT representations, with the most common ones colored and labeled. It
is apparent that the same monosaccharides are represented similarly unless their local
or global structural contexts differ. GlyBERT represented fucose in a core fucosylation
local context (circled in red) differently from other fucose residues, as it did for glu-
cose in a reducing-end terminal local context (circled in blue). O-linked reducing-end
terminal GalNAc residues formed two distinct clusters (circled in yellow), separated
by the size and degree of branching of the corresponding glycans (global context).
Additionally, glyBERT grouped together the distinct but chemically similar nonu-
losonic acid monosaccharides (grey circle) based on similar contextual presentations.
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between these glycan representations matching their immunogenic states based on

the global context of the I antigen presentation, despite high similarity between the

structures.

In addition to evaluating similarities of entire glycans, constituent monosaccha-

rides can be compared based on their individual “contributions” to the overall gly-

can representations. The constituent monosaccharide representations still capture

their local and global context due to the attention-based architecture of glyBERT.

We see that the same monosaccharide components of the withheld glycans generally

shared similar representations (Figure 3.2), although glyBERT representations also

captured dramatic differences in the local glycan context in which they appeared.

This can be seen in the distinct groupings of fucose saccharide residues in a core

fucosylation context from the rest of the fucose residues, as well as the separation of

glucose as a reducing-end terminal saccharide from the rest of the glucose residues.

These local contexts are clearly represented as separate from other occurrences of

the same monosaccharides, as would be expected from a good representation, since

reducing-end terminal glucose is sufficient to mitigate the immunogenicity of a Lewis-

Y antigen-presenting glycan (Figure 3.2) and core fucosylation can induce significant

conformational and functional changes in glycans [113, 140]. Learned monosaccharide

representations also captured differences in the global context of their corresponding

glycan structures, seen in the two separate groups of reducing-end terminal O-linked

GalNAc residues distinct from other GalNAc residues based on distinct local contexts

and separated from each other based on global structural contexts depending on the

size and degree of branching of the entire glycan. On the flip side, different and

separate monosaccharides that appear in very similar global and local contexts had

similar representations as learned by glyBERT, indicating generalizabilty to novel

glycan structures. This can be seen in the grouping composed exclusively of nonu-
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losonic acid monosaccharides, the larger class containing sialic acid monosaccharides

and other negatively charged 9-carbon monosaccharides [163]. Notably, represen-

tations of the related 8-carbon Kdo monosaccharide grouped separately from the

nonulosonic acid monosaccharides despite shared functional groups and biosynthetic

pathways [163].

3.2.2. Contextual glycan representations learned by glyBERT enable state-

of-the-art predictive performance

As a demonstration of the utility of these learned context-dependent glycan represen-

tations, glyBERT’s ability to predict glycoprotein linkage state, immunogenicity, and

taxonomic origin for the glycans from the withheld 20% from SugarBase was compared

to that of three recent deep learning-based approaches: SweetTalk [12, 14], SweetNet

[20], and GlyNet [22]. All models predicting glycoprotein linkage performed very well,

with glyBERT and SweetTalk achieving 99% accuracy, suggesting that this struc-

tural association is fairly easily represented. However, for immunogenicity, glyBERT

(98.0% accuracy) substantially improved on SweetNet (94.6%) and GlyNet (95.4%),

which had improved on the first-generation SweetTalk (91.7%), indicating benefit

from explicitly accounting for branched structures (as done by SweetNet, GlyNet,

and glyBERT) and further benefit provided by the use of attention-based model-

ing to capture context (glyBERT). For taxonomic origin classification (Figure 3.3),

glyBERT displayed the highest accuracy at each rank, with greater increases in per-

formance compared to SweetNet at the phylum, class, and order taxonomic ranks.

To further evaluate the benefit of attention-based glycan modeling for complex

structure-function relationships, the prediction of functionally significant lectin-glycan

interactions was considered, since recent studies have shown the glycan-binding pref-

erences of lectins to be more context-dependent than previously understood [91, 53].

GlyBERT was compared to GlyNet [22] and a recent, well-performing motif-centric
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Figure 3.3: Global & local glycan structural context in learned represen-
tations enable state-of-the-art prediction of glycan properties and lectin-
glycan interactions (A) GlyBERT had higher taxonomic classification accuracy
than SweetTalk and SweetNet at each taxonomic rank. (B & C) GlyBERT demon-
strated significantly improved predictive modeling of 20 lectins’ glycan-binding pref-
erences when compared to GlyNet and CCARL as seen in the parallel coordinates
plot with median performances indicated by red bars (B) and in the bar plots with
error bars indicating standard deviation across the 5-fold cross-validation (C). Sig-
nificance was measured via a Friedman test followed by post hoc pairwise Wilcoxon
signed-rank tests and Holm-Bonferroni correction (*: padj < 0.05, **: padj < 0.01,
***: padj < 0.001: ***).
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subtree mining approach known as the Carbohydrate Classification Accounting for

Restricted Linkages (CCARL) method [29]. All methods were trained and evaluated

on the same set of 20 lectins with the same lectin-glycan interaction labels deter-

mined from microarray data from the Consortium for Functional Glycomics (CFG)

[11] identically processed and divided into folds for training and cross-validation (CV)

as provided by [29]. The glyBERT model trained above for glycan properties provided

the basis for fine-tuning on the CFG microarray data, resulting in 20 separate models

for the 20 lectins. Results for the other methods were previously reported [29, 22].

Performance was measured via area under the receiver operating characteristic

curve (AUC), yielding a median AUC over the 20 lectins of 0.960 for glyBERT, demon-

strating an increase in overall performance accuracy compared to GlyNet (0.946) and

CCARL (0.896) with a statistically significant difference in ranked performance on

matched lectins between glyBERT and the other two methods (Figure 3.3). The

greatest increases in performance were seen for Maackia amurensis lectin II (MAL-

II) and dendritic cell receptor DC-SIGN (Figure 3.3), indicating glycans on the CFG

microarray likely manifested contextual dependencies. Indeed, DC-SIGN is known

to have dual specificities for oligomannose glycans and blood group epitopes [58],

with contextual oligomannose-preferences dependent on both the branch containing

its primary motif and the mannose-content of surrounding branches [53]; further-

more, MAL-II has similar glycan preferences as MAL-I (Figure 3.1) but preferentially

recognizes certain sialylated glycans when they are O-linked [55].

3.2.3. Deep generative exploration of the glycan structure-function space

reveals contextual features discriminating immunogenic glycans

As illustrated in the preceding sections, machine learning models like glyBERT and

others generalize structure-function relationships learned from known glycans in order

to make predictions for new glycans. While to our knowledge no previous work has
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gone further, such models also may also be used to generate new glycans according

to unwritten specifications of desired structure-function relationships. This provides

the opportunity to probe the vast diversity of glycan structures, aiding in hypothe-

sis generation and informing directions for glycan-synthesis efforts. Additionally, it

allows for post hoc analysis of captured patterns that could be distilled into more

interpretable summarizations, e.g., by MotifFinder [81].

While full validation of computationally-generated glycans would require exper-

imentation beyond the scope of the present study, we demonstrate here proof of

concept by working with a subset of glycans that are structurally related but display

different immunogenicity. We start with non-immunogenic glycans and apply a gener-

ative optimization approach, substituting monosaccharides at each step so as to push

the glycans toward being immunogenic, based on probability gradients according to

the glyBERT model. This enables an exploration of the glycan space near the start-

ing non-immunogenic glycans, leading to some of those known be immunogenic along

with novel glycans predicted to be immunogenic due to glyBERT’s contextual as-

sessment of their motifs. This process reached the known immunogenic counterparts

within 2-3 steps (Figure 3.4) for four of the eight starting non-immunogenic glycans

for which known immunogenic counterparts exist. For three of remaining four it

arrived upon known, unlabeled glycans that exactly matched existing immunogenic

glycans other than the anomeric configuration of the glycosidic bonds in the complete

set of generative paths (Figure 3.6). In such a generative exploration, glycan struc-

tures that are generated more frequently (node size) might be more realistic (and here,

more immunogenic) than others; notably the most frequently generated immunogenic

structures in this case study were in fact known glycans. Generative steps that re-

verse direction to go against the probability gradient might indicate regions with few

“nearby” realistic structures, as is likely the case for the non-realistic dead-end path
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from NeuAc(α2-3)Gal(β1-3)GalNAc to GalNAc(α2-3)Gal(β1-3)GalNAc.

Figure 3.4: Generative exploration of glycan structure-immunogenicity
space (A) Generative optimization starting from non-immunogenic glycans (blue)
introduced monosaccharide substitutions to increase the probability of immunogenic-
ity (x axis), allowing for the exploration of “nearby” known and unknown glycan
structures (grey & black respectively), with some known glycans also labeled as im-
munogenic (red). Node sizes correspond to the number of times a glycan structure
was reached along any of the generative paths, and edge widths correspond to the
number of times a step between two glycan structures occurred across all the gen-
erative processes. Known immunogenic glycan structures were recovered for half of
the starting, non-immunogenic glycans in only a few generative steps, demonstrating
the process is able to generate realistic glycan structures and can optimize the gen-
erated structures for properties of interest. (B) This case study revealed features of
glycans determined by glyBERT to confer immunogenicity in this structural context
as shown in this alluvial plot [19] summarizing the structures of generated glycans
with predicted probability exceeding 95%, including Gal and Gal derivatives in the
non-reducing-end terminal position, GlcNAc in the middle position, and GlcNAc or
Gal in the reducing-end terminal position.

Features in glycan structures deemed by glyBERT to be critical for immunogenic-

ity are revealed by the generated glycans with the highest predicted probabilities of

immunogenicity (Figure 3.4). While Gal and Gal derivatives at the non-reducing-end

terminal position and GlcNAc monosaccharides at the middle position generally dom-

64



3.3 Discussion GlyBERT

inate the generated glycans predicted to be immunogenic, the two non-immunogenic

glycans with the lowest probability of immunogenicity share this monosaccharide

composition at these positions, indicating the learned significance of GlcNAc and Gal

monosaccharides but specifically not GalNAc at the reducing-end terminal position

in this context. The substitution of NeuAc for the generally immunogenic NeuGc

monosaccharide [179] imparted less gain in predicted immunogenicity than substitut-

ing the reducing-end terminal GalNAc for GlcNAc in the generative paths shown at

the top of Figure 3.4. These trends were generally recapitulated in the complete set

of generative paths (Figure 3.6).

Section 3.3

Discussion

As experimental techniques evolve to enable richer studies of complex glycan struc-

tures, analytical techniques to study structure-function relationships must also evolve

to effectively capture complex and context-dependent associations between glycan

properties and the global contexts in which functional motifs and epitopes are pre-

sented. To suitably learn and leverage context-dependent glycan structure-function

relationships, we developed an attention-based model (glyBERT) using minimally

processed glycan encodings. Building on the pioneering efforts of [14] and [20], we

further demonstrated the value of deep learning in glycobiology, here by representing,

leveraging, and revealing contextual glycan features. We showed that the learned

glycan representations are sensitive to both local glycan features and global contexts

in relation to a variety of glycan functions and labels, that they support state-of-the-

art predictive performance of glycan properties from structures, and that they enable

exploration of structure-function relationships while generating novel glycans.

One limitation of the glyBERT approach was the lack of positional information
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for monosaccharide modifications in the training data from the SugarBase database;

this limitation manifested for example in the relatively poor prediction performance

for lectin ABA in Figure 3.3 & Table 3.1. In general, distinguishing monosaccharides

and modifications would allow the model to more easily learn relationships between

rare monosaccharides and rare modifications using independent occurrences instead of

relying on co-occurrence. And while glyBERT learned implicit relationships between

chemically similar monosaccharides (Figure 3.2), additional pre-training based on

stereochemical structure and composition of monosaccharides and their modifications

could further improve generalizability to more rare residues.

While the generative case study presented here is limited in scope due to our

desire to recapitulate some known, closely-related immunogenic/non-immunogenic

glycan pairs, the same framework could be applied to any property of interest and

the gradient-based sampling method could be expanded to explore much more dras-

tic changes to glycan structures. These expansions would truly enable deep glycan

structure-function space exploration and contribute contextual-dependencies to gly-

coengineering efforts that might be applied to the design of competitive inhibitors or

glycomemetics.

Section 3.4

Data and Code Availability

The glycan structures and associated labels used in this study were retrieved from

SugarBase v2.0 (https://webapps.wyss.harvard.edu/sugarbase/) [13]. Lectin-

glycan interaction data were retrieved from the supplemental information of [29]. All

code and data used to perform this analysis, including training/testing splits and

class labels, is available at https://github.com/demattox/glyBERT.
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Section 3.5

Methods and Materials

A total of 16,048 unique glycan structures were encoded to an array-format compati-

ble with glyBERT while maintaining all relevant chemical and branching information

(Figure 3.5, subsection 3.5.3). These glycans were split into a training and test set

following the same 80/20 split strategy as SweetNet [20] although the exact split

used in that study was not available for direct comparison. Within the training set,

glyBERT was pre-trained by predicting masked pieces of these structures as well as

relevant labels (Figure 3.5, subsection 3.5.5). For each prediction task with reported

performance, the pre-trained glyBERT model was fine-tuned by training specifically

for each individual task, allowing the model to retain the most relevant information

learned in the pre-training while focusing more specifically on each different task sep-

arately (Figure 3.5, subsection 3.5.6). Generative exploration was performed by using

the immunogenicity prediction layer to calculate probability gradients and substitute

individual monosaccharides that would lead to glycan structures with higher overall

predicted probability of immunogenicity (Figure 3.5, subsection 3.5.7).

3.5.1. Data collection and cleaning – SugarBase glycans

From the 19,299 available glycan entries in the SugarBase v2 database [13] down-

loaded on November 11th 2020, 1,145 entries were eliminated because the glycan

IUPAC was improperly or unexpectedly formatted. This included ambiguous or un-

matched parentheses/brackets, incomplete orphaned glycosidic bonds, and branch-

ing brackets around the first monosaccharide or group of monosaccharides in the

IUPAC, indicating that a portion of the glycan might be missing (e.g., SBID 712:

[Glc(a1-6)]4)Glc(a1-4)Glc(a1-4) ... Glc(a1-4)Glc). An additional 1,319 entries were

eliminated after discovering they were duplicates of glycans stored in other entries
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in SugarBase with the order of the branches rearranged in their IUPAC represen-

tations (e.g., from SBID8088 & SBID13110: GalNAc(b1-4)[NeuNAc(a2-3)]Gal &

NeuNAc(a2-3)[GalNAc(b1-4)]Gal). To facilitate systematic representation of branch-

ing, one glycan was omitted as an outlier with 25 branches since the next highest

observed number of branches in a glycan was 11. Lastly, 786 glycans were omitted

with any of the 531 very rare monosaccharides occurring in fewer than four glycans

as there were not enough examples of these monosaccharides to allow for sufficient

pre-training. Of the 19,299 original entries, we used the 16,048 unique glycans with

sufficiently common monosaccharide vocabularies for the remainder of this work.

Taxonomy labels at varied taxonomic rank were recovered from the provided lists

of species of origin for each SugarBase glycan entry by searching for the provided

genus-level taxonomic ID (taxid) in the Python implementation of the NCBI’s tax-

onomy tool Ete3 v3.1.2 [68] (local data written on December 29, 2020). Sugarbase

provided 835 unique genera, and all but 15 were successfully matched to NCBI taxids.

Of the 15 missing genera, 11 were viruses without scientific names; these were man-

ually added to the “Virus” superkingdom/domain. The remaining 4 were from a

typo or cases of deprecated or unofficial genus classifications and were manually cor-

rected (Columbia livia → Columba livia, Kinetoplastids → Kinetoplastida, Actinogyra

→ Umbilicaria, Arecastrum → Syagrus). Some species/genera did not have defined

taxids at certain taxonomic ranks. As taxonomic origin was not the primary goal

of our study, this was manually addressed at the kingdom level only since NCBI

taxonomy only categorizes eukaryota at the kingdom level and there were the most

missing labels at this rank. To recover some labels for a significant portion of the

glycans at this rank, “Bacteria”, “Virus”, & “Archaea” labels were carried over from

the superkingdom/domain rank to the kingdom rank. Beyond the aforementioned

adjustments, only the NCBI defined and provided taxids were used in all other cases
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to ensure the quality and reproduciblity of labels used to train the model.

Labels were rectified over replicated glycans as follows. For linkage or immuno-

genicity labels from replicated glycans, the label was set to “None”/“Unknown” when

directly conflicting labels were present, or the definitive label was used if other repli-

cates for a glycan were unlabelled. For species of origin labels from replicated glycans,

the set of all observed species of origin from all replicates of the glycan was used.

3.5.2. Data collection and cleaning – CFG glycans

Unique glycans from the Consortium for Functional Glycomics (CFG) microarray v5.0

were processed to match the specific IUPAC formatting utilized by SugarBase. To

ensure patterns and relationships learned from training on SugarBase glycans could

be leveraged, monosaccharide names from the CFG glycans were manually adjusted to

match the names used in SugarBase glycans, including the reordering of modifications

(GlcNA → GlcAN) and the removal of position specific information from sulfation

modifications ((3S)Gal / (6S)Gal / (3S)(6S)Gal → GalOS).

Lectin binding to CFG microarray glycans was determined from data provided

in supplemental file 6 of [29], splitting binding interactions into the bound class or

the unbound class based on the Median Absolute Deviation (MAD) technique, while

discarding intermediate interactions to maximize type I and type II error control.

3.5.3. Glycan encoding

Glycan IUPAC strings were processed into custom tree objects built from anytree

v2.8.0 [5], placing each monosaccharide into a node while recording glycosidic linkage

information and anomeric conformation (Figure 3.5). A “START” token was placed

before the reducing-end terminal monosaccharide (root node) and “END” tokens were

added after each non-reducing-end terminal monosaccharide. The “START” token

allowed for embedded representations of entire whole glycans and the “END” token
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was designed to allow for more dramatic changes to the glycan structure in future

generative processes. These tree structures were then encoded into seven-column ar-

rays with each node placed into its own row, recording the following information for

each saccharide in its columns: (1) identity, represented by a single number corre-

sponding to the rank order of the unique monosaccharides by frequency; (2) anomeric

conformation, α, β, or Unknown; (3) indices of carbons involved in glycosidic bonds

to other monosaccharides; (4) position within the branched structure glycan in a

“subway line” approach described in the following paragraph; (5) index of the carbon

linking to the parent monosaccharide; (6) depth, or distance from the root node; (7)

index in a list of monosaccharides at the same depth on different branches, ordered

by following the lowest carbon number at each branch point in a depth-first tree

traversal. The carbons involved in glycosidic bonds to other monosaccharides were

stored as 9-bit binary numbers, with each position representing a carbon number for

a given monosaccharide participating in a glycosidic bond set to 1 and the remaining

positions set to 0.

Glycan branching was explicitly accounted for in this encoding with the “subway

line” approach illustrated in Figure 3.5, where lines were drawn along monosaccha-

ride nodes from each non-reducing-end terminal monosaccharide to the reducing-end

terminal monosaccharide (root node) resulting in what appears like a map of subway

lines that account for each branching event in a glycan. For each monosaccharide,

the branches (or subway lines) that pass through that node (or subway station) were

recorded in an 11-bit binary number, with the bits corresponding to branches passing

through the node set to 1. An 11-bit binary number was used to have a consistent

branching representation for all glycans with up to 11 branches. The 9-bit glycosidic

bond binaries and 11-bit branch position binary numbers were converted into decimal

numbers in the final encoding to simplify representation and reduce dimensionality.
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Depicted glycan representations follow the SNFG system [160] and were rendered

using DrawGlycan-SNFG [26].

3.5.4. Architecture and Implementation

GlyBERT was implemented in Pytorch [123] & Fairseq [120] following the architec-

ture diagrammed in Figure 3.5. For embedding layers, the original BERT architecture

embedded all different input feature encodings to the same dimension and combined

them, adding positional (index of word) and segment (context information) embed-

dings to token embeddings. To adapt this approach to glycans, the monosaccha-

ride encodings described above (anomeric state, carbon linkage, branch, parent, and

depth) were embedded and added to the monosaccharide embedding. Learnable em-

bedding layers were utilized for these different types of encoding features. For the

transformer architecture, we used the same 12 multi-head self-attention layers (each

with 12 heads) as the BERTbase model. The classifier layers were composed of 6 Mul-

tilayer Perceptrons (MLPs) with one for each of our customized pre-training tasks.

GlyBERT was optimized with Adam [79].

3.5.5. Pre-training

In order to begin building representations of the glycans that capture the structural

diversity of all available glycans from SugarBase with contextual relevance to biolog-

ically relevant properties, we employed a pre-training process inspired by the original

BERT work [39]. We used six pre-training tasks, some semi-supervised and some

supervised:

Semi-supervised To build an implicit understanding of the different monosaccha-

rides and their glycosidic bonds and their use in glycans in different contexts, pieces

of each glycan structure (monosaccharide identity, anomeric conformation, and gly-
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cosidic bond information) from the the training set were masked, and the model was

trained to predict the masked information based on its surrounding local and global

context in the glycan structure. This approach treats monosaccharide types as words

connected in branched sentences and follows pre-training strategies of conventional

language models. All three masked prediction tasks followed the “mask LM” (MLM)

procedure [155], here masking 25% of each glycan input (before padding) indepen-

dently by a “MASK” tag. Only the cross entropy loss of masked tokens was computed,

following [39].

Supervised To incorporate biologically relevant information into the glycan repre-

sentations, supervised tasks included predicting N/O glycoprotein linkage, immuno-

genicity, and taxonomic origin. MLPs for these tasks took the embeddings of the

“START” tokens as representative inputs for the whole glycans. Cross entropy loss

was used for N/O linkage and immunogenicity prediction. As glycans can be found in

multiple organisms, taxonomic origin prediction was treated as a multi-class, multi-

label prediction task and binary cross-entropy was employed.

3.5.6. Fine-tuning

GlyBERT was fine-tuned separately to study each specific glycan property for which

predictive performance was reported (Figure 3.5). In this step the other MLPs’

prediction heads were simply disabled.

For the downstream fine-tuning task of predicting binding information on CFG

data, we used the pre-trained model without its classification layers. A 3-layer MLP,

taking the “START” token embedding as input, was then appended to the pre-trained

model. Since one model was trained for each lectin’s binding activity, we used bi-

nary cross entropy loss. Models were trained using the same stratified 5-fold cross-

validation as GlyNet and CCARL and optimized with Adam [79].
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3.5.7. Generative optimization

To optimize glycans for a given property, two functions are needed: a differentiable

function that is able to evaluate how well the current glycan meets the desired prop-

erty and a function to map glycan representations in the latent space back to the

encoding space [56]. In the glyBERT architecture, the prediction layer serves as the

property evaluation function; since it is a MLP that combines a sequence of linear

operations and differentiable non-linear activation functions, it is able to predict the

property of interest and is differentiable. The MLM layer serves as the function to

map a glycan’s latent space representation back to a probability distribution belong-

ing to the encoding space.

With these two functions in hand, the pipeline for generating glycans follows

naturally (Figure 3.5), based on the embedding, attention, MLM, and prediction

layers from the trained glyBERT model. For a given glycan structure used as the

starting point, its encoding was input into the embedding layer, returning an initial

embedding. The multi-head attention layer provided the glycan representation and

monosaccharide token embeddings in the latent space. Monosaccharide embeddings

were used to compute the original monosaccharide type probability distribution, M0,

by the MLM layer. The glycan representation was then passed through the immuno-

genicity label prediction layer (serving as the property evaluation function) and a

cross entropy loss against the positive (immunogenic) label was computed.

To update the embedding in the latent space, the network parameters were frozen

and the gradient of loss with respect to the embedding was calculated. The embedding

was then updated by the gradient with a learning rate of 0.1, thereby computing the

optimized monosaccharide type distribution, M1, for each token.

The original and optimized monosaccharide type probability distributions, M0

and M1, were used to pick which token to change and which monosaccharide to
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change it to. Two vectors, P0 and P1, were generated from M0 and M1, giving the

probabilities of each token being the current monosaccharide type. These vectors were

then used to calculate a discrete probability distribution Ms from which to select the

monosaccharide to change, where:

Ms =
abs(P0 − P1)

||P0 − P1||1
(3.1)

For the i
th

token sampled from Ms, Ps is the probability distribution of the i
th

token’s monosaccharide type. To ensure a different glycan was returned after each

round of generation, the probability of being the original monosaccharide was changed

to 0 in Ps, with the altered Ps referred to as P ′
s. Finally, the new monosaccharide was

sampled from P ′
s

||P ′
s||1

and placed into the glycan structure. To avoid using potentially

unrealistic glycosidic bonds while calculating the gradient, once the new monosac-

charide was selected, the anomeric conformations and carbon linkages encoding of

substituted monosaccharides were left unspecified (using the same “mask” token to

mark them as such). Since any context (including glycosidic bond configuration) can

impact glycan functionality, it was preferred to calculate the gradient for the next

substitution using only verified features of the glycan structures. In future implemen-

tations, this might be addressed instead by expanded generative processes to sample

updated glycosidic bonds simultaneously, or potentially filtering out glycans unable

to be synthesized in an organism of interest [110] depending on the intended use case.

This process was iterated for each starting glycan, providing a series of glycans

that generally had increasing probabilities of being immunogenic until a known im-

munogenic glycan was found or a fixed number of structures (10 in the presented

results) were generated (Figure 3.5).

The validation set of glycans for the generative process were taken from sets

of matching glycan structures (ignoring monosaccharide identities) where each set
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contained a sufficient number of immunogenic and non-immunogenic pairs. Of the

20 sets of matched glycans structures with at least one immunogenic and one non-

immunogenic glycan, 4 were selected for which there were sufficient positive and

negative examples (more than 5) and immunogenicity classification was strong (> 80%

accuracy), thus providing higher confidence in the interpretation of results. From

these 4 sets, there were 14 immunogenic and 8 non-immunogenic glycans in total.

Section 3.6

Supplemental

CFG v5.0 Probe Num. Probe RFU (100 µg ABA) MAD binding
25 (3S)Galb1-4Glcb-Sp8 1066 Bound
42 (6S)Galb1-4Glcb-Sp0 34 Not bound
43 (6S)Galb1-4Glcb-Sp8 37 Not bound

Table 3.1: ABA preferentially binds a glycan with an OS modification on
the terminal galactose but does not bind the same glycan when the OS mod-
ification is present on C-6. All three glycans are represented in our encod-
ing as GalOS(b1-4)Glcb based on the modification-position agnostic monosac-
charide vocabulary found in SugarBase. RFU values are reported from the
CFG mammalian microarray v5.0 data used by [29] with ABA at 100 µg avail-
able from http://www.functionalglycomics.org:80/glycomics/HFileServlet?

operation=downloadRawFile&fileType=DAT&sideMenu=no&objId=1004226. The
binding label determined by [29] via the MAD technique is reported in the 4th column.
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Figure 3.5: Overview of glycan encoding and glyBERT pre-training, fine-
tuning, & generative exploration. (A) A simplified example of the glycan encod-
ing used here with fewer bits and without the “START” and “STOP” tokens. Each
monosaccharide in a glycan is fully represented in its own row, with an explicit rep-
resentation of branching using the “subway line” approach demonstrated in the inset
in the top right of the panel. The indicator variable columns used to indicate the in-
volvement of carbons in glycosidic bonds or the “subway lines” that pass through each
monosaccharide are treated as binary numbers and collapsed into decimal numbers
to simplify encoding representations for the model. (B) The model architecture and
prediction tasks used in pre-training glyBERT. (C) Fine-tuning of glyBERT to build
specialized glycan representations specific for each prediction task. (D) The model
architecture used in the generative process. For each generative iteration, there are
two components represented by black and yellow arrows. Black arrows indicate the
first component, with the goal of getting the status of the current glycan structure
before making any changes or updates. From the original encoding, simply passing
through the embedding, attention, and prediction layers yield the current monosac-
charide embeddings and the current loss towards the optimization target. Yellow
arrows indicate the second component, optimization and updating. Embeddings are
updated by utilizing the calculated gradient to get new probability distributions for
each potential monosaccharide substituent. The final discrete update in the encoding
is then generated by random sampling from these probability distributions.

76



3.7 Funding GlyBERT

Figure 3.6: Complete generative exploration of glycans’ structural relation-
ship to immunogenicity. Generative paths from seven non-immunogenic glycans,
including the four in Figure 3.4 along with three additional glycans from which known
glycans were discovered which were unlabeled but shared the same carbon attach-
ments and monosaccharide identities as known immunogenic glycans with differing
anomeric conformations. In general, the glycans generated here showed similar in-
sights as Figure 3.4 into the features driving glyBERT’s prediction glycan immuno-
genicity in this structural context: Gal & Gal derivatives were most common at the
non-reducing-end terminal position with GlcNAc or Gal monosaccharides appearing
frequently in the middle position, although Gal & GalNAc are better represented
here compared to Figure 3.4. The largest apparent difference from this generative
exploration compared to Figure 3.4 is the presence of glycans with reducing-end ter-
minal GalNAc with high predicted probability of immunogenicity, highlighting other
drivers of immunogenicity learned by glyBERT relevant in this structural context.
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Chapter 4

Protein Design Algorithms for

Evasion and Mapping of

Antigen Recognition by

Uncharacterized Antibodies

The ability of antibodies (Abs) to sensitively and specifically recognize particular re-

gions, or epitopes, on their antigens (Ags) is fundamental to the immune response

against pathogens and is also key to the development of wide-ranging biotherapeutics

and vaccines. In some therapeutic applications, it is desirable to modify a target

protein to evade particular Abs, e.g., to enable a biotherapeutic to evade preexisting

anti-drug antibodies or to focus a vaccine response on a specific neutralizing epitope.

Ag variants that evade specific Ab recognition can also serve as reagents to sort Abs

by their epitopes and even localize those epitopes on the Ag, according to which Ag

variants disrupt which Ab binding. In redesigning an Ag to evade a specified Ab

interaction, mutations must be chosen to balance the effects of candidate mutations

on Ab recognition and Ag stability and function. Furthermore, in many applications,
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there are multiple Abs to evade, some or all of which may not have been characterized.

We here develop geometry-based algorithms to design Ags to evade preexisting Abs

(known or unknown), aka “B cell epitope deletion” and to design panels of Ags to

enable simultaneous separation and epitope localization, which we term “epitope map

deconvolution”, of multiple (known or unknown) Abs in a polyclonal mixture. We

first validated our hypothesis that a representative set of Abs, presumably not directly

related to the Abs being characterized, provides a sufficient basis by which to predict

the actual epitopes of the actual Abs. Then in retrospective case studies, we demon-

strated that the algorithms manifests promising recall and robustness of designing

suitable Ab-evading Ag variants. For B cell epitope deletion, our algorithm identi-

fied experimentally validated epitope-deleting variants as well as additional promising

mutation options. In epitope map deconvolution, we showed that our designed panels

can be expected to distinguish different Abs according to their different epitope speci-

ficities better than would be possible with more traditional mutational approaches.

Our work represents the first methods to systematically design Ag variants for char-

acterization and evasion of polyclonal Ab responses, even in the absence of any prior

characterization of the Abs.

Section 4.1

Introduction

The adaptive immune response against a pathogen often culminates with the devel-

opment of B cells selected and matured for potent recognition of pathogen Ags [143].

The Abs produced by these B cells can in some cases directly neutralize the target

pathogen by binding and blocking an important functional site on a key Ag (e.g., me-

diating cell receptor recognition [71, 47]), and in other cases their overall binding and

opsonization of an Ag can guide immune-mediated clearance (e.g., non-neutralizing
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antibodies contribute to HIV’s immune escape [87]). High-affinity and -specificity Ab-

Ag binding is mediated by recognition between particular interfaces on their surfaces,

namely the epitope of the Ag and the paratope of the Ab. B cells share a common

set of germline genes from which Abs are developed [4], and Ag-binding fragments

(Fabs) share a common overall structure, comprised of relatively unchanged frame-

work regions providing a scaffold and relatively variable complementarity determining

regions (CDRs) defining the paratope and more directly interacting with the Ag. Di-

versity in paratope residues is the main source of differentiation in Ab targeting of

different Ags, though in some cases particular framework mutations have also been

shown to have significant impact [143]. The processes of VD(J) recombination and

somatic hypermutation introduce extensive diversity to the paratopes (and to a lesser

extent in the frameworks), enabling the maturation process to generate a potent Ab

from a relatively weak-binding, non-specific progenitor [115].

When the Ag being recognized by the immune system is actually a therapeutic, it

can be beneficial to modify it so as to diminish or even entirely escape Ab recognition.

For example, if a biotherapeutic is derived from a non-self source that a patient may

have naturally experienced, then that patient’s immune systems may have already

developed Abs against it, i.e., anti-drug antibodies (ADAs), which may reduce bio-

therapeutic efficacy or cause even worse reactions [130]. A prominent example is the

38-kDa fragment of Pseudomonas exotoxin A (PE38), which is part of a recombi-

nant immunotoxin designed to treat cancer, but elicits a potent ADA response due

to its origins in a common pathogen [122]. Engineering a biotherapeutic to avoid

preexisting Abs is often called “B cell epitope deletion” as it requires modifying the

protein so that it no longer presents the epitopes against which existing Abs were

matured [57, 109, 138]. We note that avoiding the initial formation of an ADA re-

sponse in a naive patient, or a new ADA response against a B cell epitope-deleted
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variant, requires deletion of T cell epitopes that are essential for T cell help to drive

the development of potent class-switched Abs; that is a separate problem [57]. To

address the preexisting ADA problem with PE38, [94] employed scanning mutage-

nesis, mutating known epitope residues to alanine or glycine and evaluating effects

on Ab binding, ultimately deriving an engineered variant that showed low reactivity

with Ab serum but maintained high antitumor activity. Similarly, [139] deimmunized

truncated diphtheria-toxin (DT) by mutating hydrophilic surface residues to amino

acids randomly chosen from glycine, alanine, and serine. [59] used random mutagen-

esis to reduce the interaction of antibodies against Chemotaxis inhibitory protein of

Staphylococcus aureus.

Modifying an Ag to escape recognition of some Abs has also been used to design

vaccine Ags that yield a more focused immune response against an epitope of interest,

preserving that epitope while modifying other parts of the Ag to reduce recognition

of undesired epitopes [182]. The enormous diversity of HIV-1 variants, due to its

rapid and extensive evolution, makes vaccine development (as well as of course natu-

ral immunity) extremely difficult, since Abs elicited against one variant might not see

their desired epitope on another variant, and only a small fraction of binding Abs can

broadly neutralize the virus [121, 104]. To discover broadly neutralizing Abs (bnAbs)

that bind at an important conserved and neutralizing region, [173] resurfaced HIV-1

glycoprotein 120 (gp120) to obtain a molecule that preserved the CD4-binding site

(CD4bs) antigenic area and eliminated all other antigenic areas, thereby providing

a reagent with which to isolate CD4bs bnAbs. Dengue also presents a particularly

important target for epitope focusing, as non-neutralizing, cross-reactive Abs against

undesired epitopes can actually lead to severe disease (Ab-directed enhancement).

Consequently, [133] engineered epitope-focused variants of Dengue virus envelope pro-

tein domain III (DENV DIII) using a combinatorial mutagenesis approach, obtaining
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DENV variants with unwanted epitopes ablated.

Ab escape from Ag variants can also be directly used to characterize unknown epi-

topes. In fact, alanine scanning mutagenesis was developed for the purpose of deter-

mining binding sites [32, 112, 105]: one-by-one, mutate each residue to Ala, evaluate

binding, and see which mutations ablate binding. Other approaches [66, 142] use com-

putational methods to focus experimental efforts on relatively fewer but potentially

more informative mutations. While these approaches to “mapping” epitopes has had

numerous successful applications for monoclonal Abs [175, 96, 129], in some cases

there is a set, or even a polyclonal mixture, of different Abs, which may recognize

different epitopes. In a prominent example of identifying epitope residues for multiple

Abs simultaneously (though not deconvolving which Abs recognize which residues),

[118] evaluated effects on binding of alanine and glycine mutations at 41 highly ex-

posed surface residues, evenly spread out over PE38, and thereby determined which

positions were in the binding sites of a set of mice Abs. Experimental competition,

or epitope binning, assays [18, 149, 74, 17] can help distinguish which Abs recognize

overlapping epitopes, but don’t directly localize those epitopes on the Ag. Recent

computational-experimental methods [17, 98] simultaneously cluster and localize epi-

topes using a combination of computational docking and experimental competition

assays, across different Ag variants. When confronted with a polyclonal mixture, Ag

variants can be used to sort the Abs based on their epitopes, and potentially even help

localize those epitopes. For example, [25] designed a panel of gp120 single mutation

variants to map and sort CD4bs antibodies from polyclonal sera. We generalize these

various related epitope characterization tasks into a problem we term “epitope map

deconvolution”: for a set of uncharacterized Abs, the goal is to design a panel of Ag

variants that can enable separation of the Abs by their specificity and localization of

their associated epitopes on the Ag.
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We here develop algorithms to design Ag variants to escape recognition from a

set of potentially uncharacterized Abs. Our B cell epitope deletion design algorithm

optimizes individual variants broadly resurfaced at sites considered likely to be epi-

topes for preexisting Abs, seeking to disrupt their recognition while maintaining Ag

stability. Our epitope map deconvolution design algorithm optimizes panels of vari-

ants resurfaced in different potential epitope patches so as to enable separating and

localizing Abs and their epitopes. Through retrospective studies we demonstrate

that in both cases, even when lacking any characterization of the associated Abs, our

computational design methods are able to leverage general information regarding Ab-

Ag recognition encoded in computational models in order to design effective escape

variants.

Section 4.2

Results

Fig. 4.1 shows a schematic overview of the design algorithms. Since the true Abs may

be unknown, we base the methods on a set of representative Abs, and demonstrate in

4.2.1 that these suffice to predict the actual epitopes of the actual Abs. For B cell epi-

tope deletion, the sampling algorithm seeks to spread the targeted positions over the

surface, selecting mutations for an Ag variant so as to disrupt potential Ab binding to

important sites (and covering nearby sites) while not sacrificing Ag stability according

to a predictor. We demonstrate in 4.2.2 that the designs include experimentally val-

idated deimmunizing mutations, along with other plausible alternatives. For epitope

map deconvolution, the design focuses on patches of nearby epitope residues, such

that mutating them is likely to disrupt binding to a particular epitope and thereby

enable identification and localization of Abs against it. The panel is designed by sam-

pling patches across the surface (one per variant) and sampling binding-disruptive by
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Figure 4.1: Key steps in the design of individual Ag variants for B cell epitopes
deletion and panels of Ag variants for epitope map deconvolution. (a) Assuming that
the true Abs are uncharacterized, a non-redundant set of representative Abs is used
as “proxies”, under the hypotheses that their paratopes will be sufficiently similar
for the purposes of predicting the most likely epitopes on the Ag. (b) Epitopes are
predicted for the representative Abs, and the union (max probability over all Abs)
is taken, here with red representing high probability of being an epitope and blue
representing low probability. (c) To focus the design problem, the residues to target
(yellow) are selected by thresholding the predicted epitope probability (here at 0.5),
identifying those residues where disruptive mutations are most likely to matter. (d)
B cell epitope deleted variants are designed by geometric sampling of the targeted
residues. Each design includes a set of mutations that are predicted to be disruptive
to Ab binding but not to Ag stability, according to predictive models. Positions are
chosen to cover a large fraction of the other targeted residues, in that the selected
mutations are also likely to disrupt binding at these nearby positions. The example
shows some chosen positions in red, with the nearby epitopes they cover in orange;
for clarity the covered epitopes aren’t shown for the remainder of the chosen positions
(blue). (e) An epitope map deconvolution panel is designed by geometric sampling of
the targeted patches following by residues within the sampled patches. Each design
includes a panel of variants that will disrupt binding at different locations. Mutations
(red) of the same variant are chosen to cover residues within the same patch (orange).

stability-preserving mutations within the patches. We demonstrate in 4.2.3 that the

designs are able to distinguish different Abs targeted on the same Ag at different
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epitopes.

4.2.1. Representative Antibodies

In order to computationally design Ag variants to evade recognition by a set of Abs (as

opposed to, e.g., entirely resurfacing the Ag, or experimentally generating and testing

variants), it is necessary to predict which epitope residues are being recognized by

the Abs. One approach would be to perform Ab-independent prediction, essentially

identifying solvent-exposed “knobby” residues that are generally recognizable by Abs.

However, when the Ab is known, Ab-specific epitope prediction achieves state-of-the-

art prediction performance [33], since the paratope provides valuable information

about what parts of the Ag actually accommodate binding by that particular Ab.

We hypothesize that a set of already-characterized Abs can sufficiently represent the

paratope diversity manifested by the set of true Abs being targeted, so that the bene-

fits of Ab-specific prediction can be leveraged to obtain higher predictive performance

than Ab-independent prediction. We thus selected a set of 41 representative Abs

clustered from SabDAb [42] to 60% sequence identity, and used the state-of-the-art

epitope predictor PInet [33] to make Ab-specific predictions, combining predictions

across the representatives.

We tested this “representative Ab hypothesis” by comparing a predictor based

on PInet and representative Abs against two state-of-the-art Ab-independent epitope

predictors Discotope 2.0 [85] and SEPPA 3.0 [186]. As a benchmark we used the

same non-redundant set of 41 Ab-Ag pairs from SAbDab, for each Ag omitting the

partner Ab from the set of representative Abs used in our method. We evaluate both

recall (the ratio between correctly predicted epitope residues and all epitope residues)

and precision (the ratio between correctly predicted epitope residues and all residues

predicted to be epitopes). For design of Ab-evading variants, it is most important

to identify most of the true epitope residues, even at the expense of including some
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non-epitope residues; i.e., recall is paramount.

Table 4.1 summarizes the prediction results. Discotope and SEPPA are able to

achieve relatively higher precision, but prediction using PInet and representative Abs

results in substantially higher recall, our goal. We also explored the impact of the

size of the representative Abs set. As shown in Fig. 4.2, the precision and recall of

epitope prediction suffer if the set of representative Abs is too small, so that there

is insufficient paratope diversity in the set to represent the true paratope. However,

even with a relatively modest number of 10 representative Abs, the performance is

close to that achieved with the full set of 41 or even the true Ab, though with more

poorly-predicted outliers. It remains to be seen how these results change with further

improvement of epitope predictors, for which more refined differences in paratopes

might make more difference in predicted epitopes.

Table 4.1: Ab-specific epitope prediction using PInet with a set of representative
Abs achieves much higher recall than Ab-independent prediction with Discotope or
SEPPA, at some loss of precision. PInet epitopes were predicted according to a 0.5
threshold while Discotope and SEPPA do not use thresholds.

Test Model Recall Precision
Discotope 2.0 0.29 0.30
SEPPA 3.0 0.67 0.27
PInet 0.85 0.20

4.2.2. B Cell Epitope Deletion

We used two different retrospective case studies, along with a larger-scale benchmark

derived from SabDab, to evaluate our algorithm for designing B cell epitope deleted

variants of a given therapeutic protein. While, as would be expected given the size

of the available sequence space, many of the exact variants designed by our approach

were not tested in the previous studies, the overlap and similarities support our

confidence in the quality of the designs. These studies, along with the benchmark,

further provide the opportunity to assess the robustness of our approach and trends
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Figure 4.2: Epitope prediction performance (left: precision; right: recall) using repre-
sentative Abs approaches that using the true Ab with the full set of 41 representative
Abs or even a reduced set of 10, but falls off with only 1. Boxplots are taken over
different random subsets of the full set, at the specified subset size. Though using one
random Ab can still sometimes yield good predictions, performance is more stable
with more Abs.

over mutational loads and other parameters.

EGFP. Our first case study involves deletion of a nanobody epitope from enhanced

green fluorescent protein (EGFP), a target of previous epitope deletion efforts using

the DisruPPI method [27], in which designs were based on computational optimization

of trade-offs between predicted effects of mutations on EGFP stability and disrup-

tiveness to the interaction according the complex structure (PDB ID 3OGO, chains

B and G).

We first used our approach based on the same knowledge as DisruPPI, namely fo-

cusing design on the known nanobody epitope from the crystal structure, rather than

relying on PInet and representative Abs. Table 4.2 lists the top 10 single mutation

designs from our algorithm, which includes the two designs (N164K and R162E) pre-

viously experimentally demonstrated to be stable and disruptive. Additional variants

also showed similar or better levels of epitope coverage (i.e., more of the other epitope
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residues are nearby and thus Ab interactions involving them are more likely to also

be perturbed) and predicted stability (i.e., the mutations are not likely to destabilize

the Ag’s structure), and thus would be candidates worth considering.

Table 4.2: Given the known epitope, our design algorithm identified two validated
single-point mutations (red) while also providing additional options predicted to be
similarly beneficial in terms of the fraction of the known epitope residues covered (i.e.,
sufficiently near the selected mutation sites) and the predicted stability of EGFP (as
assessed by a protein language model).

Rank Mutation Coverage Stability
1 N164K 0.938 0.938
2 E166K 0.807 0.882
3 D167G 0.807 0.838
4 A200V 0.576 0.782
5 S141E 0.576 0.617
6 Y137F 0.315 0.666
7 R162E 0.315 0.666
8 F217T 0.576 0.382
9 S169G 0.807 0.111
10 N138Q 0.807 0.085

We now turn to the case without the complex structure, applying the algorithm

based on PInet predictions for the representative Abs. We designed variants with dif-

ferent mutational loads and different epitope probability thresholds for which residues

to target (from the default 0.5 down to 0.0, i.e., all surface residues). We evaluated

the coverage of epitope residues by the top design, or covered in total by the top

several designs. Depending on the protein target and the experimental setup, the

results from the top several designs may or may not provide information useful for

comparison and integration. For example, in some cases, there may be sufficiently

detectable disruption from each of several designs to follow up with new variants

combining their mutations. In any case, the “union of top designs” coverage metric

captures the relative diversity of the designs, since highly overlapping designs will

provide the same coverage as just one of them. As the baseline, we generated random
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designs of the same mutational loads being used in the designs, thereby assessing to

what extent design improves over random expectation.

two-mutation designs

six-mutation designs

Figure 4.3: Top six 2-mutation (top row) and top six 6-mutation (bottom row)
epitope-deleting EGFP designs (red: mutated sites; blue cartoon: nanobody, for
illustration but not used in design).

As shown in Fig. 4.3(top), for each of the top six 2-mutation designs, there is only

one mutation visible in the epitope region, yielding a low percent coverage (10%). This

is because PInet predicted epitopes (Suppl. Fig. 4.10) on both sides of the protein and

our geometric sampling algorithm to select positions to mutate maximizes distance

between them. If we take the union of the residues comprising these designs, the total

coverage is much higher (50%), as the designs are hitting diverse residues. When the

mutational load is increased to six (Fig. 4.3(bottom)), the total coverage for the top

design dramatically increases to 40%, and since the mutations are quite diverse, the

union coverage for the top six designs reaches 90%.

Fig. 4.4 elaborates and quantifies these trends over additional mutational loads

and different numbers of top designs. As would be expected, more mutations or

more designs leads to better coverage, though even at moderate levels of mutations

or designs, the coverage is already quite good; e.g., the single top 5-mutation design

achieves 20% coverage, while the 6 top 2-mutation designs achieves in the range 40-

90% coverage. At all but the lowest settings, the coverage is substantially higher
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than would be expected at random, as illustrated by the boxplots. The figure also

illustrates the effect of the epitope probability threshold, from the default 0.5 at the

right of each line down to 0 at the left. While the trends of the threshold vary at

different mutational loads and numbers of top designs, it seems that a threshold of 0.3

or 0.4 is generally best, presumably accepting more false positives in order to obtain

more true positives.

While our basic approach is to take the top ranked designs, an alternative is

to subselect from the designs a “diversity-filtered” set of variants, such that each

introduces at least one mutation not seen in the previous ones. This naturally leads

to better coverage, as illustrated on the structure in Suppl. Fig. 4.11 and in trends

in Suppl. Fig. 4.12. These diversity-filtered designs substantially improve coverage at

low mutational loads; e.g., the coverage from the union of the top six diversity-filtered

2-mutation designs is 80%, 30% higher than simply picking the top six 2-mutation

designs.
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Figure 4.4: Coverage of known EGFP epitope residues by designs (lines) and random
sets of mutations (boxplots) at different mutation loads (groups on the x axis). De-
signs are chosen at epitope prediction probability thresholds (points on the lines from
0.0 to 0.5) and the coverage over the top several designs (red: 1, yellow: 3, blue: 6,
green: 9) is used to characterize design diversity.

PE38. We next applied the algorithm to PE38, which, as discussed in the introduc-

tion, is part of an immunotoxin that has been shown to have multiple B-cell epitopes

and has been subjected to previous B cell epitope deletion efforts [118]. In contrast to

the single nanobody against EGFP, for PE38 we need to disrupt binding sites from

multiple (unknown) preexisting Abs, and thus employed PInet with representative

Abs. We designed variants with mutational loads ranging from 2 to 10, stepping by

2.

Fig. 4.5 shows epitope coverage by the top three 6-mutation designs. Notably,

most of the mutations that aren’t at a known epitope position actually cover one (i.e.,
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are within 12Å of it), and in fact for more than 60% of the epitope residues, there

is at least one mutation from the top three designs covering that site. It is hard to

make a direct comparison of our designed mutations to those previously reported [94],

which were derived by targeted alanine scanning and tests of more than 50 variants,

with 14 of those variant mutations affecting binding. Among these 14 mutations, two

of the same positions (E431 and R490) were included in our top design, another (at

K590) was in the top three, and six more were in lower rank designs.

As with EGFP, we quantified the performance of the top designs, over mutational

loads and epitope thresholds, and compared against random designs. In addition to

taking the union of the top designs, we also evaluated the average coverage rate, a

useful metric in the case of PE38 given its large number of epitopes, as this metric

more directly evaluates whether each variant is able to cover multiple epitopes on

its own. As shown in Fig. 4.6 left, on average our top designs hit 50% (14 epitope

residues from 7 epitope clusters) of the identified epitope residues for mutation loads

of at least 8, and the coverage rates increase linearly with the mutation loads. Given

the large number of epitopes in PE38 (e.g., as compared to the single epitope we

were targeting in EGFP), high recall is important, and thus in this case a relatively

low probability threshold tended to yield better coverage rate. Union coverage rate

is naturally higher; e.g., the union of the top three 6-mutation designs covers more

than 80% of the epitope residues (Fig. 4.6 right). While high average coverage implies

that each design own its own hits a good number of epitopes, high union coverage

indicates that they do so in diverse ways; i.e., if multiple designs were selected, they

would not simply be duplicates.
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Figure 4.5: Front (left) and back (right) of the top three 6-mutation PE38 B cell epi-
tope deletion designs. Residues highlighted on the structure show mutations hitting
known epitopes (red), other known but not directly mutated epitope residues (blue),
and mutations not directly hitting (but generally covering) known epitopes (salmon).
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Figure 4.6: Average (left) and union (right) coverage of known PE38 epitope residues
by designs (lines) and random sets of mutations (boxplots) at different mutation loads
(groups on the x axis). Designs are chosen at epitope prediction probability thresholds
(points on the lines from 0.0 to 0.5) and the coverage over the top several designs
(red: 1, yellow: 3, blue: 6) is used to characterize design quality and diversity.
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Benchmark. To investigate the expected performance of our algorithm more broadly,

we applied it to the same set of 41 Ab-Ag complexes selected from SAbDab, applying

PInet to predict epitopes but eliminating the binding partner from the representative

Ab set. We kept a low mutation load, from 1 to 4, which yields designs more likely

to be stable and practice, and was sufficient to display strong trends since for these

there was only one (unknown) Ab each. We took the union of either the top three or

top six designs (thereby assessing both the quality and the diversity of the coverage

provided by the designs). Random sets of mutations of the same size, i.e., summed

over the designs, so that for example the top 3 designs at mutation load 2 would

be compared to 6 random mutations. Fig. 4.7 shows that our sampling algorithm

always outperforms random in terms of median epitope coverage rate. The difference

increases with mutation load, as would be expected for our sampling process, which

seeks to spread mutations over the surface.

Figure 4.7: Coverage of epitopes in a 41 Ab-Ag dataset by top designs (left of each
pair of boxes) or a corresponding number of random mutations (right of each pair),
for either the top three (left panel) or the top six (right panel) designs.
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4.2.3. Epitope Map Deconvolution

Hen egg white lysozyme (HEL) serves as a good test case for epitope map deconvo-

lution, due to the availability of a number of structures with HEL in complex with

Abs of different epitopes [149]; we here consider four different complexes (PDB ids

1BVK, 1MLC, 1DQJ, and 2I25). In order to build an epitope map, each epitope

must be disrupted at least once; thus a key goal, and our main quality metric for

designs, is high epitope coverage rate. The number of mutations per variant, i.e., per

epitope region, is controlled by the patch size, with a larger patch size leading to more

mutations per variant disrupting more co-located epitopes and a smaller patch size

using fewer mutations each. The smaller patch size may be safer from the perspec-

tive of likelihood of maintaining Ag stability, but will require more variants in the

panel to achieve sufficient mapping. With these aspects in mind, we quantified the

epitope coverage of the top panels, over different patch sizes and epitope probability

thresholds. We again compared to random designs as a baseline, here using the same

number of mutation as the total number of mutations within the corresponding panel.

Fig. 4.8 shows that our designs generally cover 80-90% of epitope residues, much

better than random sets of mutations of corresponding sizes. As discussed, smaller

patch sizes (8) and lower prediction probability thresholds (0.1) lead the panel to

need more variants. As we saw with PE38, lower epitope probability thresholds lead

to better coverage, but even at higher thresholds the coverage is still more than 80%

for patch sizes larger than 8, and the panels are smaller. At the larger patch sizes, the

panels can cover 95% of the epitope residues with fewer than 20 variants per panel.

The goal of epitope map deconvolution is, upon obtaining binding data for the

Abs against the Ag variant panel, to be able to assign different Abs to different

epitopes on the Ag. To gain insights into how well our panels might be able to do

that, we further explored the differences in expected binding disruption of the anti-
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Figure 4.8: HEL epitope map deconvolution, evaluating the average epitope coverage
by the top three designs while varying patch size (groups on the x axis), epitope
probability (points on lines, ranging from 0.0 on the left to 0.4 on the right). Lighter
color and larger size marker for the points indicate a larger panel. Boxplots are
randomly sampled designs with the same number of mutations as an average panel
at the given patch size.

HEL Abs with respect to a designed HEL panel (patch size 10, epitope probability

threshold 0.5). Fig. 4.9 shows Ab “fingerprints” according to the panel, defined such

that if a mutation of a variant covers the Ag’s epitope region (within 12Å of any

epitope residue), it will disrupt the binding. We recognize that one mutation may

not be sufficient (though that’s the basis for alanine scanning), and the mutation

may destabilize the Ag, but this fingerprint nonetheless paints a picture of, in a good

scenario, how the different variants could be expected to deconvolve the different

Abs. The fingerprints in Fig. 4.9 make clear that these four Abs display quite different

expected disruption profiles against the designed panel of 18 variants, and that most of
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the variants help distinguish different epitopes. There are some obvious redundancies

(e.g., 1 and 2, 4 and 5, etc.), which might lead to robustness, or might indicate wasted

experimental effort. Suppl. Fig. 4.13 further evaluates the fraction of variants in each

panel that are expected to uniquely contribute to the deconvolution process (55% in

this case). We also see that by reducing the design space with PInet, we are able to

increase the fraction of variants contributing to deconvolution.

Figure 4.9: Visualization of Ab fingerprints for anti-HEL Abs (PDB ids 1BVK, 1MLC,
1DQJ, and 2I25), rows, against a designed panel of 18 variants, columns. A black cell
indicates that the variant covers an Ab epitope and thus may be expected to provide
a disruption signal in a good scenario.

Section 4.3

Conclusion

We developed algorithms to design Ag variants that escape recognition by an entire

set of Abs, even in the case where those Abs are uncharacterized. This ability can

enable the generation of variants of a therapeutic protein that escape a preexisting

polyclonal response, as well as the development of a panel of variants by which to

separate a polyclonal mixture of Abs by their specificities while also localizing them to

their epitopes on their Ag. By leveraging the information regarding Ab-Ag specificity

encoded in a cutting-edge epitope predictor, we focus design effort on the broadly most

important predicted epitopes on the Ag surface, according to a set of representative
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Abs that sufficiently approximate the paratope diversity exhibited by the true but

unknown Abs. Our geometry-based sampling algorithms then optimize either single

variants for B cell epitope deletion or a complementary panel of variants for epitope

map deconvolution, selecting sites and amino acid substitutions predicted to cover

the important predicted epitope residues, balancing the goals of reducing Ab binding

while also maintaining Ag stability.

Strikingly, our benchmark evaluation showed that epitope prediction performance

based on a suitably large representative set of Abs was nearly as good as that with

the true Ab, and the performance remained overall quite good, though more variable,

even with only 10 representative Abs. This suggests that the paratope diversity in

the representative set is good enough to capture the true paratope, to within the

“resolution” of the epitope predictor employed here. As epitope predictors improve,

or if the design method were extended to leverage finer grained information about

the interaction (e.g., pairs of contacting residues), the representative Ab approach

may need to be elaborated. Using models of germline Abs may better capture the

diversity of paratopes in the true polyclonal mixture, as the polyclonal Abs would have

been matured from such germline Abs while maintaining the same general binding

preferences. Alternatively, models of large Ab repertoires would represent a greater

diversity of high-resolution paratope variation, and suitable clustering and weighting

among their predictions may capture preferences of a particular polyclonal response.

Our Ag variant design is driven by a geometry-based sampling algorithm focused

on covering the residue positions with highest predicted epitope probability over the

representative Abs. The algorithms subsequently chooses amino acid substitutions at

those positions that are likely to disrupt Ab binding but not Ag stability, according to

predictive models. We currently generate a number of different designs and then rank

them by predicted epitope coverage and Ag stability. An extension of the algorithm
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could integrate these objectives, allowing the site selection to directly account for the

predicted effects on Ab binding and stability, in addition to coverage of predicted

epitopes. We showed that post-processing the designs for diversity can yield better

epitope coverage over the subset of tested variants; an extended algorithm could opti-

mize for diversity of a set of variants during the design process. While the evaluation

of binding disruption employed here does not account for predicted details of the

Ab-Ag interaction, with improving prediction capabilities (and, as discussed above,

a suitably extended representative Ab set), those details could be leveraged to more

precisely target disruptive residue interactions. More generally, our method can read-

ily incorporate other metrics regarding the effects of mutations on Ag stability and

Ab-Ag interaction, accounting simultaneously for the combined effects of mutations

on both properties. Our results demonstrate that it is possible to design Ag variants

to escape recognition by sets of uncharacterized Abs, and our methods provide a

strong basis for future developments in such wide-ranging Ab escape applications.

Section 4.4

Methods

As illustrated in Fig. 4.1, our algorithms for B cell epitope deletion and epitope map

deconvolution design either single variants of a given Ag (B cell epitope deletion) or

panels of variants of a given Ag (epitope map deconvolution) based on the predicted

effects of Ag mutations on both Ag stability and predicted recognition by existing

Abs. We detail here the general case where no information is available regarding the

Abs or their epitopes; it is straightforward to utilize any such information to focus

the design accordingly.
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4.4.1. Preprocessing

The preprocessing for design starts with a target Ag structure and a set of repre-

sentative Ab structures, predicts putative epitopes on the Ag for the Abs, prefilters

allowed mutations to the Ag, and predicts the effects of mutations on Ab binding and

Ag stability.

Target Ag. We are employing a structure-based approach, and thus require either

the Ag’s structure from the PDB [153] or a high-quality model based on its sequence

[78, 77, 6].

Representative Abs. While we don’t have any specific information about the

actual Abs that recognize the target Ag, we hypothesize that, due to their common

structure and origins (i.e., derivation from germline-based progenitors), a diverse set

of representative Abs, while not actually specific to the target, represent the paratopes

of the actual Abs to a sufficient approximation for use in epitope prediction. Here we

take as representative Abs a set of high quality (max resolution 3.0Å), low sequence

similarity (max sequence identity 60%) human and murine Abs filtered from the

curated antibody structure database SabDab [42].

Epitopes. In the absence of information regarding epitope localization, epitopes

are predicted for the representative Abs, with the aim of including many/most of

their true epitopes (at the cost of accepting false positives as well). We assume that

the epitope prediction method (here we use PINet [33]) labels each residue with a

probability of being an epitope residue, and we take as Pe the max probability over

all representative Abs predictions.

Allowed mutations. In principle, any mutation to the Ag could be considered; in

practice, it is often helpful to prefilter to a set M of allowed mutations that are likely
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to maintain the stability and functionality of the target protein while still being able to

disrupt binding [165, 21]. Here we use a method based on amino acid frequency (more

than 35%) among a set of homologs of the target filtered for quality and diversity [28].

Furthermore, since we are seeking to disrupt Ab binding, we only consider positions

that are solvent accessible with relative solvent accessibility (RSA) larger than 0.15;

while other residues may indirectly affect Ab recognition, such surface residues are

more likely to have the desired effect.

Disruptive mutations. Since we do not have Ab-Ag complex structures, we use

sequence-based methods to evaluate the potential disruptiveness of an Ag mutation

on Ab binding. (Note that the method could readily be extended to incorporate evalu-

ation of disruptiveness based on docking models, if docking is used to predict epitopes

[98].) Intuitively, changing physicochemical properties such as size and charge is likely

to disrupt specific Ag binding. To capture this intuition, we use BLOSUM62 [64],

which, though derived from and for sequence alignment, generally captures common-

ality of amino acid types. Other matrices such as PAM [35] or EDSSMat [157] could

readily be incorporated. We filter the set of allowed mutations M to a subset Md

that are sufficiently disruptive, in that their BLOSUM scores are low enough but not

too low, namely -2, -1, 0, or 1. Since the BLOSUM score only provides a sense of

similarity between amino acid types, we only use it as a filter for disruptive mutations

to consider, as opposed to a quantitative property to optimize.

Coverage score. A mutation changes the shape and characteristics not just of the

amino acid side chain, but also of the general surface around it. Thus, we say that a

mutation covers an epitope residue if that residue is sufficiently close (less than 12Å

between centroids). For a set of mutations (i.e., an Ag variant), we then compute

the coverage score as the sum of the predicted probability Pe for all epitope residues
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which are covered by at least one mutation. Coverage scores here thus represent the

expected value of the number of epitope residues covered by the set of mutations.

Stability score. A mutation may also affect the stability and function of the Ag.

To evaluate these effects, we compute the probabilities Ps for each possible mutation,

according to the protein language model ProtTrans [44], noting that other such models

such as ESM [135] or even structure-based methods methods such as Rosetta [3] could

readily be used. For the results presented here, we follow the approach of treating

mutations as conditionally independent given the wild-type sequence [101], and take

the sum of the mutation scores as the measure of stability for a multiple-mutation

variant. The fact that the mutations are at solvent exposed sites, to residues more

likely to interact with the Ab than with each other, lends some support to this

assumption. In the future, our method could use other scoring approaches to properly

account for the combinatorial interactions required to compute correct conditional

probabilities.

4.4.2. B cell epitope deletion

The general goal of our B cell epitope deletion algorithm is to generate and rank a set

of stable and functional variants of an Ag that are predicted to evade recognition by

(unknown) preexisting Abs. More precisely, based on the preprocessing above, we are

given a target protein with residues R, predicted epitopes E ⊂ R for representative

Abs, and allowed disruptive mutations Md. We then generate a set of variants of fixed

mutation load l (this can be varied for different design runs), ranked by coverage and

stability scores.

To optimize coverage, we perform Farthest Point Sampling (FPS) on a graph

representation of the surface residues of the Ag. In particular, the graph has nodes

for the surface residues and edges connecting residues that are close enough; here we
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use a 10Å threshold on the geodesic distances between residue centroids [126]. FPS

is applied to those residues predicted to be epitopes, i.e., with Pe meeting a threshold

(we evaluate the effects of the threshold from 0 to 0.5). FPS samples points iteratively,

at each step selecting the point that is geodesically furthest from the set so far. The

selection is repeated until reaching the specified mutation load. Given the selected

positions, we select an amino acid substitution for each from the allowed mutations

at positions within a small area (residues which are within the coverage radius, 12Å

between centroids of selected positions), according to the highest stability score.

Since the output of FPS depends on the first point being sampled, we repeat

the process, using each of the predicted epitope residues as the starting point. This

thereby generates a number of different variants, which we then rank by coverage and

stability scores. In particular, for variant i defined by mutations Mi ⊆ Md covering

residues Ri ⊆ R, the combined score Si is:

Si = aeη

(∑
r∈Ri

Pe(r)

)
+ amη

(∑
m∈Mi

Ps(m)

)
(4.1)

where η normalizes a given score based on the corresponding mean and standard

deviation of all sampled designs and ae, am weight the two scores (results shown use

a weight of 1 for each). The normalization puts these two different scores on common

footing; we note that a Pareto optimization approach [63] could be taken instead of

fixing weights.

4.4.3. Epitope map deconvolution

While B cell epitope deletion seeks a single variant that can escape existing Abs,

in contrast epitope map deconvolution seeks a panel of variants that together reveal

the epitopes of existing Abs. Each variant only needs to escape Abs localized to

a particular epitope region, but together the panel should cover all epitopes (and
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as before, the variants still need to be stable). More precisely, we are given a target

protein with residues R, predicted epitopes E ⊂ R for representative Abs, and allowed

disruptive mutations Md, we generate a set of variants with maximal panel size p and

maximal mutational load per variant v (both can be varied in different design runs).

Since each variant in a deconvolution panel targets one particular (spatially local-

ized) epitope region, the design algorithm is different from B cell epitope deletion. We

again follow a greedy sampling approach, but rather than taking the farthest point

next, we instead take the closest point next, as long as it’s not “too close” (at least a

given radius r geodesically, we here choose r to be 10Å) and thus defines a different

epitope region than those sampled so far. As a result, each point defines the centroid

of a region, and a set of sampled points is chosen so as to cover the predicted epitopes

by surface patches around these points. The sampling continues until everything is

covered or we reach the limit p on the panel size. The radius r could be adjusted

manually according to p and v to control the overlapping between patches so as to

control the resolution of the epitope map. Given the sampled points / patches, we

then design variants to disrupt each one. For this, we use the same FPS algorithm

as descried, but now limited to the specified region, thereby covering the particular

epitope region with disruptive mutations.

Again, different initial starting points yield different designs, and we rank them

based on overall stability and coverage. Consider a panel Pj, i.e., set of variants

V1, . . . , Vp, where variant Vi covers epitope residues Ri using mutations Mi. The score

of panel Pj is then:

Sj = aeη

∑
Vi∈Pj

∑
r∈Ri

Pe(r)

+ akη

∑
Vi∈Pj

∑
m∈Mi

Ps(m)

 (4.2)

where again η normalizes stability and coverage scores by all design scores, and ae, am

weight the two components; we used 1.0 but different weightings or a Pareto opti-
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mization approach could be employed. Notice that while the stability score is the

same for both epitope deletion and epitope map deconvolution design, the coverage

score is different. In particular, for deconvolution design, a residue can be covered

by different variants in the designed panel, and thus can contribute multiple times to

the coverage score. Summing all a residue’s contributions accounts for some overlap

between patches, which may help provide additional deconvolution information, e.g.,

to help pinpoint whether an epitope is at the boundary or center of a patch.
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Section 4.5

Supplementary Figures

Figure 4.10: EGFP (surface) and nanobody (cartoon) complex structure (PDB id
3OGO), with epitope residues highlighted red. (Left) true epitopes; (Right) predicted
epitopes by PInet using representative Abs.

Figure 4.11: Top six 6-mutation (bottom row) diversity-filtered epitope-deleting
EGFP designs (red: mutated sites; blue cartoon: nanobody, for illustration but not
used in design).
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Figure 4.12: Coverage of known EGFP epitope residues by diversity-filtered designs
(lines) and random sets of mutations (boxplots) at different mutation loads (groups
on the x axis). Designs are chosen at epitope prediction probability thresholds (points
on the lines from 0.0 to 0.5) and the coverage over the top several sufficiently different
designs (red: 1, yellow: 3, blue: 6) is used to characterize design diversity.
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Figure 4.13: Fraction of variants in the anti-HEL panel that are expected to contribute
to epitope map deconvolution (i.e., have a unique fingerprint).
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Chapter 5

Discussion

Due to the importance of protein interactions in wide-ranging cellular processes,

methods for experimentally characterizing these interactions have been pursued for

decades. Experimental limitations, including capacity, time, and expense, have led

to significant interest in the development of computational methods to predict inter-

actions. Due to the relative sparsity of experimental data, for many years the most

successful methods were typically based primarily on physical modeling. With exper-

imental advances, more data began to accumulate, and traditional machine learning

methods began to move to the forefront for some problems. We have now reached

a point where there is sufficient data, and the modeling approaches have sufficiently

advanced, to enable deep learning methods to flourish, particularly when the still

relatively limited input data can be augmented, e.g., by leveraging physical modeling

or by performing unsupervised pre-training with richer datasets. This thesis demon-

strates the utility of such deep learning approaches by developing and applying in-

novative methods that combine data-driven and physical modeling in three different

protein recognition applications: predicting protein-protein interactions, predicting

protein-glycan interactions, and designing proteins to escape interactions. Together,

these contributions not only provide the community with better predictive and de-
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sign tools, but also demonstrate the ability of advanced modeling methods to extract

useful information from limited and noisy interaction data.

In predicting protein-protein interactions, PInet improved the state-of-the-art by

leveraging the geometry of protein surfaces, which mediate interactions, and em-

ploying geometric deep learning to represent the underlying contributions to specific

recognition. More generally, the results from this study imply that such geometry-

based models and algorithms could provide a general framework for other PPI-related

tasks including both finer-resolution tasks such as predicting binding affinities to en-

able affinity maturation, as well as coarser-resolution tasks such as predicting whether

or not a pair of proteins are cognates to enable virtual screening. Major drawbacks

of the current models and methods include not directly dealing with the (arbitrary)

initial orientations of the partners, and not accounting for protein flexibility and

conformational change upon binding. Recent research has demonstrated that the

orientation problem is solvable via an appropriate encoding of the structure (e.g.

SE(3)-equivariant). However, suitably handling conformational change remain very

challenging, with potential approaches (beyond simply sampling multiple conforma-

tions) including employing probabilistic geometric representations, or combining ge-

ometric and sequence models in multimodal learning in the hopes that the structural

and sequence representations encode complementary information regarding possible

changes. With rapidly continuing advances in Computer Vision (geometry), Natural

Language Processing (sequence), and Multimodal Learning, I am confident that bet-

ter interaction models will be able to leverage these to better model and predict the

protein-protein interactions.

In predicting protein-glycan interactions, GlyBERT demonstrated that training a

well-structured embedding in a suitable latent space establishes a strong foundation

that directly enables improvements in downstream tasks via fine tuning. In some con-
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texts, such as this one, clean and well labeled data are limited; GlyBERT overcomes

this by using high quality input features and unsupervised pre-training. We showed

that, upon fine-tuning, the model performed well on a number of different tasks, and

hope that our well-pre-trained base model may likewise benefit the larger commu-

nity after they fine-tune it with other data for other tasks. We also demonstrated

the ability of GlyBERT to support molecule optimization or generation, in a case

study of modifying a glycan’s predicted immunogenicity. Though classical methods

such as Markov chain Monte Carlo (MCMC) or simulated annealing (SA) could do

such design with any model, the gradient-based approach enabled by GlyBERT is

faster and also allows better control of multiple objectives. While GlyBERT relies on

a relatively small amount of data for unsupervised pre-training, glycobiologists are

pursuing new shotgun and microarray methods that, while of potentially lower fidelity

than the assays used here, are higher-throughput and thus may provide a richer basis

for pre-training. Furthermore, GlyBERT was based on an encoding of the glycan

alone, while predictions could benefit from a joint representation of the glycan and

a protein that has recognized it or to which it has been attached (e.g., glycosylation

or glycation). Developing high-quality datasets and models for such joint modeling

should ba e fruitful avenue to improve prediction capabilities. Finally, while the field

has mostly focused on classifying glycans, we showed here that it is possible to use

predictive models “in reverse”, designing modifications to glycans, e.g., to change a

property such as immunogenicity. Experimental validation of such predictions, or

even computational-experimental iterative exploration of glycan space, could both

improve models and also discover beneficial new glycans and interactions.

In designing proteins to evade Ab recognition, we showed that a deep learning

model of Ab recognition captures the general properties of epitope specificity well

enough to enable representative Abs to stand in for unknown true Abs and enable us to
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design proteins so as to evade existing Abs. We developed geometry-based algorithms

to suitably sample epitope residues and regions in order to delete B cell epitopes and

to design panels for epitope map deconvolution. Critical to the approach are the set of

representative Abs and the ability to use them to predict the epitopes of the unknown

Abs. Methods for epitope prediction are continuing to improve, and the method

could potentially move from using just a prediction of the Ag epitope residues to a

prediction of the interacting Ab paratope : Ag epitope residue pairs. Furthermore, the

representative Abs could possibly be replaced by models of repertoire Abs identified

via deep sequencing. B cell epitopes are usually ignored during early stage drug

discovery due to the complexity of dealing with them, a promising B cell deletion

algorithm could help with early stage candidate filtering as well as late stage lead

optimization. Epitope map deconvolution and related computational-experimental

methods for mapping and localizing epitopes are relatively new concepts, but hold

much promise to guide the selection and development of therapeutic Abs, vaccine

Ags, and so forth.

Ultimately, the lessons learned from these complementary studies point to general

next steps in improving computationally-driven protein design. One key is to learn

a suitable latent space in which to represent the targets of design (proteins, glycans,

interacting partners, . . . ), integrating available information from both sequence and

structure. On its own, this will improve prediction of epitopes, disruption, stability,

glycan-binding, etc. It will also enable design processes to take advantage of suitable

representations in optimizing modifications. While our design algorithms employed

greedy sampling, I envision that protein design will move toward continuously sam-

pling trajectories with multiple objectives and constraints applied at the same time.

Gradients (or energy scores for MCMC and SA) from different objectives will be

computed with respect to the embedding in the protein latent space and point the
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directions for improving the molecule in order to generate better variants. Experi-

mental data collected from such designs could then be fed back to improve the models

and the generated molecules. Such a framework promises to reduce protein engineer-

ing cycle times while also improving hit rates, ultimately leading to better leads for

further development.
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