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ABSTRACT 

 

In this thesis, we focus on several important fields on real-world image 

texture analysis and recognition. We survey various important features that 

are suitable for texture analysis. Apart from the issue of variety of features, 

different types of texture datasets are also discussed in-depth. There is no 

thorough work covering the important databases and analyzing them in 

various viewpoints. We persuasively categorize texture databases – based on 

many references. In this survey, we put a categorization to split these texture 

datasets into few basic groups and later put related datasets. Next, we 

exhaustively analyze eleven second-order statistical features or cues based on 

co-occurrence matrices to understand image texture surface. These features 

are exploited to analyze properties of image texture. The features are also 

categorized based on their angular orientations and their applicability. 

Finally, we propose a method called diagonal-crisscross local binary pattern 

(DCLBP) for texture recognition. We also propose two other extensions of the 

local binary pattern. Compare to the local binary pattern and few other 

extensions, we achieve that our proposed method performs satisfactorily well 

in two very challenging benchmark datasets, called the KTH-TIPS (Textures 

under varying Illumination, Pose and Scale) database, and the USC-SIPI 

(University of Southern California – Signal and Image Processing Institute) 

Rotations Texture dataset.  
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Introduction 

Chapter 1 

 

1.1 Introduction 

A texture is one of the significant characteristics used in identifying objects of 

interest or regions in an image [1]. It is an important characteristic of various image 

surface properties [2]. A texture is also a crucial indicator in computer vision and 

image analysis [2]. It can be considered as a collection of images of similar texture 

appearances.  

Textures are seen everywhere in the nature. We can also produce artificial 

textures. Various textures are seen in various materials, for example, river, wood, 

forest, leaves, stones, etc. (Fig. 1.1). Textures can be soft vs. hard, coarse vs. even, 

smooth vs. irregular-shape, not-glossy vs. glossy. Following Fig. 1.1 and Fig. 1.2 

illustrate some natural textures and some man-made textures (also can be called as 

artificial textures).  

 

Figure 1.1: Example of natural textures. 

http://www.cs.auckland.ac.nz/~georgy/research/texture/thesis-html/node5.html#fig:TextureExampleNature
http://www.cs.auckland.ac.nz/~georgy/research/texture/thesis-html/node5.html#fig:TextureExampleArtificial
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Figure 1.2: Example of man-made textures. 

In image processing aspect, an image texture is considered as an intense source 

of visual information. It can demonstrate about the nature and shape of any physical 

objects [3]. In another definition by [4], ‘Textures are complex visual patterns 

composed of entities, or sub-patterns that have characteristic brightness, color, slope, 

size, etc.’ Therefore a texture can be considered as a similarity grouping in an image’ 

[4]. A texture can be local sub-patterns which repeat themselves within the image. 

These properties can demonstrate various perceptions on visual information of an 

image. Some of these are: illumination, evenness, roughness, homogeny, granularity, 

frequency, phase, arbitrariness, fineness, directionality, smoothness, etc. [3]. 

Sometimes, in an image, there may have several patterns or textures of different 

kinds. Hence, these different textures can represent partial information of the 

appearance, coarseness, lightness, structure and arrangement of that image [5]. 

Smarter extraction of features from image textures produce better cues for image 

analysis, which are pivotal for object recognition, surface analysis, action recognition, 

disease diagnosis, etc. There are various approaches for texture analysis, e.g., 

structural, model-based, statistical and transform methods [5].  
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1.2 Motivation 

Texture analysis is an important research area in computer vision. Texture 

analyses have numerous applications in various areas on image processing, medical 

image processing, computer vision and related fields. In order to describe a texture 

properly, various efforts have been made by researchers. But, there is no easy way to 

describe an image texture. It is a challenging area of research, because both natural 

and artificial textures have many diversity as well as complexity. Since the last few 

decades, texture analysis has been a region of intense research. However, 

development on this area is not progressing rapidly. Most of the 

developed-approaches have not smartly considered real-life challenges and natural 

textures. It is known that real-world textures are very difficult to analyze. Therefore, 

in this thesis, we concentrate our work on three areas on texture analysis. One of 

them is various features analysis for different types of textural images. These 

features eleven features are widely used for various applications for the last forty 

years. But these are not well-explained by researchers why they are using this 

bunches of texture features computed from co-occurrence matrix. We explain and 

evaluate these features for the first time in details.  

When we start texture analysis research, we noticed that there has been no 

overall study done, based on texture databases. Researchers use many texture 

databases of their own or they use benchmark datasets, which are available online. 

Our idea is to combine all texture databases based on their applications and 

properties to help future researchers to easily get idea from which database is 

suitable for their work. This is a state of the art in texture analysis research. We 

extend the local binary pattern (LBP) for texture recognition. LBP is a very simple 

and efficient for texture analysis. Based on LBP there are a lot of works, however, 
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mainly on face analysis. Also for rotational images, LBP is not very effective. So we 

focus on LBP for texture analysis and rotational images. 

1.3 Thesis Outline  

In the next chapter, we overview important features for texture analysis. 

In chapter 3, we comprehensively review texture image database.  

In chapter 4, we analyze co-occurrence-based features for standard database.  

In chapter 5, we deeply analyze co-occurrence matrix–based features by using 

our developed real-world database that is very complex. We propose two different 

categories of these features based on directions and characteristics.  

In chapter 6, we propose a method called diagonal-crisscross local binary pattern 

(DCLBP) for texture analysis. We also model two other operators of similar nature 

for texture analysis based on neighborhood pixel values.   

Finally, in chapter 7, we conclude our thesis with our findings and future 

directions. 
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Features for Texture Analysis  

Chapter 2 

 

2.1 Introduction   

In image processing and computer vision, texture is an important cue for 

analysis. As a human perception the word texture means what things are made of 

and how they feel or sense about the things. Human can easily identify textures 

property by their visual system or touch. Texture has its own property to 

understand. However, in computer vision and image processing, texture means 

uniformity of intensities of the image areas. Though sometimes, image property does 

not illustration regions of uniform intensities. Usually, a typical wooden surface 

image is non-uniform because, the wooden surface repeated patterns with varied 

intensities. Even though a human can recognize texture when he looks into the 

surface of the object, it is not easy to define that texture.  

 

   

(a) Brown  bread (b) Cotton (c) Cordury 

Figure 2.1: Three different texture images. 
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Figure 2.1 shows three image textures which are easy to understand for a 

person but not easy to define these textures. However, researchers define textures in 

various manners. For a human visual system, they key features are defined based on 

the following attributes: similarity, regularity and coarseness. 

 

Figure 2.2: Different stages for texture analysis. 

Now, we will explain the key aspects of texture analysis for non-visual 

analysis. Figure 2.2 shows different stages for texture analysis. After image 

acquisition, an image is preprocessed prior to feature evaluation. Converting a color 

image into a gray-level image can be considered an example of preprocessing. Image 

features are extracted through various ways.  
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Feature evaluation can be done through syntactic features, statistical features 

(e.g., 1st order statistics, 2nd order statistics, higher order statistics), or spectral features 

(e.g., Fourier, wavelet). It is necessary to point here that various ways of feature 

extraction is a foremost stage of texture analysis.  

For the texture features, we can do texture classification using various 

classifiers. Some of the well-known classifiers are neural network, Bayes decision, 

support vector machine, K-nearest neighbor, decision trees, etc.  

The review of this chapter is confined mainly to feature extraction and texture 

discrimination techniques. We will discuss some important feature models. 

 

   

(a) Medical Image (b) SAR Image (c) Defect Image 

Figure 2.3: Three images demonstrate three different applications: (a) Medical image 

analysis; (b) SAR image; and (c) Defect image of a product. For these three 

applications, texture analyses are very important.  
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2.2   Various Applications 
Texture analysis is a part of computer vision and image processing. Analyses of 

textures are useful for different applications. Some of the major application areas are: 

image analysis, medical image processing, remote sensing, surface defect detection, 

and so on [7-12].  In this section, we briefly evaluate the application of texture in the 

area of defect detection for industrial inspection, medical or biomedical image 

analysis, and remote sensing, etc. In Fig. 2.3, we show three images based on the 

application. 

2.2.1 Medical imaging 
Medical image processing is a very important area in the research community 

due to the rapid growth of computing power as well as the development of the 

medical equipments related to image processing (e.g., CT scan, MRI, PET, X-ray 

images, etc.) [7-9]. It is very much helpful for a physician to know the abnormal tissue, 

amount of abnormality in tissues, locations of abnormal tissues, etc. for a cancer 

patient or someone having tumor. Manual evaluations for a physician are difficult to 

properly identifying these information. Hence, automated feature analysis of various 

medical images for a problem becomes very crucial day by day. Automatic extraction 

of features can help for classification, e.g., differentiating normal tissue from abnormal 

tissue, finding locations or region of interest (ROI). Texture analysis is becoming a 

major part for medical analysis day by day.  

2.2.2 Remote sensing 
Remote sensing is another important area where texture analysis is required. 

Remote sensing application takes satellite-based images of land, rivers, corp. forest, 

woodland, urban areas, rural areas, etc. And through various features and their 

analysis, we classify various geographical parameters, e.g., normal land vs. forest 

land, land vs. water-body, urban area vs. rural area.  

2.2.3 Defect detection 
Industrial production requires identifying product defects, breaks, gaps, 

broken items, de-shaped or deformed products, etc. These are detected by using 

image processing through texture feature analysis. Industries related to textile, 
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automobile, food processing sectors, metal, tiles, etc. have enormous usage of defect 

detection [8,13-16].   

2.2.4 Others 
Apart from the above-mentioned applications, there are various other 

applications too. Some of these are: material recognition, content-based image 

retrieval, natural image analysis, text/document processing, GIS or environment 

modeling, texture synthesis, biometric identification, food-processing industry, etc. 

[17]. In computer vision, texture analysis is also an important part as a low-/mid-level 

image processing.   

2.3 Different Approaches for Texture Analysis 
There are different approaches for texture analysis [18-39]. We categorize them 

as follows,  

 Statistical approach-based texture analysis,  

 Structural approach-based texture analysis, 

 Model-based texture analysis, and 

 Filter-based texture analysis. 

2.3.1 Statistical approaches 
Statistical approach-based texture analysis methods are one of the easiest 

approaches to extract image or texture features. These approaches can evaluate spatial 

distribution of gray values. It computes local features at different points in an image, 

and obtains a set of statistics from the distributions of the local features [6]. It is known 

that one of the key features of texture is the spatial distribution of pixel values within 

that image. These statistical approaches can be sub-divided into the following three 

categories [6] (as shown in Fig. 2.4):  

 First-order statistical-based features: It deals each pixel. First-order statistics 

assess properties (e.g., average and variance) of distinct pixel values. It does not 

consider any spatial relations between image pixels. 

 Second-order statistical-based features: deals two pixel values at specific 

locations next to each other. 
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 Higher-order statistical-based features: deals three or more pixel values at 

specific locations next to each other.  

It is found that various methods employ statistical approaches for texture 

characterizations and recognition [11,24,26,29-34,37]. 

 

Figure 2.4: Statistical based feature extraction level. 

First-order histogram-based features 
In this sub-section, we present first-order histogram-based features that are 

elementary features for a texture. Let’s consider an image I(x,y), where x=0,1,…,N-1 

and y=0,1,…,M-1. We consider that the image I(x,y) has G different intensity levels, 

where i = 0 ~ G-1. For example, for a gray-scale image, i = 0 ~ 255, where G = 256. 

Then we can define the image histogram based on G different intensity levels 

according to the following equation: 

 

 

where 𝛿(i,j) is called the Kronecker delta function. It can be defined as,  

 

As the histogram considers each pixel separately and computes the frequency 

of intensity level, it is a first-order statistical feature. From a histogram, we can get 

an idea on the pixel distribution of an image. For a low-contrast image, the 

histogram distribution will be relatively smoother and not much varied. On the 

other hand, if an image has two different patches of pixel groups, then we may get a 
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bimodal histogram. However, histogram cannot maintain intra-pixel relationships 

based on neighborhood.  

Another feature can be computed from the histogram, called approximate 

probability density of occurrence of the intensity levels. We can have this feature by 

dividing h(i) by the total number of pixels in that image. The following equation 

demonstrates this computation:  

   
NM

ih
ip 

 

Apart from the probability density of occurrence of pixel intensity values, we 

can also compute mean, variance, skewness and kurtosis. These are first-order 

statistical features.   Mean or average can be computed according to the following 

equation: 
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We get variance from mean value, which exhibits variation of intensity 

around the mean level of intensity of an image. It is: 

)()(
1

0

22 ipi
G

i






 
 

Note that the mean and variance are inappropriate cues to provide adequate 

information about a texture. However, by exploiting images that are normalized 

against both the mean and variance, we can have improved texture distinction 

properties.  

Skewness is another important first-order statistical feature. It can be computed 

as: 
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The value of skewness can be zero, or positive or negative value. If skewness is 

zero, then the histrogram is symmetrical about its mean value. However, if the value 

is non-zero, then the polarity of the value defines whether it is skewed above or below 

the mean value. In fact, skewness indicates symmetrical distribution.  

We also can compute kurtosis, which is a measure of flatness of the histogram. 

It is computed as:  
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Though the above features cannot completely characterize texture, the key 

advantage of using the texture parameters by first-order statistics is mainly their 

simplicity. 

Co-occurrence and gray-level differences-based features 
The gray-level co-occurrence (GLC)-based statistics are described as a second-

order statistical based feature extraction [41]. We can calculate gray-level co-

occurrence matrices, in short called as GLCM [25,34-35]. It is a very well-known 

terminology and widely used for texture analysis and other purposes. It is a 2-

dimensional co-occurrence matrix. In GLCM, the number of rows and columns are 

equal to the number of gray levels in the image. Note that in the gray-level co-

occurrence matrix, computations are done on pixel pairs, not from individual pixel 

values [17]. 

Local Binary Pattern-based features  
Local binary pattern (LBP) is a new operator that becomes very popular in 

computer vision and image processing researches. It characterizes the concept of local 

image contrast [17,42-45]. The local binary pattern operator is related to the statistical 

as well as structural texture analysis of an image. The LBP describes a texture by the 

smallest element called texton, which is a histogram of texture elements. For each pixel 

in an image, a binary code is produced by thresholding its neighborhood pixels 

comparing with the center pixel. Neighborhood can be the closest 8 pixels or more 

based on the variations of the LBP operations. In LBP, various binary codes illustrate 
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different kinds of edges, spots, flat areas, etc. The LBP becomes one of the most 

widely-used methods in many applications. The reason is: the computational cost of 

the LBP is very small and it is very easy to implement and fast [46]. There are a great 

number of different variants of LBP operators in the literature [46].    

Another very well-known feature is the Scale-Invariant Feature Transform 

(SIFT) descriptor. The SIFT is a distinctive invariant feature set and is suitable for 

describing local textures [42]. It is rotation-invariant and very widely-used for object 

recognition and tracking purposes. Few LBP-related features or operators are: LTP 

(Local Ternary Pattern), LPQ (Local Phase Quantization) operator, Number-LBP 

(NLBP), Median-LBP, and Volume-LBP [44-45,47-48,17]. 

Autocorrelation 
The autocorrelation feature is another crucial statistical feature. An important 

characteristic of texture is the repetitive characteristic of the position of texture 

elements in that image. Based on observation, for textures with natural repetition, the 

autocorrelation feature becomes more useful [49-50]. The autocorrelation feature of an 

image is used to evaluate the fineness or roughness, smoothness or coarseness of the 

texture in the image [51]. It is related to the size of the texture primitive. For normal 

textures, the autocorrelation function shows peaks and valleys. However, for a rough 

or unsmooth texture, the autocorrelation function goes down slowly. On the other 

hand, for a smooth texture, the autocorrelation function goes down very quickly [51]. 

It has relationship with power spectrum of the Fourier transform. It is also responsive 

to noise interference. The autocorrelation function of an image  yxI ,  is defined as,  
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Laws texture energy features 
A novel texture energy feature is introduced by Laws, which are called Laws 

texture energy features [51-53]. Some operators (e.g., Laplacian operator, Sobel 

operator) can highlight the underlying microstructure of texture within an image. The 
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concept can be echoed with the concept of high-pass filter. The Laws filters or masks 

can be produced by convolving three basic 1x3 masks, which are shown below: 

L3 = [ 1     2     1] 

E3 = [ -1    2    -1] 

S3 = [-1     2     -1] 

Here, we can find three one-dimensional filters, which exhibit the following 

three concepts: Local average, Edge detection, and Spot detection.  

We can also have 1x5 masks. These masks can be attained by convolving pairs of 

the above three 1x3 masks. The new masks are: 

L5 =[1   4   6   4  1] 

E5 = [-1  -2  0  2  1] 

S5 = [-1  0  2  0  -1] 

R5 = [1  -4  6  -4  1] 

W5 = [-1  2  0  -2  1] 

These five masks represent the following concepts:  

 L: Local average;  

 E: Edge detection;  

 S: Spot detection;  

 R: Ripple detection; and  

 W: Wave detection [52]. 

2.3.2 Structural approaches 
A texture can have its primitives called texton or microtexture. In the structural 

approaches for feature analysis, we consider the microstructure and develop a 

hierarchy of spatial arrangements from these microstructures to produce macrotexture 

[41]. For this representation, apart from defining the microstructure, a placement rules 

should be introduced. The placement rules are defined based on microstructure or a 

set of primitive microstructures, and based on the probability of the placement of the 
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primitive. The structural approaches describe symbolic portrayal of an image. That is 

why, it is found to be more effective to synthesize image, rather than analyze it. 

However, it is not much effective and proven approach.  

2.3.3 Model-based approaches 
 

 

Figure 2.5: Model-based feature extraction. 

In this sub-section, we present several model-based features for texture 

analysis. Model-based texture analysis makes an attempt to understand a texture 

employing one of the following two models:  

 Generative image model (e.g., fractal features) and  

 Stochastic image model (e.g., random field features).  

Generative image model – Fractal feature 
Fractal features can be considered to develop discriminative and invariant features for 

texture classification, especially in cases where scale changes are prominent in textures 

[14-15]. Such variations can be handled by choosing local interest points and selecting 

their characteristic scales. But, apart from the problems related to have suitable local 

interest points, it is difficult to have an optimized characteristic scale that can be 

suitable for different textures of varied scales [57]. It is found that fractal features 

demonstrate promising results while handling scaling constraint. However, fractal-

based classification approaches do not consider statistical characterizations of textures 

by using global features. Moreover, they cannot differentiate between key texture 

elements (e.g., edges, corners, etc.). These issues can be overcome by evaluating 

densely local fractal features. Fractal models can classify irregular textures too. A 

multi-fractal analysis is proposed for texture descriptor [58]. 
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Stochastic image model – Random field feature 
Image textures can be modeled as a Markov random field (MRF) of pixels gray-level. 

In this approach, relationships between the gray values of neighboring pixels are 

statistically defined [16,54-55]. For example, a Gauss-Markov random field-based 

probabilistic texture model is developed to characterize hyperspectral textures. 

Another similar model is proposed for texture classification and texture segmentation 

in Ref. [56]. There are few other approaches based on random fields [56]. However, 

usually it is noticed that feature-based approaches are less computationally-expensive, 

as well as more effective than MRF-based approaches. 

2.3.4 Filter-based approach/transform 
 

 

Figure 2.6: Filter-based feature extraction. 

In this sub-section, we introduce filter- or, spectral-based features. These are 

manly Gabor filter, Fourier filter and wavelet filter. Fourier transform-based features 

cannot function well, because it losses various spatial localization of an image. 

However, Gabor filters or wavelet filers are more widely considered for texture 

analysis.   

Gabor filter-based texture features 
Gabor filter-based texture features are necessary features for texture analysis 

[59,42,60,56]. Gabor functions share lots of common features similar to our visual 

system [60]. Gabor functions consist of a sinusoidal plane wave of some frequency and 

orientation, which is modulated by Gaussian envelope. A Gabor filter is a band-pass 

filter which can be used to extract a specific band of frequency components from an 
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image [61]. Usually, it is a linear filter that is widely employed to detect edges in an 

image. However, they become very useful for texture representation as well as 

classification. For texture analysis, we extract a set of Gabor filters with different 

frequencies and orientations.    

There are a number of Gabor features, which are used for feature analysis,. 

Some of these Gabor features are:  

 Linear Gabor features, 

 Thresholded Gabor features, and  

 Gabor-energy features, etc.  

Wavelet-based feature 
Some transforms are developed to characterize localized frequencies specific to 

each pixel location based on various wavelet transform methods. Wavelet transform 

has multi-scale frequency contents (named as, wavelet coefficients), at each spatial 

location of an image [62]. It can decompose image texture scale, i.e., it can characterize 

textures at multiple scales [63]. The multi-resolution properties of the wavelet 

transforms are beneficial for distinguishing textures [63]. However, the wavelet 

transforms are usually computationally taxing [62]. A tree-structured wavelet 

transform is proposed for texture analysis and classification [53,64]. 

The Discrete Wavelet Transform (DWT) is the most widely used version of 

Wavelet transform. It encapsulates even tiny differences in rotation or scale. Some 

other representations on wavelet transform can be  

 Discrete Wavelet Frame Transform (DWFT) [6],  

 Discrete Wavelet Packet Transform (DWPT) [63],  

 Haar wavelet [35],  

 Modulus Maxima of a Continuous Wavelet Transform (MMWT) [58],  

 Multi-Orientation Wavelet Pyramid [58],  
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 Dual-Tree Complex Wavelet Transform [65], or  

 Scale-, rotation-, and translation-invariant wavelets [66-67]. 

In terms of spatial localization, Gabor filter performs better than its 

counterparts. Still, its usage is not profound. If we comparatively analyze the Gabor 

transform and the Wavelet transform, we notice that the later is better. The key 

reasons are:  

 Wavelet transforms permit different spatial resolutions.  

 One can decide to exploit a specific Wavelet for an application. So, Wavelet can 

offer flexibility to choose different functions for different applications.  

2.4 Conclusions  
Textures are all around us – in the nature, in man-made products, or through 

artificially-simulated texture scenes. Hence, texture analysis becomes a very 

important and popular research works for various applications. Application 

domains of texture analysis are broadly in medical image analysis, satellite image 

analysis, document extraction, fault analysis in products, computer vision, etc. 

Texture analysis is very important area for researchers especially in medical field. It 

is also going to play a pivotal role in future, because it has a variety of different 

application domains. However, the features and corresponding analysis are not yet 

finished in a reasonably applicable manner for different applications. 

For texture analysis, at first we have to find the key features from image. 

There are lots of methods to extract features from an image, such as statistical 

method, structural method, model-based method and filter-based method. Among 

these four methods, statistical and filter-based methods are used more than other 

approaches. Statistical features are, therefore, one of the popular methods that are 

proposed in the computer vision literature. There are two broad approaches to study 

image texture: (i) By computing statistical properties from the extracted texture 

elements and by utilizing these properties as texture features; and (ii) By involving 

structural methods to analyze texture.  
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In this chapter, we explain how we can analysis texture from image and how 

many ways we can extract features. We survey various important features that are 

suitable for texture analysis. There are various approaches for different types of 

texture images. So far, there is no comprehensive work that deals with key features 

and experiment with different types of datasets. Apart from the issue of variety of 

features, different types of texture datasets are also available.  
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In-depth Analysis of Texture Databases  

Chapter 3 

 

3.1 Introduction 

Though there are a number of texture datasets, till-to-date, there is no 

comprehensive works covering the important databases and analyzing these in 

various perspectives.In this chapter, various datasets on textureare categorized and 

critically surveyed. We categorize them in to the following four areas, namely 

texture databases in medical imaging; natural texture image database; texture of 

materials database’ and dynamic texture database.We initially present the datasets 

related to medical imaging, then natural texture image datasets are covered. Datasets 

related to texture of various materials are discussed afterwards, which is the largest 

group of datasets from various groups. The final category is the dynamic texture 

dataset. An overall comparative discussion with Tables is presented at the end.  

3.2 Texture Databases in Medical Image Processing 
A significant amount of research has been done in the field of texture analysis 

in medical image segmentation [68-72]. The analysis of texture parameters is a useful 

way of increasing the information obtainable from medical images.It has various 

applications ranging from the segmentation of specific anatomical structures and the 

detection oflesions, to differentiation between pathological and healthy tissue in 

different organs, and texture analysis from radiological images [5]. Under this area, 

the important datasets are presented below.  

3.2.1 MRI brain database 

Forty-three volumetric MRI-T1 brain dataset is developed from 28 patients 

and 15 controls. This dataset is obtained on a 1.5-T Siemens scanner (MPRAGE 

sequence, TR 11.4 ms, TE 4.4 ms, 128 slices, matrix 256x256, voxel size 0.9x0.9x1.5 
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mm). In this case, patients are diagnosed clinically as either suffering from WM 

encephalopathy and/or Alzheimer’s disease, while controls are 15 healthy elderly 

individuals. Images are interpolated to an isotropic resolution of 1 mm and aligned 

with the stereo-tactical coordinate system using fourth-order b-spline interpolation 

tested additionally on the large sample of 210 MRI-T1 brain datasets of young 

healthy subjects including 103 male (group A) and 107 age-matched female (group 

B) with average age of 24.8 years and standard deviation of 3.9 years in the same 

way [72,74].  

3.2.2 USF database  

References [75-80] use the Digital Database for Screening Mammography 

(DDSM) or USF database by [81]. This database [81] contains approximately 2,620 

cases. In each of the case, two images of each breast, associated patient information 

like age, stage of the tumor, subtlety rating for abnormalities, American College of 

Radiology (ACR) breast density rating are studied. The mammograms are digitized 

by various scanners depending on the source of the data. These images are available 

with the specification of 3000×4500 pixels with 16-bit pixel depth. One hundred 

mammographic images fromthe Digital Database for Screening Mammography 

(DDSM) [81] are exploited by [82]. These are digitized with a LUMISYS 300 scanner 

at 12-bit pixel depth and spatial resolution 50 μm.  

All mammograms selected correspond to heterogeneously and extremely 

dense breast parenchyma (density 3 and 4 according to the ACR BIRADSTM lexicon) 

and contain subtle microcalcification (MC) clusters. There are 46 benign and 54 

malignant clusters according to the database ground truth tables. Reference [82] 

considers regions of interest of 128x128 pixels, containing the MCs, and these are 

employed for texture analysis. 

3.2.3 Others in medical analysis 

A significant amount of research has been done in the field of texture analysis 

in medical image segmentation, e.g., in [68-72,76]. Kovalev [72] demonstrates the use 

of multi-sort-co-occurrence matrices on MRI brain datasets. Karkaniset al. [7] classify 

regions containing cancers in colonoscopy images. They use a multi-layer feed-
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forward neural network, which is based on second order gray-level statistics. Two 

different types of colonoscopic images are taken from two different colons in this 

experiment (i.e., macroscopically a Type IIIs lesion, which is hitologically a low grade 

cancer; and macroscopically a Type V lesion that is Histologically a moderately 

differentiated carcinoma). The images are digitized toa size of 2000x2000 pixels with 64 

gray levels depth per pixel. Textures from 10 normal and 10 abnormal tissuesamples, 

corresponding to a 256x256 image window, have been randomly chosen from each 

image [7].  

3.3 Natural Texture Image Database 
This is the second category of texture image database where natural images 

are dominant in terms of image classes in these datasets. In Section 4, we present 

texture datasets of materials and we will find that there are some overlapping in 

both types. However, the Brodatz dataset is purely based on natural texture images. 

We find that some datasets are created at the top of another dataset. For example, the 

USC-SIPI (University of Southern California – Signal and Image Processing Institute) 

Texture Mosaics dataset is based on the Brodatz dataset.  

3.3.1 Brodatz texture database  

The Brodatz Texture Database or album is the most famous the most widely 

used dataset in the texture analysis [69,71,80,83-97]. The Brodatz texture database is 

derived from the Brodatz album. The Brodatz textures are the most commonly used 

texture data set, especially in the computer vision and signal processing community. 

Because they are so commonly used by previous texture analysis/synthesis works, it 

is almost inevitable to include at least some of them in a texture synthesis paper [98]. 

It has 112 classes, and a small number of examples for each class. The Brodatz album 

contains 112 images with size 512x512 and 256 gray values after digitizing, showing 

a variety of textures, both small and large grained, collected for artistic purposes 

[99]. These digital images are not scans of the pages from the texture book. The 

images are scans of a set of glossy black and white prints that were purchased from 

the author. While these prints are pictures of the same textures as in the book, in 

most cases they are not the same image as the one in the book [83]. Despite the 
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popularity, however, Brodatz textures are actually copyrighted [99], even though 

many researchers are using these images.  

The Brodatz texture database is based on image rotated textures. Various 

algorithms exploit the Brodatz texture database for evaluations, though in most of the 

cases, the entire database is not employed. Different papers use various number of 

image sets from this dataset. For example, twenty-three distinct natural textures are 

selected from the Brodatz album in [63]. Some 209 natural texture images are used 

for training and 180 different texture images are used for testing by [100]. They also 

use 48 synthetic texture images for classification [100], along with all 112 Brodatz 

textures included in Brodatz [83]. References [56,101-102,94,67] use Brodatz database 

[83] too. Reference [56] exploit only 25 Brodatz textures from the Brodatz dataset. 

Reference [103] use 15 textures only. Only a few publications actually report results 

on the entire database [85,96,104-106] and most others use a partial set of 

textures.Figure 3.1(a) shows some sample frames from this database. 

The Brodatz texture set is indispensible, even with the existence of VisTex 

[73,107]. The reason is that most of the Brodatz textures are photographed under 

controlled lighting conditions, so the images are of very high quality. In addition, 

they expose to the most amount of textures so that irrelevant information such as 

noise and ‘non-textural’ stuff are not there [98]. One key concern of this texture 

database is that it cannot provide photometric stereo image sets for each texture 

class. This dataset also cannot provide true surface rotation [94]. Moreover, in recent 

years, it has been criticized because of the lack of intra-class variation that it exhibits 

[85]. This dataset is diversity of textures. Some of these textures are almost similar, 

and some others are very inconsistent, inhomogeneous or non-identical. Therefore, a 

human may even fail to correctly classify these in groups [85]. Overall, it is a very 

difficult dataset to analyze [85]. Hence, it becomes a benchmark dataset for 

analyzing any new approach or model for texture analysis.  
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3.3.2 Vision texture database (VisTex) 

The Vision Texture Database (VisTex) is another well-known database 

[73,107-110], formed by the Vision and Modeling group at the MIT Media Lab. It 

contains 167 colored reference textured images with size either a 786x512 or 512x786 

image depending on the orientation of the scene (also have other sizes). Images are 

grouped according to their contents. Unlike other texture collections, the images in 

VisTex do not conform to rigid frontal plane perspectives and studio lighting 

conditions.  

The goal of VisTex is to provide texture images that are representative of real 

world conditions. VisTex database can serve as a replacement for traditional texture 

collections [108]. It also provides some examples of many non-traditional textures 

(such as texture scenes and sequences of temporal textures). The experimental setup 

of [67] consists of images from the Brodatz and VisTeX [111] texture databases. They 

also consider a combination of some images. There are two image sets, namely:  

- Homogeneous textures (called Reference Textures) (available in 128x128 

pixel and 512x512 pixel images) and  

- Multi-texture scenes (available in 192x128 pixel and 786x512 pixel images). 

The images are available in raw files along with the information of the images, 

illuminations status and perspective. Figure 3.1(b) depicts few images for this 

dataset.  

The most important difference between VisTex database and other texture 

databases is that it does not conform to rigid frontal plane perspectives and studio 

lighting conditions. For this dataset, the lighting conditions are daylight, artificial-

florescent and artificial-incandescent, and some of the lighting conditions are 

imprecise. For example, descriptions are given as ‘daylight, direct and from right’. 

VisTex textures are photographed under natural lighting conditions, so they are 

tougher; i.e., the images contain more noise, and extra visual cues such as shadows, 

lighting, depth, perspective. [98]. With regard to perspective, the angle between 

films an object plane, there are two settings: frontal-plain and oblique. Considering 
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the limitations of VisTex database with unknown illumination directions, one may 

not use them with texture classification scheme, whereas, one has to recover the 

surface properties from several images with the known and controlled light 

conditions using photometric stereo. In future, they want to include video textures 

and video orbits [108].  

3.3.3 USC-SIPI texture mosaic dataset 

The USC-SIPI (University of Southern California – Signal and Image 

Processing Institute) Texture Mosaics dataset has three texture mosaic images [112] 

that are available on the USC-SIPI website [113]. Texture mosaic#1 [114] has image 

of 512×512 pixel, containing eight textures in square regions of 128x128, 32x32, and 

16x16 pixels. Mosaic#2 is created to provide a test image similar to mosaic#1 but 

with information about the contents of the image. It is composed of eight different 

texture samples (i.e., grass, water, sand, wool, pigskin, leather, raffia, and wood) 

taken from the Brodatz texture book [83].All eight textures are present in the image 

in squares of size128x128, 64x64, 32x32, and 16x16.And the mosaic#3 is developed to 

test the effect of non-horizontal and non-vertical texture boundaries. It also contains 

the same eight Brodatz textures that are present in the first mosaic.  

The textures are present in the image in approximately equal proportions. The 

mosaic consists of three basic regions [112]: the upper-left portion contains three 

textures in an arrangement where two textures are converging along curved paths; 

the upper-right portion of the new mosaic contains regions with non-vertical and 

non-horizontal boundaries, both straight and slightly curved. The bottom half of the 

image is made up of the eight textures in irregularly shaped regions of 

approximately equal size [112]. 

There is another dataset under the same group, called the USC-SIPI 

(University of Southern California – Signal and Image Processing Institute) ‘Rotated 

Textures’, which is part of the textures volume consist of thirteen of the Brodatz 

texture images each digitized at seven different rotation angles: 0, 30, 60, 90, 120, 150, 

and 200 degree (total of 91 images)) [113]. The images are all 512x512 pixels with 8 

bits/pixel. These rotated texture images are scanned using a 512x512 pixel video 
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digitizing camera. Hence, the qualities of the scanned images are probably not as 

good as those in the main part images.  

 

 
(a) 

 
(b) 

 
(c) 

Figure 3.1: Natural Texture Image Dataset: Four sample images of (a) Brodatz 
texture set [83]; (b) VisTex dataset [73,107]; (c) Texture library dataset [116]. 

 

3.3.4 Texture library 

This is a library of various textures from different types of images [116]. It has 

17 albums of various high resolution images on doors, forest, bump, cloud, fabric, 

maps, nature, etc. Though it has a good variability in terms of different classes as 

well as resolutions, no published report has been found on its usage. Also, TILDA 

(Textile Texture Database) and Forrest Texture Library have various images from 

forests, e.g., trees, bark, moss, rock, etc. in high resolution. Figure3.1(c) shows some 

image frames. 
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3.4 Texture of Materials 
This section presents most of the texture datasets available in the literature. 

Most of the datasets are based on various real-life materials, though partially these 

cover natural textures and scenes as well. MeasTex (Measurement of Texture) 

database has both natural as well as artificial texture images. We split these datasets 

under this group considering the types of images and/or applications. These texture 

datasets are suitable to analyze materials, surfaces, object recognition, pattern 

analysis, etc. A good number of these are photometric texture databases. We will 

notice more distinct features in Discussions and Tables presented below.   

3.4.1 Meastex database 

The MEASurement of TEXture (Meastex) sets contain examples of artificial 

and natural (real world) texture images [51,110-111]. The real world image has a size 

of 512x512 pixels (in raw PGM format) [111]. Each image is split into 16 sub-images 

to increase the number of samples available for each class. The textures are of four 

classes: asphalt (64 images), concrete (192 images), grass (288 images) and rock (400 

images), which provide total 944 images. The artificial textures are generated by the 

makeBrick program that creates brick-like textures [111]. Brick textures may then be 

created by either overlaying the stone texture with a mortar pattern or transferring 

randomly cut bricks from the stone texture and placing in a new image, separating 

the bricks with mortar.  

There are three texture sets are available here, namely - bomb (normal 

background texture), lattice (overlaying normal background texture with mortar), 

and mortar (separating randomly cut bricks with mortar). On the other hand, some 

natural textures are compiled (and continued process) to create a database of natural 

textures. The images have been obtained from 6"x4" color photographs taken with a 

35 mm camera [111]. Each photograph is scanned at 256 dpi and stored in PPM 

format. The distributed images are 512x512 pixels areas, which have been cropped 

from these full-size images and converted to PGM format. In this dataset, similar to 

the VisTex annotations, annotation header is used to label each image. For example, 

a comprehensive database of grasses (most labeled with species) makes up a large 
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proportion of the textures in this set. Other significant texture sets are based on 

materials and surface textures. Reference [103] propose a multi-channel approach to 

texture description where they compare the Brodatz textures (15 textures only) and 

MeasTex datasets.  

Although a number of texture sets in MeasTex have been compiled by other 

texture databases such as the Brodatz texture database and the VisTex database, 

most of their natural textures are 2D texture rather than 3D texture. The MeasTex 

provides a database of homogeneous texture images, several test suites of texture 

classification problems, implementations of major texture classification paradigms, 

and a framework for the quantitative measurement of texture classification 

algorithms on the texture problem test suites [115]. See Fig. 3.2(a) for few images for 

MeasTex dataset.  

 
(a) 

 
(b) 

Figure 3.2: Four bodies of (a) Meastex dataset [51]; (b) OUTex dataset [117]. 
 

3.4.2 PhoTex database 

Heriot-Watt University at Edinburgh creates Photometric Texture database 

(PhoTex) [118-119,90,99] that consists of images of surface textures that are observed 

from a constant viewpoint for 40 different illumination directions. It is a texture 

database of rough surfaces, and a few smooth surfaces. The main variables in the 

database are azimuth and zenith of the illumination. In few cases, the surface sample 

is also rotated. This database therefore mainly focuses on the changes of illumination 

condition rather than the surface rotation. This database is intended to provide 

physics-based, photometric data for texture research. It is called this database as 
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physics-based (which means it is applied to algorithms that model, or account for, 

the physical process of image formation and capture) because image surfaces are 

taken under controlled conditions, and calibration images are taken that enable the 

imaging process to be modeled [118]. Images that allow the user to calibrate the 

image transfer function, and measure the noise in the process are also held in the 

database. 

The images are grayscale with resolution of 1280x1024 pixels. These are 

unprocessed TIFF images. Images are captured by using a Vosskuhler CCD 1300LN 

digital camera, with a Matrox PC-SIG framestore. The measured intensity in the 

images of this dataset is proportional to irradiance. This database seems important 

for texture researchers who are working on illuminant direction invariance, surface 

rotation invariance and photometric shape estimation. Another potential point is 

that researchers interested in extracting and processing information from rough 

surfaces can use this dataset. 

3.4.3 PhoTex 3D database 

The photometric texture (PhoTex) project has a recent target to develop a new 

methodology for texture classification based on the direct use of surface gradient 

(relief) and surface reflectance (albedo) information [120]. This dataset provides real 

surface rotation rather than image rotation, where most of currently existing texture 

databases only support image rotation; and registered photometric stereo data sets, 

where 3D texture surfaces are captured under the controlled illumination conditions. 

This is the first texture database that provides both full real surface rotations and 

registered photometric stereo data, which is different from other existing texture 

database [120]. It contains 30 real textures, and there are currently 1680 images in the 

database. This will enable the design of image texture analysis systems that exploit 

and take into account the illumination conditions and the three-dimensional nature 

of texture. The dataset can be available from [121].  
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3.4.4 ALOT database 

Amsterdam Library of Textures (ALOT) database [122-125,90,119] consists of 

250 rough texture classes (100 number of images per class), which systematically 

varied the viewing angle and illumination angle so that it can capture the sensory 

variation in texture recordings. It has eight different illuminations in three 

orientations, having four viewpoints. These are divided into tune, train, and test 

parts, each with 2400 samples. Figure 3.3 shows some textures from the ALOT 

dataset. The ALOT dataset includes some very easily recognizable materials as well 

as extremely difficult ones. Although the number of view-illumination directions per 

material is only half the BRDF bi-directional reflectance distribution function) 

resolution of CUReT (Columbia-Utrecht Reflectance and Texture) database, the 

ALOT extents the number of materials almost by a factor 5, and it improves upon 

image resolution and color quality. Furthermore, different light source colors have 

been added to test (texture) color constancy algorithms. The acquisition setup for the 

ALOT is very similar to the ALOI collection of objects [90].  

 
Figure 3.3: Some sample images from the Amsterdam ALOT database (ALOT class 
numbers are shown in ( )); Row#1: tea-wafers (9), brown bread (26), cotton (43), terry 
cloth (48), punched plastic (56);Row#2: cork (57), cotton (60), ribbed cotton (64), 
sponge (176), chamois (196) [90,122]. 
 

Note that due to small misalignments between the two cameras, the 

viewpoints are not perfectly (pixel accuracy) identical [90]. For materials with not 

too much depth variation, the distortion can be well approximated by a planar 
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rotation and translation between the two views. Hence, image homography 

registration can be applied to align the images between the two cameras [90].  

 
(a) 

 
(b) 

Figure 3.4: Example of 25 classes each from: (a) UMD dataset [126]; (b) UIUC 
database [127]. 
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3.4.5 UMD dataset  

The UMD (University of Maryland, College Park) is a dataset of high-

resolution texture [126,89,128-130,58] that consists of 1000 un-calibrated, 

unregistered images, taken from a family camera. It has 25 texture classes with 40 

samples, having resolution of 1280x900 pixels. Similar to the UIUC database [131], 

within each class – the UMD texture dataset has significant viewpoint changes and 

scale differences. Moreover, the illumination conditions are uncontrolled for the 

UMD dataset. The textures of this dataset are non-traditional, including images of 

fruits, various plants, floor textures, shelves of bottles and buckets [126]. The dataset 

can be available upon request to the authors, as mentioned in Ref. [126]. Fig. 3.4(a) 

shows a sample texture image per class.  

3.4.6 OUTex database  

The OUTex database [132-134,124,468] stands for University of Oulu Texture 

database. This image database contains a large collection of textures, both in the 

form of surface textures and natural scenes. The OUTex is a framework for empirical 

evaluation of texture classification and segmentation algorithms. The surface 

textures have wide variations in terms of illumination direction (three illumination 

sources), surface rotation, and spatial resolution. Note that the OUTex database 

cannot be used to provide registered photometric stereo data [135]. In this case, all 

three different illumination directions are lying on the same plane – either coplanar 

or collinear. And these illumination variations vary only in the change of slant angle, 

while the tilt angle remains constant. Hence, it is not possible to correctly resolve the 

surface partial derivatives from these images using photometric stereo, as the 

inverse of the lighting matrix in the photometric stereo solution does not exist when 

the three illumination vectors lie in the same plane [135]. Fig. 3.2(b) shows some 

images for OUTex dataset.  

3.4.7 CUReT database 

The Columbia-Utrecht Reflectance and Texture (CUReT) database is another 

well-known and very challenging database [136-149,125,95,91,85,87]. The CUReT 

database is a considerable improvement over the Brodatz collection. The CUReT is 

developed at Columbia University and Utrecht University. This is a variety of tile 
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datasets with different types of defects including physical damage, pin holes, 

textural imperfections, pattern mis-registrations, etc. The test samples have 

resolution of 512×512 pixels. It has 61 different materials. It has many real world 

textures, taken under varying image conditions, and the effects of specularities, 

shadowing and other surface normal variations are evident [139]. The set of images 

for each texture sample is obtained over a wide range of viewing and illumination 

directions. Figure 3.5 shows three images for the same materials in different 

illuminations and poses. Various material images from the Columbia-Utrecht 

database (CUReT) are exploited by [148]. 

 
Figure 3.5: Example of CUReT database: ‘white-bread’ image in three 

different poses and illuminations [150]. 
 

Though the CUReT database is a good one, it has some constraints too. For 

example, there is no significant scale change for most of the textures and limited in-

plane rotation. In this case, for all measurements of a selected texture sample, the 

light source remains fixed. It is noted that a camera is mounted on a tripod and its 

optical axis is parallel to the floor. Therefore, it can be positioned to any one of seven 

different locations in a plane during measurements. For each camera position and a 

given light source direction, the texture sample is rotated, however, without 

significant variation in scale or in-plane rotation [147].  

The images in the database do not exhibit significant scale variation, hence, 

scale-invariant features tend to perform worse than features with just rotation or 

even no invariance but higher discriminative power [147]. The images are not 

suitable to sparse interest point-based methods. Apart from this, it is noticeable that 

multiple instances of the same texture are present for only a very few of the 
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materials, so intra-class variation cannot be investigated; and therefore, it is difficult 

to make generalizations [139]. The standard methodology on the CUReT database is 

to report results for 92 images per class [147]. Some images of this dataset do not 

have a sufficiently large portion of the texture visible to be cropped from the 

background. The measurement setup for CUReT database is not suitable for 

photometric stereo, as for a given texture sample at a certain orientation, it is 

necessary to capture the different images by fixing the position of camera and 

moving the light source, not by fixing the light source and moving camera. 

The CUReT has three texture databases, namely – 

i. BRDF(bi-directional reflectance distribution function) database; 

ii. BRDF parameter database; and  

iii. BTF (bi-directional texture function) database.  

i. BRDF (bi-directional reflectance distribution function) database 

The BRDF database has 61 different samples for reflectance measurements. 

Each of these samples is observed with over 205different combinations of viewing 

and illumination directions.  

ii. BRDF parameter database 

The BRDF parameter database with fitting parameters from two recent BRDF 

models (Oren-Nayar reflectance model [150-151] for surfaces with isotropic 

roughness; and the Bidirectional reflection distribution function [152]for both 

anisotropic and isotropic surfaces) are developed. These BRDF parameters can be 

directly used for both image analysis and image synthesis.  

iii. BTF database 

Similar to the BRDF database, the BTF(bi-directional texture function) 

database also has 61real-world surfaces that are measured by using new texture 

representation called BTF [153]. A good survey on BTF is done by Filip and Haindl 

[154]. BTF is exploited by a number of researchers, e.g., [155-158]. 

The CUReT database combines the foreshortening effect of the texture and the 

associated changes in its corresponding illumination directions. The availability of 
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the CUReT offers rare but important databases to analyze the BRDF and BTF of 

textures.  

3.4.8 Textile database 

Another database is developed to detect defects in the textile products 

[13,159]. These are gray-level images of dimension 256x256, taken by a Sony CCD 

Iris SSC-M370CE camera in a laboratory environment. While acquisition of this 

database, frontal lighting system is employed, where the camera and the light source 

are placed on the same side of the fabrics. Each image corresponds to 8.53cm x 

8.53cm fabric with a resolution of 3.33 pixels/mm, which is the same resolution that 

is required in the factory environment. In [13,159], the texture image sample set on 

which the experiments are performed contains images of eight different texture 

types. The first texture type has 35 images: 19 of them contain defects and the rest 

are defect-free or clean. Remaining seven sets of texture types contain four images 

per type, where two are defected and two are defect-free. The defects are considered 

according to the common defects.  

3.4.9 UIUC database  

The UIUC database [85,160,87,138,129-130,57-58,147,97] contains 40 images 

each of 25 different texture classes, hence total 1000 un-calibrated, unregistered 

images. These are gray-scale images having image resolution 640×480 pixels. It is 

available publicly in [131]. The database includes surfaces whose texture is due 

mainly to albedo variations (e.g., wood and marble), 3D shape (e.g., gravel and fur), 

as well as a mixture of both (e.g., carpet and brick) [85]. Moreover, within each class, 

viewpoint changes and scale differences are strongly evident. Illumination 

conditions are uncontrolled too for this database [85,147]. The database contains 

materials imaged under significant viewpoint variations and also contains fabrics 

which display folds and have non-rigid surface deformations [127]. Figure 3.4(b) 

shows some images for 25 classes.  

It has significant changes in scale and viewpoint as well as non-rigid 

deformations; although with less severe lighting variations than CUReT [147]. Some 

additional variability issues are also considered, e.g., non-planarity of the textured 
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surface (bark), significant non-rigid deformations between different samples of the 

same class (e.g., fur, fabric, and water), inhomogeneities of the texture pattern (e.g., 

bark, wood, and marble), and viewpoint-dependent appearance variations (e.g., 

glass) [85]. The dataset has relatively few sample images per class but high intra-

class variability, including non-homogeneous textures and unconstrained non-rigid 

deformations [85]. 

In terms of intra-class variations in appearance, this is the most challenging of 

the commonly used testbeds for texture classification [147]. Though the UIUC 

database demonstrates improvement over the CUReT textures in terms of the 

former's significant viewpoint variations and having some considerable surface 

deformations, it is much smaller than the CUReT database, both in the number of 

classes as well as the number of images per class [57]. Apart from this shortcoming, 

the UIUC database has very few instances of a given material so that it is difficult to 

perform categorization or figure out generalization properties of features [57]. In 

terms of scale and other viewpoint variations are concerned, the UIUC database is 

by far the most challenging database [57].For example, the CUReT images have no 

scale variation (all materials are held at the same distance from the camera, only the 

orientation is changed), limited in-plane rotation, and the same physical surface 

patch is represented in all samples. Moreover, the appearance of each patch in that 

database is systematically sampled under different combinations of viewing angles 

and lighting directions, making it straightforward to select a fixed representative 

subset of samples for training, as is done in most CUReT evaluations [85].Some 

methods [85,57,89,87] show comparatively better results on real world datasets, e.g., 

UIUC dataset [85] and CUReT databases [136]. 

3.4.10 CMU NRT database 

The CMU near-regular texture (NRT) database [85,107,161] is a difficult 

database and it covers the spectrum of textures from completely regular to near-

regular to irregular [107]. It also includes video of near-regular textures in motion. 

This database also includes test image sets with ground truth for translation, 



37 
 

rotation, reflection/glide-reflection symmetry detection algorithms. There is 15 top-

level albums (89 total), covering 5775 images.  

3.4.11 Rutgers skin texture database 

The Rutgers Skin Texture Database is a dermatology bidirectional texture 

function (BTF) database [92]. It has various skin diseases taken from the illumination 

and camera-controlled positions, containing bidirectional measurements of normal 

skin and of skin affected by various disorders. It has two combinations of viewing 

angles and illuminations: (i) four viewing and eight illumination positions; and (ii) 

three viewing and ten illuminations positions. Regarding measurement setup, this 

database has two different measurement setups, namely - (i) quartz halogen or fiber 

optic illuminator-based light arc; and (ii) camera mounted on a manually articulated 

arm on a tripod. They use a Sony DFW-V500 IEEE-1394 digital camera equipped 

with InfiniMini video lens with variable focus. The complete database contains more 

than 3500 images, and is made publicly available. The database has two components:  

Normal skin component 

A normal skin component for recognition and rendering in computer vision 

and graphics has more than 2400 texture images of normal facial skin corresponding 

to 20 human faces, 4 locations on the face (forehead, cheek, chin and nose) and 32 

combinations of imaging angles for each imaged surface (four camera poses, and 

eight light directions for each camera pose). The images in the database are acquired 

from both female and male subjects (7 females and 13 males), while the subjects age 

ranges from 24 to 53. 

Skin disorder component  

A skin disorder component for quantitative imaging in dermatology has 75 

clinical cases, which include conditions like acne, rosacea, psoriasis, sebhorreic 

keratosis, dermatomyositis, actinic keratosis, congenital melanocytic nevus, keratosis 

pilaris, and dermatofibroma. Each case may correspond to a different patient and a 

different body location. Depending on the location of the disorder, there are images 

from the face, arms, legs, back and abdomen. Each case has been measured with 
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multiple texture images, and each image is characterized by a certain combination of 

imaging conditions.  

3.4.12 KTH-TIPS database 

The KTH-TIPS  (Textures under varying Illumination, Pose and Scale) 

database [85,87,90,97,124,138,147,160] expands CUReT database by photographing 

new samples of ten of the CUReT textures at a subset of the viewing and lighting 

angles used in CUReT but also over a range of scales. Each class contains 81 images. 

Texture samples are 200x200 images except some sample of two classes (i.e., cracker 

and brown-bread).Images of the materials present in the KTH-TIPS database (which 

are also present in the CUReT database) are sandpaper, crumpled aluminium foil, 

styrofoam, sponge, corduroy, linen, cotton, brown bread, orange peel and cracker B. 

These images are imaged at nine distances from the camera to give 

equidistant log-scales over two octaves [160]. At every direction, images are 

captured using 3 directions of illumination (i.e., front, side and top) and 3 poses (i.e., 

central, 22.5◦ turned left, 22.5◦ turned right), which provides a total of 3 *  3 = 9 

images per scale, and 9 *  9 = 81 images per material [160]. It was created to extend 

the CUReT database in two directions: (i) by providing variations in scale as well as 

object poses and illumination directions, and (ii) by imaging other samples of a 

subset of its materials in different settings. Figure 3.6(a) shows some example frames 

of KTH-TIPS database. 

Since the CUReT database contains little scale variation, this dataset is 

introduced which images ten CUReT materials at different distances, while also 

maintaining some change in pose and illumination [160]. As mentioned above, one 

of the key objectives of this database is to attempt to recognize ‘different samples’of 

the CUReT materials. It is not possible to do recognize different samples with any 

acceptable degree of accuracy [160].  
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(a) 

 
(b) 

 

 
 (c) 

Figure 3.6: Some sample images from: (a) KTH-TIPS dataset [85,160]; (b) KTH-TIPS2 
material database (each column represents (sequentially) cork, wool, lettuce leaf, 
aluminium foil, corduroy, linen, cotton, brown bread, white bread, wood and 
cracker; (c) An example that depicts the KTH-TIPS dataset’s variations in terms of 
scale, pose and illumination [160]. 
 

3.4.13 KTH-TIPS2 material database 

The KTH-TIPS2 material database [91,160,162] is built on the KTH-TIPS 

database and provides a considerable extension by imaging multiple different 

samples of different materials. Many of these materials have 3D structures, implying 

that their appearance can change considerably as pose and lighting are changed.It 

has all types of images of the KTH-TIPS, in addition to ‘lettuce leaf’ image. Figure 

3.6(b) shows some images for this dataset. The database contains images at 9 scales, 



40 
 

equally spaced logarithmically over two octaves. It has 3 poses and 4 illumination 

conditions (frontal, 45°from the top and 45°from the side, all taken with a desk-lamp 

with a Tungsten light bulb) (e.g., Fig. 3.6(c)), and for the fourth illumination 

condition fluorescent lights in the laboratory are considered. Although some 

variation in pose and illumination is present, both KTH-TIPS and KTH-TIPS2 

contain significantly fewer settings for lighting and viewing angle than CUReT [91]. 

3.4.14 PerTex database 

PerTex database is developed by Fraser Halley [127]. The PerTex database has 

334 photometric height maps with perceptual similarity matrix.  

3.4.15 Building texture database  

The Building Texture Database [163] has blocks, finding a mesmerizing 

abstraction in the buildings' facades. Some of the structures in the series are 

photographed without reference to the context of sky or ground, and many 

buildings are seen in a state of repair or construction.  

3.4.16 Grain mixtures dataset 

The Grain Mixtures [164-165] used images of eleven different mixtures of rice 

and barley grain. Image resolution is 128x128 pixels. Both of these were rather 

similar in size, rice was a little more elongated than barley and barley had a wider 

range of gray levels than rice.  

3.4.17 Kylberg texture dataset  

The Kylberg texture dataset [166-167] has a number of textured surfaces, 

including fabrics and surfaces of stone, were imaged in the local surroundings. 

Textured surfaces were also arranged using articles such as rice grains, sesame seeds 

and lentils.  

3.5 Dynamic Texture Database 
The above-mentioned databases are based on static images. However, there 

are some new types of datasets called dynamic texture dataset where the temporal 

textures are variable and changing temporally. Now what is the meaning of 

‘dynamic texture’? It is known that for a single image, a texture can be defined as a 
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realization from a stationary stochastic process with spatially invariant statistics [2], 

which portrays the intuitive notion of texture. For a sequence of images (i.e., time-

varying texture), individual images are clearly not independent realizations from a 

stationary distribution, for there is a temporal coherence intrinsic in the process that 

needs to be captured. The underlying assumption, therefore, is that individual 

images are realizations of the output of a dynamical system driven by an 

independent and identically distributed (IID) process. 

Dynamic textures are sequences of images that exhibit some form of temporal 

regularity [168]. According to Yuan et al. [169], dynamic texture can be defined as a 

temporally continuous and infinitely varying stream of images that exhibit certain 

temporal statistics. In another term, dynamic textures are video sequences of images 

of moving/non-rigid scenes that exhibit certain stationarity properties in time; these 

include sea-waves, smoke, foliage, whirlwind, etc. [170]. Another definition of the 

term dynamic texture is usually used with reference to image sequences of various 

natural processes that exhibit stochastic dynamics [171]. 

There are some dynamic texture databases [172], which are more difficult to 

analyze. Between computer graphics and vision researchers, dynamic texture 

analysis or synthesis texture analysis become very popular areas [169]. Dynamic 

texture analysis is almost new steps for video sequence analysis [169]. A number of 

recent works have concentrated on dynamic textures and their evaluations, 

segmentation, synthesis, and recognition [44-45,73,84,137,168-169,171,173-192]. The 

following sub-sections present the benchmark datasets for dynamic or temporal 

texture databases.  

3.5.1 UCLA dynamic texture database  

The UCLA dynamic texture database [137,168,174,178,180,183-184] contains 

50 classes of various dynamic texture video textures, including boiling water, 

fountains, fire, waterfalls, rippling water, and plants and flowers swaying in the 

wind. Each class contains four gray-scale sequences with 75 frames of 160×110 

pixels. Each sequence was clipped to a 48×48 window that contained the 

representative motion. For each scene, all four example sequences are captured with 



42 
 

the same viewing parameters (e.g., identical viewpoint). In total there are 200 

sequences. Reference [44] obtains the recognition results of 95.6% for this database, 

whereas Ref. [174] achieves 97.5% accurate classification rate. The UCLA dataset is at 

present the benchmark for dynamic texture recognition. However, a bigger and 

more dissimilar database (the DynTex database [84,190]) available [44]. The UCLA 

dataset hold the position of benchmark because to the following properties [44]: 

i. These database have dynamic texture sequences by now it has pre-processed 

from their raw form. 

ii. Only a single dynamic texture is present in each dynamic texture sequence.  

iii. In each dynamic texture sequence, no panning or zooming is performed.  

iv. Ground truth labels of the dynamic texture sequences are provided.  

3.5.2 UCLA-pan database  

A second database containing panning video textures is produced from the 

original UCLA video textures [175]. Each video texture is generated by panning a 

40×40 window across the original UCLA video. In this case, four pans (two left and 

two right) are generated for each video sequence, resulting in a database of 800 

panning textures, which is called the UCLA-pan database [175]. The motion in this 

database is composed of both video textures and camera panning, hence the 

dynamic texture is not expected to perform well on it. Details of these UCLA 

dynamic texture databases are available in Ref. [175]. 

3.5.3 DynTex database  

The European FP6 Network of Excellence MUSCLE develops a dynamic 

texture database called DynTex [84,171,190-191]. The DynTex dataset contains more 

than 650 varied dynamic texture videos, but the information about the type of 

textures shown in the sequences is not provided for all the videos in the set. The 

image size is 352x288 and the compressed videos provided are coded using DivX 

codec. A subset of 202 sequences, spanning some 23 classes of very varied dynamic 

textures has been selected to evaluate the method of [171].  Some of the DynTex 

sequences, such as mixtures of essentially different processes, are obviously 

inhomogeneous and non-stationary. Examples of some texture classes of this 
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database are – textile, vegetation, grass, NA, streaks, water, steam, fire, smoke, 

branch, cloud, leaf, car, needle, fur, tentacle, insects, CD, foam, light and paper.  

Central to the database is the so-called golden set of high-quality dynamic 

texture sequences that satisfy all criteria of the acquisition protocol [191]. This set can 

be further structured by its underlying physical processes, e.g., turbulent motion, 

waving motion, discrete units, etc. Additionally, they will be classified by their shot 

type, i.e., either as close-up (shot consisting entirely of the dynamic texture, no 

segmentation required), or as context (the dynamic texture is shown in its context) 

[191]. Next to the golden set we will offer various other sets. Examples are a 

collection of dynamic texture sequences recorded with a moving camera, and a 

collection with several dynamic textures per sequence [191]. However, the DynTex 

database lacks the four key properties of UCLA dynamic texture database. It is 

exploited by various researchers, e.g., [44-45,181]. More details on this dataset are 

available in [191]. Figure 3.7(a)shows five frames for five sequences of this dataset, 

namely tree sequence, river sequence, grass and river sequence, wave sequence, and 

field sequence.   

3.5.4 Sainsan’s dynamic texture database 

The dynamic texture database is developed by Saisan et al. [174]. It has a total 

of more than 250 sequences, consisting of moving scenes of smoke, boiling, fire, 

flowers, sea, water, fountain and waterfall. Each sequence is 150 frames long and 

pixels. Each sequence can be divided into two sub-sequences of 75 frames for a total 

of more than 500 sequences. Included in the database are similar sequences with 

different dynamics. For example, it has water stream, recorded from different angles, 

thus moving at different orientations and speeds.  

The database includes 76 different kinds of dynamic textures. Each of them is 

represented by 8 distinct instances. Each sub-sequence consists of 75 frames. All 

frames are in color where the size of an individual frame is 220x320 pixels. It is used 

by [44,174-175,182]. Reference [175] achieved recognition results with this dataset as 

97:5% by using the kernel version of the dynamic texture model and 96:5% by using 

just the Martin distance on the LDS parameters. Reference [182] achieved 100% 
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recognition results for eight classes of this database. Note that the fountain and 

waterfall classes are the most difficult to classify because there are no clear 

appearance differences.  

 
(a) 

 
(b)  

Figure 3.7: (a) DynTex database – few sample frames (sequentially – tree sequence, 
river sequence, grass and river sequence, wave sequence, and field sequence) 
[84,190]; (b) MIT temporal texture database – few frames from ‘smoke’ [170,176]. 
 

3.5.5 DynTex++ database 

The UCLA benchmark dynamic texture dataset lacks much variety along the 

three DT dimensions, and therefore, [44] proposed a new dynamic texture dataset, 

called DynTex++ dataset. The goal here is to organize the raw data in the DynTex 

database in order to provide a richer benchmark for future dynamic texture analysis. 

The original database is already publicly available; however, only the raw AVI 

videos are provided. These sequences are filtered, pre-processed, and labeled. While 

DynTex contains a total of 656 video sequences, DynTex++ uses only 345 of them.  

This dataset has 36 classes. It means that some sequences are eliminated that 

contained more than one dynamic texture, contained dynamic background, included 

panning/zooming, or did not depict much motion. They were not uniformly 

distributed among the classes. Reference [44] obtained an average recognition result 

of 63.7%. It is a challenging database.  
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3.5.6 MIT Szummer dataset 

MIT Szummer dataset or Temporal Texture dataset [45,73,173,176-177,179] is 

a small dataset. The quality of the data of this dataset in terms of image resolution, 

contrast, motion stability is quite poor [175,181] compare to Ref. [84]. Classification 

results for the 10 Szummer sequences [176] are accomplished by [177]. Temporal 

textures are textures with motion. The dataset consists of commonly occurring 

temporal textures, such as river-near (close-up of water), river-far (wide-angle short 

of water), steam (steam from manhole), boil-heavy (vigorously boiling water), boil-

light (lightly boiling water), plastic (windblown plastic sheet), and toilet (swirling 

water in toilet) [179]. The image sequences of temporal textures are recorded using a 

Hi-8 video camera and a tripod is used to ignore any camera motion. The resolution 

is about 170x115 and the length is 120 frames. This is tough dataset because fluid 

surfaces are highly specular, and in some cases, perspective chirping is prevalent. 

The 'toilet' image sequences have spiral motion. Figure 3.7(b) shows some sequential 

form ahead.  

3.6 Discussions 
In the previous sections, we categorize various texture datasets and pointed 

important issues regarding their merits, constraints, few comparative discussions. In 

this section, we summarize some key properties of important textures databases in 

Table 3.1. We can notice that in terms of number of classes and variability, there are 

diverse databases. A number of databases are not developed in controlled and 

organized manner. For example, the Brodatz database is not organized and scanned 

from copyrighted book, even though it is the most widely used texture dataset.  

We can notice at the same time that some databases are available with 

different image sizes, as the original images are down-scaled for smaller image size. 

Regarding color or gray-level issue, most of the databases are available in color 

image formats. As shown in the Table 3.1, we notice that cameras or sensors are 

diverse as well. In some cases, various properties are not available in the original 

paper or respective websites (e.g., in Table 3.2) – therefore, it is not possible to put all 

properties comprehensively.  
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Table 3.1: Various properties of important texture databases 

Database 
Image 
Size 

No. of Class or 
Images 

Gray-
level or 
Color 

Image Rotation Surface Rotation 

Brodatz 512x512 112 classes Gray-level Yes Yes 

Columbia-
Utrecht 
Reflectance and 
Texture (CUReT) 

512x512 
or, 
200x200 

10 classes, usually 
92 images per class 

 Yes, multi-view  
Limited in-plane 
rotation 

Vision Texture 
(VisTex) 

786x512 
or 
512x786 

167 images Color Yes No 

MEASurement of 
TEXture 
(MeasTex) 

512x512; 
also in 
raw PGM 
format 

4 classes, total 944 
images  

 Yes No 

Photometric 
Texture (PhoTex) 

1280x1024  

In various 
formats 
and in 
SCOPE 
format 

Constant view No 

OUTex 516x716 
319 textures, 162 
images per texture 

Color and 
gray-level 
images  

Yes, 6 different 
resolutions 

9 rotation angles 

MRI Brain      

Digital Database 
for Screening 
Mammography 
(DDSM) 

3000x4500 
approximately 
2,620 cases 

   

UCLA dynamic 
texture database 

160x110 
50 classes, 75 
frames per class 

 
Camera 
panning  

 

Dynamic Texture 
(DynTex) 

220x320 
656 sequences, each 
has 150 frames 

Color Inhomogeneous 
Different 
orientations and 
speeds 

DynTex++  
36 classes, total 345 
sequences 

Video Varied  

MIT Szummer 170x115 
7 classes, 120 
frames per class 

 
No camera 
motion 

Perspective 
chirping, spiral 

UIUC database 640×480 
25 classes, 40 
images per class 

 
View-point 
change 

Scale difference 

Texture library 
Varied 
but high-
resolution 

17 classes, total 928 
images  

Color No No 

CMU Near-
Regular Texture 
(NRT) Database  

Image 
and 
videos 

89 classes, total 
5775 images 
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Textures under 
varying 
Illumination, 
Pose and Scale 
(KTH-TIPS) 
database 

1280x960 
or, 
200x200 

10 classes, 108 
Images per class 

Color and 
gray-level 

9 different 
scales  

3 in-plane 
orientations 

KTH-TIPS2 
material database 

1280x960 

44 classes, total 
4608 images; also 
have another set of 
11 classes 

Gray-
level; have 
color 
image of 
200x200 
pixel 
patches  

Variability Varied pose 

Amsterdam 
Library of 
Textures (ALOT) 
database 

 

250 classes, 100 
images per class; 
Also, 12 classes 
(27500+ images) 

 3 orientations 4 view-points  

UMD Texture 
database 

1280x900 
25 classes, 40 image 
per class 

 No No 

Kylbergtexture 576x576 

28 non-rotated 
classes, 4 images 
per class; 28 classes 
with 12 rotations, 
1920 images per 
class 

 
Have some 
rotated images 

No rotation; 12 
rotations  

 
 

Table 3.2: Database and respective websites or comments 

Database Website 
Contact 
Group/Person 

Comments 

Columbia-Utrecht 
Reflectance and Texture 
(CUReT) 

http://www.cs.columbia.ed
u/CAVE/software/curet/ht
ml/about.php 

Columbia 
University and 
Utrecht 
University 

3 databases: (i) BRDF(bi-
directional reflectance 
distribution function) 
database; (ii) BRDF 
parameter database; and 
(iii) BTF (bi-directional 
texture function) database. 

VisTex 
http://vismod.media.mit.ed
u/vismod/imagery/VisionT
exture/  

MIT Media Lab  

Images are grouped 
according to their 
contents; 
Have traditional and non-
traditional textures 

MeasTex 
http://www.texturesynthesi
s.com/meastex/meastex.htm
l 

  

PhoTex  
Heriot-Watt 
University at 
Edinburgh 

 

http://www.texturesynthesis.com/meastex/meastex.html
http://www.texturesynthesis.com/meastex/meastex.html
http://www.texturesynthesis.com/meastex/meastex.html
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OUTex 
http://www.outex.oulu.fi/in
dex.php?page=outex_home 

University of 
Oulu, Finland 

 

Digital Database for 
Screening Mammography 
(DDSM) 

http://marathon.csee.usf.ed
u/Mammography/Database.
html 

UCF  
Possibly the best dataset 
on textures in medical 
texture analysis  

DynTex 
http://projects.cwi.nl/dynte
x/database.html 

European FP6 
Network of 
Excellence 
MUSCLE 

Dynamic texture 

PerTex 
http://www.macs.hw.ac.uk/
texturelab/resources/databa
ses/ 

Fraser Halley 
334 photometric height 
maps with perceptual 
similarity matrix 

 
 

Table 3.3: Comparison among some photometric texture databases 
Database Image 

rotation 
3D surface 

rotation 
Illumination Photometric stereo 

Brodatz Yes No Varied Unregistered 

CUReT Yes Yes Controlled Unregistered 

OUTex Yes Yes Controlled Unregistered 

PhoTex Yes No Controlled Registered 

PMTex Yes Yes Controlled Registered 

VisTex Yes No Controlled Unregistered 

MeasTex Yes No Uncontrolled Unregistered 

 
 

Table 3.4: Comparisons in terms of illumination and camera/sensors 

Database Illumination Camera/Sensors 

Brodatz 
Varied illuminations as photos are taken in 
different time and places 

Scanned images from a 
book 

CUReT Controlled but 7 illumination directions Fixed camera with tripod 

VisTex 
Mixed (daylight, artificial-florescent, artificial-
incandescent, & some are imprecise) 

Camera (having frontal-
plain and oblique settings) 

MeasTex Varied 
35mm camera film, then 
scanned 

PhoTex 40 different illumination directions 
Vosskuhler CCD 1300LN 
digital camera 

OUTex 3 illuminations 

Sony DXC-755P three chip 
CCD camera attached to a 
GMFanuc S-10, a 6-axis 
industrial robot 

MRI Brain Constant 1.5-T Siemens scanner 

DDSM Constant Mammograms 

MIT 
Szummer 

Varied Hi-8 video camera 

http://www.outex.oulu.fi/index.php?page=outex_home
http://www.outex.oulu.fi/index.php?page=outex_home
http://marathon.csee.usf.edu/Mammography/Database.html
http://marathon.csee.usf.edu/Mammography/Database.html
http://marathon.csee.usf.edu/Mammography/Database.html
http://www.macs.hw.ac.uk/texturelab/resources/databases/
http://www.macs.hw.ac.uk/texturelab/resources/databases/
http://www.macs.hw.ac.uk/texturelab/resources/databases/
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Texture 
library 

Varied Digital camera 

KTH-TIPS 4 illuminations 
Olympus C-3030ZOOM 
digital camera 

KTH-TIPS2 3 illuminations 
Olympus C-3030ZOOM 
digital camera 

A LOT 8 different illuminations 
Sigma SD10, SD9 (c3) 
Foveon X3 3CMOS camera 

 

Table 3.3 presents some comparative properties for datasets that are 

photometric texture database [135]. In Table 3.4, we pointed the illumination 

conditions and camera or sensor details. This Table demonstrates the variation on 

lighting conditions and cameras, from which we get the notion that it is not easy at 

all to compare all datasets in single platform. Considering the above-mentioned 

databases, the future direction could be in the 4D dataset [193]. The dynamic 

databases are also not well-organized and lacking a good number of classes. So far, 

the recognition approaches covering the dynamic textures are very few. Therefore, a 

more in-depth analysis in this arena is crucial and challenging.  

Though there are a few well-known databases related to medical texture 

analysis, several more datasets are presented in some papers though these are not 

available and not even well-structured. We recommend that some better datasets on 

texture in medical image processing are required. In future, we are expecting to have 

a few more challenging datasets for static and dynamic texture. But it is an essential 

part for the researchers to do comparative researches on the existing datasets by 

employing various related methods. Note that this task is not trivial and a 

challenging one due to the fact that these datasets are varied in terms of varieties in 

classes, per class instances, image resolutions, lighting conditions and angles. 

Therefore, all datasets may not be covered to compare. The ranges of applications for 

most of the datasets are understandable from their names, and added discussions 

provide these issues as well. We feel that the above-mentioned criterions and 

nomenclature are helpful for further analysis and evaluations.  
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3.7 Conclusions 
This chapter is about texture databases. We convincingly categorize texture 

databases, based on many references. In this survey, we put a nomenclature to split 

these texture datasets into few basic groups and later put related datasets. This 

chapter presents an in-depth discussion and analysis on texture datasets. It points 

important comparative issues and parameters after a comprehensive presentation of 

the datasets.  

We categorize various texture datasets and pointed important issues 

regarding their merits, constraints, and important comparative discussions. We 

summarize some key properties of important textures databases in Table 3.1. We can 

notice that in terms of number of classes and variability, there are diverse databases. 

A number of databases are not developed in controlled and organized manners. For 

example, the Brodatz database is not organized well and it is based on images, 

which are scanned from a copyrighted book. Even though it is the most widely used 

texture dataset, it is not developed through a controlled and organized approach.  

From the Tables, we can notice at the same time that some databases are 

available with different image sizes, as the original images are down-scaled for 

smaller image sizes. Regarding color or gray-level issue, most of the databases are 

available in color image formats. Rotation-invariant texture classification is essential 

for lots of applications [194-195]. There are some image rotation-based datasets 

available.  

One query may appear on what kind of texture datasets seem more important 

for future research. According to our analysis, it is case-specific and application-

dependent. For medical image analysis, the perspectives and necessity are different 

and crucial respectively. For various material texture analyses, it is necessary to 

understand textures for applications in industry, automations and robotics. 

Understanding an image surface or a material is one of the primitive stages to 

evaluate a scene for a robot or intelligent system for applications on material 

evaluation, human action understating, object identification and recognition, etc.  
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In future, we need to develop few more large datasets, especially in the field 

of medical image analysis. Also, more comparative analysis on various features on 

different datasets will provide strong cues for better applications. 
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Analysis of Features Based on  

Co-occurrence Image Matrix 

Chapter 4 

 

4.1. Introduction 

Texture and material understanding and recognition are very important tasks 

in the area of computer vision, medical image processing, image processing and 

computer graphics [8,102,196]. In these fields, we try to understand and evaluate 

image textures and its features. Feature extraction is important and it is a method of 

capturing visual content of images for indexing & retrieval. These are crucial for 

various applications in image understanding, medical image processing, image 

surface analysis, image defect analysis, robotics, etc. [5,7-8,13,101,159]. A machine-

vision system usually cannot perform to understand an object’s surface like a human 

being can. A computer machine-vision system usually is unable to identify an object 

based on its surface of similar patterns.  

Distinguishing an objects surface, from rough or smooth, clean or dirty, liquid 

or solid, even soft or hard is a very daunting task even for a smart machine-vision 

system. Hence, it is essential to understand the differences of similar textures and 

their variations on various image features. To accomplish this task, we need to do in-

depth analysis on similar images on standard datasets and find out their 

characteristics on different conditions and orientations. We consider gray-level 

images for computing their co-occurrence matrices and on the top of those matrices, 

eleven different features are computed. These are statistical image features, which 
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are computed based on the co-occurrences on neighborhood pixel values and their 

respective relationships. 

From our analysis, we hypothesize various points that will be depicted in the 

following parts of this chapter. This kind of in-depth analysis on co-occurrence 

matrices with eleven statistical image features are not accomplished as per our study. 

The chapter is organized as follows: after the introduction in Section 1, we present 

background of this work along with related works in Section 2. In Section 3, we 

present the gray-level co-occurrence matrix and explain its orientation. Image 

features are presented in this Section. In the next section (Section 4), we illustrate the 

experimental texture dataset with varied complexities step by step. We evaluate the 

performances of these eleven features. Finally, we conclude the chapter in Section 5.  

4.2 Co-occurrence Matrix-based Image Features 

In this section, we concentrate on 2nd order statistics and the corresponding 

features based on this. We compute gray-level co-occurrence image matrices from 

gray-level images. From these matrices, we extract 2nd order statistical texture 

features, instead of having these directly from images. The difference between a 

gray-level image and the corresponding gray-level co-occurrence matrix is that the 

matrix has equal number of rows and columns, and it is equal to the number of 

distinct gray-levels or pixel values in that image. It is a matrix that shows the 

frequency of one gray-level appearing in a specified spatial linear relationship with 

another gray-level within the field of inspection [41,197].  

Let us consider that an image contains N gray-levels from 0 to N–1. Also, 

consider that f(m, n) is the intensity at sample m, line n of the neighborhood, then we 
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can have the following co-occurrence matrix from the gray-level pixel values of the 

image, 

 

where, 

 

where, 

 

 

(a) A 4x4 image. 

 

(b) The number of co-occurrences of pixel i to the neighboring pixel value j. 
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(c) Calculation for co-occurrence matrix for horizontal orientation. 

 

(d) Another step for computing the co-occurrence matrix. 

 
(e) The co-occurrence matrix for the image in (a). 

Figure 4.1: An example of the computation of gray-level co-occurrence matrix from 

(a). Sub-Tables sequentially presents the computation of the elements of the co-

occurrence matrix for the 4x4 image, as in (a). 

 

Figures 4.1 and 4.2 show co-occurrence matrices Pij with distance or radius 

𝛿 = 1 and horizontal direction 𝜃 = 0°. Figure 4.1 has four pixel values – 0, 1, 2 and 3. 

Hence, the size of the corresponding co-occurrence matrix will be 4x4. The relative 

distance (δ) between the pixel pair is measured in pixel number. The distance can be 

1 or more based on the considered neighbor distance of pixels. And the orientation 

or angle can be one of the eight options centering each pixel.  
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Figure 4.2: An image patch of size of 4x4 and the corresponding co-occurrence 

matrix as shown in the mid-table. A normalized matrix is shown here which can be 

computed after dividing each value by the total co-occurrence values (e.g., in this 

case, each value is divided by the total of 12. Hence, the 1st cell in the normalized 

matrix is 2/12=0.16). 

 

For example, the relationship 𝛿 = 1 and 𝜃 = 0°  is the nearest horizontal 

neighbor. There can be (N - 1) neighboring pixel pairs for each row and there are N 

rows, providing R = (N - 1)N nearest horizontal pairs. The co-occurrence matrix can 

be normalized by dividing each of its entry by R. In Fig. 4.1, the normalized matrix is 

computed by dividing each value by 12. Moreover, there can be separate co-

occurrence matrices for vertical direction and both diagonal directions, where 

directional angle θ can be  45°, 90°, 135° . If the direction from bottom to top and 

from left to right is considered, there will be eight different directions, as shown in 

Fig. 4.3.  

 
Figure 4.3: Eight different directions of adjacency for the calculation of co-occurrence 

matrices. In this thesis, we consider θ as horizontal  0° , front diagonal  45° , vertical 

 90°  and back diagonal  135° . 
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However, these gray-level co-occurrence matrices can only capture properties 

of a texture but they are unable to produce differentiable properties directly and 

cannot be functional and effective to provide information directly. Hence, we need 

to compute statistical features based on these matrices, for example, to compare 

textures or images. Therefore, numerous features should be exploited and computed 

from the co-occurrence matrix that can be used to represent the texture more 

compactly. This is not a trivial task unless we have a robust analysis of various 

statistical features on distinctive as well as closely-related textures.  

Reference [196] presents various features. In this thesis, we target eleven 

different features, which are computed from co-occurrence matrix. A number of 

features are extracted for an image from co-occurrence matrix and different 

applications exploited a few of these randomly. It is very essential to understand 

image features and their respective rational and impact on orientation. This chapter 

attends this task that is based on a standard dataset created for evaluating eleven 

different features. Textures can be rough or smooth, vertical or horizontal. In our 

dataset, these varieties of dimensions are considered. These features are presented as 

follows: 

F1. Angular Second Moment (ASM) feature 

The Angular Second Moment (ASM) is known as energy or uniformity or 

uniformity of energy. It measures the uniformity of an image. When pixels are very 

similar, the ASM value will be large. For an image of single color of no variation, the 

ASM values for different angles are the Angular Second Moment takings the sum of 

squared component in the matrix. It is calculated according to the following 

equation,  
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F2. Contrast feature 

Contrast can be defined as local intensity or gray-level variations between the 

reference pixel and its neighbor. In the visual perception, contrast is considered by 

the variance in the cheeriness and color of the object. The contrast returns a measure 

of the intensity contrast between a pixel and its neighbor over the entire image. It 

can be recognized as variance and inertia. The contrast is zero when the neighboring 

pixels have constant values. For example, for an image of single color of no variation, 

the contrast values for different angles are 0. It is calculated as, 

 

 

F3. Entropy feature 

It is difficult to define the term entropy. The idea comes from 

thermodynamics. The entropy means the amount of energy that is eternally lost to 

heat every time. The entropy cannot be improved to do useful work. Because of this, 

the term can be understood as amount of irremediable chaos or disorder. Hence, in 

other words, the entropy can measure disorder or complexity of an image. We know 

that entropy demonstrates randomness and the corresponding statistical variations, 

which can be used to define the texture. It is maximal when all elements are equal. 

When an image has high entropy, we can understand that it has a great contrast 

from one pixel to its neighbor pixel. Complex textures tend to have high entropy. 

However, for an image of single color of no variation, the entropy values for 

different angles are 0. The equation of entropy is: 

 



59 

 

  ij

N

j

N

i

piVariance  








21

0

1

0



  

  












1

0

1

0
22

N

i

N

j

ij

ji

ji
p

ji
Corr





 

F4. Variance feature 

The variance is a measure of the dispersion of the values around the mean of 

combinations of reference and neighbor pixels. It is similar to entropy. The variance 

explains the dispersion of the difference between the reference and the neighbor 

pixels in a kernel or image block. For an image of single color of no variation, the 

variance values for different angles are 0. The variance is –  

 

 

F5. Correlation feature 

The correlation feature (i.e., the Pearson product-moment correlation 

coefficient, or Pearson's correlation coefficient) shows the linear dependency of gray-

level values in the co-occurrence matrix. The correlation feature can define the 

relationship of a pixel with its neighbor in terms of correlation among them in the 

entire image. This feature can present how a reference pixel is related to its neighbor, 

0 is uncorrelated, and 1 is perfectly correlated. In other words, it can measure the 

joint-probability occurrence of the specified pixel pairs. The correlation will be high 

if an image contains a considerable amount of linear structure. It can be measured as, 

 

 

F6. Inverse Difference Moment (IDM) feature  

The Inverse Difference Moment (IDM) feature can determine any local 

homogeneity or a sense of uniformity of an image. It can also be termed as 

homogeneity. This feature provides a sense of the measures of the closeness of the 
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distribution of the matrix elements to its diagonal. Homogeneity and contrast can be 

related. A maximum value can be achieved if an image is found with same value for 

all elements in the image. For an image of single color of no variation, the inverse 

difference moment feature values for different angles are 1. It provides a strong 

response at the central locations of the features of interest.  

The IDM is computed according to the following equation,  

 

 

F7. Sum Average feature 

The sum average feature is computed based on the following equation. For an 

image of single color of no variation, the sum average values for different angles are 

2. Usually, for an image of varied pixel values, the sum average is high value. For 

example, an image of grass field has value for sum entropy feature of typically a few 

hundred. It can be calculated as,  

 

 

where, 

 

 

and, 

 



61 

 

  




 
22

0

2

7

N

i

yxeSumVarianc
fiip

   ipif yx

N

i
Average 





 
22

0

7

    





22

0

log
N

i

yxyxentropy
ipip

F8. Sum Variance feature 

The sum variance is computed based on the sum average feature. Among the 

all feature values we are computing here, the sum variance feature produce the 

highest value for each image. As per our computation for 18 different grass-land 

images, the mean sum variance is about 1 million, whereas the sum average is about 

200 only. The equation for sum variance feature is given below: 

 

 

where, 

   

 

F9. Sum Entropy feature 

As per the definition of entropy (as mentioned above for F3), the value goes 

higher for an image of more variations. The sum entropy is about 8 only for 18 

different grass-land images, where the mean sum variance is about 1 million, and the 

sum average is about 200. The average entropy (F3) of the same 18 images is about 

13. For one color image having no variations in pixel values, the sum entropy is also 

zero. It can be computed based on the following equation:   
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F10. Information Measures of Correlation feature – 1  

The Information Measure of Correlation – 1 (IMC1) is measured based on the 

equation below. It has invariance property. It is based on the calculations of entropy 

values of px and py. For an uniform image (i.e., no pixel changes in that image), the 

IMC1 is zero. It produces negative values.  

 

 

F11. Information Measures of Correlation feature – 2  

The Information Measure of Correlation – 2 (IMC2) is measured based on the 

equation below. Similar to the IMC1, the IMC2 also has invariance property. For an 

uniform image (i.e., no pixel changes in that image), the IMC2 is zero. It produces 

values in the range of 0 to 1.  

 

 

4.3Experimental Results and Analysis 

In this section, we demonstrate the experimental results based on a standard 

dataset that covers twenty-one different textures – from uniform values to very 

much random structure at the end. The purpose of this dataset is to evaluate the 

image features computed based on the respective gray-level co-occurrence matrices. 

Figure 4.4 shows the images of the standard dataset.  
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Figure 4.4: Standard dataset of twenty-one texture images in gray-scale. 

 

In this dataset, we can notice that it starts with complete white (all 255 values) 

image (image#1). It has two other gray-level images (image#2 and image#3) having 

uniform single value all around. The next four images (image#4 till image#7) have 
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almost half as black and half as white in four orientations. Similarly, image#14 to 

image#17 have similar patterns of almost half in black and rest are in white. These 

mirror images are useful to understand an image feature. Image#8 till image#13 has 

white-black patches in varied number and different directions, for example, 

horizontal, vertical and diagonal. Image#18 is a chessboard image that is similar to 

image#20 (having densed-chessboard pattern). Image#19 is diamond-shape and 

depicts hugely varied structure than others. The last image is also very complex of 

different combinations of textures.   

 

Figure 4.5: ASM for four angles: It is noticeable that the ASM value is higher for 

img#1 to img#7 than others. This is due to their uniform texture elements and 

the pixels are very similar in parts; whereas, img#19~21 has lowest value due to 

varied texture patterns.   

 

Figure 4.5 shows the angular second moment for all 21 texture images and 

finally the last one is for the average values for ASM values for each of the four 

directions. It is visible from these that ASM is almost invariant to directions. Only for 

image image#10~13 (having more black-white bars in horizontal, vertical and front- 

and back-diagonal directions) and image#20 (densed-chessboard type) show a bit 

angular-variant characteristics. Also, first seven images have highest value (one) for 
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ASM, which demonstrates that these images have no variations. The most variations 

are visible for the last 4 images having more variations.  

In the similar fashion, the later graphs for other ten features also demonstrate 

the characteristics of feature values in four angular directions (θ = 0 ͦ, 45 ͦ, 90 ͦ, 135 ͦ) for 

radius δ=1. The last parameter is the mean value (denoted as ‘Avg.’) of each feature 

for each direction. So, we compute twenty-two different values for each feature in 

four orientations.  

From Fig.4.6, we get the contrast values and it shows that contrast is zero or 

almost zero when the neighboring pixels have constant values. For other images, 

contrast values are higher when they have variations. It is angular-variant.  

 

 

Figure 4.6: Contrast evaluation for four angles: Contrast is zero when the 

neighboring pixels have constant values. 
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Figure 4.7: Entropy feature: more with varied pixel-cases and vice-versa. 

 

The entropy features demonstrate that it is almost directional-invariant. Only 

for image#10 and image#11, the values varied slightly for horizontal and vertical 

directions. For image#10 which has horizontal lines has less value in vertical angular 

direction and for image#11 shows the opposite nature due to its vertical bars. If an 

image has no variations, its entropy is zero and vice versa. Similar nature is visible 

from Fig. 4.8 for variance feature. In this case, image#12 and image#13 shows 

mirrored values for horizontal and back diagonal directions, and vertical and front 

diagonal angular directions. For other cases, it is almost equal for four angular 

directions. Hence, the nature of variance is almost independent of angular 

variations.     

 

Figure 4.8: Variance for four angles: Similar distribution of entropy. 
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The correlation is computed for the images and it has diversely varied values 

for all four directions and hence, this feature presents directional-variant 

characteristics for image textures. In the case where a slope of 0 is present, the 

correlation coefficient is undefined because the variance of Y is zero. To illustrate a 

bit more on correlation and its positive vs. negative values, we can say that the 

correlation between two random variables (𝑋and 𝑌 ) provides a measure of the 

degree to which 𝑋 and 𝑌 tend to ‘move together’:  

 𝑐𝑜𝑟𝑟 𝑋,𝑌 > 0indicates that deviations of 𝑋  and 𝑌  from their respective 

means tend to have the same sign. Hence, the variables are positively 

linearly correlated (or simply positively correlated). 

 When 𝑐𝑜𝑟𝑟 𝑋,𝑌 < 0 , it means that deviations of 𝑋  and 𝑌  from their 

respective means tend to have opposite signs. So these are negatively 

linearly correlated (or simply negatively correlated). 

 When 𝑐𝑜𝑟𝑟 𝑋,𝑌 , 𝑋 and 𝑌 do not display any of these two tendencies and 

the two variables are uncorrelated.  

 If the linear dependence between two random variables is high, the 

correlation is closer to 1.  

Table 4.I and Figure 4.9 show various correlation values for some symmetric 

or almost-symmetric images. From the values (positive or negative) and the angle-

dependencies of symmetric images of the same type – the concept of the correlation 

can be understood for image texture analysis. Values closer to 1 (or, -1) indicate an 

almost perfect linear relation between the two random variable – with positive (or 
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respectively, negative) slope. However, values close to 0 indicate any significant 

absence of a linear relation between them.  

Table 4.1: Correlation values for some symmetric or mirror-type images 

 θ = 0 θ = 45 θ = 90 θ = 135 

 

Img8 -0.03993 -0.03994 0.999511 -0.03988 

 

Img9 0.999511 -0.03988 -0.03993 -0.03994 

 

Img10 -0.10052 -0.10436 0.989081 -0.09837 

 

Img11 0.989081 -0.09837 -0.10052 -0.10436 

 

Img12 0.028453 -0.08613 0.045042 0.990858 

 

Img13 0.045042 0.990858 0.028453 -0.08613 

 

Img14 0.120478 -0.00807 0.146615 0.989201 

 

Img15 0.120478 -0.00807 0.146615 0.989201 

 

Img16 0.146615 0.989201 0.120478 -0.00807 

 

Img17 0.146615 0.989201 0.120478 -0.00807 

 

 

Figure4.9: The corresponding correlation values for four directions of images, as 

shown in Table 4.1.  
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On the other hand, the inverse difference moment (as shown in Fig. 4.10) is 

also theta-variant and has higher values if an image has less variation. Figure4.11 

and onwards have more complex computation but provide important information 

on image feature based on the co-occurrence matrix. The sum average feature is 

theta-invariant and similar to sum the variance feature; it shows slightly mirrored 

values for two mirrored images (image#12 and image#13, which are diagonally 

different – in forward and backward directions). The sum entropy features (as 

shown in Fig. 4.13) for the textures demonstrate almost similar nature that of the 

entropy features above. Though the patterns resemble each other significantly, the 

feature values are not alike. The mean of sum entropy for all texture images for four 

directions is 1.6, whereas, the same value for the entropy feature is 2.1.  

 

Figure 4.10: Inverse Difference Moment for four angles: the IDM has higher value 

when all elements of the image are same. 

 

Figure 4.11: Sum average feature. 

0

0.2

0.4

0.6

0.8

1

1.2

F6 IDM θ = 0

F6 IDM θ = 45

F6 IDM θ = 90

F6 IDM θ = 135

0

100

200

300

400

500

F7 Sum Average θ = 0

F7 Sum Average θ = 45

F7 Sum Average θ = 90

F7 Sum Average θ = 135



70 

 

 

 

Figure 4.12: Sum variance feature for four angular orientations. 

 

 
Figure 4.13: Sum entropy for four angles: Note that F7~F9 depict varied nature for 

images with varied pixel positions. 

 

 

Figure 4.14: Information Measures of Correlation – 1: It produces negative values for 

all cases. 
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Figure 4.15: IMC-2: It is evident that the IMC-2 is not similar to IMC-1 though the 

variations look alike a bit but the variation ranges are different. 

 

Table 4.2: Some values for IMC-1 feature. The corresponding images are shown here. 

Note that borders for each image are provided here only for better visibility. In the 

calculation, there were no borders for these images. 

 

 
𝜃 = 0° 𝜃 = 45° 𝜃 = 90° 𝜃 = 135° 

Image#14 

 

-0.26341 -0.00115 -0.28146 -0.84144 

Image#15 

 

-0.26341 -0.00115 -0.28146 -0.84144 

Image#16 

 

-0.28146 -0.84144 -0.26341 -0.00115 

Image#17 

 

-0.28146 -0.84144 -0.26341 -0.00115 

 

Figures 4.14 and 4.15 present the last two features, called information 

measures of correlation – 1 and information measures of correlation – 2. These two 

features are computationally taxing but reveal different kind of information that 

might be monumental for feature analysis for textures. It is evident that the IMC-2 is 

not similar to IMC-1 though the variations look alike a bit but the variation ranges 

are different. The IMC-1 features are negative values (except for image#1, 3~7). The 
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image#14~15 show same value for all angular orientations even though these are 

mirror-images. On the other hand, similar but diagonally different image#16 and 

imag#17 compute exactly the same values but for switching the angles. Table 4.2 

shows the feature values for these four images. The final feature, IMC-2 depicts 

variability in different directions and values are varied for different textures. The 

IMC-2 also shows similar nature as in table 4.2.    

Hence, from these image features based on the co-occurrence matrices on 

gray-scale images, we can conclude that sum average and sum entropy are θ-

invariant; the ASM, entropy, variance and sum average are almost θ-invariant (only 

a few cases for each, the values are slightly varied and mainly due to their mirrored-

alignment of their textures); and other are θ-variant. The contrast, correlation, 

inverse difference moment, IMC-1 and IMC-2 features demonstrate varied values for 

varied angular directions while computing the matrices. In this chapter, our analyses 

are based on four directions as other four directions just replicate the reverse values 

for these four directions. Hence, 4 orientations or directions can be good enough for 

any computation. However, if no conclusion can be made for a feature in different 

orientations or distances (radius), we can perform exhaustive computation for all 

possible orientations and radius values. Then evaluate to find the most appropriate 

combinations for orientation and radius for specific classes for analysis.  

4.4 Conclusions 

This chapter exhaustively analyzes eleven second-order statistical features or 

cues based on co-occurrence matrices to understand image texture surface. These 

features are exploited to analyze properties of image texture. The features are also 

categorized based on their angular orientations and it is noticeable that we can 
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categorize these features into three different groups – orientation-invariant features, 

almost invariant to orientations, and orientation-variant features. In this chapter, we 

consider four angular variations or directions or orientations. The distance is kept as 

1 for every case. Based on our experimental evaluations, four orientations seem to be 

sufficient for any computation. It is also understood that when a conclusion cannot 

be made based on the above settings, we can perform exhaustive computation for all 

possible orientations and radius values. Afterwards, we need to find the most 

appropriate combinations on orientation and radius for specific classes for analysis. 

Based on a standard dataset, which has twenty-one texture images, ranging 

from no complexity to varied complexity, we vividly unearth the corresponding 

nature and variations in feature-characteristics for each feature. This dataset is a 

newly-developed dataset that can be exploited for characterizing various features on 

gray-scale variations. This in-depth analysis is significant for image surface analysis 

and it allows a researcher to select the most-suitable features on a specific dataset to 

evaluate these and understand their distinctive characteristics. In the next chapter, 

we do more in-depth analysis of the above statistical features on another large 

dataset and distinctively categorize these features into several groups.  
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Categorization of Features Based on  
Co-occurrence Image Matrix 
Chapter 5 

 

5.1 Introduction 
In this chapter, we rigorously investigatethe gray-level co-occurrence features. 

We analyze these features with verity for image classes. We attempt to explain these 

features and want to demonstrate that which feature is good for which types of 

classes. Is really these features can categorize based on different classes? For this 

target, we propose feature groups that are crucial for texture analysis based on 

various criterions.  

5.2 Development of Multiclass Database 
In this chapter, we develop a new database called multiclass database. It 

containsseventeen classes of image data and each class contains lots of images. All 

are real-world images. Our database has the following image classes (N.B.: in the 

braces, the number of images per class is mentioned), as shown in Fig. 5.1: 

ball (18), cow (14), fingerprint (18), forest (17), glass (18),  

honeycomb (14), leathertexture (22), metal texture (20),  

mug (20), one-color (23), pebble (8), road (18), skin (12),  

sky (17), tree (12), wall (20), and water (20). 

 Figure 5.1 shows eight sample images from each class. From this Fig., it is 

understandable that it is a diverse dataset. We use this dataset in this paper to 

evaluate the eleven features.  
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I. Water class 

 
II. Wall class 

 
III. Sky class 

 
IV. Skin class 

 
V. Road class 

 
VI. Pebble class 

 
VII. Mug class 

 
VIII. Metal texture class 

 
IX. Leather class 

 
X. Honey comb class 
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XI. Grass class 

 
XII. Forest class 

 
XIII. Fingerprint class 

 
XIV. Dry tree class 

 
XV. Cow class 

 
XVI. Ball class 

Figure 5.1: Sample images from our multiclass database. 
 

5.3Comparisons among Features  
 In this section, we extensively analyze our multiclass database on various 

features and these features are compared into different sub-categories to understand 

their inherent meanings and characteristics. The following sub-sections illustrate on 

the eleven features and finally, we propose two different categories of these features. 

5.3.1 ASM vs. IDM features  

The angular second moment (ASM) shows the uniformity or energy of the 

image. From the graph of Fig. 5.2(b), it is evident that except for soccer, mug, 

fingerprint and sky classes, others have presence of much non-uniformity. For soccer, 

mug and fingerprint, a significant percentage of the images have uniform or white 
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background.sky class has images having significant of uniform blue-parts and hence, 

the values for ASM is a bit more than others (e.g., grass, pebble or metal-texture). 

From the analysis on ‘standard dataset’ as presented in Chapter 4, we can vividly 

claim that unless there is a necessity to differentiate between less-uniform textures 

versus much-uniform textures, the ASM feature is not necessary to compute for 

normal texture analysis, especially for analyzing natural images. In the case of one-

color image where there is no variation in terms of pixel values, the ASM value is 

zero. So, this feature can be exploited based on dataset and applications.  

 
(a) 

 
(b) 

Figure 5.2: Angular second moment VS. Invers different moment features 
 

For the case of Inverse Difference Moment (IDM), which can be called 

homogeneity (F6), we notice that it is angle-variant. Similar to F5, for forest class, 0° 

shows more values than others. A tree's trunks are black or brownish and like a big 

column in forest and green leaves and grounds are different than the vertical pillar-

like trees. For one-color class, the homogeneity is 1 for all images, as each image of 
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this class is purely homogeneous. Except a few cases, like mug class, soccer class, 

sky class and fingerprint class – othervalues are usually closer to zero and it depicts 

that F6 shows relatively similar nature of Angular Second Moment (F1). 

Figure 5.2 here show two graphs for comparative analysis for F1 (angular 

second moment) and F6 (inverse different moment). These graphs visibly exhibit 

that the characteristics for both features are almost similar. In fact, both of the 

features demonstrate similar characteristics, which is uniformity or energy of the 

image.  

For standard dataset, the variations of the values have similar pattern. Later 

images (i.e., image#18 and onwards) have less F1 and F6 values, because these 

images have lots of variations (i.e., chessboard, etc.). These variations for our 

multiclassdatabase are similar too. The four picks for F6 feature are for mug, ball, 

fingerprint and sky classes, and we find that these classes have more uniformity in 

terms of the presence of pure white values. Hence, the F1 or F6 values are higher for 

these classes. Other classes have less F1 or F6 values and they altogether 

demonstrate that the ASM feature or the IDM feature show similar characteristics 

and hence, less importance for texture analysis. However, the IDM has little better 

variations than the ASM.  

5.3.2 Contrast vs. entropy features 

 The contrast feature (F2) provides intensity or gray-level variations in an 

image. We notice variations in contrast values in the graph of Fig. 5.3. From our 

analysis, we notice forpebble class that if the pebbles or stones are very small 

compare to others, we get more variance for smaller pebble-based images. Also 

based on the alignment, the values vary for different angles. For example, pebble 

shows more values in 135°, and less in normal condition; whereas, tree provides 

more contrast for 45° and less in90°. 



79 
 

 

 

 

Figure 5.3: Graphs to compare the characteristics of contrast and entropy features. 

 

On the other hand, the entropy (F3) graph demonstrates that if the image has 

more irregularities or more contrast (F2), the entropy will be higher.Hence, except 

for one-color class, all classes have varied entropy value. The one-color class has zero 

entropy for each image, due to the fact that all images have just one color with 

uniform distribution, therefore, zero entropy.Figure 5.3 shows the relative 

relationships between these two features. As per our study, it is evident that both of 

them are important for analysis. The physical significances of these features are 
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demonstrated in the earlier chapter. And both of them vary in terms of their nature 

as well. So it is not possible to consider one by leaving another. Though entropy is 

directional-invariant, the contrast is opposite. The bottom graph of Fig.5.3 clearly 

shows their differences. Note that it is shown based on their individual normalized 

values, else both characteristics cannot be shown in one graph due to the range of 

values (for contrast, the range is in few thousand, whereas, the entropy range varies 

within 6 to 14). 

5.3.3 Contrast vs. variance features 

From the Fig.5.4, it is visible that the natures of contrast and variance features 

have similarities to some extend but the range varies. Also, variance is theta-

invariant – opposite to the variance. Based on our analysis, we claim that both of 

these features are required for texture analysis.   

 
Figure 5.4: Contrast vs. Variance features 

 

5.3.4 Entropy vs. sum entropy features 

 For all classes, 'entropy' and 'sum entropy' features demonstrate strong 

discrimination abilities. Therefore, we can consider both features. However, both of 

these features exhibit almost similar patterns for all classes. Figure 5.5 becomes an 

evidence of that fact that both are similar and there are not much differences.  
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Figure 5.5: Entropyvs. Sum entropy features 

 

Moreover, these both features demonstrate almost similar nature in terms of 

angular variations as well. Actually, from our analysis, we claim that ‘entropy‘ has a 

very slight angular variation, whereas, ‘sum entropy’ is purely angular-invariant. 

Hence, we consider to take one of these features. Another point is the computational 

cost, and ‘entropy’ has less computational cost. 

5.3.5 Correlation feature 

 The F5 (correlation) will be high if an image contains a considerable amount 

of linear structure. Correlation relates to dependence. The correlation or F5 is also 

important and shows varied values for different angles for different classes. Hence, it 

is angle-variant. 

 

Figure 5.6: Correlation variations for multi-class dataset. 
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For pebble class, if an image has horizontal arrangement of the pebbles or 

stones, then it shows more values in 90 direction, on the other hand, if the alignment 

is vertical, then 0 angle direction shows more correlation among pixels. The late 

point is more visible in the case of forest class where almost every image has vertical 

trees in the scenes, hence, forest class demonstrates almost twice values for 0 angle 

than other angles. From the discussions on correlation in Chapter 4, it is evident that 

it is a very critical and crucial cue for texture analysis. Therefore, we need this 

feature and it has distinct patterns than others. Figure 5.6 shows the variations of 

correlation values for the multiclass dataset.  

5.3.6 Variance vs. sum variance features 
 

 

Figure 5.7: variance vs. sum variance comparison. 

In this sub-section, we evaluate the pair of variance feature (F4) and the sum 

variance feature (F8). In the Figure 5.7, we demonstrate two graphs – one for 

standarddatabase and another for multiclass database. For F4 and F8 features, it is 

clearly visible that they have exactly the same nature. Even though the actual values 

or the ranges vary significantly but the inherent characteristics are same. Therefore, 

we do not need to compute both features at the same time. As the computation of F4 

is easier to the same for F8, we propose not to consider the sum variance (F8) for 

texture analysis.  
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5.3.7 Sum average vs. IMC1 vs. IMC2 features  

 

Figure 5.8: Sum average vs. IMC1 vs. IMC2comparison. 

From the analysis of sum average (F7), IMC1 (F10) and IMC2 (F11) features, 

we can notice some similarities as well as few varied characteristics among 

themselves. From the Figure 5.8, it is visible that for both datasets, the average 

normalized values demonstrate similar patterns for F7 and F10 more than F11 

features. Based on our analysis, we conclude that these three features can be 

computed for texture analysis though these can be ignored too. The physical 

significance cannot be realized except that these features are based on a bit more 

complex computations and based on entropy computation.   
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Hence, from rigorous empirical analysis, we propose the following sub-

categories of these co-occurrence-based image features, as shown in Table 5.1. 

Table 5.1:Proposed categories of features based on importance. 

Category Feature Comment 

Required 
Features 

Contrast 
- Have discriminating ability. 
- Rotationally-variant. 

Entropy 
- Have strong discriminating 
ability. 
- Almost rotational-invariant  

Variance 
- Have discriminating ability. 
- Rotational-invariant. 

Correlation 
- Have strong discriminating 
ability. 
- Rotational-dependent feature. 

Less 
Important 
Features 

Sum average 
- Characteristics are related to 
‘entropy’ 
- Rotational-invariant 

Information Measure of 
Correlation–1 

- It has almost similar pattern of 
‘sum average’ but vary for 
various classes 
- Varies significantly with 
rotation 

Information Measure of 
Correlation–2 

- It is computationally expensive 
compare to others. 
- Rotation-variant  

Not 
required 
Features 

Angular Second Moment / 
Energy 

- No distinguishing ability  

Inverse Different Moment 
- Similar to ‘angular second 
moment’ 

Sum Variance - Similar to ‘variance’ 

Sum Entropy - Similar to ‘entropy’ 

 

5.4 Group-wise Analysis based on Key Features  
In this sub-section, we analyze between relatively closer classes. Here, we 

categorize these classes on the multiclassdatabase into the following different groups:  

-  Group 1 : grass vs. sky vs. cow 

-  Group 2: skin vs. leather vs. water 

-  Group 3 : forest vs. tree 
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-  Group 4 : wall vs. road 

- Group 5: Natural classes 

- Group 6: Material classes 

- Group 7: Texture-based classes  

 
(a) (b) 

Figure 5.9: Seven key features for different groups of classes: (a) grass, sky and cow 
class; (b) skin, leather and water class.   

 

In Fig. 5.9(a), we make group with grass, sky and cow. We make them group 

because in cow class, it contains sky and grass. So, they have similar property with 

each other. We easily can say that variance feature does not show significant 

difference.  Correlation and IMC1 features can distinguish each other. So we can say 

that Correlation, IMC1 is good for this type of image. 

 
(a) (b) 

Figure 5.10: Seven key features for different groups of classes: (a) forest vs. tree class; 
(b) wall vs. road class. 
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skin, leather and water make another group. They have similarity as a surface 

property. For example, their surfaces are relatively plain; however, water has little 

bit wave texture or ripple. From Fig. 5.9(b), we can say, skin, leather and water can 

separated from these features. 

forest and tree make another group. We make them in group because forest 

and treehave some similar properties. After analysis, we find thatthe co-occurrence 

features can easily distinguish between forest and tree. In Fig. 5.10(a), IMC1 and sum 

average features show little bit similarity between them.In Fig. 5.10(b), we make 

group between wall and road. wall and road have almost similar property. The co-

occurrence features easily can differentiate them. 

 
Figure 5.11: Seven key features for some natural image classes. 

 

 
(a) (b) 

Figure 5.12: Seven key features for different groups of classes: (a) some material 
images; (b) some texture-based classes. 

 

 



87 
 

In Figs. 5.11 and 5.12, we make three groups between all natural images, 

material images and texture images from our database. And from these graphs in 

Figs. 5.11 and 5.12, we can say that co-occurrence features can distinguish each other 

very clearly.  

5.5 Category of Features based on Angular Directions 
After some rigorous experimental analysis, we propose the following 

category of the features based on co-occurrence image matrix. These are clustered 

into three different groups, as follows: 

i. Rotation-invariant features 

ii. Almost rotation-invariant features 

iii. Rotation-variant features 

These are explained below with appropriate analytical graphs.  

 
Figure 5.13:  Graphs to demonstrate the rotation-invariant features. 
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5.5.1 Rotation-invariant features  

They show theta-invariant with respect of different classes. Three features are 

found to be rotational-invariant. Figure 5.13 shows this invariance characteristic for 

the following three features,  

 Variance  

 Sum average  

 Sum entropy   

5.5.2 Almost rotation-invariant features  

In this category, we put three features. However, these features are very close 

to the above category where only a few cases, we notice some variations or 

deviations from being invariant. Hence, we categorize these into almost invariant to 

angular rotation. Figure 5.14 shows these characteristics. These features are, 

 Angular second moment  

 Entropy  

 Sum variance 

 

 
Figure 5.14:  Graphs to demonstrate the almost rotation-invariant features. 
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5.5.3 Rotation-dependent features  

The other five features vary significantly with different directions 

(𝜃0 ,𝜃45 ,𝜃90, 𝜃135). In some cases, θ=0 and θ=90 demonstrate mirror-like values and 

the same for θ=45 and θ=135. Hence, it is necessary to keep these information while 

analyzing various image textures so that only necessary features can be considered 

for analysis.  

 
Figure 5.15:  Graphs to demonstrate the rotation-variant features. 
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From the Figure 5.15, it is understandable that some features vary with 

directions. In this category, we put five features, namely, 

 Contrast  

 Correlation  

 Inverse different moment  

 Information measure of correlation – 1  

 Information measure of correlation – 2 

5.6 Conclusions 
In this chapter, we thoroughly investigate the gray-level co-occurrence 

features. We analyze these features with variety for image classes. We attempt to 

explain these features and want to demonstrate that which feature is good for which 

types of classes. For this target, we propose feature groups that are crucial for texture 

analysis based on various criterions.We develop and use a large real-world multiclass 

database and the standarddatabase(that we introduce in Chapter 4).We study eleven 

features to find their inherent characteristics by using these datasets.Hence, after 

rigorous analysis, we propose three categories of features in terms of co-occurrence-

based image matrix considering direction. These are clustered into three different 

groups such as rotation-invariant features, almost rotation-invariant features, and 

rotation-variant features. 

We also categorize these features in terms of their applicability on image 

rotation. The rotation-invariant features show theta-invariant with respect of 

different classes. Three features are found to be rotational-invariant:variance, sum 

average, sum entropy. Next, we categorize almost rotation-invariant features. These 

features are very close to the above category (rotation-invariant features), where 

except a few cases, we do not notice any variations or deviations on angular changes. 

Hence, we categorize these into almost invariant to angular rotation. These features 

are: angular second moment, entropy, sum variance.The third category in this 

regards is the rotation-dependent features, which vary significantly with different 

directions. In some cases, θ=0 and θ=90 pair,andθ=45 and θ=135 pair demonstrate 
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mirror-like values. These rotation-dependent features are: contrast, correlation, 

inverse different moment, information measure of correlation – 1, and information 

measure of correlation – 2. It is necessary to keep this information while analyzing 

various image textures so that only necessary features can be considered for analysis.  

From rigorous empirical analysis, we also propose the following sub-

categories of these co-occurrence-based image features: required features, less 

important features, and not required features. These are pointed in Table 5.1. The 

required features (such as contrast, entropy, variance, and correlation) have strong 

discriminating ability among closer images. On the other hand, the not required 

features such as angular second moment and inverse different moment have no 

distinguishing ability.From our analysis, we conclude that the characteristic of sum 

variance is similar to that of variance; and sum entropy is similar to entropy. We 

categorize another sub-group called the less important features. These are sum 

average, information measure of correlation – 1 and information measure of 

correlation – 2.  Sum average feature shows same characteristics related to entropy 

and information measure of correlation – 1 shows similar characteristics of sum 

average. Information measure of correlation – 2 is computationally expensive 

compare to other features.  

Finally, in this chapter, we deeply analyze eleven co-occurrence based 

features. This type of in-depth analysis and categorization has not been done by 

others. Usually, researchers are using some of these features, mostly with random 

selection, for texture analysis. However, the selections of these features have not 

been studied deeply in the past. In the next chapter, we propose and study another 

type of statistical-based image representations for texture analysis.  
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Texture Recognition Based on Diagonal-
Crisscross Local Binary Pattern 
Chapter 6 

 

6.1 Introduction 
It is required to develop and formulate robust description of intensity values 

in the neighborhood pixels of an image. Texture can easily characterize surface of an 

object or image. Different methodologies have been proposed for analyzing textures. 

A well-known and widely-used method called local binary pattern (LBP) is 

proposed [198]. The proposed method or operator is a 2-tier version of the original 

method in Ref. [199]. The LBP operator is an operator that can convert or transform 

an image into an array or image of integer labels. The detailed computation of the 

LBP is presented below. Though the LBP operators and its variants are mostly 

developed and employed in the case of face analysis and recognition, it is also used 

for image texture analysis other than face-texture [17, 42-45].  

In this chapter, we propose a new method called diagonal-crisscross local binary 

pattern (DCLBP) for texture representations in spatial domain, in a smarter way 

compare to the original local binary pattern. The proposed method is tested on two 

very difficult benchmark databases. We also propose two other variants of the LBP 

considering rotational feature and mean/median of the neighbor pixels. In this 

paper, we compare our proposed methods with other methods called median-LBP, 

Median-rotational-LBP, Interpolation-LBP, number-LBP, neighborhood-intensity-

LBP. Details of these methods are available in literature and in the book on LBP 

[200]. 
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6.2 Computation of Local Binary Pattern 
In the local binary pattern (LBP) operator, a binary code is produced by 

thresholding a pixel’s neighborhood. If we have an image of 3x3, then we take the 

center pixel and compare it with its neighbor (in this case, 8 neighbors). For an entire 

image, the basic operator starts can be a 3x3 cell or block of that image. 

 
(a) (b) (c) 

Figure 6.1: Calculating the basic local binary pattern for a 3x3 block of an image. 
 

Figure 6.1 shows an example of computing this local binary pattern. The basic 

steps of the LBP are as follows, 

 Consider an image block of 3x3, as shown in Fig. 6.1(a). The neighborhood 

pixels  𝑁𝑝  in each block are thresholded by its center pixel value  𝑁𝑐 . The 

basic concept is to consider whether a neighbor pixel is smaller than the 

central pixel value or not. If   𝑁𝑝 ≥ 𝑁𝑐 , then the thresholded value will be 1 

(if  𝑁𝑝 < 𝑁𝑐 , then thresholded value will be 0). This thresholded value will 

replace that neighbor pixel value. In this manner, a new threshold 3x3 block 

will be produced where eight neighbors are changed, as shown in Fig. 6.1(b). 

 These thresholded binary values (8 bits for 8 neighbors of the central pixel) 

are multiplied by the powers of two and then summed to obtain a label for 

the center pixel. This is simply a binary-to-decimal conversion.  
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 This new decimal value replaces the central pixel value. Based on the Fig. 6.1, 

we get a new value for the block in Fig. 6.1(a) according to the following 

computations, 

Binary Pattern: 
1 

(MSB) 
1 1 1 0 0 0 

1 
(LSB) 

         
Code/Weight 2𝑝 : 1 x 27 1 x 26 1 x 25 1 x 24 0 x 23 0 x 22 0 x 21 1 x 20 
 =128 =64 =32 =16 =0 =0 =0 =1 
         
LBP: 1 + 16 + 32 + 64 + 128 = 241 

 

 So, the new central pixel will be 241. In this way, a new image or matrix is 

produced based on the local or neighbor binary pattern for block-by-block of 

that image.  

 

Figure 6.2: Another example of LBP computation. 

 

If we consider 8 neighbors, i.e., if the neighborhood of a central pixel has 8 

pixels or neighbors, then we can have 28 (=256) different labels. The above-

mentioned process can be explained by the following mathematical expression: 
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𝐿𝐵𝑃𝑝 ,𝑟 𝑁𝑐 =  𝑔

𝑃−1

𝑝=0

 𝑁𝑝 − 𝑁𝑐 2𝑝  

where, the binary threshold function 𝑔 𝑥  is, 

𝑔 𝑥 =  
0, 𝑥 < 0
1, 𝑥 ≥ 0

  

Figure 6.2 illustrates another example on how the LBP operator is computed.  

So far, we discuss on basic local binary pattern, which is limited to 3x3 block 

or 8 neighbor pixels. On the other hand, the generic LBP operator has no limitations 

in terms of block size (it could be 3x3 or 5x5 or larger), or number of neighbors to 

considered. Figure 6.3 mentions two cases, one for 3x3 block where the selection of 

eight neighbor pixels are straight-forward.  

 
(a)                                                          (b) 

Figure 6.3: LBP for 3x3 and 5x5 blocks for 8 neighborhood pixels.  
 

In the case of 5x5 block (Fig. 6.3(b)), the crisscross values are easy to consider 

(pointed in black dots), but the diagonal values (as shown in green circle with black 

border) are difficult to consider directly. If a sampling is not in the center of a pixel 

location, it does not have any appropriate pixel values. In this case, interpolation or 

texture mapping is necessary.  
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Hence,  

 We can take either the average of each four-pixel block in diagonal directions;  

 Or, we can compute bilinear interpolation (also called as, bilinear texture 

mapping or bilinear filtering), if the sampling point is not in the center of a 

pixel [201].  

6.3 Diagonal-Crisscross Local Binary Pattern (DCLBP) 
In this thesis, we propose a new image or texture representative operator 

called diagonal-crisscross local binary pattern (DCLBP). It is based on the concept that 

an image feature should take diagonal pixel variations as well as horizontal and 

vertical (crisscross) pixel variations in the neighborhood, so that it can perform well 

even in the cases of rotations in images.  

We also consider the center pixel value of each block for analysis, because in 

order to change a center pixel value with a new pixel value, the importance of that 

center pixel should be retained. Each block represents the neighborhood around a 

central pixel. In this case, we consider the differences of mutual diagonal pixels (both 

front-diagonal and back-diagonal) and the same for horizontal directions and 

vertical directions (called here as crisscross).  

The computations of the neighborhood pixels within the square mask are 

thresholded differently in this case than the basic local binary pattern operator. 

According to the following strategy, we compute a new value. The diagonal-

crisscross computation for a 3-by-3 mask or texture spectrum is shown in Fig. 6.4. 

Here for a 3-by-3 image patch or mask, we start from N0 pixel position from the left-

topmost corner. We could start from another position too, which will be computed 

for all images.  
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Then we compute four difference values:  

 Difference for front-diagonal values (N0 – N4),  

 Difference in vertical direction (N1 – N5), 

 Difference for back-diagonal direction (N2 – N6), and  

 Difference in horizontal direction (N3 – N7). 

  
(a) (b) 

 
(c) 

 
(d) 

Figure 6.4: Computation of DCLBP:  
(a) 3-by-3 image patch;  
(b) Start from N0 pixel position;  
(c) Get differences for front-diagonal values (N0 – N4), in vertical direction  
(N1 – N5), for back-diagonal direction  (N2 – N6), and in horizontal direction  
(N3 – N7);  
(d) Multiply each difference with 21, 23, 25 and 27 sequentially to compute a 
new value. 

 

Afterwards, we multiply each difference with 21, 23, 25 and 27 sequentially to 

compute a new value. We also computed 20, 21, 22 and 23 for one computation; as 

well as, 24, 25, 26 and 27- to check the possibility of improvement. However, both 

cases provide poor results. It is due to the fact that, for the case of ‘20, 21, 22 and 23’ 

combinations, the maximum value becomes ‘20 + 21 + 22 + 23’, which is 1+2+4+8 = 15. 

So the range from 0~255 for a gray-scale image turns into 0~15 values. Hence, the 
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results are poor for this combination. On the other hand, with the ‘24, 25, 26 and 27’ 

combination, the maximum value becomes ‘24 + 25 + 26 + 27’, which is 16+32+64+128 

= 240. Hence, the range of new values can be 16~240, which is also relatively lower 

than the range of a gray-scale image. Another key point is the central pixel’s 

reflection in the new value. 

So far, we have not computed or considered the central pixel value  𝑁𝑐 . 

Based on our study, if we do not consider the central pixel value but replace it only 

through the neighborhood pixel values (as mentioned above), then the approaches 

do not demonstrate smarter representations. Therefore, in our proposed method, we 

consider ‘21, 23, 25 and 27’ combinations (for the four differences as computed above), 

and the center pixel value  𝑁𝑐 . We take the mean value of newly-computed value 

and the central pixel value. This mean value will replace the central pixel value  𝑁𝑐  

and in this manner, we get the image based on the proposed diagonal-crisscross local 

binary pattern (DCLBP) method. The computation is done as per the equation below, 

𝐷𝐶𝐿𝐵𝑃𝑝 ,𝑟 𝑁𝑐 =
   𝜗 𝛿𝑘 ,|𝑃|+𝑘 

 𝑃 −1
𝑘=0 × 2𝑝𝑘∈𝑃 + 𝑁𝑐 

2
 

where, 

The sampling-point set is,   

𝑃 =  1, 3, 5, 7  

Cardinality of the set is,  

 𝑃 = 4 

Difference parameter 𝛿 is, 

𝛿𝑘 ,|𝑃|+𝑘 =  𝑁𝑘 − 𝑁|𝑃|+𝑘  

The binary threshold function 𝜗 𝛿  is, 

𝜗 𝛿 =  
0, 𝛿 < 0
1, 𝛿 ≥ 0
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The radius of the neighborhood is  𝑟, which can be 1 or more. For 3x3 image 

patch, the radius is 1. When sampling coordinates do not fall at integer positions 

(e.g., if the radius is 1, then sampling coordinates fall at integer positions), the 

intensity value is bilinearly interpolated. Increasing the value of radius enhances 

information redundancy and thereby, increases the computational cost. We can 

consider a multi-scaled computation where we can take different combinations of 

radius and then see its performance. But based on analysis, it does not provide 

stronger cue for better discriminating ability of different textures.   

Here, the cardinality,  𝑃 = 4 that demonstrates that it has 4 different-possible 

values as ‘21, 23, 25 and 27’. For 𝑘 = 0,  we get  

 𝛿0,4+0 × 21  = 𝛿0,4 × 21  

which, covers the front-diagonal difference of  𝑁0 − 𝑁4 . Similarly, 

when 𝑘 = 1, 𝛿1,5 × 23 covers the vertical difference of  𝑁1 − 𝑁5 ; 

when 𝑘 = 2, 𝛿2,6 × 25 covers the back-diagonal difference of  𝑁2 − 𝑁6 ; 

when 𝑘 = 3, 𝛿3,7 × 27 covers the horizontal difference of  𝑁3 − 𝑁7 . 

Through this manner, we get the new central pixel value for each patch.  

6.4 Median-RILBP 
The ‘Median-Rotational-Invariant-LBP’ method is proposed at the top of the 

concept of rotational-invariance. This approach returns the median value that 

neighbors may represent by rotating the computed decimal value (that is calculated 

based on the binary thresholding function). The rotation is done 8 times if P = 8 and 

the median value is taken from these eight outcomes. 

It is understood that when a rotation in an image is done, the corresponding 

LBP patterns can render into a different position, and can rotate about their center 

point or pixel. Therefore, if we circulate the LBP binary code for each case, and then 

consider one of these binary patterns as a central pixel value, then we could 
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minimize the rotational problem. Therefore, according to the following strategy, the 

circular rotation is done to get rotational-invariance on the computed patterns. 

Under a rotational transform, the neighborhood pixel values of  𝑁𝑝 |𝑝 =

0, 1, … ,  𝑃 − 1   move along a circular path around the central pixel  𝑁𝑐  that 

produce different labels. This rotation-invariant concept can remove the rotational 

effects of images. We compute the median of each rotational pattern and then this 

median value becomes the new center pixel. It can be computed as follows, 

𝐿𝐵𝑃𝑝 ,𝑟
∝  𝑁𝑝 
 = 𝑚𝑒𝑑𝑖𝑎𝑛 𝜌 𝐿𝐵𝑃𝑝 ,𝑟 𝑁𝑝 , 𝑝  |𝑝=0,1,…,𝑃−1 

 
 

where, 

 ∝ symbolizes ‘rotational-invariant’ nature; 

 𝑝 is pattern (e.g., 8 for a 3x3 patch); 

 𝑟 is radius; and  

 𝜌   is the rotational function where it circularly does bitwise right-shift 

operation. The bit-shift is done 8 times if 𝑃 = 8. For example, if a usual computation 

provides a binary pattern – 00001010, then by the bit-wise right-shift operation, we 

get – 00000101, 10000010, 01000001, …, 00010100. From these 8 binary patterns, we 

take the median of them. The concept here is to rotate the 𝑃 neighbors and compute 

the 𝑚𝑒𝑑𝑖𝑎𝑛  value that the neighbor chain may represent. 

6.5 Mean-RILBP 
This approach returns the mean value that neighbors may represent by 

rotating the computed decimal value (that is calculated based on the binary 

thresholding function). The rotation is done 8 times if P = 8 and the mean value is 

taken from these eight outcomes. Based on the above-mentioned method ‘median-

RILBP’, we propose another method where we consider the mean value instead of 

minimum or median values. This method performs well too. It can be computed as 

follows, 
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𝐿𝐵𝑃𝑝 ,𝑟
∝  𝑁𝑝 

              = 𝑚𝑒𝑎𝑛 𝜌 𝐿𝐵𝑃𝑝 ,𝑟 𝑁𝑝 , 𝑖  |𝑝=0,1,…,𝑃−1 
                                              

The basic notations are as above.  

6.6 Experimental Setup  
In this chapter, the proposed methods along with few other related methods 

are compared with two well-known benchmark datasets. These are: USC-SIPI (i.e., 

University of Southern California – Signal and Image Processing Institute)) Rotated 

Textures dataset [112-114], and KTH-TIPS dataset [87,90,97,124,138,147,160]. 

 
Figure 6.5: Sample images for each class of USC-SIPI Rotated Textures dataset. 

 

 

Figure 6.6: Seven rotated images for bark class (USC-SIPI Rotated Textures dataset). 

 

We experiment on a dataset called USC-SIPI (i.e., University of Southern 

California – Signal and Image Processing Institute)) Rotated Textures dataset [112-

114] (Fig. 6.5), which has 7 different rotations (each image is digitized at seven 

different rotation angles: 0, 30, 60, 90, 120, 150, and 200 degree) for each of the 13 

different images. Figure 6.6 shows 7 rotated images for bark class. These images are 

taken from the Brodatz database [69,71,80,83-97], which is the most widely-used 

dataset since long. In this dataset, there are 13 classes and each class has 7 images. 

These images have resolutions of 512x512 pixels (with 8 bits/pixel). These rotated 

images are scanned by employing a 512x512 pixel video digitizing camera. Hence, 
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the qualities of the scanned images are probably not as good as those in the main 

part images. It shows that our proposed three methods perform well.  

 

 

 
Figure 6.7: KTH-TIPS dataset: (Top-row) (a) The variation with respect to scale in the 
KTH-TIPS database. Center image: It shows the central scale, and it was selected to 
correspond roughly to the scale used in the CUReT database. The left and right 
images are captured with the sample at half and twice that distance, respectively. 
(Bottom-row). (b) The variation of pose and illumination present in the KTH-TIPS 
database. It shows 3 out of 9 images per scale, showing the variation of pose and 
illumination. Prior to use, images were cropped so only foreground was present. 
 

 
Figure 6.8: Ten different classes for KTH-TIPS dataset (ten images are shown: 
sandpaper, crumpled aluminum foil, styrofoam, sponge, corduroy, linen, cotton, 
brown bread, orange peel and cracker B).  

 

We experiment on another very large dataset called KTH-TIPS (TIPS stands 

for ‘Textures under varying Illumination, Pose and Scale’) database 
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[87,90,97,124,138,147,160]. Figure 6.7 shows some sample images [160]. In this case, 

there are 10 different classes and each class has 81 images of different rotations and 

variations. These are sandpaper, crumpled aluminum foil, styrofoam, sponge, 

corduroy, linen, cotton, brown bread, orange peel and cracker B. These are imaged at 

nine distances from the camera to give equidistant log-scales over two octaves, as 

illustrated in Fig. 6.7(a) for the cracker [160]. At each distance images are captured 

using three different directions of illumination (front, side and top) and three 

different poses(central, 22.5° turned left, 22.5° turned right) giving a total of 3x3 = 9 

images per scale, and 9x9 = 81 images per material. A subset of these is shown in Fig. 

6.7(b). For each image, a 200x200 pixel region is created by removing the 

background. Figure 6.8 shows ten sample images for this dataset.  

6.7 Recognition Strategy  
The classifications have been performed by two different classifiers. They are: 

k-Nearest Neighbors (KNN) classifier and Support Vector Machine (SVM).  

 

k-Nearest Neighbor: 

It is one of the most basic but simple classification methods. It does not 

require any prior knowledge usually on the distribution of the data. It is a non-

parametric method.   

 

 
Figure 6.9: Example of k-NN classifier.  
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Figure 6.9 shows an example of k-NN classification. The test sample (green 

circle) should be classified. According to this example, the test sample is classified as 

one of the blue squares or to the second class of red triangles.  

 

 Within dashed-line circle: if k=1, then the unknown test sample is classified as 

red triangle. Here, based on distance from the test sample ‘green circle’, the 

red triangle on left-top side has shortest distance.  

 Within dashed-line circle: if k=3, then the unknown test sample is classified as 

red triangle. Here, based on distance from the test sample ‘green circle’  

red triangle (left) < red triangle (right) < blue square.  

Based on majority voting, red triangle is classified.  

 Within solid circle: if k=1, then the unknown test sample is classified as red 

triangle. Here, based on distance from the test sample ‘green circle’, the red 

triangle on left-top side has shortest distance.  

 Within solid circle: if k=3, then the unknown test sample is classified as red 

triangle. Here, based on distance from the test sample ‘green circle’ 

red triangle (left) < red triangle (right) < blue square (left) < blue square 

(right) < blue square (bottom) 

Based on majority voting from top three cases as k=3, red triangle is classified 

(as top three has two red triangles and one blue square).  

 Within solid circle: if k=5, then the unknown test sample is classified as blue 

square. Here, based on distance from the test sample ‘green circle’ 

red triangle (left) < red triangle (right) < blue square (left) < blue square 

(right) < blue square (bottom) 

Based on majority voting from top five cases as k=5, blue square is classified 

(as top five has two red triangles and three blue squares). 

 

Support Vector Machine: 

Support Vector Machines (SVMs) are supervised learning models and is one 

of the most widely used classifiers. In order to implement the SVM for classification, 
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we employ the LIBSVM [202]. It is a well-known library for SVM. Many papers in 

various conferences and journals use this library to implement SVM.  

For the SVM, though there are different kinds kernels are proposed, found 

basic kernel functions are widely employed. These are: linear kernel function, 

polynomial kernel function, sigmoid function, and radial basis function (RBF). In this 

paper, we consider the radial basis function as kernel function, where the kernel 

parameter  𝛾 = 1. In this case, the following steps are considered for classifications:  

 

- transform data to the format of an SVM package;  

- conduct simple scaling on the data;  

- select kernel function (we take the RBF kernel);  

- use cross-validation to find the best parameter for the penalty parameter 

of the error term 𝐶and the gamma 𝛾; 

- use the best parameters (𝐶and 𝛾) to train the whole training set; 

- finally, testing is done.  

 

Scaling before applying SVM is done. Scaling can avoid attributes in greater 

numeric ranges dominating those in smaller numeric ranges. Scaling also can avoid 

numerical difficulties during the calculation. The range is considered within  0,1 . 

We use RBF kernel as it can nonlinearly map samples into a higher dimensional 

space.  

As the above SVM is binary one – so it cannot be implemented directly for 

multi-class classification. Hence, it needs some modifications. LIBSVM implements 

the ‘one-against-one’ approach [203] for multiclass classification.  

We partition samples into training and testing categories. The performance of 

most classifiers is typically evaluated through cross-validation, which involves the 

determination of classification accuracy for multiple partitions of the input samples 

used in training. For example, during 5-fold cross-validation training, a set of input 

samples is split up into 5 partitions  𝐷1, 𝐷2 , … , 𝐷5 , having equal sample sizes to the 

extent possible. If possible, make each partition with equal number of sample sizes. 

To begin, for 5-fold cross-validation, samples in partitions  𝐷2, 𝐷3 , … , 𝐷5  are first 
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used for training while samples in partition  𝐷1      are used for testing. Next, samples 

in groups  𝐷1, 𝐷3, … , 𝐷5  are used for training and samples in partition  𝐷2  used for 

testing. This is repeated until each partition has been used singly for testing. It is also 

customary to re-partition all of the input samples, e.g., 10 times in order to get a 

better estimate of accuracy. This strategy can be called leave-one-group-out or n-fold 

cross-validation scheme. If one does not consider partitions, but all classes, then 

using one class as testing and rest others as training (similar to the above concept), we 

can get leave-one-out cross-validation scheme.   

For the SVM, we used the n-fold cross-validation scheme:  

- partition a sample of data into complementary subsets,  

- perform the analysis on one subset (training set), and  

- validate the analysis on the other subset (testing set).  

6.8 Result and Analysis 

The recognition results show clearly that the proposed DCLBP method is the 

best considering the complexities of the datasets. These are classified by using two 

well-known and very widely used classifiers. These are the k-nearest neighbor 

classifier (KNN) and the support vector machine (SVM). 

Table 6.1: Recognition results for USC-SIPI Rotated Textures dataset. 

USC-SIPI Rotated Textures Dataset 

Feature KNN  SVM 

LBP 46 74.7 

Interpolation_LBP 46.1 80.2 

Median_LBP 30.8 80.2 

MedianR_LBP 84.6 93.4 

Number_LBP 92.3 87.9 

NI_LBP 23.1 65.9 

Mean-RILBP 100 95.6 

Median-RILBP 92.3 96.7 

DCLBP 100 90.1 
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Table 6.2: Recognition results for KTH-TIPS database. 

KTH-TIPS DB 

Feature KNN  SVM 

LBP 80 53.7 

Interpolation_LBP 60 53.1 

Median_LBP 70 46.4 

MedianR_LBP 70 28 

Number_LBP 90 35.2 

NI_LBP 70 55.7 

Mean-RILBP 70 23.4 

Median-RILBP 70 29.6 

DCLBP 90 72.5 

 

In this paper, we use LIBSVM library for multi-class classification with radial 

basis kernel function (default value for gamma in kernel function is 1). The following 

two tables show the comparative recognition results on the two datasets. Table 6.1 is 

for the famous USC-SIPI Rotated Textures dataset. Table 6.2 shows the recognition 

results for KTH-TIPS database. 

6.9 Conclusions 

The LBP is similar to the gray-scale based co-occurrence matrix or image: both 

have image on gray-scale variations and final features are computed directly from 

the LBP or co-occurrence matrices, instead of the original image. Therefore, in 

sequence of the earlier chapters, we introduce this chapter and propose method. In 

Chapter 5, we propose a category based on rotational-invariance/-variance issues of 

co-occurrence-based features. This chapter has concentrated on rotational-invariance 

properties to classify rotational images smartly based on LBP-based methods. 

In this chapter, we propose a new method called diagonal-crisscross local binary 

pattern (DCLBP) for texture representations in spatial domain, in a smarter way 

compare to the original local binary pattern. The proposed method is tested on two 

very difficult benchmark databases. We also propose two other variants of the LBP 

considering rotational feature and mean/median of the neighbor pixels. In this 
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paper, we compare our proposed methods with other methods called median-LBP, 

Median-rotational-LBP, Interpolation-LBP, number-LBP, neighborhood-intensity-

LBP. Details of these methods are available in literature and in the book on LBP 

[200]. 

Based on our experimental results in two benchmark datasets having 

rotational image, the proposed DCLBP method performs the best. The datasets are: 

USC-SIPI (i.e., University of Southern California – Signal and Image Processing 

Institute)) Rotated Textures dataset, and KTH-TIPS (TIPS stands for ‘Textures under 

varying Illumination, Pose and Scale’) database. For rotational and complex texture 

analysis, compare with some other methods, we get satisfactory results.  For 

recognition we use very well-known classification methods: k-nearest neighbor 

classifier and Support Vector Machine (SVM). Both of the classifiers show 

satisfactory results for our proposed methods. 
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Conclusions and Future Work 

Chapter 7 
 

7.1 Summary of the Thesis 

In this chapter, we summarize our work as follows, 

 We concentrate on several important areas on texture analysis. A 

survey on done based on these important features. We survey 

various important features that are suitable for texture analysis. 

There are various approaches for different types of texture images. 

So far, there is no comprehensive work that deals with key features.  

 Apart from the issue of variety of features, different types of texture 

datasets are also discussed in-depth. However there are a number of 

texture datasets. There is no comprehensive works covering the 

important databases and analyzing these in various perspectives. We 

convincingly categorize texture databases, based on many references. 

In this survey, we put a nomenclature to split these texture datasets 

into few basic groups and later put related datasets. We discuss and 

analyze these in-depth and point some comparative issues.  

 Next we exhaustively analyze eleven second-order statistical 

features or cues based on co-occurrence matrices to understand 

image texture surface. These features are exploited to analyze 

properties of image texture. The features are also categorized based 

on their angular orientations and it is noticeable that we can 

categorize these features into three different groups – 

orientation-invariant features, almost invariant to orientations, and 
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orientation-variant features. We categorize these features in terms of 

their applicability also.  Based on two databases (standard database 

and real-world image database) we do our work. Standard database 

contain 21 images with different gray-level scratch. Our developed 

real-world database contains 17 classes.  

 We propose a method called diagonal-crisscross local binary pattern 

(DCLBP) for texture analysis. We also propose another two methods 

based on median and average in rotational concept. Compare to the 

basic LBP and few other extensions, we find that our proposed 

method performs well in two very difficult benchmark datasets.  

 

7.2 Outline on Future Work  

In future, we want to analyze more on medical image processing-related texture 

datasets. As medical image processing is very sensitive and important area, so we 

need to find appropriate approaches for analysis to help medical physicians. 

However, there are only a few publicly-available datasets for medical texture 

analysis. We need to create some datasets and do study on the above approaches. 

We may also need to develop few more methods for these textures.  
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