29 research outputs found

    Study on Co-occurrence-based Image Feature Analysis and Texture Recognition Employing Diagonal-Crisscross Local Binary Pattern

    Get PDF
    In this thesis, we focus on several important fields on real-world image texture analysis and recognition. We survey various important features that are suitable for texture analysis. Apart from the issue of variety of features, different types of texture datasets are also discussed in-depth. There is no thorough work covering the important databases and analyzing them in various viewpoints. We persuasively categorize texture databases ? based on many references. In this survey, we put a categorization to split these texture datasets into few basic groups and later put related datasets. Next, we exhaustively analyze eleven second-order statistical features or cues based on co-occurrence matrices to understand image texture surface. These features are exploited to analyze properties of image texture. The features are also categorized based on their angular orientations and their applicability. Finally, we propose a method called diagonal-crisscross local binary pattern (DCLBP) for texture recognition. We also propose two other extensions of the local binary pattern. Compare to the local binary pattern and few other extensions, we achieve that our proposed method performs satisfactorily well in two very challenging benchmark datasets, called the KTH-TIPS (Textures under varying Illumination, Pose and Scale) database, and the USC-SIPI (University of Southern California ? Signal and Image Processing Institute) Rotations Texture dataset.九州工業大学博士学位論文 学位記番号:工博甲第354号 学位授与年月日:平成25年9月27日CHAPTER 1 INTRODUCTION|CHAPTER 2 FEATURES FOR TEXTURE ANALYSIS|CHAPTER 3 IN-DEPTH ANALYSIS OF TEXTURE DATABASES|CHAPTER 4 ANALYSIS OF FEATURES BASED ON CO-OCCURRENCE IMAGE MATRIX|CHAPTER 5 CATEGORIZATION OF FEATURES BASED ON CO-OCCURRENCE IMAGE MATRIX|CHAPTER 6 TEXTURE RECOGNITION BASED ON DIAGONAL-CRISSCROSS LOCAL BINARY PATTERN|CHAPTER 7 CONCLUSIONS AND FUTURE WORK九州工業大学平成25年

    Infective/inflammatory disorders

    Get PDF

    The radiological investigation of musculoskeletal tumours : chairperson's introduction

    No full text

    Applications of Medical Physics

    Get PDF
    Applications of Medical Physics” is a Special Issue of Applied Sciences that has collected original research manuscripts describing cutting-edge physics developments in medicine and their translational applications. Reviews providing updates on the latest progresses in this field are also included. The collection includes a total of 20 contributions by authors from 9 different countries, which cover several areas of medical physics, spanning from radiation therapy, nuclear medicine, radiology, dosimetry, radiation protection, and radiobiology

    Offline and Online Interactive Frameworks for MRI and CT Image Analysis in the Healthcare Domain : The Case of COVID-19, Brain Tumors and Pancreatic Tumors

    Get PDF
    Medical imaging represents the organs, tissues and structures underneath the outer layers of skin and bones etc. and stores information on normal anatomical structures for abnormality detection and diagnosis. In this thesis, tools and techniques are used to automate the analysis of medical images, emphasizing the detection of brain tumor anomalies from brain MRIs, Covid infections from lung CT images and pancreatic tumor from pancreatic CT images. Image processing methods such as filtering and thresholding models, geometry models, graph models, region-based analysis, connected component analysis, machine learning models, and recent deep learning models are used. The following problems for medical images : abnormality detection, abnormal region segmentation, interactive user interface to represent the results of detection and segmentation while receiving feedbacks from healthcare professionals to improve the analysis procedure, and finally report generation, are considered in this research. Complete interactive systems containing conventional models, machine learning, and deep learning methods for different types of medical abnormalities have been proposed and developed in this thesis. The experimental results show promising outcomes that has led to the incorporation of the methods for the proposed solutions based on the observations of the performance metrics and their comparisons. Although currently separate systems have been developed for brain tumor, Covid and pancreatic cancer, the success of the developed systems show a promising potential to combine them to form a generalized system for analyzing medical imaging of different types collected from any organs to detect any type of abnormalities

    Neural Radiance Fields: Past, Present, and Future

    Full text link
    The various aspects like modeling and interpreting 3D environments and surroundings have enticed humans to progress their research in 3D Computer Vision, Computer Graphics, and Machine Learning. An attempt made by Mildenhall et al in their paper about NeRFs (Neural Radiance Fields) led to a boom in Computer Graphics, Robotics, Computer Vision, and the possible scope of High-Resolution Low Storage Augmented Reality and Virtual Reality-based 3D models have gained traction from res with more than 1000 preprints related to NeRFs published. This paper serves as a bridge for people starting to study these fields by building on the basics of Mathematics, Geometry, Computer Vision, and Computer Graphics to the difficulties encountered in Implicit Representations at the intersection of all these disciplines. This survey provides the history of rendering, Implicit Learning, and NeRFs, the progression of research on NeRFs, and the potential applications and implications of NeRFs in today's world. In doing so, this survey categorizes all the NeRF-related research in terms of the datasets used, objective functions, applications solved, and evaluation criteria for these applications.Comment: 413 pages, 9 figures, 277 citation

    Characterization of alar ligament on 3.0T MRI: a cross-sectional study in IIUM Medical Centre, Kuantan

    Get PDF
    INTRODUCTION: The main purpose of the study is to compare the normal anatomy of alar ligament on MRI between male and female. The specific objectives are to assess the prevalence of alar ligament visualized on MRI, to describe its characteristics in term of its course, shape and signal homogeneity and to find differences in alar ligament signal intensity between male and female. This study also aims to determine the association between the heights of respondents with alar ligament signal intensity and dimensions. MATERIALS & METHODS: 50 healthy volunteers were studied on 3.0T MR scanner Siemens Magnetom Spectra using 2-mm proton density, T2 and fat-suppression sequences. Alar ligament is depicted in 3 planes and the visualization and variability of the ligament courses, shapes and signal intensity characteristics were determined. The alar ligament dimensions were also measured. RESULTS: Alar ligament was best depicted in coronal plane, followed by sagittal and axial planes. The orientations were laterally ascending in most of the subjects (60%), predominantly oval in shaped (54%) and 67% showed inhomogenous signal. No significant difference of alar ligament signal intensity between male and female respondents. No significant association was found between the heights of the respondents with alar ligament signal intensity and dimensions. CONCLUSION: Employing a 3.0T MR scanner, the alar ligament is best portrayed on coronal plane, followed by sagittal and axial planes. However, tremendous variability of alar ligament as depicted in our data shows that caution needs to be exercised when evaluating alar ligament, especially during circumstances of injury
    corecore